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1	Introduction
Structural	topology	optimization	is	capable	of	determining	the	best	layout	of	material	in	the	design	domain,	so	as	to	optimize	concerned	structural	performances	under	the	given	constraints.	It	has	gained	extensive	interests	in

both	academia	and	industry.	One	fundamental	theory	in	this	field	was	established	by	Michell	[1].	In	his	work,	the	exact	solutions	for	some	truss	structures	were	presented	by	using	the	analytical	method.	However,	these	truss	structure

design	problems	only	consider	single	load	case	and	depend	on	the	appropriate	specification	of	strains	[2].	Later,	Cox	[3],	Hemp	and	Chan	[4–6],	Prager	and	Rozvany	[7],	Cheng	and	Olhoff	[8,9]	and	other	researchers	further	developed

the	Michell	theory	for	more	general	topology-related	layout	optimizations.	These	studies	reveal	that	topology	optimization	can	pave	a	new	pathway	to	provide	solutions	for	many	real-world	engineering	optimization	problems	[10,11].

Up	till	now,	several	different	methods	have	been	established	for	topology	optimization,	such	as	the	homogenization	method	[12],	the	solid	isotropic	material	with	penalization	(SIMP)	[13,14],	the	evolutionary	structural	optimization

(ESO)	method	[15],	as	well	as	the	level	set	method	(LSM)	[16–20],	which	are	applied	to	a	broad	range	of	structure	and	material	design	problems	[11,21].

LSM	has	recently	emerged	as	an	efficient	design	tool	for	shape	and	topology	optimization	of	structures	[16,17].	One	of	the	fundamental	concepts	behind	the	LSM	is	to	implicitly	embed	the	lower	dimensional	design	boundary	of

a	 structure	 into	 a	 higher	 dimensional	 level	 set	 function	 (LSF)	 [18],	 and	 the	 merging	 and	 splitting	 of	 structural	 boundary	 (zero	 level	 set)	 lead	 to	 the	 shape	 and	 topology	 changes.	 The	 propagation	 of	 the	 level	 set	 function	 is

mathematically	governed	by	the	Hamilton-Jacobi	partial	differential	equation	(H-J	PDE)	[19,	20,22].	After	one	of	the	pioneer	works	[17],	the	level	set	methods	are	gradually	becoming	popular	[19,20]	and	have	been	applied	to	several

different	design	problems	[22–29],	due	to	their	unique	favorable	features,	e.g.	smooth	boundary	and	concise	interface	in	geometry,	flexibility	of	shape	and	topological	changes,	and	simultaneous	shape	and	topology	optimization	[19,20].
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Abstract

In	 conventional	 parametric	 level	 set	 methods,	 the	 compactly	 supported	 radial	 basis	 functions	 (CSRBF)	 are	 used	 to	 approximate	 the	 level	 set	 function	 due	 to	 their	 unique	 properties,	 such	 as	 the	 sparsity	 of	 the

interpolation	matrix.	The	CSRBFs	only	consider	the	contributions	of	knots	within	a	narrow	sub-region,	which	sacrifices	accuracy	for	efficiency	in	the	interpolation.	However,	the	accuracy	loss	in	the	CSRBF-based	method	may

prolong	the	iteration	and	gradually	lead	the	topology	optimization	towards	a	worse	local	optimum	or	even	an	unfeasible	design,	especially	when	the	allowable	material	usage	in	the	design	domain	is	relatively	low.	This	will

significantly	affect	the	performance	of	the	optimization	method.	This	paper	proposes	an	improved	parametric	level	set	method	(iPLSM),	which	is	more	efficient	and	effective	in	topology	optimization	designs.	In	this	method,

the	Gaussian	radial	basis	function	with	global	support	is	used	to	parameterize	the	level	set	surface,	to	ensure	a	high	numerical	accuracy	due	to	the	consideration	of	all	interpolation	knots	in	the	global	domain.	Then,	a	discrete

wavelet	transform	scheme	is	incorporated	into	the	parametric	form	to	compress	the	full	interpolation	matrix	and	save	the	computational	cost.	The	proposed	method	is	applied	to	both	the	global	and	local	frequency	response

optimization	problems	under	wide	excitation	frequency	ranges,	to	validate	its	efficiency	and	effectiveness.
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Despite	the	above	advantages,	several	defects	of	the	most	classic	LSM	may	significantly	affect	its	efficiency.	Firstly,	the	level	set	surface	may	become	too	flat	or	too	steep	during	optimization,	and	the	flatness	or	the	steepness

will	lead	to	unfavorable	numerical	issues	[19,20].	Thus,	an	extra	re-initialization	operation	is	often	used	to	reshape	the	LSF	to	be	a	signed-distance	function	at	each	iteration,	which	will	cause	additional	computer	time.	Secondly,	the

Courant-–Friedrichs-–Lewy	(CFL)	condition	should	be	satisfied	to	keep	the	stability	of	the	up-wind	scheme	[21].	This	means	the	time	step	in	the	explicit	scheme	should	be	small	enough,	and	thus	more	iterations	are	required	to	achieve

an	optimal	design.	Thirdly,	 in	 the	standard	LSM,	 the	normal	velocity	 field	needs	 to	be	extended	 from	the	boundary	 to	 the	whole	domain	or	a	narrow	band	along	 the	boundary	 [17],	and	 the	velocity	extension	often	requires	extra

computational	effort.	More	importantly,	many	efficient	and	well-developed	structural	topology	optimization	algorithms	[13,30]	cannot	be	directly	used	in	the	conventional	LSM.

Therefore,	 several	 alternative	 LSMs	 [31–37]	 have	 been	 developed	 to	 overcome	 the	 above	 unfavorable	 features.	 Among	 these	 approaches,	 the	 parametric	 level	 set	 method	 (PLSM)	 [35–37]	 has	 shown	 its	 capacity	 in

simultaneously	maintaining	the	unique	features	while	eliminating	the	numerical	issues	of	the	most	conventional	LSM.	The	key	concept	of	the	PLSM	is	to	interpolate	the	original	level	set	surface	via	a	given	set	of	radial	basis	functions

(RBFs)	positioned	at	fixed	knots	inside	the	design	domain.	In	this	sense,	the	solution	of	a	system	of	the	H-J	PDEs	is	changed	to	the	solution	of	a	number	of	algebraic	equations,	only	with	the	unknown	expansion	coefficients	of	the	RBF

interpolation	to	be	iteratively	updated.	Therefore,	the	most	challenging	topology	optimization	problem	is	converted	to	a	relatively	easy	“size”	optimization	problem.	In	particular,	the	PLSM	can	directly	integrate	with	the	more	efficient

gradient-based	optimization	algorithms,	such	as	the	optimality	criteria	(OC)	[13]	and	mathematical	programming	methods	[30],	which	can't	be	easily	applied	to	the	conventional	LSMs.

The	efficiency	and	accuracy	of	the	RBF	interpolation	will	significantly	influence	the	PLSM-based	optimization.	In	the	conventional	PLSMs	[35-37],	compactly	supported	RBF	(CSRBF)	[38,39]	is	popularly	used	to	approximate	the

LSF,	due	to	its	sparse	interpolation	matrix.	Actually,	the	support	of	CSRBF	is	a	limited	sub-domain	around	a	sample	knot,	and	thus	not	all	the	interpolation	knots	are	included	to	approximate	the	LSF	at	that	sample	knot.	In	other	words,

it	sacrifices	the	interpolation	accuracy	for	efficiency	by	ignoring	a	number	of	interpolation	knots	that	are	outside	a	predefined	sub-region.	The	accumulated	accuracy	loss	over	iterations	will	eventually	lead	the	optimization	to	a	local

optimum	with	 lower	performance	or	even	an	unfeasible	design,	especially	when	the	allowable	material	usage	 in	the	design	domain	 is	relatively	 low.	Comparing	with	the	CSRBFs,	the	globally	supported	RBFs	(GSRBFs)	use	all	 the

interpolation	knots	to	calculate	the	LSF	value	at	each	sample	knot,	and	thus	can	guarantee	a	higher	interpolation	accuracy	[38]	to	obtain	a	higher-performance	design.	However,	the	full	interpolation	matrix	will	considerably	increase

the	computation	effort.	Indeed,	a	compressed	interpolation	matrix	will	be	a	reasonable	solution	to	this	computational	difficulty.

