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ABSTRACT Advanced unsupervised learning techniques are an emerging challenge in the big data era due
to the increasing requirements of extracting knowledge from a large amount of unlabeled heterogeneous
data. Recently, many efforts of unsupervised learning have been done to effectively capture information
from heterogeneous data. However, most of them are with huge time consumption, which obstructs their
further application in the big data analytics scenarios, where an enormous amount of heterogeneous data are
provided but real-time learning are strongly demanded. In this paper, we address this problem by proposing
a fast unsupervised heterogeneous data learning algorithm, namely two-stage unsupervised multiple kernel
extreme learning machine (TUMK-ELM). TUMK-ELM alternatively extracts information from multiple
sources and learns the heterogeneous data representation with closed-form solutions, which enables its
extremely fast speed. As justified by theoretical evidence, TUMK-ELM has low computational complexity
at each stage, and the iteration of its two stages can be converged within finite steps. As experimentally
demonstrated on 13 real-life data sets, TUMK-ELM gains a large efficiency improvement compared with
three state-of-the-art unsupervised heterogeneous data learning methods (up to 140000 times) while it
achieves a comparable performance in terms of effectiveness.

INDEX TERMS Unsupervised learning, heterogeneous data, clustering, extreme learning machine, multiple

kernel learning.

I. INTRODUCTION

In most real-world data analytics problems, a huge amount of
data are collected from multiple sources without label infor-
mation, which is often with different types, structures, and
distributions, namely heterogeneous data [1], [2]. For exam-
ple, in a sentiment analysis task, the data may contain texts,
images, and videos from Twitters, Facebook, and YouTube.
For extracting knowledge from such big unlabeled hetero-
geneous data, advanced unsupervised learning techniques
are required to (1) have a large model capacity/complexity,
(2) have the ability to integrating information from multiple
sources and (3) have a high learning speed.

Recently, many researchers enhance model capacity by
combining unsupervised learning with deep learning to
propose deep unsupervised learning models [3], [4]. These
models inherit the powerful model capacity from deep

neural networks that can reveal highly complex patterns and
extremely nonlinear relations. However, most of them fail to
learn from multiple sources. They are challenged by types,
relations and distributions of the heterogeneous data because
of the deep neural networks they used. Without strong super-
vised information, the deep neural networks may arbitrarily
fit complex heterogeneous data that leads to meaningless
solutions.

One promising way to reveal information from multi-
ple sources is using multiple kernel learning (MKL, for
short) [5], [6]. MKL first adopts multiple kernels to capture
heterogeneous data characteristics from different sources.
It then learns optimal combination coefficients for these
kernels guided by a specific learning task. In this way,
MKL can effectively capture different complex distribu-
tions by different kernels, and reveal the relations between
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these different distributions by the kernel combination coef-
ficients [7]-[9]. Despite the advantages of MKL, it requires
supervised label information to learn the optimal kernel com-
bination coefficients. However, label information is often not
available or very costly in real big data analytics task, which
limits the application of MKL.

More recently, unsupervised MKL [10]-[12] has been
studied to tackle the heterogeneous data learning without
supervised labels. Similar to MKL, unsupervised MKL also
uses multiple kernels to distill information from various
sources. To enable the learning without supervised labels,
it introduces a kernel-based unsupervised learning objective,
e.g. kernel k-means [13], to learn the optimal kernel com-
bination coefficients. Although unsupervised MKL achieves
remarkable performance in unsupervised heterogeneous data
learning, most of the current unsupervised MKL methods are
with a slow learning speed. The slow learning speed is mainly
caused by the iterative numerical solution, which is adopted
by these methods for optimizing the kernel combination coef-
ficients. It does not satisfy the requirements of (1) handling a
large amount of data and (2) real-time learning.

To address the above issues, we here propose a fast
unsupervised heterogeneous data learning approach, namely
Two-stage Unsupervised Multiple Kernel Extreme Learning
Machine (TUMK-ELM, for short). TUMK-ELM iteratively
extracts information from multiple sources and learns the het-
erogeneous data representation with closed-form solutions.
It adopts multiple kernels to capture information in hetero-
geneous data and learns an optimal kernel for heterogeneous
data representation. Different from current unsupervised mul-
tiple kernel learning methods, it seamlessly integrates a much
more efficient kernel combination coefficients optimization
method with an effective unsupervised learning objective that
simultaneously guarantees a fast learning speed and a high
learning quality. Specifically, TUMK-ELM uses the kernel
k-means [13] objective function to guide the unsupervised
learning process and adopts the distance-based multiple ker-
nel extreme learning machine (DBMK-ELM, for short) [9]
to learn the kernel combination coefficients. TUMK-ELM
can be split into two iterative stages. At the first stage,
TUMK-ELM assigns a cluster for each object in a given
dataset via the kernel k-means algorithm based on multi-
ple kernels with a set of combination coefficients. It treats
the assigned cluster as the pseudo-label for each object.
At the second stage, TUMK-ELM learns optimal kernel com-
bination coefficients based on the learned pseudo-label by
an analytic solution. This set of coefficients will be further
used at the first stage of TUMK-ELM in the next iteration.
TUMK-ELM iteratively repeats these two stages until the
kernel k-means objective function is converged. Since the
time complexity of each stage is small, TUMK-ELM enjoys
a high speed of learning from multiple source information.

