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Abstract

Recursive Marginal Quantization of the Euler scheme has recently been proposed by
Pagès and Sagna [2015] as an efficient numerical method for evaluating functionals of
solutions of stochastic differential equations. This method involves recursively quantiz-
ing the conditional marginals of the discrete-time Euler approximation of the underlying
process. By generalizing their approach, we show that it is possible to perform recursive
marginal quantization for two higher-order schemes: the Milstein scheme and a simpli-
fied weak order 2.0 scheme. As part of this generalization a simple matrix formulation
is presented, allowing efficient implementation. We further extend the applicability of
recursive marginal quantization by showing how absorption and reflection at the zero
boundary may be incorporated, when this is necessary. To illustrate the improved ac-
curacy of the higher order schemes, various computations are performed using geometric
Brownian motion and its generalization, the constant elasticity of variance model. For
both processes, we show numerical evidence of improved weak order convergence and we
compare the marginal distributions implied by the three schemes to the known analytical
distributions. By pricing European, Bermudan and Barrier options, further evidence of
improved accuracy of the higher order schemes is demonstrated.

1 Introduction

Quantization is a lossy compression technique that produces a discrete representation of a
signal using less information than the original. The technique originated in the field of signal
compression, but has found application in fields as far-reaching as signal processing, pattern
recognition, data mining, integration theory and, more recently, numerical probability. For
general overviews of the mathematics and applications of quantization see Du et al. [1999]
and Pagès [2014].

Vector quantization of probability distributions was formalized in the work of Graf and
Luschgy [2000] and has been applied to the field of mathematical finance since its inception. It
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is a technique for optimally representing a continuous distribution by a discrete distribution,
where a measure of the ‘distance’ between the two, called the distortion, is minimized. The
distortion is most commonly measured using the squared Euclidean error.

The application of vector quantization to the solution of finance-related problems generally
proceeds by discretising time and then quantizing the corresponding marginal distributions
of the system of stochastic differential equations specific to the problem. The quantized grids
and their associated weights are then used to compute the expectations required in pricing
contingent claims (including claims with early exercise) or for performing the optimizations
required in stochastic control problems [Pagès et al., 2004]. Due to the reliance on Lloyd’s
Algorithm [Lloyd, 1982], or variants thereof, these approaches generally incur a heavy com-
putational burden.

A more efficient approach for the single-factor case has recently been proposed by Pagès
and Sagna [2015]. Known as recursive marginal quantization (RMQ), it makes use of a
Newton-Raphson iteration to quantize the Euler-Maruyama updates of the underlying SDE.
The technique has been used to provide fast calibration of a local volatility model by Callegaro
et al. [2014, 2015a], and extended for use with two factor SDEs and applied to stochastic
volatility models [Callegaro et al., 2015b].

In the present work, the RMQ algorithm is generalized, allowing the implementation of
schemes of higher order than the Euler-Maruyama scheme. We now provide an overview of
the rest of the paper.

Section Two provides a review of vector quantization (VQ) as applied to probability dis-
tributions. In particular, we strive to simultaneously provide a precise, concise and intuitive
description of the methodology. The resulting algorithm is presented using a matrix formu-
lation, allowing for efficient implementation. The section concludes by showing examples of
vector quantization applied to the Gaussian and noncentral chi-squared distributions.

The third section introduces recursive marginal quantization applied to stochastic differ-
ential equations. Our formulation of the problem is presented in more generality than the
original formulation by Pagès and Sagna [2015]. A matrix formulation, which demonstrates
the connection with Markov chains, is provided, allowing easy and efficient implementation.

In the section that follows we extend the RMQ algorithm to higher-order updates, specif-
ically the Milstein scheme and a simplified weak order 2.0 Taylor scheme of Kloeden and
Platen [1999]. Geometric Brownian motion (GBM) and the CEV process serve as examples
to illustrate the improved error in the quantized marginal distributions and the improved
weak order convergence.

When performing a Monte Carlo simulation of a discrete-time approximation of a process,
non-negativity of the solution is usually enforced by implementing absorption or reflection.
Under certain circumstances this is also required when using RMQ. In Section Five we present
the modifications of the RMQ algorithm necessary to ensure an absorbing or reflecting bound-
ary at zero. These modifications allow the RMQ algorithm to be applied to the CEV process
for parameter sets that would otherwise be problematic under the original formulation.

Section Six presents numerical results of the application of the three RMQ schemes to
option pricing. European, barrier and Bermudan options are priced under the GBM and
CEV models. Where possible, the results are compared to available closed-form solutions,
otherwise they are compared to high-resolution finite difference or Monte Carlo methods.

One of the goals of this paper has been to produce a more general and easily accessible
introduction to the theory of VQ and RMQ. The primary contribution is, however, the more
general formulation of RMQ that enables the systematic extension of the work of Pagès and
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Sagna [2015]. The paper concludes with a discussion of ongoing work.

2 Vector Quantization

Vector quantization is a lossy compression technique that provides a way to encode a vector
space using a discrete subspace. While the technique is applicable more generally, we shall
only consider the quantization of one dimensional distributions. The vector quantization
problem we aim to address in this section may be specified intuitively as follows:

Find the discrete distribution that “best” represents the continuous distribution
function associated with a random variable X.

This is depicted in the Figure 1, which shows a density function of a continuous random
variable and its corresponding quantized version. Here, for ease of visualization, we have
chosen to plot the probability density function (of the continuous random variable) and the
probability mass function of the quantizer instead of the continuous and discrete distribution
functions.

We now provide a more rigorous specification of the problem. Let X be a continuous
random variable, taking values in R, and defined on a probability space (Ω,F ,P). The above
question may be reposed as:

How does one optimally approximate X, in a least-squares sense, by a discrete
random variable X̂ : Ω→ Γ, where Γ is a finite set of elements in R?

The reason that quantization is useful is that it allows efficient approximations of expectations
of functionals H(X) of X, that is,

E [H(X)] =

∫
R
H(x) dP(X ≤ x) ≈

∑
γ∈Γ

H(γ)P
(
X̂ = γ

)
.

Here, for example, H may be the discounted payoff of financial claim and P the risk-neutral
probability measure.