Discrete	wavelet	transform	(DWT)	is	a	multi-resolution	decomposition	method	for	input	data	and	has	been	widely	used	in	signal	processing,	image	compression,	computer	vision	and	denoising	[40].	It	can	be	used	to	handle	the

fully	populated	matrices	[40,41],	because	of	the	capability	of	rapidly	capturing	the	critical	information	from	a	large-scale	and	scattered	data	set.	In	brief,	it	can	compress	a	full	matrix	into	a	much	sparser	one	with	negligible	impact

upon	the	computational	accuracy.	Therefore,	the	main	contribution	of	this	study	is	to	firstly	propose	an	improved	parametric	level	set	method	(iPLSM)	based	on	incorporation	of	the	DWT	and	GSRBF-based	interpolation,	so	as	to	further

improve	the	efficiency	and	effectiveness	of	topological	shape	optimization.

Structural	dynamic	response	optimization	has	received	much	attention	in	engineering	[42–46].	This	study	will	focus	on	the	structural	frequency	response	optimization	[8,47],	which	aims	to	minimize	the	response	under	external

excitations	at	the	specific	parts	of	a	structure	or	over	the	entire	structure.	A	number	of	studies	have	been	made	to	deal	with	the	frequency	optimization	problems	under	a	single	excitation	frequency	[8,47–52].	In	engineering,	however,

a	dynamic	structure	is	always	subject	to	an	excitation	frequency	range.	One	critical	issue	for	topology	optimization	under	the	excitation	frequency	range	is	the	prohibitive	computation	cost	caused	by	the	repetitive	finite	element	(FE)

simulation	calls.	Hence,	the	model	reduction	(MR)	technique	[47]	is	essential	to	reduce	the	degrees	of	freedom	(size)	of	the	system	during	the	FE	procedure.	For	instance,	Jensen	[53]	applied	the	Padé	approximation	to	calculate	the

frequency	response	over	the	wide	excitation	frequency	domain.	Yoon	[54]	compared	the	performances	of	different	MR	schemes	in	dynamic	structural	analysis.	More	recently,	Shu	et	al.	[55],	Rong	et	al.	[56]	and	Liu	et	al.	[57]	 also

investigated	the	frequency	response	optimization	problems	subject	to	excitation	frequency	ranges.	Nevertheless,	most	studies	are	based	on	the	elemental	density	distribution	approaches,	which	may	have	difficulties	in	capturing	the

structural	boundary	in	geometry.	Actually,	a	clear	structural	geometry	is	important	and	will	greatly	facilitate	the	optimized	design	to	be	directly	integrated	into	the	commercial	software	for	analysis	or	manufacture	purposes.

Hence,	this	paper	develops	an	efficient	iPLSM	for	structural	frequency	response	optimizations	under	the	given	excitation	frequency	ranges.	In	this	method,	the	Gaussian	RBF	with	global	support	is	used	to	parameterize	the

LSM.	A	matrix	compression	scheme,	termed	as	DWT,	is	firstly	integrated	into	the	parameterization	framework	to	reduce	the	nonzero	elements	in	the	Gaussian	RBF-based	interpolation	matrix.	By	this	means,	all	the	positive	features	of

the	LSM	can	be	maintained,	while	the	unfavorable	numerical	issues	of	the	classic	LSM	can	be	avoided.	More	importantly,	the	computational	time	of	iPLSM	can	be	remarkably	reduced,	while	the	higher-performance	designs	can	be

achieved	when	comparing	with	the	conventional	PLSM	[35–37].	To	verify	the	efficiency	and	effectiveness	of	the	proposed	method,	both	the	local	frequency	response	optimization	(non-self	adjoint	problem)	and	dynamic	compliance

optimization	(self	adjoint	problem)	within	wide	excitation	frequency	ranges	are	investigated.

2	Improved	parametric	level	set	method
2.1	Boundary	representation	and	geometry	mapping	by	LSM

The	fundamental	of	LSM	is	to	embed	the	structural	boundary	implicitly	as	the	zero	iso-surface	of	a	higher	dimensional	scalar	function	with	Lipschitz	continuity,	as	shown	in	Fig.	1.	Considering	a	fixed	Eulerian	reference	domain



D	that	contains	the	solid,	boundary	and	void,	different	parts	within	D	can	be	represented	by	the	LSF	Φ:

where	x	denote	 the	spatial	variables	 (coordinates	of	 level	set	grids)	 in	domain	D.	t	denotes	 the	pseudo	time	variable.	Ω	denotes	all	 the	admissible	shapes,	and	Γ	 is	 the	structural	boundary.	 It	 is	noted	 that	Γ	 contains	 the	Dirichlet

boundary	ΓD,	Neumann	boundary	ΓN	and	traction	free	boundary	ΓF:

Another	 important	 part	 of	 the	 level-set-based	 topology	 optimization	 is	 the	 mapping	 of	 the	 boundary	 geometry	 to	 a	 mechanical	 model.	 Normally,	 the	 boundary	 description	 (1)	 can	 be	 expressed	 in	 terms	 of	 the	 exact	 Heaviside

function	H(Φ),	so	as	to	formulate	integrals	of	some	functional	J	over	the	material	domain	[17,19–21]:

where

and	dV	indicates	a	volume	integral.

In	the	field	of	topology	optimization,	the	integral	in	(3)	can	be	approximately	calculated	by	using	the	finite	element	method	(FEM)	on	a	fixed	regular	mesh.	However,	in	the	LSM,	the	standard	FEM	may	fail	to	evaluate	the

integrals	of	those	elements	cut	by	the	moving	boundary	[19,20].	A	simple	way	to	tackle	this	issue	is	the	“ersatz	material”	approach	[20,21].	It	assumes	that	the	element	strain	and	stiffness	are	approximately	proportional	to	the	material

fraction	of	that	element	(i.e.	pseudo	element	density),	while	the	void	elements	are	filled	with	weak	material	to	avoid	singularity.	Thus,	the	volume	integral	of	functional	J	can	be	approximated	by	the	FEM:

where	h	 denotes	 a	 single	 element	 in	 domain	D,	 and	Dh	 represents	 the	 design	 domain	 of	 an	 element.	NE	 is	 the	 total	 number	 of	 finite	 elements.	 Due	 to	 the	 fact	 that	 the	 exact	 Heaviside	 function	 in	 (4)	 is	 not	 differentiable,	 an

approximate	Heaviside	function	 (smooth	and	differentiable)	can	be	used	to	replace	H(Φ)	during	topology	optimization	[21]:

and	the	approximate	Dirac	delta	function	is	given	by:

where	γ	is	a	small	positive	constant	that	is	equal	to	2	•	Δ	[36].	In	this	study,	Δ	denotes	the	edge	length	of	a	fixed	regular	level	set	grid.	Then,	the	pseudo	element	density	can	be	defined	by:

(1)

(2)

(3)

(4)

Fig.	1	(a)	3D	level	set	surface	and	(b)	2D	design	domain.

alt-text:	Fig.	1.

(5)

		 	

(6)

(7)



where	τ=0.001	 is	 introduced	 to	 avoid	 singular	problems.	The	 integral	 of	 over	Dh	 in	 (8)	 can	be	 calculated	numerically	 by	 the	Gauss	quadrature,	when	a	number	 of	 equally	 spaced	 integration	points	 are	 allocated	 in	 each	 element

cut	by	the	moving	boundary	[21].	In	this	case,	the	following	integral	can	be	also	approximately	calculated	by	FEM:

2.2	Parameterization	of	LSM	using	Gaussian	RBF
In	this	paper,	 the	original	LSF	is	 interpolated	by	the	Gaussian	RBFs	positioned	at	a	predefined	set	of	knots	 in	the	design	domain.	The	Gaussian	RBF	is	one	of	 the	typical	GSRBFs,	which	has	a	higher	 level	of	 interpolation

accuracy	and	smoothness	when	comparing	with	other	RBFs,	such	as	CSRBFs	[38,39].	The	Gaussian	RBFs	ϕi	are	expressed	as:

where	r	defined	in	a	Euclidean	space	can	be	stated	by

where	xi	 is	the	coordinate	of	knot	 i	 in	domain	D.	‖x − xi‖	 is	defined	as	the	Euclidean	norm	that	measures	the	distance	from	the	current	sample	knot	x	to	the	knot	xi	[38].	N	 is	 the	total	number	of	 the	 interpolant	knots,	 i.e.	 the	 level

set	knots	in	this	study.	s	is	the	shape	parameter	that	is	assumed	to	be	a	positive	constant	[38].	In	this	study,	s	is	equal	to	the	reciprocal	of	the	area	(or	volume)	of	a	level	set	grid.