The key contributions of this work include:

o A novel unsupervised learning method from multiple

sources. The proposed method provides an effective
and efficient way to analyze multiple sources in an
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unsupervised fashion. It breaks out the obstacle of low
learning speed for high-performance big data analytics.

o The first fast unsupervised multiple kernel learning
method. As far as we know, the proposed method is the
first fast unsupervised multiple kernel learning method.
It shows a promising paradigm for the multiple kernel
learning community to efficiently handling large-scale
unlabeled data.

o We prove that the proposed method is with a low time
complexity and can be converged within finite steps.
The theoretical evidence guarantees the high learning
speed of the proposed method in real large-scale mul-
tiple sources learning applications.

We present comprehensive experiments on 13 real-life data
sets, Haberman, Biodeg, Seeds, Wine, Iris, Glass, Image-
Segment, Libras-Movement, Frogs, Wine-Quality, Statlog,
Isolet and Shuttle to evaluate our proposed TUMK-ELM
method. We show that: (1) Our proposed TUMK-ELM
can efficiently learn from multiple sources, which is up
to 140, 000 times faster compared with the state-of-the-art
methods; (2) Our proposed TUMK-ELM well captures local
and global relations of objects (reflected by retrieval task),
producing results substantially better than previous unsu-
pervised multiple kernel learning methods (up to 9.71% in
terms of accuracy, 12.6% in terms of NMI and 15% in
terms of Purity); (3) Our proposed TUMK-ELM converges
very fast (within 2 or 3 iterations); and (4) Our proposed
TUMK-ELM is quite stable regarding its key parameters.
The above strong evidence shows that the proposed
TUMK-ELM is fit for the fast unsupervised learning from
multiple sources, and we expect that it can be adopted in other
unsupervised big data analytics scenarios that enable better
performance.

The rest of paper is organized as follows: Section II briefly
introduces the current work related to this paper. Section III
explain heterogeneous data learning clearly. Section IV gives
the details of the proposed TUMK-ELM. Then, Section V
presents the theoretical analysis of the TUMK-ELM
properties. Section VI demonstrates the performance of
TUMK-ELM by comparing it with existing unsupervised
multiple kernel learning algorithms. Lastly, Section VII con-
cludes the paper and discusses future prospects.

Il. RELATED WORK

This work is most related to two learning paradigms. The one
is unsupervised deep learning that utilizes deep models to
handle large data complexities. The other one is unsupervised
multiple view learning that leverages heterogeneous informa-
tion from multiple views/modes.

A. UNSUPERVISED DEEP LEARNING

Recently, lots of efforts have been done for unsupervised
deep learning [14], which aims to reveal complex rela-
tions/patterns/knowledge in huge amount of data [15]-[17].
Typically, the unsupervised deep learning method combines
an unsupervised objective and deep neural networks to learn a
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powerful data representation [18]. For example, the methods
in [19]-[21] adopt the input reconstruction as the unsuper-
vised objective to learn an insight representation of data.
To link the representation more related to analytics tasks,
some methods use clustering objective and/or distribution
divergence as the learning objective [22]-[24], because such
objectives may induce a representation with a clearer struc-
ture. More recently, many efforts try to learn unsuper-
vised data representation in adversarial approaches [25]-[27],
which simultaneously take the advantages of both deep gen-
erator and deep discriminator. Although such unsupervised
deep learning methods can capture highly complex patterns
and extremely non-linear relations, they cannot learn hetero-
geneous data well in an unsupervised fashion. The key reason
is that heterogeneous data may have much higher complexity
and cause the learning methods converge at a local optimum.
Without strong supervised information, the deep network
may arbitrarily fit the complex heterogeneous data that leads
to meaningless solution.

B. UNSUPERVISED MULTIPLE VIEW LEARNING
Unsupervised multiple view learning aims to learn heteroge-
neous data without supervised information [28], [29]. Among
various unsupervised multiple view learning methods, unsu-
pervised multiple kernel learning methods attract the most
attention because of their ability to represent highly complex
data with multimodality. The unsupervised multiple kernel
learning is first proposed in [30]. After that, the work in [11]
adaptively changes multiple kernel combination coefficients
to better capture localized data characteristics. To enhance
the robustness of the unsupervised multiple kernel learning,
the work in [10] introduces a €2 1-norm to regularize the space
of kernel combination coefficients. More recently, [12] pro-
poses a local kernel alignment methods to focus on local data
relationships. Although the above methods achieve remark-
able performance in terms of heterogeneous data representa-
tion, all of them fail to apply in big data analytics tasks due
to lack of efficiency.

Ill. HETEROGENEOUS DATA LEARNING

In this section, we first formalize the problem and objec-
tive of heterogeneous data learning. Then, we discuss the
key challenges and requirements for achieving the learning
objective.