Consider the approximation of X given by X̂, a discrete random vector defined as the
nearest-neighbour projection of X onto Γ = {γ1, γ2, . . . , γN}, a set of distinct points in R
with finite cardinality N ∈ N+. We shall refer to Γ as the quantizer and its elements as
codewords. The nearest neighbor projection operator πΓ : R→ Γ is defined as

πΓ(X) =
{
γi ∈ Γ

∣∣ ‖X − γi‖ ≤ ‖X − γj‖ for j = 1, . . . , N ; where equality

holds only for i < j
}
.

Density                        Quantizer                        

Figure 1: The continuous probability density function on the left is quantized on the right,
with probabilities represented on the vertical axis.
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γi γi+1γi−1 ri+ri−︸ ︷︷ ︸
Ri(Γ)

Figure 2: Representation of the region Ri(Γ) associated with codeword γi.

Here, ‖ · ‖ is the Euclidean norm. Associated with the quantizer, the regions Ri(Γ) ⊂ R are
the subset of values of X that are mapped to each codeword γi:

Ri(Γ) =
{
x ∈ R

∣∣ πΓ(x) = γi
}
.

These are also known as Voronoi regions. For the sake of brevity we shall use Ri to refer to
Ri(Γ) when it is clear that the quantizer we are referring to is Γ. The set of regions {Ri}Ni=1

is called a tessellation of R, and has the following properties:

Ri ∩Rj = ∅ for i 6= j and ∪Ni=1 Ri = R.

Since we are working in one dimension, the regions Ri may be defined directly as Ri =
{x | ri− < x ≤ ri+} with

ri− =
γi−1 + γi

2
and ri+ =

γi + γi+1

2
,

where r1− = −∞ and rN+ = ∞. If the distribution under consideration is not defined over
the whole real line, then r1− and rN+ are adjusted to reflect the interval of support. Figure
2 shows a simple graphical representation of these regions.

With these definitions in place, we are now in a position to precisely define the optimization
problem. We wish to find the quantizer Γ such that X̂ = πΓ(X) best approximates X. The
sense in which the quantizer Γ is “best” is specified by the distortion function

D(Γ) = E
[
‖X − X̂‖2

]
=

∫
R
‖x− πΓ(x)‖2 dP(X ≤ x)

=

N∑
i=1

∫
Ri(Γ)

‖x− γi‖2 dP(X ≤ x). (1)

We require the Γ that minimizes D(Γ). The probability weights then follow directly as a
result of the nearest neighbor projection operator, i.e., P(X̂ = γi) = P(X ∈ Ri). A necessary
condition on the optimal Γ is that the gradient of the distortion function is zero, that is,
∇D(Γ) = 0̄, where the elements of ∇D(Γ) are given by

∂D(Γ)

∂γi
= 2

(∫
Ri(Γ)

(γi − x) dP(X ≤ x)

)
,

for 1 ≤ i ≤ N . Intuitively, this means that the first moment conditioned on the outcomes of
a region equals the respective codeword. Thus, one way to solve this system of equations is
to set up a fixed-point iteration using the above expression for the gradient. This is the basis
for Lloyd’s algorithm which starts with an initial guess for the quantizer, Γ(0), and generates
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successive updates, Γ(n+1), with the new codewords, γin+1, computed as the centroids of the

regions associated with the previous quantizer Γ(n):

γin+1 =

∫
Ri(Γ(n)) x dP(X ≤ x)∫
Ri(Γ(n)) dP(X ≤ x)

,

for 1 ≤ i ≤ N and 0 ≤ n < nmax.
Another approach is to represent the quantizer by the column vector Γ, derive the Hessian,

∇2D(Γ), and compute the updated estimates of the quantizer using an iterative Newton-
Raphson method

Γ(n+1) = Γ(n) −
[
∇2D

(
Γ(n)

)]−1
∇D

(
Γ(n)

)
for 0 ≤ n < nmax. We now develop this approach further.

Suppose fX and FX are the PDF and CDF of X. We define the p-th lower partial
expectation as

Mp
X(x) = E

[
XpI{X<x}

]
,

where M0
X(X) = FX(x) represents the distribution function of X. Then, direct integration

of the distortion function (1) gives

D(Γ) =
N∑
i=1

∫ ri+

ri−
‖x− γi‖2fX(x) dx

=

N∑
i=1

[
M2
X(ri+)−M2

X(ri−)− 2γi
(
M1
X(ri+)−M1

X(ri−)
)

+ (γi)2
(
FX(ri+)− FX(ri−)

) ]
.

Consequently, the elements of the vector ∇D(Γ) are given by

∂D(Γ)

∂γi
= 2γi

(
FX(ri+)− FX(ri−)

)
− 2

(
M1
X(ri+)−M1

X(ri−)
)
,

for 1 ≤ i ≤ N .
Similarly, the tridiagonal Hessian matrix, ∇2D(Γ), may be computed. It has diagonal

elements given by

∂2D(Γ)

∂(γi)2
= 2

(
FX(ri+)− FX(ri−)

)
+ 1

2

(
fX(ri+)(γi − γi+1) + fX(ri−)(γi−1 − γi)

)
,

and super- and sub-diagonal elements given by

∂2D(Γ)

∂γi∂γi+1
= 1

2fX(ri+)(γi − γi+1)

and

∂2D(Γ)

∂γi∂γi−1
= 1

2fX(ri−)(γi−1 − γi).

Note that the quantities required to compute a Newton-Raphson iteration (i.e., the gradient
and Hessian) only require the PDF, CDF and first lower partial expectation to be known.
The second lower partial expectation is required only if one wishes to compute a numerical
estimate of the distortion.
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2.1 Efficient Implementation

We now provide a matrix formulation of the above Newton iteration intended to aid efficient
implementation. As stated previously, the quantizer is represented by a column vector Γ.
This vector and three other column vectors required are defined by

[Γ]i = γi, [M]i = M1
X(ri+)−M1

X(ri−), 1 ≤ i ≤ N,
[f ]i = fX(ri+), [∆Γ]i = γi+1 − γi, 1 ≤ i ≤ N − 1.

