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Abstract

Small Autonomous Underwater Vehicles (AUV)
in shallow water might not be stabilized well by
feedback or model predictive control. This is
because wave and current disturbances may fre-
quently exceed AUV thrust capabilities and distur-
bance estimation and prediction models available
are not sufficiently accurate. In contrast to classical
model-free Reinforcement Learning (RL), this pa-
per presents an improved RL for Excessive distur-
bance rejection Control (REC) that is able to learn
and utilize disturbance behaviour, through formu-
lating the disturbed AUV dynamics as a multi-order
Markov chain. The unobserved disturbance be-
haviour is then encoded in the AUV state-action
history of fixed length, its embeddings are learned
within the policy optimization. The proposed REC
is further enhanced by a base controller that is
pre-trained on iterative Linear Quadratic Regula-
tor (iLQR) solutions for a reduced AUV dynamic
model, resulting in hybrid-REC. Numerical simu-
lations on pose regulation tasks have demonstrated
that REC significantly outperforms a canonical
controller and classical RL, and that the hybrid-
REC leads to more efficient and safer sampling and
motion than REC.

1 Introduction
Large AUVs have been used in practical deep water ap-

plications, such as shipwreck search, underwater structure
surveillance, and biology monitoring. In these applications,
the strength and changes of external wave and current distur-
bances are negligible to the size of AUVs and thrust capa-
bilities. In fact, hydrodynamic drag forces offer damping ef-
fects in favor of stabilizing the AUV systems. However, small
AUVs in shallow water environments may be subject to dis-
turbances whose magnitudes frequently exceed AUV thrust
capacities, due to the turbulent flows and the AUV size limita-
tions. These disturbances inevitably bring adverse effects and

may even destabilize AUVs [Xie and Guo, 2000; Gao, 2014;
Li et al., 2014; Woolfrey et al., 2016]. This paper studies the
optimal control problem of a small AUV subject to unknown
excessive disturbances, which may exceed its control capaci-
ties.

In the field of disturbance rejection control, feedback
control strategies are used to suppress the unknown dis-
turbances. Examples of feedback controllers include ro-
bust control [Skogestad and Postlethwaite, 2007], adaptive
control [Åström and Wittenmark, 2013; Lu and Liu, 2017;
2018], optimal control [Bertsekas et al., 1995], sliding mode
control (SMC) [Edwards and Spurgeon, 1998], H-infinity
control [Doyle et al., 1989], etc. These methods often as-
sume that the disturbance forces are within known bounds,
which are usually smaller [Ghafarirad et al., 2014] than con-
trol saturations, thus are unsuitable to this study.

One popular improvement to above approaches is to add
a feedforward term based on the disturbance estimation
[Yang et al., 2010; Chen et al., 2016]. Various distur-
bance estimation and attenuation methods have been pro-
posed and practiced, such as disturbance observer (DOB)
[Ohishi et al., 1987; Chen et al., 2000; Umeno et al., 1993;
Umeno and Hori, 1991], unknown input observer (UIO) in
disturbance accommodation control (DAC) [Johnson, 1968;
1971], and extended state observer (ESO) [Han, 1995; Gao
et al., 2001]. However, such improvement on feedback con-
trols is still unsuitable to this study, since disturbances exceed
control bounds [Gao and Cai, 2016].

To this end, model predictive control (MPC) [Camacho
and Alba, 2013] is often applied since it deals with con-
straints directly [Gao and Cai, 2016], through sacrificing in-
stant performance for better overall performance during a
fixed time horizon. MPC requires a sufficiently accurate
prediction model of the robot system, and thus disturbance
models built by DOB are used [Maeder and Morari, 2010;
Yang et al., 2010; 2011; Liu et al., 2012; Yang et al., 2014;
Dirscherl et al., 2015; Gao and Cai, 2016]. However, this
model is quite difficult to obtain for the underwater robot sub-
ject to unknown varying disturbances [Maeder and Morari,
2010]. These disturbances are jointly determined by fluid



conditions, robot morphologies, as well as varying robot
states and controls. More importantly, such separated model-
ing and control optimization process might not be able to pro-
duce models and control signals that jointly optimize AUV
performance, as evidenced in [Brahmbhatt and Hays, 2017;
Karkus et al., 2018].