Using	the	Gaussian	RBFs,	the	LSF	is	approximated	by:

where	α(t) = [α1(t),α2(t),...,	αN(t)]T	 are	 the	 expansion	 coefficients	 in	 the	 RBF	 interpolation.	ϕ(x) = [ϕ1(x),ϕ2(x),...,	ϕN(x)]	 contain	 all	 the	 RBFs.	 It	 is	 seen	 that	 the	 RBFs	 are	 space-dependent	 and	 the	 expansion	 coefficients	 are	 time-

dependent.	It	 is	noticed	that	the	Gaussian	RBF	uses	all	 the	 interpolation	knots	 in	the	design	domain	to	calculate	the	LSF	value	at	each	sample	knot,	and	thus	can	produce	a	very	high	interpolation	accuracy	 [38].	However,	 its	 full

interpolation	matrix	will	cause	a	remarkable	computation	burden	during	optimization.	Using	a	matrix	form,	Eq.	(12)	can	be	rewritten	as:

Matrix	A	is	invertible.	The	sparsity	of	A	significantly	influences	the	efficiency	of	the	proposed	method.

Substituting	Eq.	(12)	into	the	H-J	PDE	[19],	it	yields	a	system	of	ordinary	differential	equations	(ODEs):

where	α0	is	the	expansion	coefficient	vector	at	t = 0,	which	is	obtained	by	solving	(13)	with	the	initial	level	set	function.	Then	the	normal	velocity	field	ϑn	is	given	by:

Here,	ϑn	 is	 computed	 by	 using	 all	 the	 interpolation	 knots	 over	 the	 design	 domain.	 It	 indicates	 that	 ϑn	 has	 been	 naturally	 extended	 to	 the	 entire	 domain,	 and	 thus	 it	 is	 unnecessary	 to	 introduce	 any	 extra	 velocity	 extension

(8)
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schemes	[17].	 Since	 that	 the	H-J	PDEs	have	been	 transformed	 into	a	 system	of	ODEs,	 the	evolution	of	 the	LSF	will	 be	 free	of	 the	CFL	condition	 [18].	 The	 topological	 shape	optimization	 is	 finally	 changed	 to	 a	generalized	 “size”

optimization,	to	efficiently	update	the	expansion	coefficients	αi(t)	via	the	gradient-based	optimization	algorithms	[13,30].

2.2	DWT-based	interpolation	matrix	compression
In	the	iPLSM,	the	DWT	[40,41]	is	a	key	to	alleviating	the	computational	cost	caused	by	the	full	interpolation	matrix.	It	converts	the	original	interpolation	matrix	A	in	Eq.	(13)	into	its	wavelet	form	 with	the	same	size.	The

matrix	 with	wavelet	basis	 can	easily	distinguish	 its	 essential	 and	 redundant	elements.	Thus,	 a	 thresholding	 scheme	 is	 then	utilized	 to	 sweep	out	a	proper	number	of	useless	elements	 in	 ,	 and	 reformulate	 a	much	 sparser

interpolation	matrix	 .	Finally,	the	LSF	in	Eq.	(13)	can	be	efficiently	evaluated	by	using	the	sparse	matrix	 .

Here,	the	classic	one-level	DWT	with	the	Haar	wavelets	is	employed	[58],	since	it	can	produce	adequate	numerical	accuracy	and	interpolation	efficiency	in	regards	to	the	topological	shape	optimizations.	In	Eq.	(13),	the	vector	α

with	length	N	can	be	transformed	into	its	wavelet	basis	by	a	pyramidal	scheme	[58]:

where	α(0)	denote	the	components	 in	the	original	vector	α.	 and	 are	the	elements	 in	a	new	vector	 obtained	by	using	 the	DWT,	with	k	k =	= 1,	2,	…,	N/2.	 It	 is	 noted	 that	 the	 length	N

must	be	an	even	number	to	complete	the	one-level	DWT	with	the	intact	wavelet	orders	[58].	If	N	is	odd,	an	easy	way	to	tackle	this	issue	is	to	add	one	extra	term	“0″	in	the	original	vector	α	during	the	transformation	process,	and	then

remove	the	term	“0″	when	recovering	the	original	vector.	 [h1,h2] =  is	the	high	pass	filter,	and	[g1,g2] =  is	 the	 low	pass	 filter.	For	simplicity,	a	convolution	matrix	W	with	dimension	N	N ×	× N	 is	 used	 to

describe	the	pyramidal	scheme	[41]:

Using	the	orthogonal	matrix	W,	the	level	set	function	 ,	expansion	coefficient	 and	interpolation	matrix	 after	transformation	can	be	respectively	obtained	by:

With	the	pre-multiplication	of	W	on	both	sides	of	(13),	the	interpolation	process	can	be	reformulated	as:

where	the	product	of	WT	and	W	yields	a	unit	matrix.

Comparing	the	terms	in	Eqs.	(19)–(21),	one	can	obtain	a	new	system	of	interpolation:

Further,	a	sparse	form	of	 ,	i.e.	 ,	can	be	created	by	using	the	following	threshold	scheme	[40]:

where	q	denotes	an	arbitrary	element	in	 ,	and	 is	the	averaging	absolute	value	of	all	elements	in	 .	κ	is	a	parameter	to	adjust	the	threshold.	Now,	a	sparse	form	of	(22)	can	be	reformulated	as:

We	assume	that	the	predefined	LSF	at	 t = 0	is	Φ0	and	its	wavelet	form	is	 .	At	the	first	 iteration,	the	initial	α0	defined	in	Eq.	(15)	 is	obtained	by	a	reverse	process	 ,	where	 is	 the	wavelet	 form	of	α0.	Here	 is
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approximately	solved	by	 .	At	the	following	iterations,	the	design	variable	α	is	updated	by	a	gradient-based	optimization	algorithm,	and	then	 is	obtained	by	Eq.	(19).	Finally,	we	update	 by	Eq.	(24),	and	obtain	the	LSF	by

a	reconstruction	process	 .

As	above,	the	matrix	compression	technique	has	been	incorporated	into	the	Gaussian	RBF	based	parametric	formulation	to	form	a	new	iPLSM,	which	has	low	computational	costs,	while	significantly	improves	the	performance

of	the	optimized	design	comparing	to	the	conventional	PLSM.	Note	that	 is	calculated	once	and	for	all.	Therefore,	it	is	seen	that	the	iPLSM	only	adds	one	extra	transformation	 and	one	extra	reconstruction	 at

each	iteration.	Both	the	transformation	and	reconstruction	use	an	extremely	sparse	system,	whose	computer	cost	is	almost	negligible.

3	Frequency	response	topology	optimization
3.1	Minimizing	local	frequency	response

Considering	a	structure	with	the	harmonic	load	at	the	excitation	frequency	ω,	the	dynamic	load	and	complex	displacement	are	respectively	represented	as	 ,	 .	pmag	and	umag	denote	the	magnitude	of	the

external	force	and	the	displacement	field.	j	is	the	imaginary	unit.	Here,	TH	denotes	the	time	that	is	related	to	the	harmonic	functions	rather	than	the	level	set	functions.	The	topology	optimization	for	minimizing	frequency	responses	on

some	given	parts	of	a	structure	can	be	given	by:

where	αi	(i = 1,…,N)	are	 the	design	variables	 (i.e.	 the	expansion	coefficients	of	RBF	 interpolation).	αmax 	and	αmin 	are	 the	upper	and	 lower	bounds	of	αi	 to	stabilize	 the	 iteration	 [35],	which	will	be	 further	discussed	 in	Section	4.3.	 Jl

is	the	objective	to	measure	the	local	frequency	response	[54,59],	where	|	•	|	calculates	the	magnitude	of	a	complex	number.	ur	indicate	the	displacements	of	the	structural	part	r	where	the	dynamic	responses	are	to	be	optimized.	[ωs,	ωe]

is	the	excitation	frequency	range.	G	 is	the	volume	constraint,	and	Vmax	 is	 the	maximum	allowable	volume	of	materials.	U	 represents	 the	kinematically	admissible	displacement	 field.	For	simplicity,	 in	 this	study,	 the	 level	set	grid	 is

assumed	to	be	identical	with	the	FE	mesh.	Thus,	ui	is	the	displacement	of	an	arbitrary	FE	(or	level	set)	knot	i	in	domain	D.	H1(Ω)	is	the	first	Sobolev	function	space.