Note that the last two vectors are one element shorter than the first two. The row vector of
probabilities p is defined as

[p]i = P(X̂ = γi)

= P(X ∈ Ri(Γ))

= FX(ri+)− FX(ri−), 1 ≤ i ≤ N.

Defining p as a row vector is convenient since the expectation of a functional H applied to
the quantizer is

E [H(X)] =
N∑
i=1

H(γi)P
(
X̂ = γi

)
= pH(Γ), (2)

where H is applied element-wise to Γ. Moreover, this will be compatible with a Markov chain
formulation of the recursive marginal quantization technique presented later.

Using these vectors the gradient of the distortion function is then

∇D(Γ) = 2Γ ◦ p> − 2M,

where ◦ indicates the element-wise Hadamard product.
The super- and sub-diagonal (or off-diagonal) entries of the Hessian matrix ∇2D(Γ) are

given by the length-(N − 1) row vector

hoff = −1

2
[f ◦∆Γ]>,

with the main diagonal given by

hmain = 2p + [hoff |0] + [0|hoff ],

where the copies of the hoff vector are appended and prepended with a zero. It is now
straightforward to set up the Newton-Raphson iteration in terms of the quantities.

2.2 Examples

In this section we apply the above theory to the Gaussian distribution and the noncentral chi-
squared distribution with one degree of freedom. The latter is important for the higher-order
recursive marginal quantization schemes that we explore later in the paper.
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Figure 3: Vector Quantization of the Standard Normal Distribution

2.2.1 The Standard Normal Distribution

When X is a standard normal random variable we have

fX(x) = φ(x)

FX(x) = Φ(x)

M1
X(x) = − 1√

2π
e−

x2

2 = −φ(x),

where φ(·) and Φ(·) are the standard normal PDF and CDF respectively. Here, a good guess
for the initial quantizer Γ(0) is

γn =
5.5n

N + 1
− 2.75,

for 1 ≤ n ≤ N . Figure 3 shows the quantizer of cardinality N = 50, using this initial guess,
after nmax = 20 Newton-Raphson iterations. At first glance, it is tempting to think of the
quantizer (represented by bars) as one might think of a histogram and suspect that it does
not adequately capture the features of the density because it has the “incorrect shape”. This
is, however, a misleading analogy since a histogram represents the probability of realising a
random variable in equally sized intervals on the x-axis. The quantizer, however, accumulates
the probability mass over the Voronoi regions associated with each of the codewords and, as
these regions are larger in the tails than in the body of the distribution, proportionally more
probability mass is accumulated for codewords in the tails than for codewords in the body.

2.2.2 The Noncentral Chi-squared Distribution

While, in general, the noncentral chi-squared distribution must be specified using Bessel
functions, this is not the case when the degree of freedom equals one. In particular, consider
the random variable X = (Z + µ)2, where Z ∼ N (0, 1). Then X ∼ χ′2(1, λ), is a noncentral
chi-squared distributed with one degree of freedom and noncentrality parameter λ = µ2.
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Figure 4: Three examples of the noncentral chi-squared distribution with one degree of free-
dom for different noncentrality parameters.
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Moreover, we have

fX(x) =
1

2
√
x

(
φ(x+) + φ(x−)

)
FX(x) = Φ(x+)− Φ(x−)

M1
X(x) = (λ+ 1)

(
Φ(x+)− Φ(x−)

)
+ φ(x+)x− − φ(x−)x+,

with

x± = ±
√
x−
√
λ.

This means that we may express the noncentral chi-squared distribution with one degree of
freedom using the standard normal PDF and CDF, thus allowing efficient computation of a
quantization scheme. This will be important for computational efficiency when we implement
higher-order RMQ schemes later in the paper. A good initial guess for Γ(0) is given by

γn =


(

(3+
√
λ)n

N

)2
for
√
λ < 2.5(

5n
N+1 − 2.5 +

√
λ
)2

for
√
λ ≥ 2.5,

for 1 ≤ n ≤ N .
Figure 4 shows three examples of quantizers of cardinality N = 50 for the noncentral chi-

squared distribution with one degree of freedom for a range of noncentrality parameters. Note
that for certain values of the noncentrality parameter (e.g. the central panel) the distribution
is bimodal while for larger values it resembles a Gaussian distribution.

3 Recursive Marginal Quantization

Consider the continuous-time diffusion specified by the stochastic differential equation

dXt = a(Xt) dt+ b(Xt) dWt, X0 = x0 ∈ R, (3)

defined on (Ω,F , (Ft)t∈[0,T ],P) with a and b sufficiently smooth and regular functions to
ensure the existence of a weak solution. The question of interest is:

How does one optimally approximate Xtk : Ω → R, for some time discretisation
tk ∈ [0, T ], when the distribution of each Xtk is unknown?

Usually this is achieved by performing a Monte Carlo experiment using a discrete-time ap-
proximation scheme for the SDE, the simplest scheme being the Euler-Maruyama [Maruyama,
1955] update

X̃k+1 = X̃k + a(X̃k)∆t+ b(X̃k)
√

∆tZk+1

=: U(X̃k, Zk+1),

for 0 ≤ k < K, where ∆t = T/K and Zk+1 ∼ N (0, 1), with initial value X̃0 = x0. The inno-
vation of Pagès and Sagna [2015] was to show that a recursive procedure based on quantizing
these updates is possible.
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Since X̃1 has a Gaussian distribution, it is possible to use vector quantization to obtain
Γ1, an optimal quantization grid for the first step of the above scheme. One must, however,
find a way to quantize the successive (marginal) distributions of X̃k+1. Given knowledge of
the distribution of X̃k, the distortion of the quantizer Γk+1 may be written as

D̃
(
Γk+1

)
= E

[∥∥X̃k+1 − X̂k+1

∥∥2
]

= E
[
E
[∥∥X̃k+1 − X̂k+1

∥∥2
∣∣∣ X̃k

]]
= E

[
E
[∥∥U(X̃k, Zk+1)− X̂k+1

∥∥2
∣∣∣ X̃k

]]
=

∫
R
E
[∥∥U(x, Zk+1)− X̂k+1

∥∥2
]
dP(X̃k ≤ x). (4)

Unfortunately, we do not know the exact distribution of X̃k for k > 1. The main result of
Pagès and Sagna [2015] shows that if one uses the previously quantized distribution of X̂k,
instead of the continuous distribution of X̃k, the resultant procedure converges. Furthermore,
the error associated with this procedure is bounded by a constant, which is dependant on
the parameters used. As a result, the integral in (4) may be rewritten as a sum over the
codewords in quantizer Γk and their associated probabilities.

