

Faculty of Engineering & Information Technology

## A Mild Hybrid Vehicle Control Unit Capable of Torque Hole Elimination in Manual Transmissions

A thesis submitted for degree of **Doctor of Philosophy** 

Mohamed Mahmoud Zakaria Awadallah

December 2017



School of Mechanical and Mechatronic Engineering (MME) Faculty of Engineering & Information Technology (FEIT)

### A Mild Hybrid Vehicle Control Unit Capable of Torque Hole Elimination in Manual Transmissions

| Research Centre:                                          | The UTS Centre for Green Energy and Vehicle<br>Innovations (GEVI) |
|-----------------------------------------------------------|-------------------------------------------------------------------|
| Done by:                                                  | Mohamed Mahmoud Zakaria Awadallah                                 |
| Supervisor:                                               | Prof. Nong Zhang                                                  |
| Co-supervisors:                                           | Dr. Paul Walker<br>Peter Tawadros                                 |
| Course code: C02<br>Subject Number: -<br>Date: 01/07/2013 | 018<br>49986 Doctor of Philosophy (PhD)<br>to 20/12/2017          |

University of Technology Sydney (UTS) P.O. Box 123, Broadway, Ultimo, N.S.W. 2007 Australia

# CERTIFICATE

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Production Note: Signature removed prior to publication.

Date: 31 July 2018

### Acknowledgements

بِسْمِ اللَّهِ الرَّحِمَنِ الرَّحِمِيمِ فَإِنَّ مَعَ الْحُسْرِ يُسْرًا (٥) إِنَّ مَعَ الْحُسْرِ يُسْرًا (٦) (سورة الشرح) For indeed, with hardship {will be} ease (5). Indeed, with hardship {will be} ease (6). {Quran, The Soothing/ash-Sharh 94}

First and foremost, my sincere thanks to Allah, who endowed me to complete this PhD degree.

I would like to sincerely thank my supervisor Professor Nong Zhang, thank you for all your guidance, support and the opportunities you have presented to me. Your managerial skills and uncompromising quest for excellence always motivated me to present the best of what I can. Dr Paul Walker, my Co-supervisor, thank you for all the hours of collaboration, insightful ideas and constant pursues of research output. Together with Prof. Nong Zhang, you have been both a source of inspiration that continued to support me to achieve the research goals.

I wish to acknowledge the support of the following people Dr Paul Walker and Mr Peter Tawadros for their assistance and support my research during my candidature. Thanks also extend to my UTS colleagues whose advice, humour and knowledge have helped me focus and provided entertainment through this journey.

Special thanks must go to my parents for their continuous support, prayers, encouragement and for motivating me to seek a high reduction. I would also like to sincerely thank my family who was always there to support me and making it easy for me to concentrate on my research.

Financial support for this project is provided jointly by the Australian Research Council

(Linkage ID number LP0775445) moreover, The UTS Centre for Green Energy and Vehicle Innovations (GEVI).

#### Abstract

This thesis describes a new technique for eliminating the "torque hole" in conventional manual transmission-equipped vehicles (CV). This technique involves designing a hybrid control system for a hybridized powertrain, which was used in the development of the new control techniques. To develop a mild hybrid electric vehicle (MHEV) that is both relatively cheap to manufacture, and offers smooth torque transfer during a gear change, as well as a degree of damping against torque oscillation. It needs a small electric motor (EM) at the transmission output, in addition, clutch position measurement, and optionally, automatic actuation. The function of the motor is to eliminate or reduce the torque hole during gear changes by providing a tractive force when the clutch is disengaged, and also provide damping, particularly during gear changes and take-off. In another instance, the electric motor may act as a motor or generator in certain driving situations. The MHEV requires only a single EM in its powertrain to function as an electric motor or generator in different time intervals controlled by an energy management strategy (EMS). In other words, the motor of the vehicle act as an accelerator during acceleration to assist Internal combustion engine (ICE) and act as a generator during deceleration. This powertrain uses electric energy sources in the form of battery or ultracapacitors pack.

In this work, through a power flow analysis of the powertrain, the main vehicle components were sized according to the vehicle parameters, specifications and performance requirements to meet the expected power requirements for the steady-state velocity of an average typical small 5-passenger light vehicle. After the sizing process, the components were selected based on the simulation, which was based on a 1990 Mazda MX-5 (Miata). Then, the model of individual components that make up the overall structure of the MHEV powertrain, are

developed in Simscape/Simulink environment and the Simscape and SimDriveline tool boxes environment to study their operational performance in various drive cycles measured under real-life conditions. The accuracy of the model is verified and validated by a comparison between the simulation results from the CV and the Advanced Vehicle Simulator (ADVISOR) codes during a number of standard drive cycles.

This project aims to develop a low-cost electric hybrid drive system for small vehicles as a proof of concept. The hybrid drive system being developed is such that in a massmanufacturing situation the total extra cost of the system should not exceed 5% over the expense of the base vehicle as manufacture cost for hybridization to include motor, inverter, and battery. Such a system would be suitable for low-end cars typically sold in developing nations and would serve both to reduce fossil-fuel dependency in these regions as well as improve air pollution characteristics, which are typically poor owing to urban particulate matter. Extensive analysis has been conducted on the fuel economy, greenhouse gas (GHG) emissions, electrical consumption, operation cost and total lifetime cost computed for different standard drive cycles.

Dynamic investigations of the system with numerous degrees of freedom are conducted in this thesis, and the resulting sets of equations of motion are written in an indexed form that can easily be integrated into a vehicle model. Lumped stiffness-inertia torsional models of the powertrain will be developed for different powertrain states to investigate transient vibration. The mathematical models of each configuration, using eight degrees of freedom (DOF) for the MHEV, compared to seven degrees of freedom for a CV. Free vibration analysis is undertaken to compare the two powertrain models and demonstrate the similarities in natural frequencies and mode shapes.