A. PROBLEM STATEMENT AND LEARNING OBJECTIVE

Let’s denote a heterogeneous data set as X = ({Xi,
X5, .-+, Xs)." The X contains s data sets from multiple
sources and/or with multiple structures/distributions, the
i-th of which is denoted as X;. Given a heterogeneous data
set X that contains n objects, the heterogeneous data learning
aims to learn a representation X = {x1,x2,+ ,Xp} 1= r(X)

IThe meaning of symbol styles in this paper are as follows. Value: low-
ercase; vector: lowercase with bold font; matrix: uppercase with bold font;
set: uppercase; function: lowercase with parentheses; space: uppercase with
Calligraphic font; value index: subscript.
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for such data set, where x; refers to the representation of the
i-th object, and r(-) is the representation learning function
from multiple sources. It further takes several analytics tasks,
e.g. clustering, upon the representation X. Typically, the rep-
resentation X should contain both consensus and complemen-
tary information from multiple sources for a better analytics
performance.

Without loss of generality, given a specific learning task
with objective I(-), the objective function of heterogeneous
data learning can be formalized as follows,

n
minimize Zl(xi)
X i=1
subject to X; € X
X =r(X1, Xa, -+, X)), e

where n is the number of objects, and s is the number of
data sources. The Eq. (1) indicates the key components of
heterogeneous data learning involve a representation task
and a specific learning task. To achieve a better learning
performance, a heterogeneous data learning always cou-
ples the representation learning with the specific task. For
example, the MKL methods use the label information of a
specific task to guide the kernel combination coefficients
learning.

B. LEARNING CHALLENGES AND REQUIREMENTS
Heterogeneous data learning faces several challenges in
real application. These challenges may include but not lim-
ited to high dimension, complex relations, multiple struc-
tures, heterogeneous distributions, a large number of objects,
and lacking supervised information. Currently, many efforts
have been made on handling complex dimensional heteroge-
neous distributed data, e.g. using kernel methods. However,
the challenges brought by a large number of objects and of
lacking supervised information are not well analyzed and
solved.

Heterogeneous data learning requires fast learning speed
when the number of objects is large. However, leveraging het-
erogeneous information is an NP-hard problem [5]. Although
many efforts have been done to reduce the time complexity
to polynomial time [5], [7], [8], [31], these methods still need
large time cost due to the iterative numerical solution. There-
fore, heterogeneous data learning expects a faster optimiza-
tion method for learning from heterogeneous information to
handle the large complex samples in big data scenarios.

Heterogeneous data learning requires an unsupervised
objective function. In most real cases, supervised label
information for heterogeneous data learning is not avail-
able or with high time/human consumption. In these cases,
most of current heterogeneous data learning methods do not
work well since the guidelines for heterogeneous information
integration is missing. How to define an unsupervised objec-
tive function that can benefit general analytics tasks is critical
yet challenge.
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FIGURE 1. The TUMK-ELM framework. TUMK-ELM first projects heterogeneous data into kernel spaces by multiple kernels. It then
adopts an iterative two stages approach to integrate heterogeneous information. At the first stage, TUMK-ELM generates a
K-Space, in which the data is constructed from multiple kernel spaces and the pseudo-labels are assigned according to the
learned optimal kernel. At the second stage, TUMK-ELM learns optimal kernel combination coefficients based on the generated
K-Space. After convergence, the optimal kernel contains the integrated information from heterogeneous data that suits for the

subsequent analytics tasks.

IV. TWO-STAGE UNSUPERVISED MULTIPLE KERNEL
EXTREME LEARNING MACHINE

A. TUMK-ELM FRAMEWORK

We propose a two-stage unsupervised multiple kernel
extreme learning machine (TUMK-ELM, for short) for the
fast unsupervised heterogeneous data learning. TUMK-ELM
captures the heterogeneous information from different
sources via multiple kernels and integrates the heterogeneous
information into an optimal kernel through an iterative two-
stage approach guided by a general unsupervised objective.
The framework of TUMK-ELM is shown in Fig. 1.

At the first stage, TUMK-ELM constructs a new data
space, namely K-Space. In the K-Space, data is constructed
from the multiple kernels, and pseudo-labels are assigned
via kernel k-means algorithm according to a learned optimal
kernel, which is built by a linear combination of the multiple
kernels with learned optimal combination coefficients.

At the second stage, TUMK-ELM learns the optimal coef-
ficients for the combination of multiple kernels. These coef-
ficients are learned via an extreme learning machine on the
data and pseudo-labels in the K-Space that constructed at
the first stage. TUMK-ELM iteratively conducts these two
stages until a convergence condition is satisfied. After conver-
gence, the optimal kernel contains the integrated information
from heterogeneous data that suits for following analytics
tasks.
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The intuitions behind TUMK-ELM are two-fold. On one
hand, kernel k-means is a good unsupervised learning objec-
tive, which can induce a representation with a clear clus-
tering structure. Specifically, kernel k-means divides data
into several clusters with a maximum cut in a given ker-
nel space. Such divide theoretically guarantees the unsuper-
vised learning performance of TUMK-ELM. On the other
hand, the extreme learning machine can effectively learn a
good kernel combination with an extremely fast speed in the
K-Space, which is demonstrated in [9]. It efficiently cap-
tures information from multiple sources with a closed-form
solution that provides a more comprehensive description of a
data set. TUMK-ELM enjoys the advantages of both kernel
k-means and extreme learning machine that gains its superior
performance for unsupervised heterogeneous data learning in
terms of both effectiveness and efficiency.