Then an approximate value for the distortion may be computed as

D̃
(
Γk+1

)
≈ D

(
Γk+1

)
:=

Nk∑
i=1

E
[∥∥U(γik, Zk+1)− X̂k+1

∥∥2
]
P
(
X̂k = γik

)
.

Here, Nk is the cardinality of the quantizer Γk at time step k, which is allowed to vary.
With this definition of D

(
Γk+1

)
we may now specify a Newton-Raphson iteration in order to

compute the quantizer at time step k + 1, which minimizes the distortion.
Given the quantizer at time tk, represented as a column vector Γk, and the associated

probabilities, P
(
X̂k = γik

)
for 1 ≤ i ≤ Nk, the Newton-Raphson iteration for the quantizer

Γk+1, at time tk+1, is given by

Γ
(n+1)
k+1 = Γ

(n)
k+1 −

[
∇2D

(
Γ

(n)
k+1

)]−1
∇D

(
Γ

(n)
k+1

)
, (5)

for 0 ≤ n < nmax.
Before developing the mathematics further, we pause to provide an intuitive explanation

of how the RMQ algorithm proceeds. Figure 5 is a depiction of the process that occurs. The
top panel shows the quantizer at time step k. Conditional on each codeword, a Gaussian
Euler update is propagated (second panel). In panel three, these updates are weighted by
the probability of the associated originating codeword and summed to produce the marginal
density at time step k + 1, as shown in the final panel. The distribution associated with this
marginal density is the distribution that is quantized to produce the quantizer at time step
k + 1. This process is repeated until the quantizer at the final time is produced.

We now proceed to derive the quantities required for the Newton Raphson iterations. To
summarize notation, we write the update in affine form as

U(γik, Zk+1) =: U ik+1 = mi
kZ

i
k+1 + cik, (6)

where
mi
k := b(γik)

√
∆t and cik := γik + a(γik)∆t,
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Weighted conditional densities

Marginal density

Figure 5: Illustration of the RMQ algorithm.

with Zik+1 ∼ N (0, 1) identically distributed to Zk+1. Here, we have introduced a new index
i for the random variable Zik+1 anticipating that it may depend on γik. This is redundant in
the case of the Euler update because Zk+1 is a standard normal random variate irrespective
of starting point. This more general notation will become necessary when we analyse more
general cases (see Section 4). We denote the corresponding density and distribution functions
by fZi

k+1
and FZi

k+1
respectively.

With this notation in place, the approximate marginal distribution of X̃k+1 is

F
X̃k+1

(x) =

∫
R
P(U(y, Zk+1) ≤ x) dP

(
X̃k ≤ y

)
≈

Nk∑
i=1

P(U ik+1 ≤ x)P
(
X̂k = γik

)
=

Nk∑
i=1

[
H(−mi

k) + sgn(mi
k)FZi

k+1

(
x− cik
mi
k

)]
P
(
X̂k = γik

)
, (7)

where H(·) is the Heaviside step function and sgn(·) is the signum function. The last step
follows due to the fact that the left-hand probability on the penultimate line may be written
as

P(U ik+1 ≤ x) =


P
(
Zik+1 ≤

x−cik
mi

k

)
for mi

k ≥ 0

1− P
(
Zik+1 ≤

x−cik
mi

k

)
for mi

k < 0.
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It should be noted that, for the Euler update, mi
k is a proxy for the volatility of the SDE and

its positivity is usually guaranteed, in which case (7) may be simplified. However, we persist
with this formulation because in the general case mi

k may not be guaranteed to be positive.
The elements of the gradient of the distortion ∇D(Γk+1) may then be written as

∂D (Γk+1)

∂γjk+1

= 2

Nk∑
i=1

E
[
I{U i

k+1∈Rj(Γk+1)}
(
γjk+1 − U

i
k+1

) ]
P
(
X̂k = γik

)
= 2

Nk∑
i=1

∫
U i
k+1∈Rj(Γk+1)

(
γjk+1 − U

i
k+1

)
dP(Zik+1 ≤ x)P

(
X̂k = γik

)
, (8)

where 1 ≤ j ≤ Nk+1 is the index tracking the elements of the tk+1 quantizer, and the index
associated with the tk quantizer is i. The integration bounds in (8) must now be expressed
in terms of the variable of integration.

Here, as in Section 2, U ik+1 ∈ Rj(Γk+1) is equivalent to the inequality

rj−k+1 < U ik+1 ≤ r
j+
k+1 with rj±k+1 = 1

2(γj±1
k+1 + γjk+1).

Defining the conditionally normalized region boundaries,

ri,j±k+1 =
rj±k+1 − c

i
k

mi
k

,

allows the inequality to be written in terms of the random variable Zik+1 as

U ik+1 ∈ Rj(Γk+1) =

r
i,j−
k+1 < Zik+1 ≤ r

i,j+
k+1 for mi

k ≥ 0

ri,j−k+1 > Zik+1 ≥ r
i,j+
k+1 for mi

k < 0,

which can now be used as the range over which the integration is taken.
Directly evaluating (8), each element of the gradient of the distortion at time tk+1 is given

by

∂D(Γk+1)

∂γjk+1

= 2

Nk∑
i=1

[
(γjk+1 − c

i
k) sgn(mi

k)
(
FZi

k+1
(ri,j+k+1)− FZi

k+1
(ri,j−k+1)

)
−|mi

k|
(
M1
Zi
k+1

(ri,j+k+1)−M1
Zi
k+1

(ri,j−k+1)
)]

P
(
X̂k = γik

)
.