Note	that	v	in	(25)	is	the	complex	conjugate	of	the	virtual	displacement	[59].	k(u,	v)	is	the	strain	energy	sesquilinear	form,	m(u,	v)	is	mass	sesquilinear	form	and	l(v)	is	the	load	semilinear	form.	Mathematically,	the	sesquilinear

form	is	linear	on	the	real	displacement	field	but	conjugate	linear	on	the	virtual	displacement	field,	and	the	semilinear	form	is	conjugate	linear	on	the	virtual	displacement	field	[60].	Thus,	following	a	similar	way	to	Shu	and	co-workers

[55,59,60],	the	following	weak	forms	can	be	defined:

where	Epqrs	 is	the	elasticity	tensor,	ε	 is	the	structural	strain,	and	ρ	 is	 the	material	density.	p	 is	 the	boundary	traction	(harmonic	 load),	and	dS	 indicates	a	boundary	 integral.	The	body	force	 is	not	considered	here.	According	to	the

Rayleigh	damping	assumption,	the	damping	functional	in	(25)	is	calculated	by	the	linear	combination	of	the	strain	energy	and	mass	sesquilinear	forms	with	constants	β1	and	β2	[61]:

The	 integrals	 on	 objective	 Jl,	 which	 is	 used	 to	 evaluate	 the	 frequency	 response	 within	 a	 given	 excitation	 range,	 can	 be	 approximately	 calculated	 by	 different	 approaches	 [54,62].	 Here,	 for	 simplicity,	 the	 numerical	 integration

scheme	with	equally	spaced	abscissas	[54]	is	adopted.	We	denote	the	local	frequency	response	at	a	specified	excitation	frequency	ωz	∈	[ωs,ωe]	as:

where	Δω	 is	 the	 frequency	 interval,	 and	NF	 denotes	 the	number	of	 frequencies	 included	 in	evaluating	 the	 integral	over	 the	given	excitation	 range.	z = 1,2,…,NF,	which	 is	 the	 subscript	 to	 indicate	 the	current	 frequency.	Then	 the
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objective	function	can	be	approximately	calculated	by:

3.2	Minimizing	dynamic	compliance
The	topology	optimization	model	for	minimizing	the	global	frequency	response	is	formulated	as:

This	model	 is	similar	 to	 (25).	However,	 its	objective	 function	 Jg	aims	to	optimize	the	dynamic	compliance	 [47,54],	so	as	to	enhance	the	capability	of	resisting	vibration	over	the	whole	structure.	Note	that	the	outer	 integral	on	 Jg	 is

also	calculated	by	a	similar	scheme	given	in	(32).

4	Sensitivity	analysis	and	optimization	algorithm
4.1	Design	sensitivity	analysis	for	minimizing	local	frequency	response

Based	on	Eq.	(32),	it	can	be	seen	that	the	objective	Jl	is	evaluated	by	 .	Thus,	it	is	essential	to	derive	the	sensitivity	information	for	 :

where	Ju	is	introduced	to	denote	 .	real(	•	)	and	imag(	•	)	respectively	acquire	the	real	and	imaginary	parts	of	a	functional.	According	to	Ref.	[59],	the	design	sensitivity	of	 is	derived	by:

In	Eq.	(35),	Ju	can	be	obtained	by	FEM.	Thus,	we	can	now	focus	on	the	calculation	of	∂Ju/∂αi.	To	this	end,	we	firstly	present	the	derivative	∂Ju/∂t:

where	u′r	denotes	the	derivative	of	ur	with	respect	to	t.

The	shape	derivative	[60,63]	of	the	state	equation	in	Eq.	(25)	can	be	derived	as:

where	u′	and	v′	represent	the	derivatives	of	u	and	v	with	respect	to	t.	n	is	the	outward	normal	vector	along	the	boundary	of	Ω	[19,20].

Considering	that	v′∈U,	we	have	the	following	vibrational	state	equation:

Substituting	Eq.	(38)	into	Eq.	(37),	it	yields:
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The	 local	 frequency	 response	optimization	 is	 typically	a	non-self	adjoint	problem,	and	 thus	 the	adjoint	variable	method	 [60]	 is	 introduced	 to	avoid	 the	direct	calculation	of	u′.	Considering	 the	 terms	 in	 (36),	 the	 following	equation

can	be	derived	from	(39)	by	replacing	v	with	the	adjoint	variable	w:

where	w	is	equal	to	the	complex	conjugate	of	variable	w*	[60].	w*	can	be	obtained	by	solving	the	adjoint	Eq.	(41),	which	has	the	same	sesquilinear	form	of	the	state	equation	in	Eq.	(25):

where	 is	the	virtual	adjoint	variable,	and	 is	regarded	as	the	adjoint	load	term	[55,60].

Comparing	the	terms	in	(36)	and	(40),	the	shape	derivative	of	Ju	is	obtained	by:

It	should	be	noted	that	ΓN	is	assumed	to	be	fixed	while	(42)	is	being	derived,	and	thus	the	integral	over	ΓN	vanishes.	Substituting	ϑn	defined	in	(16)	into	(42),	it	yields:

When	introducing	the	Dirac	delta	function	given	in	(7),	we	can	have	following	mapping	relation	[21]:

To	facilitate	the	implementation,	Eq.	(43)	can	be	reformulated	as	a	volume	integral	via	Eq.	(44)	[36]:

Comparing	the	corresponding	terms	in	(36)	and	(45),	and	eliminating	α′i(t),	it	yields:

Eq.	(46)	 can	be	calculated	numerically	according	 to	Eq.	(9).	However,	 it	 is	 remarked	 that	 the	element-wise	quantities	 in	 (9)	 should	be	extended	 to	 the	FE	nodes	via	 shape	 functions	 [31],	because	 that	 the	RBFs	ϕi(x)	are	defined	at

each	node.	By	virtue	of	∂Ju/∂αi,	it	is	easy	to	calculate	the	sensitivity	 at	a	single	frequency	ωz	corresponding	to	Eq.	(35).	With	 ,	the	sensitivity	of	the	objective	function	∂Jl/∂αi	can	be	evaluated	using	a	similar	integration

scheme	given	in	(32).

Similarly,	the	sensitivity	of	the	volume	constraint	can	be	derived	as:

4.2	Design	sensitivity	analysis	for	minimizing	dynamic	compliance
Assuming	 is	the	dynamic	compliance	at	a	frequency	ωz	∈	[ωs,ωe],	the	objective	Jg	can	be	evaluated	by	 at	each	integration	point	by	using	a	similar	scheme	defined	in	(32).	Thus,	it	is	important	to	obtain	the	sensitivity

information	for	 :
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where	Jd	is	introduced	to	denote	∫ΩpudV.	The	design	sensitivity	of	 is	then	given	by:

Jd	is	obtained	by	FEM,	and	we	now	focus	on	the	calculation	of	∂Jd/∂αi.	Here,	Jd	is	re-written	by:

The	shape	derivative	of	Jd	can	be	derived	by:

Since	 that	 the	 state	 equations	 for	 the	 global	 and	 local	 frequency	 response	 optimizations	 are	 similar,	Eq.	 (39)	 is	 also	 applicable	 to	 this	 problem.	 Considering	 that	 dynamic	 compliance	minimization	 is	 self-adjoint,	Eq.	 (39)	 can	 be

rewritten	by:

Then	the	shape	derivative	of	Jd	can	be	obtained	by	substituting	Eq.	(52)	into	Eq.	(51):

Note	that	ΓN	is	fixed	while	(53)	is	being	derived,	and	thus	the	integral	over	ΓN	is	eliminated.

Similar	to	the	process	described	by	Eqs.	(43)	-	–(45),	we	can	reformulate	∂Jd/∂t	as:

On	the	other	hand,	∂Jd/∂t	can	be	also	derived	by	the	chain	rule:

By	comparing	the	corresponding	terms	in	(54)	and	(55),	∂Jd/∂αi	can	be	easily	given	by:

Similarly,	Eq.	(56)	 can	be	calculated	numerically	according	 to	Eq.	(9),	with	all	 the	element-wise	quantities	extending	 to	 the	FE	nodes.	By	virtue	of	∂Jd/∂αi,	 the	sensitivity	 can	be	computed	via	Eq.	(49).	With	 ,	 the

sensitivity	of	the	objective	function	∂Jg/∂αi	can	be	calculated	by	a	similar	integration	scheme	defined	in	(32).	The	sensitivity	of	volume	constraint	is	the	same	as	(47).