B. FIRST STAGE OF TUMK-ELM: K-SPACE DATA
CONSTRUCTION

TUMK-ELM extracts heterogeneous information from mul-
tiple sources by p kernel functions {ki(-), k2(-), - - - , kp(-)}.
These kernel functions can be designed according to prior
knowledge and data characteristics. Typical functions include
linear, polynomial and Gaussian kernels etc. After the kernel
projection, TUMK-ELM gets a set of k base kernel matrices
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K = {K{, K5, --- , K}, which is used for the optimal kernel
generation and K-Space data construction.

TUMK-ELM constructs K-Space data from k base kernel
matrices directly. Denoting the data set in a K-Space as Z,
the transformation from K to Z of a given data set X is
formalized as follows,

in, Xj € X,
(2)

where zy,y; is an element in Z corresponding to object x;
and x; in X, and K (x; x;) refers to the (i, j)-th entry in the
g-th kernel matrix.

TUMK-ELM assigns K-Space pseudo-label via kernel
k-means based on an optimal kernel. The optimal kernel K
is generated by a linear combination of the k base ker-
nel matrices according to a set of combination coefficients
no= [y, n2,---, uk]T, where u; is the coefficient of the
i-th kernel matrix. Formally,

Zx;x_,' = (Kl,(Xj,){j)v K2,(x,~,x/-)» Tt Kk,(xi,)qi))v

k
K = ZM,’K,‘. (3)
i=1

At the first iteration, TUMK-ELM initializes all combination
coefficients as % to generate the optimal kernel. From the sec-
ond iteration, it uses the coefficients learned at the second
stage to generate the optimal kernel according to Eq. (7). With
the optimal kernel K, the kernel k-means objective function
is as follows,

minimize Tr(ﬁ) — Tr(L% CTIA(CL%)

Ce(0,1)mxne

subject to C1,,, = 1,, @)

where C = [c11, -+, Clns*++ 5 Cnls s Can ] € {0, 1}
is the indicator matrix that indicates which cluster an object
belongs to, n. is the number of clusters, Tr(-) calculates the
trace of a matrix, L = diag([n;l, nzzl, . 7”;116])’ Nej =
> i, cij is the number of objects in the j-th clusters, and
1, € {1}% is a column vector with all elements being 1.
Directly solving Eq. (4) is difficult since the values of C are
limited to either O or 1. Alternatively, Eq. (4) can be relaxed by
allowing C takes real values. Denoting H = CL%, the Eq. (4)
can be reduced as

minimize Tr(K(I, — HH'))

HeRm<ne

subjectto H' H=1,,_, )

where, R is a real value space, I, is an identity matrix with
size n x n.. The optimal H for Eq. (5) can be obtained by
taking the n. eigenvectors that have the n. largest eigen-
values of K [32]. The cluster of the i-th object ¢; is set
as the argmaxh;;, where h; is the i-th row of H. After

J
the kernel k-means clustering, TUMK-ELM assigns the
pseudo-labels 7y, for the data z,;; in the K-Space as follows.

0,
b = 1

Ci =¢j

e ©)

VOLUME 6, 2018

C. SECOND STAGE OF TUMK-ELM: MULTIPLE KERNEL
LEARNING

TUMK-ELM formulates the multiple kernel combination
coefficients learning as a binary classification problem in
the K-Space, and solves it via an extreme learning machine.
For n; K-Space data and pseudo-labels, TUMK-ELM opti-
mizes the following objective function to calculate the opti-
mal kernel combination coefficients.

BRI DR AN

— _CE -

mlnngeZ”ﬂH +2 .lél
1=

subjectto & =z —t;, i=1,2,---, n, 7)

where C is a trade-off parameter of £, regularization and the
empirical learning error, and z; and ¢; refer to the i-th data and
pseudo-label in the K-Space, respectively.

TUMK-ELM calculates the optimal solution of Eq. (7) in
a closed-form as:

I —1
n= (E + ZTZ> Z'T (8)

or:
I —1
= ZT<E + ZZT> T, )

where T = [#q,--- ,z‘nk]T and Z = [zg,--- ,z,,k]T. For a
large data set, TUMK-ELM can use Eq.(8) to quickly obtain
the optimal solution. For data from a lot of multiple sources,
TUMK-ELM prefers the Eq. (9) to calculate the optimal
solution in a faster way. The learned u will be further used
in (3) for the optimal kernel generation at the stage 1.

D. TUMK-ELM ALGORITHM
TUMK-ELM iteratively conducts the first and second stages
to solve the following objective function,
minimize Tr(K) — Tr(L2C KCL?)
Cef0,1}mxne, K
subject to C1,,, = 1,,. (10)

The objective function Eq. (10) implements Eq. (1) by using
kernel k-means as the unsupervised objective /(-) and using
the extreme learning-based multiple kernel learning as the
representation learning function r(-). It can be solved by
alternatively updating C and K: (1) Optimizing C given K.
By fixing K, C can be obtained via a kernel k-means
clustering algorithm as shown in Eq. (5) by an eigenvalue
decomposition of K; (2) Optimizing K given C. With
C fixed, K can be generated by a linear combination of base
kernel matrices with a set of coefficients that learned by
extreme learning machine as shown in Eq. (7). TUMK-ELM
adopts the change of loss value of objective function Eq. (10),
denoted as A, as a convergence criteria. When A is closing
to 0, i.e. is smaller than a given small threshold &,
TUMK-ELM stops the two-stage iteration and outputs the
optimal kernel. If the learning task is clustering, TUMK-ELM
can also output the kernel k-means clustering result
directly.
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Algorithm 1 explains the whole process of TUMK-ELM.

