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Abstract

Current and wave disturbance can severely impact
the operation stability of autonomous underwater
vehicles (AUV), especially in shallow and turbu-
lent water. Also, this kind of disturbance usually
cannot be directly measured or is too expensive to
measure. Traditional disturbance rejection control
approaches are proven to be not sufficiently power-
ful to deal with such underwater disturbance. To
address this problem, we have proposed a novel
reinforcement learning (RL) method, which takes
into consideration a certain period of states and ac-
tions history as observation, and chooses control
action based on these inputs. Furthermore, model-
based and model-free reinforcement learning ap-
proaches are combined in our framework, in order
to achieve both sample efficiency and optimal per-
formance under external disturbance. We empir-
ically demonstrated on pose stabilization task us-
ing simulated AUV model that our model-based ap-
proach can realize good control performance when
there is no disturbance, and that our hybrid algo-
rithm can accelerate model-free learning and avoid
damaging and risky exploratory actions at the inital
stage of training.

1 Introduction
Disturbances and uncertainties widely exist in all industrial

systems and bring adverse effects on performance and even
stability of control systems [Xie and Guo, 2000; Gao, 2014;
Li et al., 2014]. Also, the external disturbance usually cannot
be directly measured or is too expensive to measure. Not sur-
prisingly, disturbance and uncertainty rejection is a key ob-
jective in control system design. In underwater environments,
the effect of disturbance on the robot systems become more
significant. Most inspection tasks for bridges and off-shore
infrastructures require the robot operated in shallow water en-
vironments. In such applications, the underwater vehicle is
often subject to large external disturbances caused by water

flow and current. Woolfrey et al. [2016] considered a situa-
tion that an underwater vehicle-manipulator system operating
in shallow and turbulent water where, the wave disturbances
affect the efficacy of control and the accuracy of the manipu-
lator end-effector. Thus, this paper mainly focuses on exces-
sive disturbance rejection control for underwater robot.

In the early development of disturbance rejection control,
feedback control strategy is used to suppress the unknown
disturbance. Examples of feedback controllers include robust
control [Skogestad and Postlethwaite, 2007], adaptive control
[Åström and Wittenmark, 2013], optimal control [Bertsekas
et al., 1995], sliding mode control (SMC) [Edwards and Spur-
geon, 1998], H-infinity control [Doyle et al., 1989], etc. It
should be pointed out that these advanced control schemes,
rejects disturbances merely through the action of feedback
regulation part and does not deal with the disturbances di-
rectly by controller design. It has been assumed that the sys-
tem deals with a bounded disturbance which should be small
enough [Ghafarirad et al., 2014], when meeting strong distur-
bances, these methods may lead to some limitations.

In order to improve the disturbance rejection performance
of the robot system, a feedforward compensation part for the
disturbances is introduced to the controller besides a conven-
tional feedback part [Yang et al., 2010]. However, usually,
it is hard or even impossible to measure the disturbances of
underwater current. A feasible solution is to develop dis-
turbance estimation technique [Zeinali and Notash, 2010;
Ghafarirad et al., 2012; Yang et al., 2011a; Chen and Guo,
2004]. The basic idea is to estimate the disturbance (or
the influence of the disturbance) from measurable variables,
and then, a control action can be taken, based on the dis-
turbance estimate, to compensate for the influence of the
disturbance [Chen et al., 2016]. In this setting, the dis-
turbances do not only refer to that from the external envi-
ronment of a control system but also uncertainties of the
controlled system including unmodeled dynamics and pa-
rameter perturbations [Gao, 2014; Li et al., 2014; Guo and
Cao, 2014]. Various disturbance estimation and attenua-
tion methods have been proposed and practiced by many re-
searchers and engineers, such as disturbance observer (DOB)



[Ohishi et al., 1987; Chen et al., 2000; Umeno et al., 1993;
Umeno and Hori, 1991], unknown input observer (UIO) in
disturbance accommodation control (DAC) [Johnson, 1968;
1971], and extended state observer (ESO) [Han, 1995; Gao et
al., 2001]. The disturbance observer-based control (DOBC)
obtains promising robustness and disturbance rejection per-
formance without sacrificing the nominal control perfor-
mance. However, it fails to consider the constraints of the
states and the controls [Gao and Cai, 2016]. And how to deal
with the possible constraints in the design of the control sys-
tem is an open problem.