This paper explores the integrated learning of disturbance
behaviour and optimal controller through RL. RL is also
known as adaptive dynamic programming and neural com-
puting. Recently, deep RL algorithms based on Q-learning
[Mnih et al., 2015; Oh et al., 2016; Gu et al., 2016b], pol-
icy gradients [Schulman et al., 2015a; Gu et al., 2016a], and
actor-critic methods [Lillicrap et al., 2015; Mnih et al., 2016;
Schulman et al., 2015b] have successfully solved problems in
high-dimensional state spaces, where a system model is not
available.

In modeling environmental behaviour, recurrent neural net-
work has been used to model pedestrians’ kinematics in
[Alahi et al., 2016], where the future pedestrians’ trajecto-
ries are sufficiently embedded in pedestrians’ current states.
However, the future states of AUV do not only depend on the
current states and actions, but also on the unknown distur-
bances, which are largely determined by turbulent flows with
strong time correlation. Thus in this paper, we characterize
the disturbed AUV dynamic system as a multi-order Markov
chain. The unobserved disturbance behaviour is assumed to
be encoded in the AUV state-action history of fixed length,
its embeddings are learned within the policy optimization us-
ing Deep Deterministic Policy Gradient (DDPG) algorithm
[Lillicrap et al., 2015]. Therefore, in addition to the current
states, the resultant trained policy also takes in a fixed length
of state-action history to generate optimal control.

Model-free RL in general requires tremendous data that
encodes the objective function and robot system dynamics
(also known as transition model). While combining with
some prior knowledge, such as a dynamic model or a con-
troller, RL can significantly improve its sampling and thus
learning efficiency. Kumar et al. [2018] and Koryakovskiy
et al. [2018] both proposed to use model-free RL to learn a
compensatory control signal on top of a model-based con-
troller. The model-based controller can speed up learning
of model-free RL and avoid risky exploratory actions, and
the model-free learner can enhance the control performance
by compensating the model-plant mismatch. However, the
model-based controllers, such as MPC or LQR, may involve
solving optimization problems, which is much slower than
the forward propagation of a neural network policy. Naga-
bandi et al. [2018] also used model-based controller, but they
used supervised learning to train an imitation policy to mimic
the model-based controller, and then used this imitation pol-
icy as an initialization for the model-free learner.

In this study, the proposed REC is further enhanced by a
base controller that is pre-trained on iLQR solutions for a re-
duced AUV dynamic model, resulting in hybrid-REC. The

new actor network in hybrid-REC (also referred to as hy-
brid policy) is a summation of this fixed base controller and
a trainable actor network same to REC. The latter one acts as
a compensation term for the model-plant mismatch. The re-
duced AUV dynamic model does not consider wave and cur-
rent disturbances. The iLQR is used to generate optimal con-
trols and trajectories given random initial AUV states. Then
supervised learning is used to train an imitation policy (a sim-
ple neural network) to mimic obtained optimal controls given
any robot states as inputs. Afterwards, we use DDPG to train
the new actor network and the critic network.

In this paper, Section 2 provides some preliminary knowl-
edge about trajectory optimization and reinforcement learn-
ing. Section 3 introduces problem formulation. Section 4 and
5 provide the detailed description of REC and hybrid-REC
algorithms. Then, Section 6 presents experimental validation
procedures and result analysis.

2 Preliminaries
2.1 Trajectory Optimization

Trajectory optimization is the process of finding a state-
control sequence which optimizes a given objective func-
tion [Tassa et al., 2014]. Differential Dynamic Programming
(DDP) is a second-order shooting method [Mayne, 1966]
which under mild assumptions admits quadratic convergence
for any system with smooth dynamics [Jacobson and Mayne,
1970]. Classic DDP requires second-order derivatives of
the dynamics, which are usually the most expensive part of
the computation. If only the first-order terms are kept, one
obtains a Gauss-Newton approximation known as iterative
Linear Quadratic Regulator (iLQR) [Li and Todorov, 2004;
Todorov and Li, 2005], which is similar to Riccati iterations,
but accounts for the regularization and line-search required to
handle the nonlinearity.

We consider a system with discrete-time dynamics, but
a similar derivation holds for the continuous case [Mayne,
1966]. The dynamics is modeled by a generic function f

st+1 = f(st, at), (1)

which describes the evolution from time t to t + 1 of the
state s ∈ S ∈ Rn, given the action a ∈ A ∈ Rm,
where S and A represent state space and action space re-
spectively. A trajectory {S,A} is a sequence of controls
A = {a0, a1, · · · , aT−1}, and corresponding state sequence
S = {s0, s1, · · · , sT } satisfying (1).