Algorithm 1 TUMK-ELM

Input: A set of heterogeneous data X, a set of kernel
functions {ki(-), k2(-), - - - , kp(-)}, the number of clusters 7.,
the regularization trade-off parameter C, the convergence
rate §. )

Output: An optimal kernel K, a cluster assignment C.

1: Constructing base kernel matrices K = {Kj,
K,, --- ,Ki} by using the input kernels to project
the heterogeneous data.

2: Initializing the kernel combination coefficients pu,
the loss value !’ and the loss change A. Setting
Wi = %,Vui e p,l' =+o0and A = +o0.

3: while A > § do

: Constructing K-Space data Z via Eq. (2) based on K.

5: Generating the optimal kernel K via Eq. (3) based on
pand K.

6: Assigning the kernel k-means clustering C genera-
tion via calculating the n, largest eigenvalue of K.

7: Calculating ng = yi,¢ and L =
diag([n ', n', -+ ngl D).

8: Constructing K-Space pseudo-labels T via Eq. (6)
based on C.

9: Learning the kernel combination coefficients p by
Eq. (8) or (9) based on Z, T and C. .

10: Calculating loss value as / = Tr(K) —
Tr(L2 CTKCL?).

11: Calculating loss change as A = |I’ —[|.

12: Setting I’ = 1.
13: return K C

V. THEORETICAL ANALYSIS OF TUMK-ELM PROPERTIES
We here theoretically analyze the learning speed of TUMK-
ELM since having fast learning speed is one of the most
important properties of TUMK-ELM. We first analyze the
time complexity of TUMK-ELM, and then, discuss its con-
vergence property.

A. TIME COMPLEXITY ANALYSIS
The time complexity of TUMK-ELM is mainly deter-
mined by three parts: the K-Space construction, the optimal
kernel learning, and the number of iterations. For the
K-Space construction, the main cost is from the kernel
k-means clustering. Although the time complexity of ker-
nel k-means is up to O(n3), it can be reduced to O(n?)
by considering distributed kernel k-means [33] and O(n)
by considering cluster shifting [34]. For the optimal kernel
learning, the time cost is determined by the calculation of
Eq. (8) or Eq. (9). If Eq. (8) is adopted, the time complexity is
O(k® 4+ k*n+kn). If Eq. (9) is adopted, the time complexity is
O3 + kn* + kn).

Denoting the number of iterations as n;, the time com-
plexity of TUMK-ELM is O(k’n; + k*nn; + knn;) or
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O(nn; + n*kn; + knn;). These two time complexities indicate
Eq. (8) should be adopted when the number of objects is
large, and Eq. (9) should be used when the number of sources
is large for a faster learning speed. These time complexi-
ties are linear to the number of objects or the number of
data sources, which theoretically guarantees the extremely
fast learning speed of TUMK-ELM for heterogeneous data
learning. It should be noted that n; also affects the effi-
ciency of TUMK-ELM. Actually, TUMK-ELM can theoreti-
cally converge within a finite step as shown in Section V-B
and empirically converge within very small iterations
(2-3 iterations) as demonstrated in Section VI-E.1. This
fast convergence speed further supports the high efficiency
of TUMK-ELM.

B. CONVERGENCE ANALYSIS
The convergence of TUMK-ELM algorithm is guaranteed by
the Theorem 1.

Theorem 1: The TUMK-ELM algorithm described in
Algorithm 1 can converge to a local optimal in finite steps.

Proof: Let y be the number of all possible partitions on

a heterogeneous data set X. Each partition can be represented
by a indicator matrix C € {0, 1}"*". If two partitions are dif-
ferent, their indicator matrices are also different. Otherwise,
they are identical. In addition, y is finite given the heteroge-
neous data set X and the number of cluster n.. Therefore, there
are a finite number of C on X. For #; iterations, TUMK-ELM
generates a series of C, denoted as C1, Cy,---,C,, and a
series of K denoted as Kl, Kz, --, K,,.. Given an indicator
matrix C and an optimal kernel K, we denote the loss value
of TUMK-ELM objective function Eq.(10) as l . Since
kernel k-means and extreme learning machine all converge
to minimal solutions, lC k 1s strictly decreasing, i.e. /- s
lC2 K, > > lCn K, We assume that the number of
iterations n; is more than y+ 1. That indicates there are at least
two same indicator matrices in the sequence, i.e., C; = C,,
1 <i #j < n;. For C; and C;, we have the 0pt1mal kernel K
and Kj, respectively. It is clear that K, = K since C; = C;j.
Therefore, we obtain l = lC, ZC K i.e. the value
of objective function is not change and A = 0. In other
word, A < §,V§ > 0. In this case, the convergence criteria
of TUMK-ELM is satisfied and the TUMK-ELM algorithm
stops. Therefore, n; is not more than y + 1. Hence, TUMK-
ELM algorithm converges to a local minimal solution in a
finite number of iterations. [ ]

VI. EXPERIMENTS

In this section, we compare TUMK-ELM to several state-
of-the-art heterogeneous data learning methods to evaluate
TUMK-ELM’s performance in terms of both learning perfor-
mance and learning speed. The experimental results support
our above analysis that TUMK-ELM extremely improves
the learning speed while achieving the better or compatible
clustering accuracy compared with current multiple kernel
clustering methods.