Model predictive control (MPC) [Camacho and Alba,
2013] is well known for its constraint handling capacity. The
method can achieve approximately optimal control perfor-
mance even under practical constraints [Gao and Cai, 2016].
This is because MPC considers a period of time instead of
only the current moment. It employs an explicit predic-
tion model of the plant to optimize future plant behaviour
[Maeder and Morari, 2010]. At each time step, an open
loop optimal control sequence is obtained by means of solv-
ing an optimization problem. The first element of this se-
quence is applied to the plant, the rest is discarded. This op-
timization procedure is repeated at every time step. How-
ever, in order to realize optimal control performance un-
der disturbance, MPC requires an accurate model of the
robot system with disturbance, which is quite difficult to ob-
tain. Thus, researchers have developed a compound control
scheme consisting of a feedforward compensation part based
on DOB and a feedback regulation part based on MPC (DOB-
MPC) [Maeder and Morari, 2010; Yang et al., 2010; 2011b;
Liu et al., 2012; Yang et al., 2014; Dirscherl et al., 2015;
Gao and Cai, 2016] to realize better performance than normal
DOBC or MPC. However, the MPC technique generally re-
quires the solution of an optimization problem at every sam-
pling instant [Liu et al., 2012]. This poses an obstacle on
the real-time implementation due to the heavy computational
burden.

It seems that traditional control approaches are not suffi-
ciently powerful to deal with such underwater disturbance.
While reinforcement learning has shown its advantages in
many control problems. Compared with the optimized con-
trol sequence provided by MPC at each time step, RL can
give a single control policy after training without subsequent
changes, and this policy can choose the action to take based
on the state observed. Also, model-free RL does not require
any model knowledge in advance to train this policy. Thus,
RL may be a potentially better solution for the underwater
disturbance rejection control. When using RL to deal with
external disturbance, if the algorithm only observes the cur-
rent robot state, and chooses action based it, this problem will
not be a Markov Decision Process (MDP). The reason is that
the state transition does not only depend on the current state
and action, but also related to the disturbance value. Thus we
cannot define this problem as a one-step MDP, a framework

of multi-step MDP will be necessary.
Deep reinforcement learning algorithms based on Q-

learning [Mnih et al., 2015; Oh et al., 2016; Gu et al.,
2016b], policy gradients [Schulman et al., 2015a; Gu et
al., 2016a], and actor-critic methods [Lillicrap et al., 2015;
Mnih et al., 2016; Schulman et al., 2015b] have been shown
to learn complex skills in high-dimensional state and action
spaces, including robotic locomotion, autonomous driving,
playing video game, and navigation. However, the high sam-
ple complexity of purely model-free algorithms has made
them difficult to deploy in real world, where sample col-
lection is limited by the constraints of real-time operation.
Model-based reinforcement learning algorithms are generally
known to outperform model-free methods in terms of sam-
ple efficiency [Deisenroth et al., 2013], various model-based
approaches have been proposed [Deisenroth and Rasmussen,
2011; Kuvayev and Sutton, 1996; Forbes and Andre, 2002;
Hester and Stone, 2017; Jong and Stone, 2007; Sutton, 1991],
and in practice have been applied successfully to control both
simulated and real-world robotic systems, such as inverted
pendulums [Deisenroth and Rasmussen, 2011], manipula-
tors [Brauer, 2012], and legged robots [Schmidt and Lipson,
2009]. Derner et al. [2018] proposed to use symbolic regres-
sion to construct a symbolic model of robot, then used value
iteration to optimize a policy based on the symbolic model
found. An essential problem of model-based RL is the diffi-
culty to scale to high-dimensional state/action spaces, Chatzi-
lygeroudis and Mouret /shortcitechatzilygeroudis2017using
tried to address this problem through using prior information
about the system that is modeled to learn the residual model.