Furthermore, the diagonal of the tridiagonal Hessian, ∇2D(Γk+1), is given by

∂2D(Γk+1)

∂
(
γjk+1

)2 =

Nk∑
i=1

[
2 sgn(mi

k)
(
FZi

k+1
(ri,j+k+1)− FZi

k+1
(ri,j−k+1)

)
+

1

2|mi
k|
fZi

k+1
(ri,j+k+1)(γjk+1 − γ

j+1
k+1)

+
1

2|mi
k|
fZi

k+1
(ri,j−k+1)(γj−1

k+1 − γ
j
k+1)

]
P
(
X̂k = γik

)
,
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with the super-diagonal and sub-diagonal elements given by

∂2D(Γk+1)

∂γjk+1∂γ
j+1
k+1

=

Nk∑
i=1

1

2|mi
k|
fZi

k+1
(ri,j+k+1)(γjk+1 − γ

j+1
k+1)P

(
X̂k = γik

)
and

∂2D(Γk+1)

∂γjk+1∂γ
j−1
k+1

=

Nk∑
i=1

1

2|mi
k|
fZi

k+1
(ri,j−k+1)(γj−1

k+1 − γ
j
k+1)P

(
X̂k = γik

)
.

Although these expressions may appear complex, they are simply summations over the
density function, cumulative distribution function and first lower partial expectation of the
random variable, Zik+1, and are thus easy to compute when these functions are known.

All the detail required to implement the Newton iteration (5) has now been provided
with the exception of the initial guess. In all applications considered in this paper, we have
assumed that Nk = N for 1 ≤ k ≤ K, and used the quantizer from the previous time step as

the initial guess, i.e., Γ
(0)
k+1 = Γk.

3.1 Efficient Implementation

As in Section 2.1, where we provided an efficient matrix formulation for the Newton-Raphson
iteration required for VQ, RMQ is also amenable to a matrix specification. This aids simple
and computationally efficient implementation.

Aside from a guess for Γk+1, we require the following time-indexed column vectors

[mk]i = mi
k, [ck]i = cik, 1 ≤ i ≤ Nk

and

[∆Γk+1]i = γi+1
k+1 − γ

i
k+1, 1 ≤ i ≤ Nk+1 − 1.

The row vector of probabilities

pk = [P(X̂k = γ1
k), . . . ,P(X̂k = γNk

k )],

is retained and a row-vector of ones of length d is denoted as jd. With the exception of ∆Γk+1,
which must be recomputed before each Newton iteration, the other vectors are computed once
per time step.

Before each Newton iteration, three matrices must be computed in terms of the new
estimate of Γk+1: an Nk ×Nk+1 matrix of transition probabilities

[Pk+1]i, j = P(X̂k+1 = γjk+1|X̂k = γik)

= sgn(mi
k)
[
FZi

k+1
(ri,j+k+1)− FZi

k+1
(ri,j−k+1)

]
,

another matrix, of the same size, of lower partial moment values

[Mk+1]i,j = M1
Zi
k+1

(ri,j+k+1)−M1
Zi
k+1

(ri,j−k+1) (9)
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and an Nk ×Nk+1 − 1 matrix of density values at the positive region boundaries

[fk+1]i,j = fZi
k+1

(ri,j+k+1).

The gradient of the distortion function at time step k + 1 may now be written in terms of
these vectors and matrices as

∇D (Γk+1)> = 2pk

((
(Γk+1jNk

)> − ckjNk+1

)
◦Pk+1 − (|mk|jNk+1

) ◦Mk+1

)
, (10)

where ◦ is the Hadamard (or element-wise) product.
The super and sub-diagonal elements of the (tridiagonal) Hessian matrix, ∇2D (Γk+1),

are given by the vector

hoff = −1
2pk

((
|mk|◦−1j(Nk+1−1)

)
◦ fk+1 ◦ (∆Γk+1jNk

)>
)
, (11)

while the main diagonal is given by

hmain = 2pkPk+1 +
[
hoff |0

]
+
[
0|hoff

]
, (12)

where ◦ − 1 in the exponent refers to the element-wise inverse.
Equations (10), (11) and (12) provide the necessary components required for implemen-

tation of the Newton-Raphson iteration in (5). After the requisite number of iterations, the
probabilities associated with the final quantizer Γk+1 are computed using

pk+1 = pkPk+1,

where Pk+1 must be recomputed in terms of the final Γk+1. Thus, the matrix formulation
presented here allows RMQ to be interpreted as the propagation of an inhomogeneous Markov
chain, where Γk represents the Markov states at time step k, the probability of being in those
states is pk and the associated transition probability matrix is Pk+1. Sometimes in the
literature the transition probability matrix between time step k and k + 1 is represented as
Pk,k+1, we have chosen to omit the first index.

3.2 Example

As a first example of the RMQ algorithm, Figure 6 shows the evolution of the quantizers
through time for the canonical (risk-neutral) geometric Brownian motion process

dSt = rSt dt+ σSt dWt, (13)

using parameters S0 = 100, r = 5% and σ = 30%. The RMQ parameters used were T =
1, K = 12, ∆t = T/K and Nk = 200 for all k, with nmax = 50 for the VQ algorithm
and nmax = 5 for the RMQ algorithm. Unless otherwise stated, these parameters are used
wherever geometric Brownian motion is used for other calculations in the paper. In these
plots, the colour of the quantizer indicates the associated time step, with plots in blue closer
to initial time and plots in green closer to final time. This convention is kept throughout.
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Figure 6: Time evolution of quantizers for the GBM process.

4 Higher-order RMQ Schemes

Given the general formulation of the RMQ algorithm in the previous section, we now explore
two high-order extensions: the Milstein scheme and a simplified weak order 2.0 scheme. Any
numerical scheme for an SDE that can be written in the affine form (6), may be used with
the RMQ algorithm as long as the CDF, PDF and lower partial expectation of the random
variable Zik+1 can be computed for all i and k.

4.1 The Milstein Scheme

The Milstein [1975] scheme for the SDE in (3) is given by

X̃k+1 = X̃k + a(X̃k)∆t+ b(X̃k)
√

∆tZk+1 + 1
2b(X̃k)b

′(X̃k)∆t
(
Z2
k+1 −∆t

)
,

for 0 ≤ k < K, where ∆t = T/K and Zk+1 ∼ N (0, 1) with initial value X̃0 = x0. By
completion of the square, this may be written as

X̃k+1 = X̃k +
(
a(X̃k)− 1

2b(X̃k)b
′(X̃k)

)
∆t− 1

2b(X̃k)b
′(X̃k)

−1

+ 1
2b(X̃k)b

′(X̃k)∆t

(
Zk+1 +

(√
∆tb′(X̃k)

)−1
)2

.