VOLUME 6, 2018



L. Xiang et al.: TUMK-ELM: Fast Unsupervised Heterogeneous Data Learning Approach

IEEE Access

o
o

precision@K

o
IS

0.51 — Lmkkm
— RMKKM

0.4 — mKC_LKAM
— TUMK_ELM

— LMKKM
0.31 — RMKKM

— MKC_LKAM
0.2] — TUMK_ELM

e © o 9
o N ® o

precision@K

5
0-5)  Lkim
— RMKKM
0.4 — wmKC_LKAM
— TUMK_ELM

0.5 — LMKKM
— RMKKM

.4{ — MKC_LKAM
~—— TUMK_ELM

o
S

1 10 100 1 10 100
K K

(@ (b)

1 10 100 1 10 100

FIGURE 2. The precision@k-curve of different heterogeneous data learning methods: A better metric yields a higher curve. (a) Curve on
iris data set. (b) Curve on glass data set. (c) Curve on seeds data set. (d) Curve on wine data set.

A. BENCHMARK DATA SETS

In the experiment, the benchmark data sets include Haber-
man, Biodeg, Seeds, Wine, lIris, Glass, Image-Segment,
Libras-Movement, Frogs, Wine-Quality, Statlog, Isolet and
Shuttle. These data sets can be accessed from UCI Machine
Learning Repository [35]. The data characteristics of them
are shown in Table1, in which the number of instance, classes,
attributes of these sets are reported. These data sets are col-
lected from different scenarios in real life with different char-
acteristics, which can comprehensively evaluate our proposed
TUMK-ELM from different aspects. In addition, it can also
demonstrate that our algorithm can be applied in a variety of
problem in practice.

TABLE 1. Summary of data sets.

Data Set Number of Instance  Number of Attributes Number of Class
Haberman 360 4 2
Biodeg 1055 41 2
Seeds 210 7 3
Wine 178 13 3
Iris 150 4 3
Glass 214 9 6
Image-Segment 210 18 7
Libra-Movement 360 90 15
Frogs 7195 22 4
Wine-Quality 4892 12 6
Statlog 4435 37 6
Isolet 6238 618 26
Shuttle 14500 10 6

B. EXPERIMENTS SETTING

1) PARAMETERS SETTING

For each benchmark data set, 15 kernels are adopted. These
kernels include a linear kernel, three polynomial kernels of
degrees {2, 3, 4}, eleven Gaussian kernels with kernel width

{10719,1078,107%, 1074, 1072, 1, 102, 10%, 10°, 108, 1019},

For all algorithms, the regulation parameter C is set as 1.
All parameters of compared algorithms are set as the recom-
mended/default values in their corresponding papers.

2) EVALUATION CRITERIA
We evaluate the performance of TUMK-ELM in terms of
information retrieval, clustering effectiveness, computational
efficiency, algorithm stability and heterogeneous data repre-
sentation quality.

For information retrieval, all objects are used as queries,
and their k-closest objects are retrieved per learned optimal
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kernel. The precision@k and recall @k, i.e. the fraction of
the retrieved k objects are the same-class neighbors, and the
fraction of same-class neighbors are retrieved in the k objects,
are reported.

The clustering effectiveness is measured by three criteria:
accuracy, normalized mutual information (NMI), and purity.
These criteria use the label of data in UCI repository [35]
as clustering ground truth. They demonstrate the clustering
effectiveness from different aspects. Specifically, accuracy
measures whether the clustering results are similar to the
ground truth, NMI reflects the correlation between the clus-
tering results and the ground truth, and purity measures the
percentage of samples that govern a given cluster.

The computational efficiency is measured by two cri-
teria: algorithm time cost and convergence speed. While
the algorithm time cost reflects the absolute efficiency of
TUMK-ELM, the convergence speed demonstrates to what
extent the efficiency of TUMK-ELM is affected by its itera-
tive learning process.

The stability is measured by the clustering effectiveness of
TUMK-ELM while varying its key parameters.

The heterogeneous representation quality is qualitatively
measured by the visualization of data distributions in the
learned optimal kernel space. A better representation will
show a clearer structure, i.e. contains more information and
with lower entropy.

C. TESTING TUMK-ELM ENABLED INFORMATION
RETRIEVAL PERFORMANCE

We evaluate the heterogeneous data learning performance
of TUMK-ELM in object retrieval, which is a task that
heavily depends on data representation. This performance
reflects whether TUMK-ELM can well integrate hetero-
geneous information from multiple sources. Four data
sets, i.e. Iris, Glass, Seeds and Wine, are tested for
TUMK-ELM-enabled retrieval performance evaluation.

The precision @k and recall @k of retrieval are used as eval-
uation metrics. They can demonstrate the quality of learned
representation from local (when k is small) to global (when k&
is large). The results are shown in Fig. 2 and Fig. 3, in which
the precision and recall of TUMK-ELM-enabled retrieval
consistently outperform or are compatible with the others.
They reflect that TUMK-ELM is able to learn heterogeneous
data for analytics task.