Although such model-based algorithms are significantly
more sample efficient and more flexible than task-specific
policies learned with model-free methods, their asymptotic
performance is usually worse than model-free learners due
to model bias. Model-free algorithms are not limited by
the accuracy of the model, and therefore can achieve bet-
ter final performance, though at the expense of much higher
sample complexity [Deisenroth et al., 2013; Kober et al.,
2013]. To address this issue, researchers tried to combine
model-based methods and model-free learners, so that the al-
gorithms can quickly achieve moderately proficient behavior,
and then slowly achieve near-optimal behavior. Kumar et al.
[2018] and Koryakovskiy et al. [2018] both proposed to use
model-free reinforcement learning to learn a compensatory
control signal on top of a model-based controller. The model-
based controller can speed up learning and avoid damaging
and risky exploratory actions, and model-free learner can en-
hance the control performance by compensating the model-
plant mismatch. However, the model-based controllers usu-
ally need to do some real-time calculations, which is much
slower than the forward propagation of a neural network pol-
icy. Nagabandi et al. [2018] also used model-based con-
troller, but they used supervised learning to train a policy to
mimic the model-based controller, and then used this imita-



tion policy as an initialization for the model-free learner.
This paper proposed a novel reinforcement learning algo-

rithm for current disturbance rejection control of autonomous
underwater vehicles. In order to deal with the excessive cur-
rent disturbance in shallow and turbulent water, the trained
policy will take a certain period of history of states and ac-
tions as current observation, and choose action based this
history. In addition, model-based approach and model-free
learner are combined to improve sample efficiency and en-
sure optimal performance under disturbance. Given a rough
model of the robot, the iterative Linear Quadratic Regulator
(iLQR) is used to generate trajectories without disturbance,
then supervised learning is used to train an imitation policy
to mimic these trajectories, using current robot state as obser-
vation. Afterwards, we use Deep Deterministic Policy Gradi-
ent (DDPG) algorithm to train a model-free policy along with
the model-based policy, using history as observation. The fi-
nal control signal is a combination of these two policies.

2 Preliminaries
2.1 Trajectory Optimization

Trajectory optimization is the process of finding a state-
control sequence which locally minimizes a given cost func-
tion [Tassa et al., 2014]. Differential Dynamic Programming
(DDP) is a second-order shooting method [Mayne, 1966]
which under mild assumptions admits quadratic convergence
for any system with smooth dynamics [Jacobson and Mayne,
1970]. Classic DDP requires second-order derivatives of
the dynamics, which are usually the most expensive part of
the computation. If only the first-order terms are kept, one
obtains a Gauss-Newton approximation known as iterative
Linear Quadratic Regulator (iLQR) [Li and Todorov, 2004;
Todorov and Li, 2005], which is similar to Riccati iterations,
but accounts for the regularization and line-search required to
handle the nonlinearity.

We consider a system with discrete-time dynamics, but
a similar derivation holds for the continuous case [Mayne,
1966]. The dynamics is modeled by the generic function f

st+1 = f (st ,at), (1)

which describes the evolution from time t to t +1 of the state
s ∈ Rn, given the action a ∈ Rm. A trajectory {S,A} is a se-
quence of states S = {s0,s1, · · · ,sN}, and corresponding con-
trols A = {a0,a1, · · · ,aN−1} satisfying (1).