The total reward (the opposite number of cost) denoted
by J is a sum of instant reward r and terminal reward rf ,
incurred when the system starts from initial state s0 and is
controlled by the control sequence A until the horizon T is
reached:

J(s0, A) =

T−1∑
t=0

γtr(st, at) + γT rf (sT ). (2)



Indirect methods, like iLQR, represent the trajectory implic-
itly using only the controls A. The state sequence S is recov-
ered by integration of (1) from the initial state s0. The so-
lution of the optimal control problem is the control sequence
corresponding to the maximized total reward

A? = arg max
A

J(s0, A). (3)

2.2 Reinforcement Learning
Model-free RL is a trial-and-error method that does not re-

quire an explicitly system model, and can naturally adapt to
uncertainties in the real system [Sutton and Barto, 1998]. In
RL, the goal is to learn a policy that chooses actions at ∈ A at
each time step t in response to the current state st ∈ S , such
that the total expected sum of discounted rewards is maxi-
mized over all time. At each time step, the system transi-
tions from st to st+1 in response to the chosen action at and
the transition dynamics function f : S × A → S , collect-
ing a reward rt according to the reward function r(st, at).
The discounted sum of future rewards is then defined as∑T−1
t′=t γ

t′−trt′ + γT rf |st, at, where γ ∈ [0, 1) is a discount
factor that prioritizes near-term rewards over distant rewards
[Nagabandi et al., 2018].

3 Problem Formulation
Our 6 degree of freedom (DOF) AUV is shown in Figure 1,

the robot is designed to be sufficiently stable in roll and pitch
even under strong disturbances, thanks to its large restoring
forces. Thus, in order to simplify this problem, we only con-
sider the control of the vehicle’s position p = [x y z]T and
yaw angle θ. The state of the robot s consists of the body
position and yaw angle q = [x y z θ]T ∈ R4, as well as the
corresponding velocities q̇ ∈ R4, then s = [qT q̇T ]T ∈ R8.
The action a includes the control forces and torques of the
body τc ∈ R4. The control limits are also taken into consid-
eration τ lim, τ lim ∈ R4.

The robot model is simplified as a floating rigid body with
external disturbances. The more detailed description of the
dynamics function (1) for our robot system is given in the
form:

Mq̈ + Cq̇ +Dq̇ + g = τc + τd, (4)[
qt+1

q̇t+1

]
=

[
qt
q̇t

]
+

[
q̇t
q̈t

]
dt, (5)

where M is the inertia matrix, C is the matrix of Coriolis and
centripetal terms,D is the matrix of drag force, g is the vector
of the gravity and buoyancy forces, q̈ represents accelerations
of the body, τd is the disturbance forces. In our case, we as-
sume that the magnitudes of the disturbances are close to or
exceed the robot control limits τ lim and τ lim, but are con-
strained within a reasonable range, ensuring the controller is
able to converge.

Figure 1: Submerged Pile Inspection Robot (SPIR) devel-
oped at Centre for Autonomous Systems (CAS), University
of Technology Sydney (UTS)

4 REC Algorithm
The underwater disturbances mainly come from the time-

varying current and wave, which have strong correlations
in time. It means the disturbance behaviour can be learned
for future disturbance prediction and thus for better control.
Therefore, we characterize the disturbed AUV dynamic sys-
tem as a multi-order Markov chain, and assume the unob-
served varying disturbances and their predictions over next
planning horizon are encoded in the AUV state-action history
of fixed length ht = {st−H , at−H , · · · , st−1, at−1}, where
H represents the length of the history. Thus the embeddings
of the disturbance behaviour can be learned within the policy
optimization. Note that actions are also included to encode
disturbance behaviour in contrast to the state-only history,
which, for example, has been used for estimating velocities
in training video game player [Mnih et al., 2015].

Before using this state-action history to train a policy, we
first need to verify the rationality of the multi-order Markov
chain hypothesis, through the validation of the existence of a
dynamic model st+1 = fh(ht, st, at).