35311



IEEE Access

L. Xiang et al.: TUMK-ELM: Fast Unsupervised Heterogeneous Data Learning Approach

recall@k

0.2 — LMKKM

— RMKKM
— MKC_LKAM

0.0] — TUM ELM

recall@k

0.2 — LMKKM
— RMKKM

— MKC_LKAM

0.0] — TUMK_ELM

recall@k

0.2 — LMKKM
— RMKKM
— MKC_LKAM
0.0 — TUMK_ELM

recall@k

0.2 — LMKKM
— RMKKM
— MKC_LKAM
0.0] — TUMK_ELM

1

(a)

100

1 10

(b)

100
K

1

10

(©)

K

100

1

10 100
K

(@
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TABLE 2. Accuracy of unsupervised clustering algorithms. The best 20 ‘ ‘ ‘ ‘
results are highlighted in bold-face. -©-Biodeg
18 =¥~ Libras Movement | q
=+ WineQuarity
Data Set RMKKM [10] LMKKM [11] MKC-LKAM [12] TUMK-ELM 16% Image Segement |
Haberman 0.5065 0.5098 0.5163 0.5196
Biodeg 0.5280 0.5469 0.5553 0.5848 _14F g
Seeds 0.8905 0.9333 0.8575 0.9190 S
Wine 0.9719 0.9663 0.8876 0.9719 S12f \ % % % % 4
Iris 0.8867 0.8467 0.8187 0.8933 = ¥
Glass 0.4393 0.4065 0.3464 0.4252 g ol i
Image-Segment 0.6641 0.6619 0.6491 0.5571 §
Libras-Movement 0.4417 0.5167 0.4945 0.5028 = &g ]
Frogs 0.6860 0.5676 0.6132 0.6687
Wine-Quality 0.2178 0.4100 0.3739 0.3322 6F ]
Statlog 0.7121 0.6808 0.7301 0.7061
Isolet 0.5631 NA 0.5910 0.6186 4t 1
Shuttle 0.4491 0.3938 0.4817 0.3410 & & & & >
> ; ; ; ; ; .
1 2 3 4 5 6 7 8
D. TESTING TUMK-ELM CLUSTERING EFFECTIVENESS lterations

We evaluate the clustering effectiveness in terms of accuracy,
NMI and purity, and report the results of them in Table 2, 3,
and 4, respectively.

The results indicate that the clustering effectiveness of
TUMK-ELM is comparable with its competitors. Although
TUMK-ELM does not always achieve the best result on
the benchmark data sets in terms of one metric, it can
achieve the best one in terms of another metric. For example,
TUMK-ELM achieves the first rank on Biodeg data set in
terms of accuracy, but it is not the best one under the measure
of NMI and purity. In addition, the difference between the
performance of TUMK-ELM and its competitors is not sig-
nificant. Such comparable results demonstrate our proposed
TUMK-ELM can effectively capture the information from
multiple sources and can enable a good clustering result.

These results are consistent with the design of
TUMK-ELM and other multiple kernel clustering methods.
All of these methods learn a linear combination of base
kernels in an iterative way, in which the clusters are generated
by the kernel k-means. Therefore, the information leveraged
by these methods is similar, which leads to their similar
clustering performance.

E. TESTING TUMK-ELM EFFICIENCY
We evaluate the TUMK-ELM efficiency in two aspects: con-
vergence speed and time cost.

1) TUMK-ELM CONVERGENCE SPEED
We perform experiments on four data sets to evaluate the
convergence speed of the proposed TUMK-ELM method.

35312

FIGURE 4. The clustering loss value of TUMK-ELM per iteration.
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FIGURE 5. The stability of TUMK-ELM in terms of parameter C.

Specifically, we calculate the clustering loss value at step 10
of Algorithm 1 in each iteration. The convergence speed of
the loss value metric reflects the convergence speed of the
TUMK-ELM algorithm, which is illustrated in Fig. 4.

As shown in Fig. 4, the loss value tends to converge
within four iterations on these four data sets. It demonstrates
our proposed TUMK-ELM has a fast converge speed. Since
TUMK-ELM can converge within few iterations, and the
cost in each iteration is small (due to the closed-form solu-
tion), TUMK-ELM enjoys a good performance in terms of
efficiency.
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TABLE 3. NMI of unsupervised clustering algorithms. The best results are
highlighted in bold-face.

TABLE 5. Time cost of unsupervised clustering algorithms. The most
efficient results are highlighted in bold-face.

