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Abstract

Maximum-margin clustering (MMC) is an extension of the support vector ma-
chine (SVM) to clustering. It partitions a set of unlabelled data into multiple groups
by finding hyperplanes with the largest margins. Although existing algorithms have
shown promising results, there is no guarantee of convergence of these algorithms to
global solutions due to the non-convexity of the optimization problem. In this paper,
we propose a simulated annealing-based algorithm that is able to address the issue of
local minima in the MMC problem. The novelty of our algorithm is twofold: (1) it
comprises a comprehensive cluster modification scheme based on simulated annealing,
and (2) it introduces a new approach based on the combination of k-means++ and
SVM at each step of the annealing process. More precisely, k-means++ is initially
applied to extract subsets of the data points. Then, an unsupervised SVM is ap-
plied to improve the clustering results. Experimental results on various benchmark
datasets (of up to over a million points) give evidence that the proposed algorithm is
more effective at solving the clustering problem than a number of popular clustering
algorithms.

1 Introduction

Clustering deals with the problem of organizing a data set into clusters based on a defini-
tion of similarity. Most clustering algorithms are based on two main lines of approaches,
the hierarchical and the partitional [12]. Algorithms based on the hierarchical approach
generate a dendrogram representing the nested grouping of patterns and similarity lev-
els at which groupings change. Partitional clustering algorithms find the partition that
optimizes a clustering criterion. In this paper, we introduce a new partitional clustering
algorithm.

The similarity measure is fundamental to formulate a clustering problem. This mea-
sure, in particular, can be defined using distance(-like) functions. Clustering problems
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using the Euclidean norm as similarity are called the minimum sum-of-squares clustering
(MSSC) problems. Algorithms for solving these problems include the k-means algorithm
and its variations (see, for example, [13, 16] and references therein). The global k-means
algorithm and its various modifications are among the most efficient algorithms for solving
the MSSC problem. [2, 3, 5, 17,21].

There is a growing interest in applying support vector machine (SVM) techniques
to clustering, motivated by their success in supervised learning. However, unlike large-
margin supervised learning, large-margin unsupervised learning is a non-convex problem.
Most algorithms for large-margin unsupervised learning are based on relaxation techniques
(e.g., [18, 28]). These techniques allow applying convex optimization methods: however,
they are only applicable to relatively small datasets. Therefore, it is imperative to de-
velop methods which are both efficient and accurate at solving large-margin unsupervised
learning problems on large datasets. In particular, such methods can be designed using
opportunistic combinations of local and global search algorithms. In these methods, local
search algorithms are used to determine local solutions while global search algorithms are
used to escape from such local solutions and find better re-starting points for the local
search algorithms.

In this paper, we develop a new algorithm for solving large-margin unsupervised learn-
ing problems based on the combination of simulated annealing, the k-means++ cluster-
ing algorithm and the SVM. The use of simulated annealing allows us to deal with the
non-convexity of the problem while k-means++ and SVM are applied to solve adapted
clustering problems with the aim to achieve a constructive combination from these two
complementary approaches. The choice of the simulated annealing method is based on the
fact that this method has an efficient mechanism to escape from local solutions which are
different from the global one. Our approach consists of two stages: first, we find a subset
of the points called the representative points; then, we iteratively apply k−means++ and
SVM using only this subset. In this way, we are able to significantly reduce the inherent
computational complexity while retaining high accuracy. After each iteration, the repre-
sentative points are updated and the approach iterated to find an accurate solution for
the MSSC problem. The proposed algorithm is tested using datasets of small to large size
(¿ 1,000,000 points) and the results compared with those obtained using de-facto stan-
dard algorithms such as k-means++ [1], mini-batch k-means [22], the Dirichlet process
Gaussian mixture model and fuzzy c-means.

The rest of this paper is organized as follows. The formulation of the clustering problem
is given in Section 2. Section 3 provides a brief review of maximum-margin clustering and
some related works. The proposed method is presented in Section 4. Numerical results
are reported and discussed in Section 5, and Section 6 contains some concluding remarks.

2 Formulation of the Clustering Problem

In this section we present nonsmooth optimization formulations of the clustering problem.
Let us consider a finite set X of points in the n-dimensional space Rn:

X = {x1, . . . , xm},where xi ∈ Rn, i = 1, . . . ,m.

The data points xi, i = 1, . . . ,m are called instances and each instance has n dimen-
sions.
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The hard unconstrained clustering problem is the distribution of the points of the set
X into a given number k of disjoint subsets Xj , j = 1, . . . , k with respect to predefined
criteria such that

1. Xj 6= ∅, j = 1, . . . , k

2. Xj
⋂
X l = ∅, for all j, l = 1, . . . , k, j 6= l.

3. X =
k⋃
j=1

Xj .

Sets Xj , j = 1, . . . , k are called clusters. Each cluster Xj can be identified by its center
cj ∈ Rn, j = 1, . . . , k. The problem of finding these centers is called the k-clustering (or
k-partition) problem.