4.1 Validation of Multi-Order Markov Chain
In this part of work, a simple inverted pendulum model

subject to external disturbance is used for validation. The
learned dynamics function f̂hθ(ht, st, at) is parameterized
as a neural network, where the parameter θ represents the
weights of the network. A straightforward parameterization
for f̂hθ(ht, st, at) would take the most recent history ht, the
current states st and actions at as inputs, and output the pre-
dicted next states ŝt+1. However, this function will be dif-
ficult to learn when the current states st and the next states
st+1 are too similar and the actions have little effect on the
outputs; this difficulty becomes more pronounced as the time
between states ∆t becomes smaller and the state differences
do not indicate the underlying dynamics well [Nagabandi et



al., 2018]. This issue is overcome by instead learning a dy-
namics function that predicts the change in states st over one
time step duration ∆t. Thus, the predicted next states are as
follows: ŝt+1 = st + f̂hθ(ht, st, at).

Collecting Training Data: The training data is collected
by sampling starting configurations s0 ∼ P (s0), generat-
ing random disturbance parameters, executing random ac-
tions at each time step, and recording the resulting trajectories
τ = (s0, a0, · · · , sT−1, aT−1, sT ) of length T .

Data Preprocessing: The trajectories {τ} are sliced into
training data inputs (ht, st, at) and corresponding output la-
bels st+1 − st. The useful training data should begin at
t = T −H , since the agent starts to observe the full length of
history at this time. The training data is then normalized and
stored in the dataset D.

Training Transition Model: The dynamic model
f̂hθ(ht, st, at) is trained by minimizing the error

ε(θ)=
1

|D|
∑

(ht,st,at,st+1)∈D

1

2
||(st+1−st)−f̂hθ(ht, st, at)||,

(6)

using stochastic gradient descent, where || · || represents L2-
norm. While training on the training dataset D, we also eval-
uate the loss in (6) on a evaluation dataset Deval, composed
of trajectories not stored in the training dataset.

Through several experiments using the inverted pendulum
model, we found that the error between the learned model
and the actual model is always less than 2%, which proves
the existence of the dynamic model and thus the rationality
of the multi-order Markov chain hypothesis to some extent.

4.2 REC Architecture and Training
The rationality of the multi-order Markov chain hypothe-

sis ensures that the REC algorithm is able to learn a satisfac-
tory policy πφ(a|h, s). In our implementations, DDPG [Lill-
icrap et al., 2015] is used to train the neural netowrk policy.
DDPG is an actor-critic, model-free algorithm based on the
deterministic policy gradient that robustly solves challenging
problems across a variety of domains with continuous action
spaces. As shown in Figure 2, the REC algorithm consists of
an actor network and a critic network. The actor network acts
as a policy, which takes in the fixed length of state-action
history as well as the current states to choose actions, the
critic network is used to evaluate action-value function (dis-
counted sum of future rewards) based on the state-action his-
tory, the current states and the selected actions. The action-
value function and Temporal-Difference (TD) error are used
respectively to update the parameters of the actor network and
the critic network.

The algorithm details are shown in Algorithm 1. During
training, our purpose is to enable the trained policy to deal
with unknown varying disturbances, thus we randomly gen-
erate parameters of disturbances in each episode. Further-
more, in each episode, when the number of time steps does

𝑄t

reward

st
at

e

actio
n

Environment

TD error: 
𝑟 + 𝛾 ∗ 𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

History

Figure 2: Network Architecture of REC

not reach the history length, the algorithm will randomly
choose actions, and add current states and actions into the
history. When the number of time steps exceeds the history
length, the algorithm will choose actions based on the cur-
rent deterministic policy, then update the history (delete the
oldest state-action pair and add the latest one). The transi-
tion (ht, st, at, rt, ht+1, st+1) for each step is saved to a re-
play memory. The training begins when the replay memory
is full, a batch of N transitions is grabbed from the replay
memory and used to train the actor and critic network at each
step through minimizing actor loss funtion La and critic loss
function Lc:

La = − 1

N

∑
i

Q(hi, si, π(hi, si)), (7)

Lc =
1

N

∑
i

(yi −Q(hi, si, ai))
2, (8)

yi = ri + γQ(hi+1, si+1, π(hi+1, si+1)), (9)

where yi represents target action-value function. We also
need to note that the disturbance behaviour is encoded in the
state-ation history, thus during the training of the policy, the
embeddings of the disturbance behaviour are also learned.