4.3	Optimization	algorithm
In	the	iPLSM,	the	expansion	coefficients	αi	in	the	RBF	interpolation	serve	as	the	design	variables,	but	it	is	unable	to	identify	their	fixed	upper	and	lower	bounds	(i.e.	αmax 	and	αmin )	during	optimization.	However,	it	is	able	to

specify	the	fixed	bounds	 on	the	regularized	design	variables	 .	Hence,	an	OC-based	optimization	algorithm	[10,13]	can	be	established,	as	follows:

Step	1	Calculating	the	regularized	design	variables:
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where	ξ	indicates	the	current	iteration	number.

Step	2	Based	on	the	Kuhn-Tucker	conditions	[10,13],	the	following	heuristic	scheme	can	be	established	to	iteratively	update	the	regularized	design	variables	 :

where	the	moving	limit	σ(0	<	σ	<	1)	and	damping	factor	ℓ(0	<	ℓ	<	1)	are	two	parameters	to	stabilize	the	optimization	 [10,13].	Here,	we	have	 and	 .	As	 is	obtained	by	a	 linear	 function	 (57)	of	αi,	 can

be	given	by:

where	μ=1e-10	is	used	to	avoid	the	zero	terms.	At	each	iteration,	the	Lagrange	multipliers	Λ(ξ)	can	be	found	by	a	bi-sectioning	approach	[10].

Step	3	Updating	the	design	variables:

Step	4	Repeating	Step	1	to	Step	3	until	a	convergent	criterion	is	reached.

5	Numerical	implementations
5.1	Localized	modes

In	the	most	standard	SIMP	topology	optimization	[13,14],	the	element	density	 and	Young's	modulus	 are	interpolated	by:

where	ηh	 is	 the	pseudo-density	 of	 element	h,	p	 is	 the	 penalty	 factor,	 and	E	 is	 the	 Young's	modulus	 for	 a	 solid	 element.	While	 the	 element	 density	 and	 Young's	modulus	 in	 iPLSM	 can	 be	 defined	 according	 to	 the

ersatz	material	model	given	in	Eq.	(5):

The	 localized	modes	phenomenon	 [42,54,64,65]	may	appear	 in	 the	SIMP-based	methods.	The	 reason	 is	 that	 the	power-law	 in	 classic	SIMP	may	 lead	 to	 a	big	difference	between	 the	element	mass	 and	 stiffness	matrices	when	 the

density	of	weak	material	is	close	to	its	minimum	value	[65].	This	difference	is	measured	by	the	ratio	of	coefficients	before	ρ	and	E,	i.e.	ηh/(ηh)p	[64,65].	The	material	interpolation	curves	of	the	SIMP	method	and	iPLSM	are	shown	in	Fig.	2.

In	the	ersatz	material	model,	the	ratio	of	coefficients	before	ρ	and	E	in	iPLSM	is	always	equivalent	to	1.	In	this	case,	the	localized	modes	can	be	naturally	avoided.
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5.2	Filtering	scheme
In	iPLSM,	a	filtering	scheme	is	applied	to	the	element	pseudo-density	χh	at	each	iteration.	On	one	hand,	the	filtering	scheme	will	increase	the	smoothness	of	design	sensitivities,	because	neither	the	smooth	Heaviside	function

[19]	nor	the	ersatz	material	model	[20]	can	exactly	describe	the	design	boundary	and	the	design	sensitivities	[35,66].	On	the	other	hand,	the	filtering	scheme	is	used	to	alleviate	the	mesh-dependency	issue	[67,68],	by	improving	the

continuity	of	the	pseudo-density	field.

The	filter	on	element	pseudo-density	χh	can	be	defined	as:

where	 is	 the	filtered	element	pseudo-density.	θh,f	 is	 the	convolution	defined	by	the	radially	 linear	hat	 function	 .	NH	 is	 the	number	of	 finite	elements	 (i.e.	 element	 f)	 located	within	 the	given	 filtering	window	of	element	h.

rmin 	defines	the	radius	of	the	filter	area,	which	is	typically	1.5	-	2.0	times	of	the	mesh	size.	dist(h,	f)	represents	the	distance	between	element	h	and	f.

5.3	Model	reduction	scheme
In	the	frequency	response	optimization	within	a	wide	excitation	frequency	range,	a	considerable	number	of	repetitive	FE	calls	are	implemented	during	each	iteration.	Model	reduction	(MR)	schemes	[48]	can	transform	the

stiffness	matrix,	damping	matrix	and	mass	matrix	with	highly	refined	mesh	into	smaller	matrices	via	mapping	their	nodal	coordinates	to	a	reduced	set	of	generalized	or	modal	coordinates.	Therefore,	the	MR	schemes	can	be	applied	to

FE	analysis	process	to	alleviate	the	expensive	computer	cost.	In	this	paper,	the	widely-accepted	quasi-static	Ritz	vector	(QSRV)	[48,54,57,69]	is	applied	to	approximate	the	structural	frequency	response	with	reasonable	accuracy	while

reduce	the	computational	cost.	The	readers	can	refer	to	Ma	and	co-workers	[48,54,57,69]	for	more	details	about	the	well-established	QSRV	approach.

6	Numerical	examples
This	section	provides	several	examples	to	show	the	features	of	the	proposed	method.	In	all	examples,	the	solid	material	 is	selected	as	a	type	of	steel,	which	has	the	Young's	moduli	210 GPa,	Poisson's	ratio	0.3	and	density

ρ = 7.8 g/cm3.	The	structural	damping	coefficients	are	β1 = 0.001	and	β2 = 0.03,	respectively.	It	is	easy	to	see	from	Eq.	(32)	that	a	smaller	value	of	Δω	will	include	more	integral	points	to	compute	the	objectives	and	their	sensitivities,

which	can	produce	higher	accuracy	but	greater	computational	cost	in	approximating	the	integrals.	On	the	contrary,	larger	Δω	will	reduce	the	computational	cost	by	sacrificing	the	numerical	precision.	According	to	the	experiential

criterion	[54],	Δω	can	be	selected	from	1 Hz	to	10 Hz	by	making	a	tradeoff	between	numerical	accuracy	and	cost.	Here,	for	simplicity,	the	frequency	interval	in	Eqs.	(31)	and	(32)	for	each	example	is	fixed	as	Δω=10Hz,	and	the	number

of	frequencies	NF	can	be	calculated	by	using	Eq.	(31)	accordingly.	To	avoid	early	convergence,	the	objectives	of	the	last	few	iterations	are	used	to	define	the	convergence	criterion	for	the	optimization.	The	relative	difference	of	the

objective	functions	between	two	successive	steps	at	the	current	iteration	ξ	is	denoted	as	ϒ(ξ).	The	iteration	is	terminated	when	ϒ(ξ − 2),	ϒ(ξ − 1)	and	ϒ(ξ)	are	all	less	than	0.0005.

Fig.	2	Material	interpolation	curves:	(a)	classic	SIMP	method	with	p = 3	and	(b)	iPLSM.

alt-text:	Fig.	2.
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All	the	examples	are	implemented	with	MATLAB	via	the	same	desktop.	To	facilitate	the	discussion,	we	denote	the	conventional	PLSM	with	CSRBF	interpolation	as	PLSM-1,	and	the	PLSM	with	Gaussian	RBF	interpolation	as

PLSM-2.	Both	the	PLSM-1	and	PLSM-2	are	without	the	DWT	scheme.	When	comparing	different	optimization	methods	(i.e.	iPLSM,	PLSM-1	and	PLSM-2),	all	other	optimization	settings	(including	the	initial	designs)	are	always	kept	the

same	except	their	interpolation	mechanisms.

6.1	Local	frequency	response	optimization	for	excited	point	of	2D	structure
A	2D	beam	is	shown	in	Fig.	3,	with	the	size	of	140 cm	cm ×	× 20 cm	cm ×	× 1 cm.	The	left	and	right	sides	are	fixed.	A	harmonic	excitation	force	 is	vertically	loaded	at	the	center.	This	example	aims	at	minimizing	the

frequency	response	at	the	loaded	point	P	with	the	excitation	frequency	range	Ωfreq = [0 Hz,	100 Hz].	The	maximum	material	usage	is	restricted	to	40%.