In this paper, the similarity measure is defined using the Euclidean norm (the L2-norm)

d2(c, x) =

(
n∑
i=1

(ci − xi)2
)1/2

.

The nonsmooth optimization formulation of the MSSC problem is [4]:{
min fk(c)

subject to c = (c1, . . . , ck) ∈ Rnk,
(1)

where
fk(c

1, . . . , ck) =
∑
x∈X

min
j=1,...,k

d2(c
j , x). (2)

The function fk is called the k-th clustering objective function. For k = 1 this function is
convex and for k > 1 it is both non-convex and nonsmooth.

3 Maximum-Margin Clustering and Related Works

Consider a set of training samples, D = {(xi, yi)}mi=1, where xi is an instance and yi its
class label. For simplicity, let us assume that yi ∈ {−1, 1}. The SVM finds a maximum-
margin hyperplane h(x) = wTφ(x)+b = 0, where φ(x) is the mapping induced by a kernel
and T is the vector transpose, by solving:{

minw,b,ξi ‖w‖2 + 2CξT e
subject to yi(wTφ(xi) + b) ≥ 1− ξi, ξi ≥ 0.

(3)

Here, the ξi’s are slack variables for the errors, C > 0 is a regularization parameter
and e = (1, . . . , 1)T . The optimization problem (3) is convex. If the class labels, yi,
are unknown, the problem becomes a non-convex maximum-margin clustering problem
(MMC) [29]: 

minyminw,b,ξi ‖w‖2 + 2CξT e
subject to yi(wTφ(xi) + b) ≥ 1− ξi, ξi ≥ 0.

yi ∈ {−1,+1},
−l ≤ eTy ≤ l .

(4)
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The last constraint, −l ≤ eTy ≤ l , is a “balance” constraint preventing the conver-
gence of the algorithm to a trivially “optimal” solution where all instances are assigned
to the same class.

The dual problem of (4) is:
minymaxα 2αT e− αT (K ◦ yyT )α

subject to αT y = 0, Ce ≥ α ≥ 0,

yi ∈ {−1,+1},
−l ≤ eTy ≤ l .

(5)

where α is the dual parameter, α = [α1, . . . , αm]T , K is the kernel function and “◦” is the
element-wise product between matrices.

It is shown in [27] that (5) is equivalent to an NP-hard convex integer program. Since
its introduction, it has been extended in many ways, for instance, by choosing different loss
functions (e.g., Zhang et al. [29], Gieseke et al. [8]), incorporating additional constraints
such as pairwise links (Hu et al. [11]) and manifold smoothness (Wang et al., [25]), or
adding a feature weighting mechanism (Zhao et al., [30]).

Xu et al. [27] and Valizadegan and Rong [24] have reformulated the original problem
as a semi-definite programming (SDP) problem. Zhang et al. [29] have employed alter-
nating optimizations - finding labels and optimizing a support vector regression (SVR).
Li et al. [18] iteratively generate the most violated labels, and combine them via multiple
kernel learning. Note that the above methods can only solve binary-cluster clustering
problems. To handle the multi-cluster case, Xu and Schuurmans [28] have extended the
SDP method of [27]. Zhao et al. [31] have proposed a cutting-plane method which uses the
constrained convex-concave procedure to relax the non-convex constraint. Gopalan and
Sankaranarayanan [9] have examined data projections to identify the maximum margin.
More recently, Karnin et al. [14] have proposed a global solution of polynomial complexity;
however, its soft-margin formulation differs from the conventional soft-margin SVM based
on the hinge loss.

Overall, the existing methods for MMC can be categorized as either relaxation or
alternating methods [29, 31]. For the relaxation methods, one can refer to the papers
of [27], [18] as notable examples. These methods aim to find best approximating functions
for the non-convex formalization of (5) and solve the relaxed problem instead, hoping that
the solution will be close enough to the actual one. However, in general, the solution found
is not bounded compared to the actual solution.

In contrast to the relaxation methods, alternating methods solve the original problem in
two steps [29]. They first initialize the labels using a clustering technique such as k-means
and then they solve a supervised problem, often using SVM. The procedure can be iterated
in various ways until no further improvement is achieved. Our proposed method falls in
this group since we use an iterative method leveraging a combination of k−means++ and
SVM at each iteration. However, our method differs from existing methods in that we
solve a sub-problem at each step rather than considering the whole problem at once.
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4 The proposed method

We design a method to address two main issues of the MMC method: (1) its computational
complexity and (2) the inherent risk of falling into local solutions. To address the first
problem, we perform most of the computation over only a subset of the points, hereafter
called representative points, instead of the whole data. To address the second problem, we
use a scheme employing simulated annealing and a combination of k-means++ and SVM
to find “deeper” local solutions. The details for the initial process, post-processing, and
the steps of the algorithm are presented in the following sub-sections.