Algorithm 1: REC Algorithm
Randomly initialize critic network Q(h, s, a) and

actor network π(h, s);
Initialize replay memory R;
for episode = 1, M do

Receive initial observation state s0;
Initialize a random process N for action
exploration;

for t = 0, T-1 do
if t ≤ history length then

Select at ∈ [τ lim, τ lim] randomly;
Execute at and observe rt and st+1;
Add st and at into ht+1;

end
else if t > history length then

Select at ∼ π(ht, st) +Nt;
Execute at and observe rt and st+1;
Update ht to ht+1 by deleting st−H and
at−H and adding st and at;

Store transition (ht; st; at; rt;ht+1; st+1)
in R;

if R is full then
Sample a random minibatch of N
transitions (hi; si; ai; ri;hi+1; si+1)
from R;

Update actor and critic by minimizing
the loss function (7) and (8);

end
end
Update state: st ← st+1;
Update history: ht ← ht+1;

end
end

5 Hybrid REC Algorithm
Generic model-free RL in general requires tremendous

data to converge to an optimal policy. While combining with
some prior knowledge, such as a dynamic model or a con-
troller, RL can significantly improve its sample efficiency. We
propose a hybrid-REC algorithm for combining our REC al-
gorithm with a base controller that is pre-trained on iLQR
solutions for a reduced AUV dynamic model. The new ac-
tor network in hybrid-REC is a summation of this fixed base
controller and the trainable actor network same to REC. The
latter one acts as a compensation term for the outputs of base
controller. The final control outputs are the combination of
the base controller and the compensatory policy.

5.1 Base Controller
The base controller is obtained using iLQR [Li and

Todorov, 2004; Todorov and Li, 2005]. The reduced dynam-
ics functions are given by (4) and (5), excluding the distur-

Actor Network

Base Controller 𝑎𝑏𝑡

Action

𝑠𝑡State

Compensatory 
Policy

𝑠𝑡−𝐻
𝑎𝑡−𝐻
…
𝑠𝑡−1
𝑎𝑡−1

History

𝑠𝑡State

𝑎𝑐𝑡

+

Hybrid Policy

Figure 3: Actor Network Architecture of Hybrid REC

bance term τd. Quadratic reward functions are used. We then
optimize the sequence of actions A = {a0, a1, · · · , aN−1}
over a whole trajectory with length N through (3), using the
given reduced dynamic model to predict future states.

Also, the control saturations need to be take into consider-
ation when optimize the control sequence [Tassa et al., 2014].
We consider control saturations of the form:

τ lim ≤ a ≤ τ lim (10)

with element-wise inequality and τ lim, τ lim the respective
lower and upper bounds.

Trajectory optimizers are normally computationally expen-
sive, since they need to solve an optimization problem every
time they meet new initial states s0, which make them not
suitable for real-time operation. However, a neural network
policy can calculate the control signals faster, the action se-
lection only consumes the time for one forward propagation
of the neural network. Thus, we then need to train a neural
network policy to mimic our model-based controller.

The example trajectories are first gathered with the iLQR
controller, which uses the given dynamics functions and the
reward functions. The trajectories are collected into a dataset
D?, and then a neural network policy πψ(a|s) is trained to
match these expert trajectories in D?. This policy’s parame-
ters are trained using the behavioral cloning objective [Naga-
bandi et al., 2018]

min
ψ

∑
(st,at)∈D?

||at − πψ(st)||2, (11)

which we optimize using stochastic gradient descent.

5.2 Hybrid REC Architecture and Training
Having the base controller trained on iLQR solutions, we

then can build a parallel structure for the new actor network
in the hybrid-REC algorithm (Figure 3). This network con-
sists of the base controller with fixed parameters as well as a
trainable neural network policy, which is used to compensate
the outputs of the base controller in order for optimal control
under external disturbances (also referred to as compensatory
policy). The other parts of the network is same to REC.



The general training process is similar to Algorithm 1, ex-
cept that two alternative policies are used for data sampling.
In the beginning, the pre-trained base controller is used first
for selecting actions and thus for data points sampling. After
a certain number of episodes, the action selection policy is
switched from the base controller to the hybrid policy. In the
meantime, the training of the new actor-critic network is on-
going, this process is the same to REC, but only the compen-
satory term is trainable. The purpose of the switchable action
selection policies is to avoid risky exploratory actions of the
compensatory policy in the beginning, as the initial param-
eters of the neural network are randomly generated, leading
to worse performance compared to the base controller in the
beginning of policy optimization.