Firstly,	 the	 structure	 is	 optimized	 by	 the	 iPLSM,	 with	 a	 thresholding	 factor	 κ=1	 (see	 Eq.	 (23)).	 The	 structure	 is	 discretized	 with	 280	 280 ×	 × 40	 four-node	 elements.	 Correspondingly,	 a	 set	 of	 Gaussian	 RBF	 knots

(281	281 ×	× 41 = 11,521)	are	used	to	interpolate	the	level	set	function,	which	produces	a	large	interpolation	matrix	A	(11,521	521 ×	× 11,521).	By	virtue	of	the	DWT	scheme,	the	transformed	matrix	 is	of	the	same	size	as	matrix	A	but

involves	99.74%	zero	elements.	It	implies	remarkable	reduction	in	both	the	computational	cost	and	computer	storage.	Fig.	4	shows	the	structural	topology	and	shape	changes	over	iterations.	An	arbitrary	initial	design	with	holes	is

given	in	Fig.	4(a),	with	its	material	usage	54%	and	the	fundamental	eigenfrequency	191 Hz.	As	shown	in	Fig.	4(f),	the	optimized	design	is	characterized	with	smooth	boundary	and	distinct	material	interface,	due	to	the	level	set	boundary

representation.	During	the	optimization,	the	existing	holes	can	be	merged	and	new	holes	can	be	created	to	achieve	the	optimal	design.	Furthermore,	the	optimized	design	shows	a	similar	but	clearer	boundary	when	compared	to	the

result	given	in	[48].

The	iterative	history	is	shown	in	Fig.	5(a),	and	the	frequency	response	functions	(FRF)	[54]	of	the	initial	and	optimal	designs	are	presented	in	Fig.	5(b).	It	takes	125	steps	to	converge,	and	the	objective	function	is	minimized

gradually	after	the	volume	constraint	is	satisfied.	The	fundamental	eigenfrequency	of	optimal	design	is	increased	to	343 Hz	with	only	40%	material	usage.	The	local	frequency	response	of	the	optimal	design	is	decreased	remarkably

from	4.5579e−-3	to	7.1168e-−4	(84%	reduction)	when	comparing	with	the	initial	design,	which	confirms	that	the	optimal	design	has	an	excellent	performance	in	resisting	the	vibration	at	a	specified	point.	The	FRF	curves	also	indicate	a

considerable	reduction	on	local	frequency	response,	as	the	area	being	comprised	of	the	coordinate	axis	and	FRF	curve	of	the	optimal	design	within	the	considered	excitation	frequency	range	is	much	smaller	than	that	of	the	initial

design.

		1000ejωTHN	

Fig.	3	Design	domain	of	first	example.

alt-text:	Fig.	3.

		 	

Fig.	4	Evolution	of	structural	topology	and	shape:	(a)	initial	design;	(b)	step	10;	(c)	step	15;	(d)	step	25;	(e)	step	50;	(f)	optimized	design.

alt-text:	Fig.	4.



Secondly,	the	structure	in	Fig.	3	is	optimized	by	the	iPLSM	with	different	thresholding	factor	κ.	The	initial	designs	as	well	as	the	optimization	settings	in	different	cases	are	exactly	the	same.	As	seen	in	Table	1,	different	κ	have

limited	impact	on	the	optimal	results	(similar	objective	values),	but	they	indeed	influence	the	computational	costs.	For	instance,	the	processing	time	and	computer	storage	are	less	for	a	larger	κ	(e.g.	κ=1).	Hence,	 in	 the	 following

examples,	κ=1	will	be	adopted.

Table	1	Investigation	of	iPLSM	with	different	κ.
alt-text:	Table	1

κ Size	of	matrix	A Sparsity	of	matrix	 Time	per	step Iterations Objective

1e−500 11,521 × 11,521 64.27% 128.1	s 124 7.1202e-−4

1e-−300 11,521	521 ×	× 11,521 86.13% 69.1	s 125 7.1170e-−4

1e-−200 11,521	521 ×	× 11,521 89.94% 68.2	s 125 7.1169e-−4

1 11,521	521 ×	× 11,521 99.74% 65.3	s 125 7.1168e-−4

In	addition,	the	structure	in	Fig.	3	 is	optimized	by	using	different	FE	meshes	(or	level	set	grids).	For	comparison,	the	optimal	designs	obtained	by	using	the	PLSM-1	[35],	PLSM-2	and	iPLSM	are	provided,	respectively.	The

optimal	topologies	obtained	by	the	iPLSM	are	plotted	in	Fig.	6,	and	the	optimal	results	by	using	different	optimization	methods	are	given	in	Table	2.	In	Fig.	6,	three	designs	are	practically	identical	with	the	mesh	refinements,	owing	to

the	filter	scheme	in	the	proposed	method.	It	confirms	that	the	iPLSM	can	alleviate	the	mesh-dependency	in	the	optimization.

Table	2	Comparison	of	different	methods	in	local	frequency	response	optimization.

alt-text:	Table	2

Method Mesh Size	of	matrix	A Sparsity	of	matrix	A	or Time	per	step Iterations Objective

iPLSM 210	210 ×	× 30 6541	6541 ×	× 6541 99.54% 24.3	s 119 7.0187e-−4

PLSM-1 210	210 ×	× 30 6541	6541 ×	× 6541 99.18% 24.6	s 145 7.3016e-−4

PLSM-2 210	210 ×	× 30 6541	6541 ×	× 6541 0% 64.6	s 105 7.0443e-−4

iPLSM 280	280 ×	× 40 11,521	521 ×	× 11,521 99.74% 65.3	s 125 7.1168e-−4

Fig.	5	Curves	of	first	example	using	iPLSM	with	κ=1:	(a)	convergent	histories	of	objective	function	and	volume	constraint;	(b)	FRF	of	excitation	point	before	and	after	optimization.

alt-text:	Fig.	5.

		

Fig.	6	Optimal	topologies	of	first	example	with	different	meshes	by	using	iPLSM.

alt-text:	Fig.	6.

		



PLSM-1 280	280 ×	× 40 11,521	521 ×	× 11,521 99.53% 65.9	s 161 7.3518e-−4

PLSM-2 280	280 ×	× 40 11,521	521 ×	× 11,521 0% 197.2	s 127 7.1105e-−4

iPLSM 350	350 ×	× 50 17,901	901 ×	× 17,901 99.83% 128.6	s 136 7.1280e-−4

PLSM-1 350	350 ×	× 50 17,901	901 ×	× 17,901 99.69% 129.5	s 202 7.4264e-−4

PLSM-2 350	350 ×	× 50 17,901	901 ×	× 17,901 0% 459.7	s 134 7.1344e-−4

Apparently,	 as	 indicated	 in	 Table	 2,	 the	 PLSM-1	 always	 produces	 the	 worse	 objectives	 and	 requires	 more	 iterations	 when	 comparing	 to	 the	 other	 two	 methods.	 It	 is	 mainly	 because	 that	 the	 CSRBFs	 only	 measure	 the

contributions	of	neighboring	knots	to	a	sample	knot	within	a	limited	sub-region,	which	causes	the	accuracy	loss	in	the	interpolation.	The	accuracy	loss	prolongs	the	iterative	process	and	eventually	leads	the	optimization	towards	a

worse	local	minimum.	The	PLSM-2	can	achieve	better	objectives	than	the	PLSM-1,	with	a	prohibitive	computation	cost	caused	by	the	full	interpolation	matrix.	The	reason	is	that	the	Gaussian	RBFs	use	all	the	interpolation	knots	to

calculate	the	LSF	value	at	each	sample	knot,	and	they	require	considerable	computer	efforts	to	guarantee	a	higher	interpolation	accuracy	in	approximating	the	topology	and	shape	of	the	moving	boundary.	Thus,	it	is	more	likely	to	take

fewer	iterations	to	find	an	optimized	design	with	higher	performance.

Most	importantly,	the	statistics	in	Table	2	demonstrate	that	the	iPLSM	is	obviously	more	efficient	than	the	other	two	methods.	On	one	hand,	the	iPLSM	can	more	rapidly	find	a	higher-performance	design	when	comparing	to	the

PLSM-1.	On	the	other	hand,	the	iPLSM	can	remarkably	reduce	the	computer	storage	and	optimization	time	comparing	with	the	PLSM-2.	The	reason	lies	in	the	fact	that	the	iPLSM	can	well	maintain	the	high	interpolation	accuracy	of

the	GSRBF,	while	efficiently	compress	the	full	interpolation	matrix	by	using	the	DWT.