The total cost denoted by J is a sum of running costs l
and final cost l f , incurred when starting from initial state s0
and applying the control sequence A until the horizon N is
reached:

J(s0,A) =
N−1

∑
t=0

l(st ,at)+ l f (sN). (2)

Indirect methods, like iLQR, represent the trajectory implic-
itly using only the controls A. The states S are recovered by

integration of (1) from the initial state s0. The solution of the
optimal control problem is the minimizing control sequence

A? = argmin
A

J(s0,A). (3)

2.2 Reinforcement Learning

Reinforcement learning is a trial-and-error method which
does not require an explicitly given model, and can naturally
adapt to uncertainties in the real system [Sutton and Barto,
1998]. In reinforcement learning, the goal is to learn a pol-
icy that chooses actions at ∈ A at each time step t in response
to the current state st ∈ S, such that the total expected sum
of discounted rewards is maximized over all time. At each
time step, the system transitions from st to st+1 in response
to the chosen action at and the transition dynamics function
f : S×A→ S, collecting a reward rt according to the reward
function r(st ,at). The discounted sum of future rewards is
then defined as ∑

∞

t ′=t γ t ′−trt ′ |st ,at , where γ ∈ [0,1] is a dis-
count factor that prioritizes near-term rewards over distant re-
wards [Nagabandi et al., 2018].

3 Problem Formulation

As shown in Figure 1, our underwater robot consists of a
6-degree of freedom (DOF) underwater vehicle and a 3-DOF
manipulator, we only consider the 6-DOF body in this work.
Due to the hardware design, the roll and pitch of the under-
water vehicle are hardly affected by the external current dis-
turbance. Thus, in order to simplify this problem, we only
keep the 3-DOF for vehicle’s position and the 1-DOF for yaw
angle. The state space of the robot s consists of the vehicle
position and yaw angle q, as well as the corresponding ve-
locities q̇. The action space a includes the control forces and
torques of the vehicle τc. Also, the control limits need to be
taken in consideration.

The dynamics function is given by (1), we detail it for our

Figure 1: Real Autonomous Underwater Vehicle



robot system of the form:

Mq̈+C+Fe = τc + τd , (4)[
q
q̇

]
=

[
q
q̇

]
+

[
q̇
q̈

]
dt (5)

where M is the inertia matrix (including added mass), C is
the vector of Coriolis and centripetal terms (including added
mass), Fe is vector of external forces, including gravity, buoy-
ancy, fluid acceleration and drag force, τd is the disturbances
forces, q̈ represent accelerations of the vehicle.

The underwater disturbance τd mainly comes from current
and wave, which are time-varying signals. However, different
from random disturbance, current and wave disturbance has
a strong time-series pattern, which could be either periodic
or nonperiodic. It means this pattern can be learned for future
disturbance prediction and thus for better control. In our case,
we assume that the disturbance is close to the robot control
limits, but is constrained within a reasonable range, ensuring
the controller is able to converge. And in this paper, we only
consider the periodic disturbance.

4 Model-Free Reinforcement Learning
We first try using purely model-free reinforcement learn-

ing algorithm to solve this problem. In order to deal with the
unknown periodic external disturbance, a certain period of
history states and actions ht = {st−H ,at−H , · · · ,st−1,at−1,st}
need to be taken into consideration as current observation
when choosing action, H represents the length of the his-
tory. Before using this observation history to train a policy,
we first need to verify the existence of this transition model
st+1 = fh(ht ,at).

4.1 Dynamic Model Learning
We parameterize the learned dynamics function f̂hθ (ht ,at)

as a neural network, where the parameter θ represents the
weights of the network. A straightforward parameterization
for f̂hθ (ht ,at) would take the current history ht and action at
as input, and output the predicted next state ŝt+1. However,
this function will be difficult to learn when the current states
st and st+1 are too similar and the action has little effect on the
output; this difficulty becomes more pronounced as the time
between states ∆t becomes smaller and the state differences
do not indicate the underlying dynamics well [Nagabandi et
al., 2018]. We overcome this issue by instead learning a dy-
namics function that predicts the change in state st over one
time step duration ∆t. Thus, the predicted next state is as fol-
lows: ŝt+1 = st + f̂hθ (ht ,at).