Some researchers [Nagabandi et al., 2018] proposed to use
the base controller as the initialization for the model-free RL.
However, in order to deal with the disturbances, the model-
free RL algorithm needs to use the state-action history along
with the current states as the policy inputs, leading to differ-
ent dimensions of input space for the base controller and the
model-free policy. Thus the initialization of policy parame-
ters is not feasible in our case.

6 Simulations
6.1 Simulation Setup

Our research addressed the control problems of an AUV
subject to excessive external disturbances, we tested the per-
formance of the proposed algorithms on pose regulation
tasks. The robot has the mass m = 60kg with the size of
0.8×0.8×0.25m3. The controls in roll and pitch of the robot
are omitted, since the robot is designed to be sufficiently sta-
ble in roll and pitch even under strong disturbances, thanks to
the large restoring forces. Thus, the robot has a 8-dimensional
state space and a 4-dimensional action space. The control
limits τ lim = −τ lim = [120N 120N 80N 90Nm]T . In
each episode of the experiment, the robot starts at a random
pose, and it is controlled to reach a given pose and keep stable
thereafter. The current disturbances are exerted on the x and
y axes in the inertial frame.

In these experiments, we only consider disturbances in the
form of sinusoidal waves with period ranging from 4s to 8s
and phase ranging from 0 to 2π rad. Four different ranges of
amplitude are provided, which are 50%-100%, 80%-120%,
100%-120% and 100%-150% of the robot control limits. Our
purpose is to enable the trained policy to deal with unknown
varying disturbance, thus the value of amplitude, period, and
phase are randomly sampled from these distributions in each
episode during training.

6.2 REC Results
The REC algorithm is applied to handle the disturbances

through taking the state-action history and the current states
as policy inputs. Different strength of the disturbances and
different length of the history would affect the disturbance
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Figure 4: Comparison of different range of disturbance am-
plitudes for REC
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Figure 5: Comparison of using history or not for REC
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Figure 6: Comparison of different length of history for REC

rejection performance. We first evaluate various disturbance
amplitudes and history length for REC using empirical eval-
uations, we then compare REC with a canonical controller
(RISE controller) and classical RL for their control perfor-
mance subject to external disturbances.

Figure 4 illustrates the training process of classical RL with
five different ranges of disturbance amplitudes (including the
situation without disturbances), showing that stronger distur-
bances lead to slower convergence speed and lower final cu-
mulative reward, the results accord with our preconception.
The figure also shows that, the performance won’t be af-
fected a lot if the disturbance amplitudes do not exceed the
control limits (50%-100%). Once the disturbance amplitudes
are larger than the control limits, the control performance de-
creases.

We used the situations that the disturbance amplitudes are



(b)

(c)

(a)

Initial Position

Final Position

Figure 7: Comparison of 3D Trajectories: (a) RISE con-
troller; (b) classical RL; (c) REC

larger than the control limits (100%-120% and 100%-150%)
for further analysis. When taking 5-step history (H = 5) into
consideration (as shown in Figure 5), both situations have bet-
ter performance, which means the history information does
improve the disturbance rejection capability. But the conver-
gence speed apparently becomes slower, this might because
the history information enlarges the state space, making the
training process more difficult. In the following sections, we
take the disturbance amplitudes of 100%-120% of the robot
control limits as an example.

For the length of the history, Figure 6 shows that, using
shorter history length gives faster convergence speed and bet-
ter control performance, which means that the convergence
speed is inversely proportional to the dimension of the state
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Figure 8: Comparison between REC and hybrid REC

space. However, we believe there should be an extremum for
the control performance with respect to the history length,
otherwise no history will be the best choice. This part of
knowledge still requires further investigation.

We tested the control performance of RISE control [Fis-
cher et al., 2014], the classical RL and our REC algo-
rithm, and recorded the 3D trajectories. As shown in Fig-
ure 7, given a random initial position (X = 0.195m, Y =
0.861m, Z = 0.206m) and a random set of disturbance
parameters (AX = 130.168N, AY = 141.403N, TX =
6.584s, TY = 7.855s, φX = 0.438π, φY = 0.383π), the
robot is difficult to keep stable using either RISE controller
or classical RL. While considering 5-step state-action history
(H = 5) along with the current states as policy inputs (REC
algorithm), the robot can quickly navigate to the target po-
sition and able to stabilize itself in a small range thereafter,
which proves the effectiveness of our proposed algorithm.