Data Set RMKKM [10] LMKKM [11] MKC-LKAM [12] TUMK-ELM Data Set RMKKM [10] LMKKM [11] MKC-LKAM [12] TUMK-ELM
Haberman 0.0006 0.0018 0.0018 0.0018 Haberman 4.9566 467.4184 5.7162 0.0233
Biodeg 0.0649 0.1055 0.1168 0.0559 Biodeg 85.751 11,699.7 712.369 0.0832
Seeds 0.6743 0.7683 0.6833 0.7719 Seeds 3.8916 168.387 1.7207 0.0308
Wine 0.8897 0.8748 0.8636 0.8897 Wine 2.9938 97.5415 0.9480 0.0229
Iris 0.7364 0.6504 0.7450 0.5693 Iris 2.0941 61.5084 0.8600 0.0471
Glass 0.2983 0.3084 0.3239 0.3384 Glass 4.6956 171.485 1.8842 0.0948
Image-Segment 0.5846 0.5997 0.6260 0.5181 Image-Segment 3.6576 166.446 1.7355 0.0486
Libras-Movement 0.5300 0.5925 0.6319 0.6275 Libras-Movement 11.5414 787.7498 10.3473 0.0956
Frogs 0.4112 0.4331 0.3731 0.3826 Frogs 165.4.4 367,12 671.93 1.5549
Wine-Quality 0.0127 0.1791 0.0817 0.0671 Wine-Quality 2,170.1 20,719 3,271.7 1.2148
Statlog 0.6121 0.4359 0.7001 0.5988 Statlog 2,976.3 27,981 4,173.2 0.8967
Isolet 0.6676 NA 0.5498 0.6004 Isolet 4,397.1 NA 5,192.1 5.9381
Shuttle 0.1502 0.2415 0.3419 0.2951 Shuttle 9,861.2 71,368 32,814 6.7917

TABLE 4. Purity of unsupervised clustering algorithms. The best results
are highlighted in bold-face.

Data Set RMKKM [10] LMKKM [11] MKC-LKAM [12] TUMK-ELM
Haberman 0.7353 0.7353 0.7353 0.7353
Biodeg 0.6626 0.6628 0.6626 0.6626
Seeds 0.8905 0.9333 0.8952 0.8575
Wine 0.9719 0.9663 0.9663 0.9719
Iris 0.8867 0.8467 0.8933 0.8876
Glass 0.5234 0.5654 0.5327 0.5651
Image-Segment 0.6333 0.6857 0.6871 0.5810
Libras-Movement 0.4306 0.4889 0.5121 0.5222
Frogs 0.7717 0.6161 0.6920 0.8295
Wine-Quality 0.3772 0.3912 0.4104 0.4891
Statlog 0.6789 0.5410 0.6118 0.7594
Isolet 0.5631 NA 0.7102 0.6343
Shuttle 04111 0.6710 0.7087 0.8912

2) TUMK-ELM TIME COST

We further evaluate the time cost of TUMK-ELM and its
competitors. We report the results in Table 5. The Table 5
indicates our proposed TUMK-ELM is much faster than its
competitors on all data sets. Specifically, the learning speed
of TUMK-ELM achieves as much as 1,000 times faster
than RMKKM, 140, 000 times faster than LMKKM, and
8, 500 times faster than MKC-LKAM.

TUMK-ELM can gain such low time cost because it adopts
distance-based multiple kernel extreme learning machine to
learn the kernel combination at step 9 of Algorithm 1. Dif-
ferent from other methods, which use iterative numerical
solution for multiple kernel learning, TUMK-ELM inherits

VOLUME 6, 2018

the efficiency of an analytic solution of DBMK-ELM. Its low
time cost enables the applications on much larger data sets
with real-time learning requirements. With such high learning
speed, TUMK-ELM can also achieve the same clustering
performance level as other multiple kernel clustering methods
as demonstrated in Section VI-D, which shows the essential
superiority of TUMK-ELM.

F. TESTING TUMK-ELM STABILITY

We further evaluate the TUMK-ELM stability in terms of
its key parameter C in Eq. (8) and Eq. (9). We mea-
sure the clustering performance of TUMK-ELM when
varying the value of C, which is set as a value in set
{1078, 107°, 1074, 1072, 1, 10%, 10%, 10°, 10%}. We illus-
trate the TUMK-ELM clustering performance changes on
Seeds data set in Fig. 5.

As can be seen from Fig. 5, our proposed TUMK-ELM is
relatively stable with the parameter C. In practice, we recom-
mend setting this value between 1 to 10?, which can enable
the best results with the highest probability.

G. TESTING TUMK-ELM REPRESENTATION QUALITY

We illustrate the visualization of TUMK-ELM-represented
heterogeneous data by converting it from the optimal kernel
representation to a two-dimensional embedding by multidi-
mensional scaling [36]. Fig. 6 shows the visualization of
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different representation methods on Iris data set. As seen in
this figure, the TUNK-ELM-represented heterogeneous data
has clearer boundaries between different clusters, compared
with that from other methods. It qualitatively demonstrates
that the TUMK-ELM-represented data is more suitable for
analytics tasks, e.g. classification and clustering. This is
because TUMK-ELM learns the heterogeneous data by opti-
mizing the objective function Eq. (10), which induces a larger
inter-cluster distance and intra-cluster similarity.

VIi. CONCLUSION

In this paper, we have proposed a Two-Stage Unsupervised
multiple kernel Extreme Learning Machines (TUMK-ELM),
a more flexible algorithm for fast unsupervised heteroge-
neous data learning. According to the experiments, the learn-
ing speed can achieve as much as 1,000 times faster
than RMKKM, 140, 000 times faster than LMKKM, and
8, 500 times faster than MKC-LKAM. Meanwhile, the clus-
tering accuracy of our proposed TUMK-ELM is comparable
with its competitors. Experimental results clearly demon-
strate the superiority of TUMK-ELM. In the future, how to
adaptive adjust the base kernels to fit the dynamic heteroge-
neous data distributions will be considered.
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