Collecting Training Data: We collect training data by
sampling starting configurations s0 ∼ p(s0), setting a certain
pattern of disturbance (amplitude, period, phase), executing
random actions at each time step, and recording the resulting
trajectories τ = (s0,a0, · · · ,sT 1,aT 1,sT ) of length T .

Data Preprocessing: We slice the trajectories {τ} into
training data inputs (ht ,at) and corresponding output labels

st+1− st . The useful training data should begin at t = T −H,
since the agent starts to observe the full length of history at
this time. We then subtract the mean of the data and divide by
the standard deviation of the data to ensure the loss function
weights the different parts of the state (e.g., positions and ve-
locities) equally. The training data is then stored in the dataset
D.

Training Dynamic Model: We train the dynamic model
f̂hθ (ht ,at) by minimizing the error

ε(θ) =
1
|D| ∑

(st ,ht ,at ,st+1)∈D

1
2
||(st+1− st)− f̂hθ (ht ,at)||, (6)

using stochastic gradient descent. While training on the train-
ing dataset D, we also calculate the loss in (6) on a evaluation
dataset Deval , composed of trajectories not stored in the train-
ing dataset.

Through several experiments using inverted pendulum
model, we found that the error between the learned model
and actual model is always less than 2%, showing that the
history model exists to some extent.

4.2 Model-Free Reinforcement Learning

The existence of the dynamic model under disturbance en-
sures that the model-free reinforcement learning algorithm is
able to learn a satisfactory policy πφ (a|h) for disturbance re-
jection control. Specifically, we use Deep Deterministic Pol-
icy Gradient (DDPG) [Lillicrap et al., 2015], which is an
actor-critic, model-free algorithm based on the determinis-
tic policy gradient that robustly solves challenging problems
across a variety of domains with continuous action spaces,
though our method could also be combined with other model-
free reinforcement learning algorithms.

In our implementation, DDPG is used to train a neural net-
work policy that chooses action based on a certain period of
history of states and actions. During training, we set differ-
ent pattern of disturbance in each episode, in order to let the
algorithm learn the capability of disturbance prediction and
rejection, no matter what kind of disturbance pattern occurs.
Furthermore, the history space has a certain length H, in each
episode, when the history space is not full, the algorithm need
to randomly choose action, and add current state and action
into the history space. When the history space is full, the
algorithm will choose action based on the current determin-
istic policy, then update the history space (delete the oldest
state-action pair and add the latest one), and the experience
(history, action, reward, next history) for each step would be
save to a replay memory. The training begins when the re-
play memory is full, a batch of experience would be grabbed
from the replay memory and used to train the actor and critic
network at each step. Thus, DDPG is also an off-policy rein-
forcement learning algorithm.



5 Model-Based Reinforcement Learning
We now present our model-based reinforcement learning

algorithm. The prerequisite for this model-based approach is
the availability of the dynamic model f . We assume the robot
model in still water is given.

5.1 Model-Based Control
The model-based control is implemented using iLQR. The

dynamics function is given by (4) and (5). The running cost
function l and final cost function l f are defined as:

c = l(st ,at)

= (st − sgoal)
T Q(st − sgoal)+(at −agoal)

T R(at −agoal),
(7)

c f = l f (st)

= (st − sgoal)
T Q(st − sgoal), (8)

where sgoal and agoal are the goal state and control, Q is
the quadratic state cost matrix, R is the quadratic control
cost matrix. We then optimize the sequence of actions A =
{a0,a1, · · · ,aN−1} over a whole trajectory with length N, us-
ing the given dynamics model to predict future states:

A? = argmin
A

J(s0,A),

st+1 = f (st ,at). (9)

Also, the inequality constraints on the control need to be
take into consideration when optimize the control sequence
[Tassa et al., 2014] . We consider inequality constraints of
the form:

b≤ u≤ b (10)

with element-wise inequality and b, b the respective lower
and upper bounds. Tassa et al. [2014] has proposed an algo-
rithm called box quadratic programming (QP), which accom-
modates box inequality constraints on the controls, without
significantly sacrificing convergence quality or computational
effort.