4.1 Initial clusters

We generate an initial set of clusters using k-means++. These clusters are meant to act
as “coarse-scale” points in the final clustering algorithm. Their number has to be very
high so as to not over-simplify the problem, yet significantly smaller than the number of
the original points to be approachable by MMC-like algorithms. An adequate value for
the number of such initial clusters is likely to depend on the number of points, the number
of attributes and the closeness of the points to each other. Herewith, we choose it as a
random value proportional to the number of points. The initialization procedure can be
summarized as follows:

Algorithm 1 Computing the set R of representative points.

Step 1: Select a number δ ∈ (0, 1) and the final number of clusters k to be computed.
Step 2: Compute k clusters X1, . . . , Xk using the k−means++ algorithm.
Step 3: For each cluster Xj , j = 1, . . . , k compute the weight wj = |Xj |/m and define

the number of initial clusters as kj = δwjm.
Step 4: For each cluster Xj , j = 1, . . . , k compute kj clusters using k−means++.
Step 5: Define the set R of representative points as the set of cluster centers computed

in Step 4.

4.2 Post-processing of the initial clusters

The set R of representative points obtained using Algorithm 1 is used as the input for a
post-processing phase to generate the final clusters. To this aim, the points are grouped
using a combination of k-means++ and SVM, labelled as KMSVM. We use an iterative
cluster modification scheme based on simulated annealing in which we update the rep-
resentative points at each iteration using two steps: (1) perturbing a randomly-selected
representative point to another point in the same cluster, and (2) splitting an initial cluster
into two new clusters if it exhibits high bi-modality when applying a Gaussian Mixture
Model on the corresponding points.

We exploit simulated annealing to find a “deeper” local solution for the clustering
problem. Simulated annealing comprises two main iterations: the outer and inner itera-
tions. In the outer iteration the temperature, T , which is analogous to the temperature
in the physical process of annealing, is updated. To this aim, we take an arbitrary initial
value T0 for the temperature and a number r ∈ (0, 1) and use the following schedule for the
temperature update: Ti+1 = r × Ti, i = 0, 1, 2, .... In the inner iteration the current state
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is modified to generate a new solution based on a proposal step. If the proposal reduces
the value of the objective function, the transformation to the new state is accepted. If
it increases the value of the objective function, the transformation is accepted with an
acceptance probability:

p = min

(
1, exp

(
−∆f

T

))
, (6)

where ∆f = fnew − fold, fold is the function value in the previous state and fnew is the
function value based on the perturbed configuration. More precisely, a random number u
from the uniform distribution U [0, 1] is generated. If p ≥ u, the perturbed configuration is
accepted as a new solution; otherwise the inner iterations are repeated. For more details
on the simulated annealing method see Kirkpatrick [15] and Seifollahi et al. [23].

4.3 The overall algorithm

Algorithm 2 describes the main steps of the overall algorithm. Step 1 provides the set
of representative points as presented in Section 4.1. Step 2 applies a step of local search
(KMSVM), consisting of a predetermined number of alternating steps of k-means and
SVM. Step 3 splits certain clusters into two, conditional to a bimodality test that is
explained hereafter. Step 4 perturbs the representative points as presented in Section 4.2.
Eventually, Step 5 tests the overall termination conditions.

In Step 3, we leverage bi-modality information to decide whether the initial clusters
are appropriate. The idea is to split a candidate initial cluster so that it substantially
contains only one mode. The presence of two distinct modes in a cluster can be identified
by fitting a Gaussian mixture model (GMM) with two components. After the model is fit
and the two components identified, the Kullback-Leibler divergence (KLD) can be applied
to measure the difference between their distributions. By referring to the two Gaussian
components as P and Q, KLD can be expressed in closed-form as [7]:

DKLD(P |Q) =
1

2

(
tr(Σ−1q Σp) + (7)

(µq − µp)TΣ−1q (µq − µp)−

n+ ln
(det Σq

det Σp

))
where µp and µq are the means of P and Q, Σp and Σq are their covariance matrices and
n is the dimension of the vector space.
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Algorithm 2 Simulated annealing-based maximum-margin clustering (SAMMC).

Step 1: (Initialization). Compute k0 initial clusters using Algorithm 1, where k0 =∑k
i=1 ki and compute the set R of representative points. Choose the final number of

clusters, k < k0.
Step 2: (Computation of clusters). Apply KMSVM to the set R to find k clusters.
Step 3: (Splitting clusters based on GMM). Apply the GMM on each initial cluster to

find two new clusters for each one. Select an initial cluster with the highest KLD value
as a candidate. Split the candidate cluster into two new clusters using k−means++.
Set k0 = k0 + 1 and update the set R. Apply KMSVM on the set R. Accept or reject
the proposal based on (6).

Step 4: (Perturbation of representative points). Select a representative point at random
and perturb it to another point (at random) within the corresponding initial cluster.
Recompute clusters using KMSVM on new representative points, and accept or reject
the proposal based on (6).

Step 5: (Termination of algorithm). Repeat steps 3-4 until termination conditions are
met.