6.2	Local	frequency	response	optimization	for	multiple	points	of	2D	structure
Here,	the	frequency	response	optimizations	at	both	the	excited	and	non-excited	points	are	investigated.	The	design	domain	is	shown	in	Fig.	7,	with	an	excitation	force	 vertically	applying	at	point	P1.	In	this	example,

the	basic	structure	with	the	thickness	0.01 cm	will	be	reinforced	by	an	additional	layer	with	1 cm	thickness.	The	objective	is	to	minimize	the	structural	frequency	response	at	P1	and	P2	with	a	reinforcement	material	usage	of	40%.	Four

excitation	frequency	ranges	are	considered,	e.g.	[0 Hz,	100 Hz],	[0 Hz,	200 Hz],	[0 Hz,	400 Hz]	and	[400 Hz,	600 Hz].	The	FE	mesh	is	280	280 ×	× 40,	and	the	initial	holes	within	the	design	domain	is	the	same	as	the	first	example.

The	iPLSM	is	applied	in	all	the	cases.	The	optimal	results	are	shown	in	Fig.	8,	where	the	basic	and	reinforcement	materials	are	marked	with	grey	and	red,	respectively.	The	objective	functions	Jl	of	both	the	initial	and	optimal

design	for	the	four	cases	are	also	given	in	Fig.	8.	Obviously,	even	though	the	magnitude	of	the	external	load	remains	unchanged,	the	optimized	designs	and	objective	functions	are	different	under	different	excitation	ranges.	This	is

because	that	the	optimization	only	minimizes	the	vibration	within	the	concerned	excitation	frequency	range,	and	it	is	not	able	to	ensure	a	unique	optimal	design	with	regard	to	other	excitation	frequency	ranges.	Comparing	with	the

first	3	cases,	it	can	be	seen	that	the	design	under	wider	excitation	frequency	range	(i.e.	Ωfreq =	= [0 Hz,	400 Hz])	has	a	greater	objective	function.	The	reason	is	that	more	integral	points	(i.e.	frequency	response	at	a	single	excitation

frequency)	are	usually	required	 in	Eq.	(32)	 to	calculate	the	objective	of	 the	case	with	wider	 frequency	range	when	the	 frequency	 interval	 is	 fixed	as	Δω=10Hz.	Moreover,	 the	design	within	Ωfreq =	= [400 Hz,	600 Hz]	has	 the	 lowest

objective	among	the	4	cases.	It	implies	that	higher	frequency	range	(i.e.	[400 Hz,	600 Hz])	may	have	a	lower	frequency	response	in	this	problem.
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Fig.	7	Design	domain	of	second	example.

alt-text:	Fig.	7.



Table	3	presents	the	first	4	eigenfrequencies	of	the	initial	and	optimized	designs.	The	fundamental	frequency	of	the	initial	designs	is	all	189 Hz,	which	are	outside	the	frequency	ranges	[0 Hz,	100 Hz]	and	[400 Hz,	600 Hz]	but

within	the	ranges	[0 Hz,	200 Hz]	and	[0 Hz,	400 Hz].	The	FRF	curves	are	given	in	Fig.	9.	It	can	be	seen	that	the	resonance	peaks	of	the	optimized	structures	are	moved	to	high	frequencies	for	the	first	3	cases	but	decreased	to	a	low

frequency	for	the	last	case.	The	fundamental	eigenfrequency	of	each	optimized	design	is	moved	outside	the	excitation	frequency	range	to	avoid	resonance.	In	particular,	when	Ωfreq =	= [400 Hz,	600 Hz]	is	considered	in	this	example,	it	is

almost	impossible	to	increase	the	fundamental	frequency	of	the	optimized	structure	up	to	600 Hz.	As	a	result,	its	fundamental	eigenfrequency	reduces	to	move	outside	[400 Hz,	600 Hz].	To	this	end,	the	optimized	topology	of	the	last

case	is	significantly	different	from	those	of	the	first	3	cases,	which	only	has	base	materials	(without	any	reinforcement	materials)	on	the	two	ends.	A	very	similar	observation	can	be	found	in	[54].	By	comparing	the	FRF	curves	of	the

initial	and	optimized	designs,	remarkable	reductions	on	frequency	responses	of	the	optimized	designs	are	observed.	These	confirm	that	the	proposed	method	is	effective	in	increasing	the	dynamic	performance	of	a	structure	within	the

concerned	excitation	frequency	range.

Table	3	Eigenfrequencies	of	initial	design	and	optimized	designs.

alt-text:	Table	3

Eigenfrequency	order 1st 2nd 3rd 4th

Initial	design 189	Hz 484	Hz 739	Hz 869	Hz

Optimized	design	with	Ωfreq =	= [0 Hz,	100 Hz] 342	Hz 564	Hz 853	Hz 1085	Hz

Optimized	design	with	Ωfreq =	= [0 Hz,	200 Hz] 371	Hz 564	Hz 878	Hz 1085	Hz

Optimized	design	with	Ωfreq =	= [0 Hz,	400 Hz] 438	Hz 577	Hz 1000	Hz 1141	Hz

Optimized	design	with	Ωfreq =	= [400 Hz,	600 Hz] 91	Hz 203	Hz 210	Hz 717	Hz

Fig.	8	Optimized	designs	of	second	example	under	different	excitation	frequency	ranges.

alt-text:	Fig.	8.



6.3	Global	frequency	response	optimization	of	2D	structure
Here,	the	objective	is	to	minimize	the	dynamic	compliance	within	the	excitation	frequency	range	Ωfreq = [0 Hz,	100 Hz].	A	2D	cantilever	beam	(120 cm	cm ×	× 60 cm	cm ×	× 1 cm)	is	shown	in	Fig.	10,	where	an	excitation	force	

is	vertically	applied	at	point	P.	The	FE	mesh	is	120	120 ×	× 60.	Different	volume	constraints	are	examined,	namely	50%,	40%	and	30%.

The	initial	design	and	optimized	topologies	with	different	volume	constraints	by	the	iPLSM	are	given	in	Fig.	11,	and	their	FRF	curves	are	shown	in	Fig.	12.	Obviously,	 the	resonance	peaks	are	moved	outside	 the	excitation

frequency	range	to	avoid	the	drastic	vibration.	When	comparing	to	the	initial	design,	considerable	reductions	on	structural	frequency	responses	of	the	optimal	designs	are	observed.	In	addition,	it	can	be	seen	that	the	design	with	a

lower	volume	fraction	has	an	inferior	dynamic	stiffness,	which	is	similar	to	the	static	stiffness	optimization	problem	[10,48].	For	comparison,	the	optimal	results	by	respectively	using	the	PLSM-1,	PLSM-2	and	iPLSM	are	given	in	Table	4.

It	is	clear	that	the	PLSM-1	always	takes	more	iterations	but	achieves	a	worse	dynamic	compliance.	Moreover,	the	iPLSM	achieves	the	same	optimized	designs	but	considerably	reduce	the	computer	cost	per	step	when	comparing	to	the

PLSM-2.	 It	 illustrates	 that	 the	 iPLSM	method	has	very	 limited	 impact	on	the	Gaussian	RBF	 interpolation	accuracy	when	dealing	with	the	global	 frequency	response	optimization.	 In	regards	to	both	the	optimization	efficiency	and

effectiveness,	the	iPLSM	performs	best	amongst	the	three	methods.

Fig.	9	FRF	of	points	P1	and	P2	before	and	after	optimization.	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	9.
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Fig.	10	Design	domain	of	third	example.

alt-text:	Fig.	10.



Table	4	Comparison	of	different	methods	in	2D	global	frequency	response	optimization.

alt-text:	Table	4

Method Sparsity	of	matrix	A	or	 Volume	constraint Time	per	step Iterations Objective

iPLSM 99.59% 50% 26.3	s 112 1.1863

PLSM-1 99.26% 50% 26.5	s 165 1.2081

PLSM-2 0% 50% 69.8	s 112 1.1863

iPLSM 99.59% 40% 26.2	s 160 1.4370

PLSM-1 99.26% 40% 26.5	s 220 1.4926

PLSM-2 0% 40% 69.9	s 160 1.4370

iPLSM 99.59% 30% 26.3	s 176 1.8928

PLSM-1 99.26% 30% 26.4	s 260 1.9822

Fig.	11	Initial	design	and	optimized	designs	of	third	example	under	different	volume	constraints.

alt-text:	Fig.	11.

Fig.	12	FRF	of	initial	design	and	optimized	designs.

alt-text:	Fig.	12.