5.2 Training Imitation Policy
Trajectory optimizers are normally computationally expen-

sive, since they need to solve an optimization problem every
time they meet a new initial state s0, which make them not
suitable for real-time operation. However, a neural network
policy can perform the control signals faster, the action se-
lection only consumes the time for one forward propagation
of the neural network. Thus, we then need to train a neural
network policy to mimic our model-based controller.

We first gather example trajectories with the iLQR con-
troller, which uses the given dynamics functions f and the
cost function l and l f . We collect the trajectories into a dataset
D?, and we then train a neural network policy πψ(a|s) to

match these expert trajectories in D?. This policy’s parame-
ters are trained using the behavioral cloning objective [Naga-
bandi et al., 2018]

min
ψ

∑
(st ,at )∈D?

||at −πψ(st)||22 (11)

which we optimize using stochastic gradient descent.

6 Hybrid Reinforcement Learning
Purely model-free reinforcement learning algorithms are

normally sample inefficient, requiring a very large number of
samples to achieve good performance; purely model-based
approaches usually lag behind the model-free algorithms in
final performance due to the model inaccuracy. To achieve
both the optimal control performance and the data efficiency,
we can combine the benefits of model-based and model-free
learning. Also, the given robot model only considers the
situation in still water, without the explicit modeling of the
current disturbance, so the model-based learning cannot keep
the near-optimal performance under the external disturbance,
this is another reason why we need an additional model-free
learner. We propose a simple but highly effective method for
combining our model-based approach with model-free meth-
ods by using the trained model-based policy as a priori, then
training the model-free learner as a compensation for the out-
put of the model-based policy. The final control signal will be
the combination of the output of both the model-based policy
and the model-free policy.

Some researchers [Nagabandi et al., 2018] proposed to use
the model-based policy as the initialization for the model-free
reinforcement learning algorithm. However, in order to deal
with the disturbance, the model-free reinforcement learning
algorithm needs to use the history as the policy input, lead-
ing to different dimension of input space for model-based and
model-free policies. This is the reason why we need to com-
bine these two policies rather than using the model-based pol-
icy as the initialization for the model-free learner.

7 Experimental Results
7.1 Task Description

Our research addressed the control problems of an AUV
subject to excessive external disturbance. We omitted the
DOF in roll and pitch of the robot, since the robot is designed
to be sufficiently stable in roll and pitch even under strong dis-
turbance. Thus, the robot has a 8-dimensional state space and
a 4-dimensional action space. In each episode of the exper-
iment, the robot starts at a random pose, and it is controlled
to reach a given pose and keep stable thereafter. The current
disturbance is exerted on the x and y axes in the inertial frame.

The disturbance considered in the experiments is in the
form of sinusoidal wave. We vary its amplitude, frequency
and phase in each episode during training and evaluation, in
order to prove that our algorithms are able to adapt to different
disturbance patterns, rather than a fixed disturbance pattern.



Figure 2: Simulated Autonomous Underwater Vehicle (solid:
current pose, transparent: target pose)

7.2 Model-Free Reinforcement Learning
We’d like to enable the purely model-free reinforcement

learning algorithm to handle the disturbance through taking
the history as policy inputs. Different strength of the distur-
bance and different length of the history would affect the dis-
turbance rejection capability. We first evaluate various situ-
ations for model-free reinforcement learning using empirical
evaluations.