As shown in Algorithm 2, ratio (6) is used twice for accepting or rejecting a new
proposal: the first time (at Step 3) in the bimodality test, and the second time (Step
4) for a random walk. More precisely, i) in Step 3 the cluster having the highest KLD
value is conditionally split into two subject to test (6), while ii) in Step 4, the random
perturbation of a representative point is accepted subject to test (6). In this way, every
point in the cluster can potentially switch cluster. In both Steps 3 and 4, clusters with
only one point are discarded as they will cause no change to the objective function.

4.4 Convergence of the proposed algorithm

The convergence of the proposed algorithm to the global solutions follows from the con-
vergence of the simulated annealing algorithm. It is well-known that under some mild
assumptions the simulated annealing method convergence to global solutions of continu-
ous global optimization problems with probability 1 (see, [20], for details).

The proposed algorithm is the combination of a local search and the simulated an-
nealing method. A local search algorithm is applied to find stationary points of problem
(4), and the simulated annealing method is applied to escape such points and find points
which are located in deeper “basins” of the objective function.

The objective function in problem (4) has a finite number of local minimizers. Since the
simulated annealing method escapes such points with probability 1, we get that the pro-
posed algorithm converges to the set of global minimizers of problem (4) with probability
1.

5 Numerical Results

We compare the performance of the proposed algorithm with a pool of algorithms widely
adopted for clustering: 1) the k−means++ algorithm (in the implementation of the scikit-
learn Python machine learning library) [1]; 2) mini-batch k-means++ (initialized with
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k−means++) [22]; 3) a Dirichlet process Gaussian mixture model (DPGMM) algorithm,
from the same library [10]; and 4) fuzzy c-means, from the fuzzy logic scikit Python ma-
chine learning library [26]. Mini-batch k-means++ [22] was proposed as an alternative to
the k-means algorithm for clustering very large datasets. The advantage of this algorithm
is a reduction of the computational load deriving from the use of sub-samples of fixed
size. DPGMM is an infinite mixture model with a Dirichlet Process as a prior distribution
over the number of clusters. Fuzzy c-means [26] is a clustering algorithm in which each
data point is assigned to multiple clusters in membership grades. For hardening the final
assignment, we assign the point to the cluster with the highest grade.

For ease of reference, hereafter we refer to the proposed algorithm as simulated-
annealing MMC, or SAMMC for short; k−means++ as KM; mini-batch k-means++ as
MBKM; the Dirichlet process Gaussian mixture model as DPGMM; and fuzzy c-means as
FCM. All algorithms were implemented in Python 3.5 on a PC with a 5-core CPU and 8
GB RAM.

5.1 Datasets

To test and compare the proposed algorithm, we have carried out experiments with sixteen
datasets. A brief description of these datasets is given in Table 1, while a more detailed
description can be found in [19], with the exception of D15 which is described hereafter.

Dataset D15 is from the Transport Accident Commission (TAC) which is a major
accident compensation agency of the Victorian Government in Australia. It consists of
a collection of 593,433 phone calls from 13,937 single TAC clients recorded by various
operators over 5 years. The phone calls are made for different purposes including, but
not limited to: compensation payments, recovery and return to work, different type of
services, medications and treatments, pain, solicitor engagement and mental health issues.
We refer to this data set as “Phone Calls”.

The following preprocessing steps have been applied to D15 before its use in the ex-
periments: 1) removal of numbers, punctuation, symbols and “stopwords”; 2) synonyms
and misspelled words have been replaced with the base and actual words; 3) infrequently
occurring words have been removed; 4) as common in text mining, we have also removed
the most frequently occurring words such as names and addresses based on a predefined
list. The data have then been projected to a vector space by using the popular term
frequency-inverse document frequency (tf-idf) scheme [6].

All datasets contain only numeric features and do not have missing values. In brief,
the datasets were chosen so that i) the number of attributes would range from very few
(2) to many (4,696); and ii) the number of data points would range from thousands
(smallest: 2,310) to millions (largest: 4,178,504). Their diversity provides a thorough
base for evaluation and comparison.

5.2 Implementation and settings

To implement Algorithm 1, one has to choose parameter δ at Step 1. Values of δ close to
one significantly increase computational time. Therefore, we have decreased the value of
this parameter with increasing numbers of data points. For the small datasets (D1-D11),
we have set it between 0.05 and 0.20 and decreased it to 0.01 for the very large ones
(D12-D16).
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Table 1: Dataset summary (m is the number of points and n the number of dimensions).