6.3 Hybrid REC Results
We now compare the REC algorithm with the hybrid REC

approach. Figure 8 shows that the hybrid REC starts with a
higher cumulative reward (-6500 vs. -11500), but converges
to an optimal value with nearly the same speed. This illus-
trates that the hybrid REC does avoid risky exploratory ac-
tions in the beginning, ensuring safer sampling and motion,
but does not improve the sample efficiency significantly.

The reason for this phenomenon might be that, the base
controller is trained for a reduced AUV model without distur-
bances, while the hybrid policy is trained using a disturbed
AUV model. Figure 9 shows the state-action distribution in
X axis, we can see that the base controller only has small
control outputs when there is no disturbance. While the out-
puts of hybrid policy are mainly distributed around the control
limits, except the region near the target. This might be be-
cause the impact of disturbances is quite strong, causing that
the base controller cannot provide much help for the training
process of the hybrid policy. The design parameters for the
hybrid REC algorithm may also be a potential reason. As de-
scribed in Section 5, the action selection policy is switched
from the base controller to the hybrid policy after a certain
number of training episodes. But how to choose the optimal
number of episodes to switch policy remains unknown (cur-



Figure 9: State Action Distribution

rent value is 200 episodes). We believe this part of work still
requires further investigation.

7 Conclusion

In this paper, we presents an improved RL algorithm for
excessive disturbance rejection control, REC. Through char-
acterizing the disturbed AUV dynamic model as a multi-order
Markov chain, the unobserved disturbance behaviour can be
encoded in AUV state-action history of fixed length, and its
embeddings can be learned with the policy optimization. A
hybrid-REC algorithm has also been proposed to further im-
prove the performance of REC, through combining a base
controller that is pre-trained on iLQR solutions for a reduced
AUV model, with a compensatory REC policy. Numerical
simulations on pose regulation tasks have demonstrated that
REC significantly outperforms RISE controller and classical
RL, and that the hybrid-REC leads to more efficient and safer
sampling and motion than REC.

While the effectiveness and simplicity of the hybrid REC
algorithm is promising for ease of practical application, an
interesting future work is to investigate the optimal combina-
tion of a base controller and compensatory policy, in order
to further improve sampling efficiency. Another improve-
ment is a better selection of the history length. The current
algorithm directly takes a number of past states and actions
as the policy inputs, this information could be utilized more
sufficiently, for example, the Convolutional Neural Network
(CNN) or Long Short Term Memory (LSTM) could be con-
sidered to deal with these history inputs. In addition, the de-
ployment of this method on real-world robotic systems also
requires future investigation, where the improved sample ef-
ficiency would make it practical to use even under the con-
straints of real-time sample collection in the real world.

Acknowledgments
This work was supported in part by the Australian Re-

search Council (ARC) Linkage Project (LP150100935), the
Roads and Maritime Services of NSW, and the Centre for
Autonomous Systems (CAS) at the University of Technology
Sydney.

References
[Alahi et al., 2016] Alexandre Alahi, Kratarth Goel, Vignesh

Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Sil-
vio Savarese. Social lstm: Human trajectory prediction
in crowded spaces. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
961–971, 2016.
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Model-plant mismatch compensation using reinforce-
ment learning. IEEE Robotics and Automation Letters,
3(3):2471–2477, 2018.

[Kumar et al., 2018] Visak CV Kumar, Sehoon Ha, and
Katsu Yamane. Improving model-based balance con-
trollers using reinforcement learning and adaptive sam-
pling. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7541–7547. IEEE, 2018.

[Li and Todorov, 2004] Weiwei Li and Emanuel Todorov. It-
erative linear quadratic regulator design for nonlinear bi-
ological movement systems. In ICINCO (1), pages 222–
229, 2004.

[Li et al., 2014] Shihua Li, Jun Yang, Wen-Hua Chen, and
Xisong Chen. Disturbance observer-based control: meth-
ods and applications. CRC press, 2014.

[Lillicrap et al., 2015] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[Liu et al., 2012] Cunjia Liu, Wen-Hua Chen, and John An-
drews. Tracking control of small-scale helicopters using
explicit nonlinear mpc augmented with disturbance ob-
servers. Control Engineering Practice, 20(3):258–268,
2012.

[Lu and Liu, 2017] Wenjie Lu and Dikai Liu. Active task
design in adaptive control of redundant robotic systems.
In Australasian Conference on Robotics and Automation.
ARAA, 2017.