The external disturbance given in simulation were all si-
nusoidal waves with period ranging from 4s to 8s and phase
ranging from 0 to 2π rad. We provided four different ampli-
tude range of the disturbance, which were 50%-100%, 80%-
120%, 100%-120% and 100%-150% of the robot control lim-
its. Three choices of history length were given: 0s, 1s and 2s.
We can see that larger disturbance amplitude leads to lower
cumulative reward and slower convergence speed, this result
accords with the common sense. We also learn from the robot
trajectory data (omit here for brevity) that, the robot can al-
ways keep relatively stable if the disturbance does not exceed
the control limits. Once the disturbance is larger than the con-
trol limits, the control stability will decrease significantly.

For the length of history, we could tell from the figure that,
using shorter history length gives a better convergence per-
formance. However, we believe that there should be an ex-
tremum, otherwise no history will be the best choice. This
part of knowledge still requires more investigation.

7.3 Hybrid Reinforcement Learning
We now compare the purely model-free reinforcement

learning algorithm with our hybrid approach. When there is
neither disturbance nor history, the hybrid approach is appar-
ently better than the model-free learner. The hybrid approach
starts with a higher initial reward (-2000 vs. -9000), and is
nearly 4 times faster (200 steps vs. 800 steps) to converge
to an optimal value. If we take the disturbance and history
into consideration, which is the exactly the problem we need
to solve, we found that the hybrid approach still outperforms
the model-free method, but the advantage is not that obvious.

(c)

(b)

(a)

steps

C
u

m
u

la
ti

ve
 R

ew
ar

d

steps

C
u

m
u

la
ti

ve
 R

ew
ar

d

steps

C
u

m
u

la
ti

ve
 R

ew
ar

d

Figure 3: Model-free RL with different disturbance ampli-
tude: (a) no history; (b) 1s history; (c) 2s history
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Figure 4: Model-free RL with different history length

This situation is even worse when taking the disturbance into
consideration but not using the history.

This phenomenon might due to a design parameter for the
hybrid RL algorithm. During the initial training steps, we
only use model-based policy for action selection, and use the
sampled data ro train the model-free learner. Then, after a cer-
tain number of steps, we combine the model-based policy and
model-free policy together for action selection. The purpose
of this setting is to avoid the initial random exploration of
the model-free RL algorithm, and add the model-free policy
to the running policy when it has satisfactory performance.
However, the number of steps to add the model-free policy re-
mains a problem. Currently we use 50 steps for the scenario
without history and 200 steps for the scenario with history,
we believe this part of work still need more investigation.



(c)

(b)

(a)

steps

C
u

m
u

la
ti

ve
 R

ew
ar

d

steps

C
u

m
u

la
ti

ve
 R

e
w

ar
d

steps

C
u

m
u

la
ti

ve
 R

ew
ar

d

Figure 5: Comparison between model-free RL and hybrid
RL: (a) no disturbance, no history; (b) has disturbance, no
history; (c) has disturbance, has history

8 Conclusion
In this paper, we presented a new disturbance rejection

control method, which used reinforcement learning and took
a certain period of states and actions history as policy input.
The results are convincing, especially when the external dis-
turbance is exceed the robot control limits. We also proposed
a model-based approach based on iLQR algorithm, the col-
lected optimal trajectories were used for training an super-
vised policy. Then, we combined these two methods to real-
ize both sample efficiency and optimal control performance
under disturbance.

While the effectiveness and simplicity of our hybrid
method is promising for ease of practical application, an in-
teresting idea for future work is to investigate a more tight
combination of model-based and model-free approaches, in
order to further improve sample efficiency. Another direc-
tion for future work is to make more reasonable choice of the
history length. The current algorithm directly take a bunch
of past states and actions as the policy inputs, while these
information could be utilized more sufficiently, for example,
the convolutional neural network (CNN) or long short term
memory (LSTM) could be considered to deal with these his-
tory data. Finally, the whole work will be implemented on
a real underwater robot. In addition, the deployment of this
method on real-world robotic systems is also a potential op-
tion, where the improved sample efficiency would make it
practical to use even under the constraints of real-time sam-
ple collection in the real world.
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