Name Datasets m n
D1 Image Segmentation 2,310 19
D2 Page Blocks 5,473 10
D3 Gas Sensor Array Drift 13,910 128
D4 EEG Eye State 14,980 14
D5 D15112 15,112 2
D6 Online News Popularity 39,797 58
D7 KEGG Metabolic Relation Network 53,413 20
D8 Shuttle Control 58,000 9
D9 Sensorless Drive Diagnosis 58,509 48
D10 MiniBooNE particle identification 130,065 49
D11 Skin Segmentation 245,057 3
D12 3D Road Network 434,874 3
D13 Cover Type 581,012 10
D14 Poker Hand 1,025,010 10
D15 Phone Calls 593,433 4,696
D16 Gas sensor array under dynamic 4,178,504 19

gas mixtures

For the implementation of the two alternating steps of KMSVM in Algorithm 2, we
have used MBKM and linear SVM from the scikit-learn module in Python. Algorithm 2
terminates if one of the following criteria is satisfied:

• (Temperature drop). If the temperature parameter in simulated annealing drops to
a minimum user-defined value. We have set the minimum temperature to 10−5.

• (Number of iterations). If the number of iterations reaches a maximum number
defined by the user. We have set the maximum number of iterations to 20, 000.

• (Number of unsuccessful iterations). If the number of unsuccessful iterations exceeds
a user-defined value (an unsuccessful iteration is an iteration that does not decrease
the objective). It was set to 1, 000.

• (Time consumption). If the CPU time spent exceeds a pre-defined value. The
maximum CPU time used by any algorithm is limited to: two hours for datasets
Cover Type and Gas sensor array under dynamic gas mixtures; and half an hour for
all the other datasets.

Results for all the compared clustering algorithms are reported in Tables 4 and 5.These
results are the best output out of 20 runs with different random initializations. In these
tables, we have adopted the following notations:

• k is the number of final clusters;

• fbest (scaled by the number shown immediately after the name of the dataset) is the
best value of the clustering objective function (2);
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• EA is the error (in %) of algorithm A calculated as follows:

EA =
f̄ − fbest
fbest

× 100

where f̄ is the value of the objective function obtained by algorithm A.

5.3 Results and discussion

For all datasets, we have computed up to 20 clusters. Since the proposed algorithm,
SAMMC, requires an initial KM step in all cases, we have decided to report the objective
function values before and after the use of SAMMC (i.e., finitial and ffinal) in Tables 2
and 3. Tables 4 and 5 instead report the errors of all the compared algorithms.

(a) Image Segmentation (b) Gas Sensor Array Drift

(c) KEGG Relation Network (d) Sensorless Drive Diagnosis

Figure 1: Objective function values for SAMMC and KM with varying number of clusters
(subset of four datasets).

Results presented in Tables 4 and 5 show that the proposed SAMMC algorithm has
proved the most accurate among all algorithms, followed by KM, FCM, MBKM and
DPGMM, respectively. It has been able to find better values of the objective function for
most datasets; with particularly significant improvements over Image Segmentation, Page
Block, KEGG Metabolic Relation Network, Shuttle Control, Sensorless Drive Diagnosis
and 3D Road Network.

The datasets can be divided in two groups based on their dimensionality. The first
group contains the datasets with small dimensionality (≤ 10): Page Blocks, D15112,
Shuttle Control, Skin Segmentation, 3D Road Network, Cover Type and Poker Hand.
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(a) Image Segmentation (b) Gas Sensor Array Drift

(c) KEGG Relation Network (d) Sensorless Drive Diagnosis

Figure 2: Objective function values for SAMMC and KM with varying number of iterations
(subset of four datasets); notations “SAMMC k” and “KM k” stand for SAMMC and KM
with k clusters.

The number of points in these datasets ranges from 15, 112 to 1, 025, 010. Results pre-
sented in Tables 4 and 5 show that SAMMC improves the results for most of them, with a
particularly strong improvement on Page Blocks, Shuttle Control and 3D Road Network.
The second group contains datasets with larger number of attributes: Image Segmenta-
tion, Gas Sensor Array Drift, EEG Eye State, Online News Popularity, KEGG Metabolic
Relation Network, Sensorless Drive Diagnosis, MiniBooNE particle identification, Phone
Calls and Gas sensor array under dynamic gas mixtures. The number of dimensions in
these datasets ranges from 14 to 4,696. Results presented in Tables 4 and 5 show that
SAMMC has been able to improve over the other algorithms and that this improvement
is remarkable in most cases.

For further analysis, Figures 1a-1d show the objective function values for algorithms
SAMMC and KM over a subset of the datasets when the number of clusters varies. Since
SAMMC is initialized with KM, they also show how much SAMMC has been able to
improve over its initial KM clustering. Figures 2a-2d show the objective function values
for algorithms SAMMC and KM over the same subset when the number of iterations varies.
As shown by these figures, the proposed method significantly decreases the objective within
the first 500 iterations.
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6 Conclusion