Thus, the update (6) may be written in the affine form required as

U ik+1 = mi
kZ

i
k+1 + cik,

where

mi
k = 1

2b(γ
i
k)b
′(γik)∆t
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and

cik = γik +
(
a(γik)− 1

2b(γ
i
k)b
′(γik)

)
∆t− 1

2b(γ
i
k)b
′(γik)

−1.

The random variable Zik+1 is now noncentral chi-squared distributed with one degree of free-
dom and noncentrality parameter

λik+1 =
(√

∆tb′(γik)
)−2

.

It is important to note that, unlike the Euler-Maruyama case, the distribution of the random
variable Zik+1 ∼ χ′2(1, λik+1) now depends on the codeword γik.

Although the Milstein scheme possesses a strong order of convergence of 1, compared to
the Euler scheme, which only has strong order of convergence of 1

2 , both schemes have a weak
order of convergence of 1. Thus, while the Milstein scheme may be more accurate than the
Euler scheme, especially for path dependent claims, we require a different update for higher
weak order convergence. We now explore such a scheme.

4.2 A Weak Order 2.0 Taylor Scheme

While it is not possible to write an exact weak order 2.0 scheme in the affine form required,
the simplified weak order 2.0 scheme of Kloeden and Platen [1999] is amenable. This scheme
is given by

X̃k+1 = X̃k + a(X̃k)∆t+ b(X̃k)
√

∆tZk+1 + 1
2b(X̃k)b

′(X̃k)∆t(Z
2
k+1 − 1)

+ 1
2

(
a′(X̃k)b(X̃k) + a(X̃k)b

′(X̃k) + 1
2b
′′(X̃k)b

2(X̃k)
)

(∆t)
3
2Zk+1

+ 1
2

(
a(X̃k)a

′(X̃k) + 1
2a
′′(X̃k)b

2(X̃k)
)

(∆t)2,

for 0 ≤ k < K, where ∆t = T/K and Zk+1 ∼ N (0, 1) with initial value X̃0 = x0. Again,
completion of squares is used to write this update in the required affine form,

U ik+1 = mi
kZ

i
k+1 + cik,

where

mi
k = 1

2b(γ
i
k)b
′(γik)∆t

and

cik = γik +
(
a(γik)− 1

2b(γ
i
k)b
′(γik)

)
∆t+ 1

2

(
a(γik)a

′(γik) + 1
2a
′′(γik)b

2(γik)
)

(∆t)2

−
(
b(γik) + 1

2

(
a′(γik)b(γ

i
k) + a(γik)b

′(γik) + 1
2b
′′(γik)b

2(γik)
)

∆t
)2

2b(γik)b
′(γik)

.

Here, Zik+1 is again noncentral chi-squared distributed with one degree of freedom, with
noncentrality parameter given by

λik+1 =

(
b(γik) + 1

2

(
a′(γik)b(γ

i
k) + a(γik)b

′(γik) + 1
2b
′′(γik)b

2(γik)
)

∆t

b(γik)b
′(γik)

√
(∆t)

)2

,

or, more succinctly, Zik+1 ∼ χ′2(1, λik+1).
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Figure 7: Numerical illustration of the convergence of the first moment for the GBM and
CEV processes.

4.3 Examples

To illustrate the increased accuracy of these high-order schemes, the RMQ algorithm is applied
to geometric Brownian motion, as previously described by (13), and the constant elasticity
of variance (CEV) process. The SDE for the CEV process is

dSt = rSt dt+ σSαt dWt,

and, in the examples that follow, the process-specific parameters chosen were S0 = 100,
r = 5% and α = 0.7 and σ = σLNS

1−α
0 , with σ given in terms of the instantaneous log-normal

volatility σLN = 30%.
In Figure 7 we show numerical evidence for weak order convergence. Using both GBM

and CEV, the first moment of the resulting terminal quantizer is compared against the true
moment for a range of time step sizes. In the case of GBM the parameters in Section 3.2 were
used. For both GBM and CEV, the RMQ specific parameters mentioned in that section were
also used with the exception of the cardinality, which was set at Nk = 1 000 for increased
accuracy. The approximate gradient of the results, β, which is an indicator of the weak order
convergence, is computed and displayed. As expected, the Euler and Milstein scheme have
approximately the same weak order of convergence of close to one, whereas the simplified weak
order 2.0 scheme is close to two. The latter scheme also produces results with substantially
lower absolute error.

Since the true conditional distributions for both the GBM and CEV processes are known
in closed form, we can compare the approximate marginal distributions at time step k+ 1, as
implied by the quantizer at time step k and computed using (7), with the exact distributions
at time step k + 1. In the case of the CEV process we used the analytical expression for
the distribution given by Lindsay and Brecher [2012] adjusted for the drift component in the
SDE.
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Figure 8: The true marginal distributions of the GBM and CEV processes compared to the
marginal distribution implied by quantization.

The difference between the exact marginal distribution and the implied marginal distri-
butions for each of the three schemes is displayed in Figure 8. Here we reverted to using a
cardinality of Nk = 200. Note the scale of the y-axes of the graphs in the figure — from top
to bottom, the magnitude of the error decreases by an order of magnitude in each successive
row. This gives an indication of the improvement that can be expected when these higher
order schemes are used to price contingent claims.