		



PLSM-2 0% 30% 69.8	s 176 1.8928

6.4	Local	frequency	response	optimization	of	3D	structure
The	design	domain	is	given	in	Fig.	13.	Both	ends	of	the	3D	beam	are	fixed,	and	a	concentrated	force	 within	Ωfreq = [0 Hz,	400 Hz]	is	applied	at	the	middle	point	of	the	lower	face.	The	structure	is	discretized	with

12	12 ×	× 12	12 ×	× 48	eight-node	elements,	and	only	12	12 ×	× 6	6 ×	× 48	FEs	are	taken	into	consideration	due	to	the	geometrical	symmetry.	The	whole	design	domain	is	assumed	to	be	occupied	by	a	sort	of	base	material	with	a	lower

density	ρmin = 0.78 g/cm3.	The	objective	function	is	to	minimize	the	frequency	response	at	point	P	by	reinforcing	the	basic	structure	with	a	given	amount	of	higher-density	materials	(e.g.	ρ = 7.8 g/cm3).	The	maximum	reinforcement

material	usage	is	30%.

The	iPLSM	is	firstly	applied.	The	zero	level	set	contours	of	the	3D	beam	are	plotted	in	Fig.	14,	in	which	the	low	density	material	is	indicated	as	grey,	while	the	reinforcement	material	is	denoted	as	red.	It	can	be	seen	that	a

smooth	geometrical	surface	is	obtained	through	the	evolving	of	structural	shapes	and	topologies.	For	comparison,	the	optimal	results	obtained	by	the	PLSM-1	and	PLSM-2	are	provided	in	Fig.	15	and	Table	5.	It	is	obvious	that	the	iPLSM

can	 achieve	 a	much	 better	 objective	 with	 less	 iteration	 numbers	 when	 comparing	 to	 the	 PLSM-1,	 while	 have	 a	 similar	 objective	 with	 a	 considerable	 increment	 in	 optimization	 efficiency	 when	 comparing	 to	 the	 PLSM-2.	More

importantly,	when	comparing	with	the	conventional	PLSM	(i.e.	PLSM-1),	the	iPLSM	can	significantly	improve	the	dynamic	performance	(13%	improvement)	of	the	design	in	3D	scenario.	It	confirms	that	the	proposed	method	is	more

efficient	and	effective	in	dealing	with	3D	optimization	design	problem.
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Fig.	13	Design	domain	of	fourth	example.

alt-text:	Fig.	13.

Fig.	14	Evolution	of	structural	boundary	of	fourth	example:	(a)	initial	design;	(b)	step	15;	(c)	step	20;	(d)	step	25;	(e)	step	50;	(f)	optimized	design.

alt-text:	Fig.	14.



Table	5	Comparison	of	different	methods	in	fourth	example.

alt-text:	Table	5

Method Mesh Size	of	matrix	A Sparsity	of	matrix	A	or Time	per	step Iterations Objective

iPLSM 12	12 ×	× 6	6 ×	× 48 4459	4459 ×	× 4459 96.15% 236.3	s 96 2.1872e-−3

PLSM-1 12	12 ×	× 6	6 ×	× 48 4459	4459 ×	× 4459 89.06% 241.6	s 108 2.5075e-−3

PLSM-2 12	12 ×	× 6	6 ×	× 48 4459	4459 ×	× 4459 0% 269.6	s 96 2.1864e-−3

6.5	Global	frequency	response	optimization	of	3D	structure
The	 design	 domain	 is	 shown	 in	 Fig.	 16,	 and	 a	 set	 of	 excitation	 loads	 with	Ωfreq = [0 Hz,	 100 Hz]	 are	 uniformly	 applied	 along	 the	 central	 line	 on	 the	 top	 face	 of	 the	 structure.	 The	 structure	 is	 discretized	 with

20	20 ×	× 12	12 ×	× 100	elements,	and	only	20	20 ×	× 6	6 ×	× 100	FEs	are	taken	into	consideration	due	to	the	geometrical	symmetry.	The	objective	function	is	to	minimize	the	structural	dynamic	compliance.	Two	volume	constraints,	i.e.

40%	and	20%,	are	considered.

For	comparison,	the	design	results	with	different	volume	constraints	by	using	the	iPLSM	and	PLSM-1	are	presented	in	Fig.	17	and	Table	6,	and	their	FRF	curves	are	shown	in	Fig.	18.	Comparing	with	the	PLSM-1,	the	proposed

method	always	takes	fewer	iterations	to	search	for	a	design	with	a	much	better	dynamic	performance	(respectively	54%	and	98%	improvements).	Moreover,	it	is	of	great	interest	to	see	that	the	PLSM-1	fails	to	obtain	a	feasible	design

when	the	volume	constraint	is	kept	at	a	lower	level	(i.e.	20%).	It	is	because	that	the	CSRBF	may	not	provide	adequate	interpolation	accuracy	to	approximate	the	moving	boundary	during	the	optimization,	especially	when	dealing	with

3D	optimization	problems	with	lower	volume	fractions.	Nevertheless,	the	iPLSM	is	still	able	to	find	an	optimal	design	with	a	low	volume	fraction	due	to	its	high-accuracy	interpolation	mechanism.	This	demonstrates	that	the	proposed

method	is	more	efficient	and	effective	than	the	conventional	PLSM.

Fig.	15	Optimal	designs	of	fourth	example:	(a)	PLSM-1;	(b)	PLSM-2.

alt-text:	Fig.	15.
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Fig.	16	Design	domain	of	fifth	example.

alt-text:	Fig.	16.



Table	6	Comparison	of	different	methods	in	fifth	example.

alt-text:	Table	6

Method Size	of	matrix	A Sparsity	of	matrix	A	or Volume Time	per	setp Iterations Objective

iPLSM 14,847	847 ×	× 14,847 99.38% 40% 585.6	s 116 34.7718

PLSM-1 14,847	847 ×	× 14,847 96.34% 40% 592.2	s 400 75.8112

iPLSM 14,847	847 ×	× 14,847 99.38% 20% 585.8	s 142 59.1339

PLSM-1 14,847	847 ×	× 14,847 96.34% 20% 592.4	s 215 2703.0524

From	above	numerical	examples,	 it	 is	seen	that	the	proposed	method	can	benefit	the	structural	topology	optimizations.	In	particular,	the	iPLSM	can	produce	smooth	structure	boundary	and	clear	design	geometry	that	can

facilitate	the	optimized	results	to	be	directly	integrated	into	the	commercial	software	for	analysis	or	fabrication	purposes.	Furthermore,	the	proposed	method	can	simultaneously	implement	the	shape	and	topology	optimizations	via

structural	boundary	merging	and	splitting.	Actually,	the	iPLSM-based	formulation	can	be	directly	solved	by	the	well-established	gradient-based	algorithms,	which	makes	this	method	more	general	and	easy-to-implement	for	different

Fig.	17	Design	results	of	fifth	example	using	different	methods.

alt-text:	Fig.	17.

		

Fig.	18	FRF	curves	of	optimized	designs:	(a)	volume	constraint	is	40%;	(b)	volume	constraint	is	20%.

alt-text:	Fig.	18.



optimization	problems.

7	Conclusions
This	paper	has	proposed	an	efficient	 iPLSM	to	minimize	 the	 frequency	 response	of	 structures	within	a	given	excitation	 frequency	 range.	 In	 this	method,	a	new	parameterization	mechanism	 is	developed:	 (1)	 the	 level	 set

function	 is	 approximated	 by	 using	 the	 Gaussian	 RBF,	 and	 (2)	 the	 DWT	 is	 introduced	 to	 compress	 the	 full	 matrix	 arisen	 from	 the	 interpolation.	 Then,	 the	 structural	 shape	 and	 topology	 changes	 are	 efficiently	 driven	 by	 the

parameterization	method.	The	design	sensitivities	of	the	objective	function	and	constraint	are	obtained,	to	enable	the	iterative	update	of	the	design	variables	by	using	the	gradient-based	OC	algorithm.	Several	2D	and	3D	numerical

examples	 regarding	with	 both	 the	 local	 and	global	 frequency	 response	 optimizations	 have	been	used	 to	 demonstrate	 the	merits	 of	 the	 proposed	method.	Firstly,	 the	 iPLSM	considerably	 increases	 the	 optimization	 efficiency	 and

effectiveness	by	comparing	to	the	conventional	PLSM,	especially	for	3D	problems.	Secondly,	it	can	simultaneously	maintain	the	unique	merits	while	overcome	numerical	difficulties	of	conventional	LSMs.	Thirdly,	the	proposed	method

can	provide	effective	reduction	on	vibrations	with	different	objective	functions	and	boundary	conditions.	Finally,	the	iPLSM	is	general	and	suitable	for	different	types	of	advanced	topology	optimization	problems.
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• An	improved	parametric	level	set	method	is	proposed.

• The	discrete	wavelet	transform	is	used	to	compress	the	Gaussian	RBF-based	interpolation	matrix.
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