In this paper, we have proposed a novel clustering algorithm for clustering under a mini-
mum sum-of-squares objective. The proposed algorithm leverages simulated annealing to
escape local minima and a combination of k−means++ and SVM to provide high-quality
local minima. By exploiting a two-stage organization, the proposed algorithm has been
able to mollify the computational complexity of maximum-margin clustering and prove
suitable for large-scale data. In the experiments, we have tested it on real-world datasets
with number of points ranging from thousands to millions and number of dimensions
ranging from a few to thousands. The experimental results have provided clear evidence
that the proposed method is able to achieve significant improvement of the objective
function in comparison to popular clustering algorithms such as k-means++, mini-batch
k−means++, DPGMM and fuzzy c-means.
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Table 2: Objective function values for the SAMMC algorithm over datasets 1-8

k #itr finitial ffinal #itr finitial ffinal

D1 (×105); k0 = 203 D2 (×106); k0 = 849

3 2999 2.27535 1.92150 2000 6.92090 4.86011
5 2999 1.71600 1.66362 2000 4.21305 3.30935
7 2000 1.57640 1.49572 2000 3.01114 2.47169
10 2000 1.31979 1.27118 2000 2.76200 1.96377
12 2000 1.24097 1.16674 2000 2.17831 1.78075
15 2000 1.09656 1.08162 2999 2.06897 1.61311
17 2000 1.02597 1.02597 2000 1.73571 1.54352
20 2000 0.96981 0.96691 2000 1.63124 1.41833

D3 (×108); k0 = 1974 D4 (×106); k0 = 2250

3 2999 6.94459 6.77215 2000 1.69264 1.69264
5 2999 5.84274 5.28765 2000 1.13563 0.98754
7 2000 4.72804 4.62881 2000 0.87802 0.85799
10 2000 4.02730 4.02730 2000 0.75413 0.75413
12 2000 3.83332 3.70030 2000 0.71172 0.70948
15 2999 3.41227 3.36523 2000 0.67419 0.67418
17 2000 3.23031 3.22069 2000 0.65220 0.64999
20 2000 3.03252 3.03028 2000 0.62949 0.62949

D5 (×107); k0 = 1975 D6 (×109); k0 = 1763

3 2999 5.54539 5.54065 1907 3.57554 3.55978
5 2000 4.03324 4.03281 1845 2.56188 2.28574
7 2000 3.41973 3.41973 1826 2.05394 190084
10 2999 2.86699 2.86601 1789 1.68326 1.56733
12 2000 2.62155 2.62132 1764 1.47500 1.42740
15 2000 2.33309 2.33309 1717 1.34470 1.27022
17 2000 2.18249 2.18249 1691 1.26208 1.19329
20 2000 2.02283 2.02283 1642 1.13187 1.12003

D7 (×106); k0 = 1930 D8 (×106); k0 = 1646

3 1567 2.80643 1.86366 709 2.51994 1.90781
5 1244 1.63321 1.29238 647 2.46973 1.99779
7 1184 1.28721 1.04727 629 2.40504 1.60107
10 973 0.94686 0.80424 584 1.79075 1.51039
12 963 0.94071 0.74028 571 1.75150 1.39149
15 884 0.82894 0.66603 566 1.72041 1.20582
17 852 0.71239 0.63615 528 1.50015 1.23395
20 843 0.66856 0.59669 548 1.39315 1.11643
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Table 3: Objective function values for the SAMMC algorithm over datasets 9-16

k #itr finitial ffinal #itr finitial ffinal

D9(×105); k0 = 1889 D10(×107); k0 = 3195

3 482 8.24640 6.44864 453 4.98413 4.90467
5 333 6.50427 5.89485 456 3.90094 3.88245
7 331 5.86409 5.36534 451 3.25558 3.22204
10 331 5.53054 4.86941 450 2.82944 2.77394
12 326 5.10210 4.54399 447 2.62172 2.62172
15 315 4.49256 4.24934 440 2.54134 2.43630
17 318 4.31557 4.06649 439 2.37069 2.34742
20 321 4.01503 3.93085 442 2.25009 2.23405

D11(×107); k0 = 2892 D12(×106); k0 = 3526

3 363 1.17959 1.17271 151 2.53221 2.45714
5 338 0.87830 0.87783 124 1.57130 1.55483
7 325 0.71552 0.71552 121 1.19048 1.15124
10 302 0.57940 0.57381 120 0.89404 0.85363
12 295 0.53372 0.53317 120 0.759370 0.735879
15 293 0.49592 0.49114 119 0.63639 0.62200
17 291 0.45631 0.44613 117 0.73587 0.56791
20 287 0.41331 0.41206 115 0.52566 0.51077

D13(×108); k0 = 3568 D14(×106); k0 = 4219

3 322 6.84525 6.82126 223 7.73012 7.73012
5 315 5.31869 5.31693 224 7.10038 7.09909
7 314 4.73661 4.73574 227 6.66651 6.66651
10 316 4.12908 4.12908 251 6.15894 6.15712
12 315 3.88909 3.88898 264 5.95588 5.94458
15 313 3.55111 3.52572 250 5.63555 5.63519
17 310 3.41428 3.41428 242 5.49580 5.49443
20 309 3.23589 3.22004 283 5.35294 5.35294