5 The Zero Boundary

Sometimes discrete-time approximations of an SDE may exhibit behaviour that is inconsistent
with the true solution. For example, an Euler-Maruyama approximation of geometric Brow-
nian motion, the square-root process or the CEV process can, under certain circumstances,
generate negative values, even though the SDE specification guarantees non-negativity in each
case. As a result, discrete-time Monte Carlo simulations are modified to allow for reflecting
or absorbing behaviour at zero, see for example Lord et al. [2010]. In this section, we describe
how the RMQ algorithm may be modified in a similar manner.
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5.1 Absorbing Boundary

To model an absorbing boundary, the domain of the approximate marginal distribution of X̃,
see (7), must be left-truncated at zero. This means that the probabilities associated with the
quantizer at each step will not sum to unity. The probability that is not accounted for as a
result of the domain truncation is the mass accumulated at the absorbing zero boundary. To
compensate for this, the quantizer at each time step is augmented with an extra codeword,
which has a value of zero and a probability equal to one minus the sum of the probabilities
associated with all the other codewords at that time step. The transition probability matrix
may also be augmented in a consistent manner by realising that once the process attains the
zero state it must remain in that state indefinitely, i.e., the conditional probability of moving
from the absorbing state to any other state is zero, and, correspondingly, the conditional
probability of remaining in the absorbing state is one.

Modifying the algorithm is simple and incurs no additional computational burden. Given
that the elements of the previous quantizer Γk are all positive, the affine form of the update
(6), will be negative when

Zik+1 < −
cik
mi
k

.

This implies that the domain of each Zik+1 must be left-truncated at − cik
mi

k

to ensure only

positive codewords at time-step k + 1. This is achieved by setting

ri,1−k+1 = −
cik
mi
k

, (14)

for 1 ≤ i ≤ Nk, in the implementation described in Section 3.1. The rest of the algorithm
proceeds without modification.

Of course, this all depends on the fact that the quantizer at the first time step, Γ1,
also has positive elements. This is achieved using the analogous truncation in the vector
quantization algorithm. The initial guess for the Newton iteration must also be truncated to
ensure positivity.

5.2 Reflecting Boundary

Consider Figure 9, which shows f(x), a density function — in this case a standard Gaussian
density. The red line represents a reflecting boundary at x̄ = −1.5. The f values to the left of
the boundary are reflected and depicted by the dashed yellow line in the figure. These values
are given by f(2x̄− x) for x > x̄.

Thus, restricting the domain to [x̄,∞) the reflected density, denoted f̄(x), is given as the
sum

f̄(x) = f(x) + f(2x̄− x).

Direct integration of this expression over the integration limits from x̄ to x ∈ [x̄,∞) gives the
reflected distribution function

F̄ (x) = F (x)− F (2x̄− x)

and the first lower partial expectation function

M̄1(x) = M1(x) +M1(2x̄− x)− 2x̄F (2x̄− x)− 2M1(x̄) + 2x̄F (x̄), (15)
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Figure 9: Illustration of the standard Gaussian density reflected around −1.5.

where F (x) and M1(x) are the un-reflected distribution and first lower expectation functions
associated with f . This may be applied, not only to Gaussian case, but also to the noncentral
chi-squared cases required for the higher order updates.

Modifying the RMQ algorithm to allow for a reflecting boundary at zero requires two
changes to the implementation described in Section 3.1. Firstly, the lower bound for the
integration, i.e., the domain of the Zik+1 random variable in each affine update, must be
left-truncated by replacing the furthest left region boundary as in (14) above. Secondly, the
density, distribution and first lower partial expectation functions associated with each random
variable, must be replaced by their reflected counterparts

f̄Zi
k+1

(x) = fZi
k+1

(x) + fZi
k+1

(2x̄ik − x),

F̄Zi
k+1

(x) = FZi
k+1

(x)− FZi
k+1

(2x̄ik − x),

and

M̄1
Zi
k+1

(x) = M1
Zi
k+1

(x) +M1
Zi
k+1

(2x̄ik − x)− 2x̄ikFZi
k+1

(2x̄ik − x), (16)

for x ∈ [x̄ik,∞), where x̄ik = − cik
mi

k

. The rest of the algorithm proceeds as normal. The astute

reader will have noticed that there are two terms missing in (16) when compared with (15).
The reason for this omission is that these terms are constants for each i and that the RMQ
algorithm always only requires differences of partial moment terms, as seen in (9). There is,
therefore, a cancelation of the constant terms when this difference is taken and thus we may
use a definition that excludes them.

As in the case of the absorbing boundary, the analogous reflection must be applied in the
vector quantization algorithm to ensure that Γ1 is consistent.
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Figure 10: The difference between the true and approximate marginal distributions for the
CEV process. The left column shows the case of absorption while the right shows reflection.

5.3 Examples

It is well known that when 0 < α < 0.5, the CEV process may reach zero and that this state
may be either absorbing or reflecting. Lindsay and Brecher [2012] give the corresponding
marginal distributions for both these cases (it is easy to adjust their formulations to account
for the drift term in the SDE for CEV). In Section 4.3 we considered the CEV process with
α > 0.5, which only allows absorption at zero. Now consider the case where S0 = 0.5, α = 0.35
and σLN = 50%, with the rest of the parameters as before. Figure 10 shows the difference
between the exact marginal distribution and the marginal distribution implied by RMQ for
the three schemes as modified to account for an absorbing boundary (left) and a reflecting
boundary (right). As before, the scale of the graphs changes from top to bottom, indicating
the improvement as a result of the higher order schemes.

Note that, under this choice of parameters for the CEV model, the standard RMQ for-
mulation of Section 3 fails. Without implementing the modifications for either absorption or
reflection proposed in this section, some codewords become negative at a certain point in the
execution of the RMQ algorithm, leading to discrete-time updates with imaginary values.
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Figure 11: Accuracy of GBM and CEV European put prices computed using RMQ, as com-
pared to analytical solutions.

6 Pricing

In this section, contingent claims are priced using the RMQ algorithm and the three update
schemes are compared for accuracy. The claims priced include European, Bermudan and
discretely-monitored barrier options under the dynamics of both geometric Brownian motion
(GBM) and its generalization, the constant elasticity of variance (CEV) model.

The GBM model and its parameters are described in Section 3.2, whereas the specification
for the CEV model can be found in Section 4.3. These parameters are used for pricing
throughout this section. As is implied by these specifications, the continuously compounded
interest rate is assumed constant with a value r = 5%. All option maturities are one year
and the RMQ algorithm is executed using K = 12, i.e., using monthly steps, with constant
cardinality of Nk = 200 for all k.