[Lu and Liu, 2018] Wenjie Lu and Dikai Liu. A frequency-
limited adaptive controller for underwater vehicle-
manipulator systems under large wave disturbances. In
The World Congress on Intelligent Control and Automa-
tion, 2018.

[Maeder and Morari, 2010] Urban Maeder and Manfred
Morari. Offset-free reference tracking with model predic-
tive control. Automatica, 46(9):1469–1476, 2010.

[Mayne, 1966] David Mayne. A second-order gradient
method for determining optimal trajectories of non-linear
discrete-time systems. International Journal of Control,
3(1):85–95, 1966.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim



Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, pages 1928–
1937, 2016.

[Nagabandi et al., 2018] Anusha Nagabandi, Gregory Kahn,
Ronald S. Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning
with model-free fine-tuning. In Robotics and Automation
(ICRA), 2018 IEEE International Conference on, pages
7579–7586. IEEE, 2018.

[Oh et al., 2016] Junhyuk Oh, Valliappa Chockalingam,
Satinder Singh, and Honglak Lee. Control of memory,
active perception, and action in minecraft. arXiv preprint
arXiv:1605.09128, 2016.

[Ohishi et al., 1987] Kiyoshi Ohishi, Masato Nakao, Kouhei
Ohnishi, and Kunio Miyachi. Microprocessor-controlled
dc motor for load-insensitive position servo system. IEEE
Transactions on Industrial Electronics, (1):44–49, 1987.

[Schulman et al., 2015a] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference
on Machine Learning, pages 1889–1897, 2015.

[Schulman et al., 2015b] John Schulman, Philipp Moritz,
Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advan-
tage estimation. arXiv preprint arXiv:1506.02438, 2015.

[Skogestad and Postlethwaite, 2007] Sigurd Skogestad and
Ian Postlethwaite. Multivariable feedback control: analy-
sis and design, volume 2. Wiley New York, 2007.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction, vol-
ume 1. MIT press Cambridge, 1998.

[Tassa et al., 2014] Yuval Tassa, Nicolas Mansard, and Emo
Todorov. Control-limited differential dynamic program-
ming. In Robotics and Automation (ICRA), 2014 IEEE In-
ternational Conference on, pages 1168–1175. IEEE, 2014.

[Todorov and Li, 2005] Emanuel Todorov and Weiwei Li. A
generalized iterative lqg method for locally-optimal feed-
back control of constrained nonlinear stochastic systems.
In American Control Conference, 2005. Proceedings of the
2005, pages 300–306. IEEE, 2005.

[Umeno and Hori, 1991] Takaji Umeno and Yoichi Hori.
Robust speed control of dc servomotors using modern two
degrees-of-freedom controller design. IEEE Transactions
on Industrial Electronics, 38(5):363–368, 1991.

[Umeno et al., 1993] Takaji Umeno, Tomoaki Kaneko, and
Yoichi Hori. Robust servosystem design with two degrees
of freedom and its application to novel motion control of
robot manipulators. IEEE Transactions on Industrial Elec-
tronics, 40(5):473–485, 1993.

[Woolfrey et al., 2016] Jonathan Woolfrey, Dikai Liu, and
Marc Carmichael. Kinematic control of an autonomous
underwater vehicle-manipulator system (auvms) using au-
toregressive prediction of vehicle motion and model pre-
dictive control. In Robotics and Automation (ICRA),
2016 IEEE International Conference on, pages 4591–
4596. IEEE, 2016.

[Xie and Guo, 2000] Liang-Liang Xie and Lei Guo. How
much uncertainty can be dealt with by feedback? IEEE
Transactions on Automatic Control, 45(12):2203–2217,
2000.

[Yang et al., 2010] Jun Yang, Shihua Li, Xisong Chen, and
Qi Li. Disturbance rejection of ball mill grinding circuits
using dob and mpc. Powder Technology, 198(2):219–228,
2010.

[Yang et al., 2011] Jun Yang, Shihua Li, Xisong Chen, and
Qi Li. Disturbance rejection of dead-time processes us-
ing disturbance observer and model predictive control.
Chemical engineering research and design, 89(2):125–
135, 2011.

[Yang et al., 2014] Jun Yang, Zhenhua Zhao, Shihua Li, and
Wei Xing Zheng. Nonlinear disturbance observer en-
hanced predictive control for airbreathing hypersonic ve-
hicles. In Control Conference (CCC), 2014 33rd Chinese,
pages 3668–3673. IEEE, 2014.