D15(×104); k0 = 1558 D16(×1010); k0 = 3812

3 383 5.27089 5.27052 41 2.19410 2.19334
5 384 5.25709 5.25586 40 1.75273 1.75209
7 380 5.25277 5.24668 40 1.52607 1.52607
10 376 5.23029 5.22822 38 1.25024 1.25024
12 379 5.22126 5.21523 38 1.15669 1.14279
15 375 5.20914 5.20049 38 1.00832 0.99651
17 362 5.20057 5.20057 39 0.95343 0.92735
20 349 5.18291 5.17676 39 0.85912 0.85175
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Table 4: Clustering errors obtained with the compared algorithms over datasets 1-8; for
compactness of notation, E1, E2, E3, E4 and E5 are the errors obtained using KM, MBKM,
DPGMM, FCM and SAMMC, respectively

k fbest E1 E2 E3 E4 E5 fbest E1 E2 E3 E4 E5

D1 (×105) D2 (×106)

3 1.92065 18.46 0.34 35.42 0.00 0.04 4.86011 42.40 7.06 29.41 11.57 0.00
5 1.66362 2.83 3.07 22.57 1.29 0.00 3.30935 27.30 1.84 67.69 5.55 0.00
7 149572 5.39 7.81 31.29 1.01 0.00 2.47169 21.82 18.03 90.63 18.67 0.00
10 1.27072 3.86 0.00 49.03 1.76 0.03 1.96377 40.64 32.27 109.14 13.35 0.00
12 1.16674 6.36 1.00 55.16 3.31 0.00 1.78075 22.32 10.16 108.26 13.85 0.00
15 1.08162 1.38 2.95 58.82 2.02 0.00 1.61311 28.26 46.55 142.47 1.19 0.00
17 1.02360 0.23 0.00 62.20 5.55 0.23 1.54352 12.45 52.57 88.48 0.54 0.00
20 0.96691 0.30 0.35 89.45 4.74 0.00 1.41833 15.01 86.40 123.33 0.62 0.00

D3 (×108) D4 (×106)

3 6.77215 2.55 0.07 56.14 1.52 0.00 1.69264 0.00 153.30 24.26 0.00 0.00
5 5.28765 10.50 2.32 59.50 2.79 0.00 0.98754 14.99 182.78 15.92 0.18 0.00
7 4.62881 2.14 1.75 77.33 1.78 0.00 0.85799 2.33 377.50 11.05 2.47 0.00
10 4.02730 3.35 4.37 64.53 3.74 0.00 0.74556 0.40 336.08 53.54 3.95 0.00
12 3.70030 3.59 6.99 66.01 3.62 0.00 0.70948 0.32 159.20 24.02 6.55 0.00
15 3.36523 1.40 0.01 66.60 3.41 0.00 0.67418 0.00 284.78 69.80 9.92 0.00
17 3.22069 0.30 6.80 43.15 6.42 0.00 0.64999 0.34 513.23 35.70 11.16 0.00
20 3.03252 0.07 10.25 66.34 2.64 0.00 0.62949 0.00 306.83 81.85 11.81 0.00

D5 (×107) D6 (×109)

3 5.53855 0.13 0.07 24.29 0.00 0.04 3.55978 0.59 7.50 37.91 0.00 0.15
5 4.02884 0.11 1.64 142.09 0.00 0.10 2.28574 12.08 13.27 144.65 0.14 0.00
7 3.41973 0.00 1.77 14.89 1.37 0.00 1.90084 8.05 5.17 128.04 1.69 0.00
10 2.86601 0.03 1.73 240.54 2.06 0.00 1.56733 7.39 0.64 222.86 8.29 0.00
12 2.62132 0.01 1.66 11.66 0.25 0.00 1.42740 3.33 2.88 227.17 10.70 0.00
15 2.32964 0.15 1.33 318.44 0.00 0.15 1.27022 5.86 2.93 298.94 7.63 0.00
17 2.17353 0.41 2.54 9.45 0.00 0.41 1.19329 5.76 6.11 239.74 12.15 0.00
20 2.00347 0.97 3.55 383.42 0.00 0.97 1.12003 1.06 4.24 335.47 13.85 0.00

D7 (×106) D8 (×106)

3 1.86366 50.58 8.30 10.66 15.14 0.00 1.90781 34.47 2.91 20.36 0.00 2.39
5 1.29238 26.37 5.36 25.04 14.04 0.00 1.77075 42.88 5.87 14.64 0.00 3.43
7 1.04727 22.911 11.421 88.220 16.039 0.00 1.60107 50.21 12.03 30.62 0.43 0.00
10 0.80424 17.73 12.62 59.07 21.79 0.00 1.51039 18.56 4.61 23.33 4.19 0.00
12 0.74028 27.07 18.37 136.27 17.39 0.00 1.39149 25.87 10.68 39.76 9.84 0.00
15 0.66603 24.46 26.33 74.73 16.09 0.00 1.20582 42.68 9.65 34.08 24.37 0.00
17 0.63615 11.98 22.19 128.04 13.34 0.00 1.23395 21.57 9.50 53.30 18.83 0.00
20 0.59669 12.04 25.43 101.41 14.94 0.00 1.11643 24.78 25.16 53.49 29.26 0.00
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Table 5: Clustering errors obtained with the compared algorithms over datasets 9-16;
for compactness of notation, E1, E2, E3, E4 and E5 are the errors obtained using KM,
MBKM, DPGMM, FCM and SAMMC, respectively

k fbest E1 E2 E3 E4 E5 fbest E1 E2 E3 E4 E5

D9 (×105) D10 (×107)