6.1 European Option Pricing

Once a terminal quantizer has been obtained using the RMQ algorithm, a European option
with payoff function H(S,X) at maturity T = tK , where S represents the asset process and
X the strike, may be priced directly by using the expectation defined in (2). The price is
given by

H0 = e−rTE [H(ST , X)] ≈ e−rTpKH(ΓK , X), (17)

where H0 is the value of the claim at initial time t0 = 0 and H(ΓK , X) is the function H
applied element-wise to ΓK , which, as specified previously, is a column vector of length NK .

Figure 11 shows the accuracy of put option prices for the GBM and CEV models for
a wide range of strikes. The GBM option prices are compared against the Black-Scholes
option pricing formula, whereas the CEV prices are compared against the analytical solution
originally due to Schroder [1989] and reformulated in terms of the noncentral chi-squared
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Figure 12: Accuracy of GBM and CEV Bermudan put option prices, as compared to a high
resolution Crank-Nicholson finite difference scheme.

distribution by Hsu et al. [2008]. In the graphs, the x-axis represents fixed-spot inverse
moneyness, which is determined as the variable strike value over the initial asset price, S0.

Even though the Euler scheme is accurate to start with, the increased accuracy of the
Milstein and the simplified weak order 2.0 schemes is evident. For certain strikes the error is
reduced by an order of magnitude.

6.2 Bermudan Option Pricing

Bermudan option prices are computed using the standard Backward Dynamic Programming
Principle (BDPP), an important result from discrete-time optimal stopping theory. Pagès
[2014] reviews the use of the BDPP as applied to grids that result from a quantization.

Once quantization grids and corresponding transition probability matrices have been com-
puted using the RMQ algorithm, the high-level algorithm for Bermudan option pricing may
be specified as follows:

1. Initialize hK = H(ΓK , X)

2. For k = K − 1, . . . , 1

Set hk = max(H(Γk, X), e−r∆tPk+1hk+1)

3. Set H0 = e−r∆tp1h1

Here the max function is applied element-wise with its second argument being the continu-
ation value, which is easily computed as a conditional expectation due to availability of the
transition probability matrix at each time step. The initial value of the Bermudan claim is
given by H0.

In Figure 12 the accuracy of a Bermudan put option with monthly exercise opportunities is
shown for the GBM and CEV models. The reference price is computed using a high resolution
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Figure 13: Accuracy of GBM and CEV discretely monitored up-and-out put option prices,
as compared to a Monte Carlo simulation.

Crank-Nicholson finite difference scheme using 600 time steps and 800 stock increments,
equally spaced between zero and 4× S0.

All three RMQ algorithms result in low absolute errors, with the simplified weak order
2.0 scheme again producing errors that are an order of magnitude smaller.

6.3 Barrier Option Pricing

The pricing of barrier options has previously been explored in the context of quantization
by Sagna [2011]. In that work he showed that the barrier-crossing approach described in
Section 6.4 of Glasserman [2003] may be applied to marginal quantization using a so-called
transition kernel formulation. Using our notation, we now present this approach and apply it
to discretely monitored barrier options.

Consider expression (17) for pricing European options, which may be re-written as

H0 ≈ e−rT
(

p1

K−1∏
k=1

Pk+1

)
H(ΓK , X).

To price a knock-out barrier option the transition probability matrix at each time step in
this expression must to be modified to take into account the possibility that the underlying
process breaches the barrier. Thus, we rescale the transition probabilities by multiplying
them by the probability of not having crossed the barrier.

Let g(x, y) be the probability of transitioning between states x and y without crossing the
barrier. If we form an Nk by Nk+1 matrix of values

[Gk+1]i,j = g(γik, γ
j
k+1),
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then Pk+1 ◦Gk+1 defines the transition kernel. The barrier option may then be priced using

H0 ≈ e−rT
(

(p1 ◦ g1)
K−1∏
k=1

(Pk+1 ◦Gk+1)

)
H(ΓK , X),

where g1 = [g(S0, γ
1
1), . . . , g(S0, γ

N1
1 )] is a row vector.

In the case of discretely-monitored up-and-out barrier options with barrier level L, the
function g is given simply as the indicator function

g(x, y) = I{max(x,y)<L}.

See Glasserman [2003] and Sagna [2011] for the continuous monitoring case using the Rayleigh
distribution.

In Figure 13 the accuracy of discretely-monitored up-and-out put option prices generated
using RMQ is compared to a Monte Carlo implementation under the GBM and CEV models.
The barrier levels (x-axis) are expressed as multiples of the at-the-money strike. Since we
have chosen K = 12 the barrier is monitored monthly.

The reference prices are provided by a million-path Monte Carlo experiment. The Monte
Carlo paths are generated using Euler-Maruyama updates with 1 200 time steps, while ensur-
ing that the barriers are only monitored at the monthly intervals. The reason that we used
Euler updates is that it proved inefficient to compute Monte Carlo samples from the exact
distribution for the CEV model. We did, however, use the exact transition density to gener-
ate Monte Carlo samples for GBM to confirm that results were consistent and generating the
correct standard deviations.

The results show a similar pattern to the previous sections, with an important caveat:
the simplified weak order 2.0 scheme produces prices that, for the majority of the barrier
values considered, lie within the three standard deviation bound of the million-path Monte
Carlo experiment. The other two RMQ schemes are producing results that are statistically
significantly incorrect when compared to the Monte Carlo simulation.

7 Conclusion

In this work, the recursive marginal quantization algorithm of Pagès and Sagna [2015] has
been extended from the standard Euler-Maruyama scheme to higher-order numerical schemes,
specifically the Milstein scheme and a simplified weak order 2.0 scheme of Kloeden and Platen
[1999]. This entailed replacing the Gaussian updates with noncentral chi-squared updates and
generalising the formulation of RMQ to account for these different distributions.

We have also shown how to augment the RMQ algorithm in order to implement absorption
or reflection at the zero boundary, thus ensuring non-negativity of solutions. This allows RMQ
to be applied in cases where the algorithm may previously have failed.

Improved approximation of the marginal distributions by the higher order updates has
been demonstrated, using GBM and CEV dynamics. All the schemes were used to price
European, Bermudan and discrete barrier options. The pricing results are encouraging and
serve as justification for use of higher order schemes. Although only numerical evidence for
the convergence of the new methods has been provided, further work to provide theoretical
justification is ongoing.
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