3 6.44864 30.29 2.85 6.05 0.00 2.40 4.90467 1.62 49.06 93.91 41.52 0.00
5 5.65453 15.03 0.00 11.23 0.73 4.25 3.88245 2.29 67.57 107.18 0.00 1.80
7 5.11723 14.59 0.00 27.83 1.30 4.84 3.22204 1.04 84.64 43.40 97.54 0.00
10 4.86941 13.58 3.01 20.64 4.68 0.00 2.77394 2.00 105.57 179.43 123.64 0.00
12 4.49953 13.39 0.00 38.67 3.47 0.98 2.62172 0.00 131.61 61.21 133.11 0.00
15 4.24934 5.724 0.12 15.91 15.31 0.00 2.43630 4.31 124.53 215.33 148.27 0.00
17 4.06649 6.12 0.42 41.43 6.68 0.00 2.31230 2.52 0.00 76.76 160.27 1.51
20 3.93085 2.142 1.86 14.36 21.44 0.00 2.23405 0.72 138.92 204.42 167.56 0.00

D11 (×107) D12 (×106)

3 1.17271 0.59 2.36 16.11 0.59 0.00 2.45714 3.06 0.24 1.61 2.11 0.00
5 0.87783 0.05 2.52 12.32 0.01 0.00 1.55483 1.06 6.56 0.93 0.66 0.00
7 0.71553 2.66 2.59 65.33 2.57 0.00 1.15124 3.40 0.44 188.85 2.36 0.00
10 0.57382 0.97 13.07 37.44 3.08 0.00 0.85363 4.73 3.66 14.28 2.33 0.00
12 0.53317 0.10 4.42 51.60 2.61 0.00 0.73587 3.19 3.67 457.07 1.50 0.00
15 0.47046 5.71 0.00 65.30 2.75 1.32 0.62200 2.31 1.04 35.41 1.30 0.00
17 0.45402 4.79 0.41 48.42 3.86 0.00 0.56791 2.27 2.70 607.59 1.05 0.00
20 0.41271 1.31 4.52 69.23 6.373 0.00 0.51077 2.91 1.70 48.86 0.85 0.00

D13 (×108) D14 (×106)

3 6.82126 0.35 0.74 51.93 0.28 0.00 7.73012 0.00 0.56 0.88 1.07 0.00
5 5.30732 0.21 3.91 95.28 0.00 0.18 7.09909 0.02 0.47 3.92 1.44 0.00
7 4.72561 0.24 2.36 118.52 0.00 0.19 6.66651 0.00 1.48 7.80 8.00 0.00
10 4.12908 0.00 2.59 50.03 0.33 0.00 6.15712 0.03 0.90 13.65 10.83 0.00
12 3.88312 0.16 1.80 165.64 0.00 0.09 5.94458 0.19 0.93 15.12 10.52 0.00
15 3.52572 0.72 1.21 192.69 2.08 0.00 5.63519 0.01 1.78 19.47 11.70 0.00
17 3.41428 0.00 2.99 191.43 1.04 0.00 5.49443 0.03 1.77 19.94 17.41 0.00
20 3.22004 0.49 1.98 220.24 1.71 0.00 5.35294 0.00 0.98 22.20 20.46 0.00

D15 (×104) D16 (×1010)

3 5.27052 0.01 0.22 0.11 0.10 0.00 2.19334 0.03 0.25 109.71 0.08 0.00
5 5.25586 0.03 0.49 0.08 0.30 0.00 1.75209 0.04 0.25 157.66 0.05 0.00
7 5.24668 0.12 0.46 0.19 0.40 0.00 1.52578 0.02 0.00 170.02 0.62 0.02
10 5.22822 0.04 0.77 0.23 0.60 0.00 1.25024 0.00 0.87 266.32 1.45 0.00
12 5.21523 0.12 0.67 0.22 0.76 0.00 1.14279 1.21 0.86 147.42 1.18 0.00
15 5.20049 0.17 1.16 0.26 1.02 0.00 0.99651 1.19 1.99 330.68 4.74 0.00
17 5.19723 0.05 1.08 0.00 0.95 0.05 0.92735 2.81 4.08 183.29 2.55 0.00
20 5.17676 0.12 1.15 0.43 1.32 0.00 0.85175 0.87 0.43 418.83 3.83 0.00
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