The impact of motor power on the degree of torque hole compensation is also investigated, keeping in mind the practical limits to motor specification. This investigation uses both the

output torque, vehicle speed as well as vibration dose value (VDV) to evaluate the quality of gearshifts at different motor sizes.

A credible conclusion is gained, through different simulation phases in the form of Softwarein-the-loop (SIL), Rapid prototyping, and hardware-in-the-loop (HIL) to support the MHEV scenario in the development. The strategies proposed in this thesis are shown to not only achieve shifting performance, driving comfort and energy recovery rate during all conditions but also to significantly reduce cost in both the short and long terms.

**Keywords** — Automotive; Battery; BLDC; Constraint modeling; Driveability; Driving cycle; Dynamic programming; Dynamics; Emissions; Fuel economy; Gearshift strategy; Hardware-in-the-loop (HIL); Hybrid powertrain architectures; Life cycle assessment; Manual transmission; Mild Hybrid Electric Vehicle (MHEV); Model-Based Design; Operation cost; Optimal control; Passenger vehicles; Rapid Prototyping; Simulation; Torque-fill; Torque-hole; Whole-life costing;

v

### Contents

| CERTIFICATE                                         | I       |
|-----------------------------------------------------|---------|
| ACKNOWLEDGEMENTS                                    | II      |
| ABSTRACT                                            |         |
| CONTENTS                                            |         |
| LIST OF FIGURES                                     | IX      |
| LIST OF TABLES                                      |         |
| ACRONYMS AND ABBREVIATIONS                          | XII     |
| CHAPTER 1: INTRODUCTION                             |         |
| 1 1 Statement                                       | 1       |
| 1.2 Objectives                                      | 2       |
| 1.2 Solution                                        | 4       |
| 1.4 Outline of the thesis                           | 5       |
| 1.5 Publications and Achievements                   | 9       |
| CHAPTER 2: BACKGROUND AND LITERATURE REVIEW         | 10      |
| 2.1 Background                                      | 10      |
| 2.1 Environmental protection                        | 12      |
| 2.1.1 Environmental protection                      | 12      |
| 2.2 Dictature Review                                | 10      |
| 2.2.1 Venice propulsion systems                     | 17      |
| 2.2.2 Classification based on topology              | 10      |
| 2.2.5 Classification based on topology              |         |
| 2.2.4 Faranci TIL V classification                  |         |
| 2.2.5 White The V                                   |         |
| 2.2.0 Automotive transmissions                      |         |
| 2.2.7 Torque note & shift process anarysis          |         |
| CHAPTER 3. MHEV PARAMETERS SPECIFICATIONS AND REGIU | REMENTS |
| 37                                                  |         |
| 3.1 Motor specifications                            | 40      |
| 3.1.1 Power calculations                            | 41      |
| 3.1.2 Motor type selection                          | 43      |
| 3 1 3 BLDC / PMSM                                   | 45      |
| 3.1.4 The motor ordered                             |         |
| 3.2 Mild hybrid powertrain configuration            | 49      |
| CHAPTER 4: DVNAMIC MODELING OF A POWERTRAIN         | 52      |
| 4.1 Powertrain lumped model formulation             | 53      |
| 4.7 Free vibration analysis                         | 59      |
| 4.3 Summary and contributions                       | 63      |
| CHAPTER 5. MHEV MODEL DEVELOPMENT                   |         |
| 5.1 The overall structure of the powertrain model   | 65      |
| 5.1.1 Modeling environment                          |         |
| 5.1.2 Vehicle torque model                          |         |
| 5.1.2 Finding model                                 |         |
| 5.1.4 Single dry clutch model                       |         |
| 5.1.5 Gears model                                   |         |
| 5.1.6 Motor model                                   |         |
| 5.2 Transmission actuation and driver model         |         |
| 5.2.1 Throttle and brake control                    | 73      |
|                                                     |         |

| 5.2.2 Shift-control strategies for mild HEV                                   | 74    |
|-------------------------------------------------------------------------------|-------|
| 5.2.3 Energy management strategy                                              | 80    |
| 5.2.4 Other drive conditions                                                  |       |
| 5.3 Mass constraints                                                          |       |
| 5.4 Simulation results                                                        |       |
| 5.5 Motor selection                                                           |       |
| 5.6 Shift quality                                                             | 91    |
| 5.7 Drive cycles                                                              | 94    |
| 5.8 Summary                                                                   | 98    |
| CHAPTER 6: MODEL VERIFICATION WITH FUEL AND EMISSIONS                         |       |
| ANALYSIS 100                                                                  |       |
| 6.1 Survey and discussion of the choice simulation tool for verification      | 101   |
| 6.2 Validation conventional vehicle model                                     | 103   |
| 6.3 Analysis of fuel economy and electricity consumption                      | 104   |
| 6.3.1 Physical performance benchmarking and torque-hole elimination           |       |
| 6.4 Direct emissions                                                          |       |
| 6.5 Low and high-density traffic patterns drive cycles                        |       |
| 6.6 Driver classification                                                     | 117   |
| 6.7 Summary                                                                   |       |
| CHAPTER 7: A COMPARATIVE STUDY OF BATTERY AND ULTRA-                          |       |
| CAPACITORS 123                                                                |       |
| 7.1 N1MH battery                                                              |       |
| 7.2 Battery SOC                                                               |       |
| 7.2.1 SOC battery model                                                       |       |
| 7.3 Impact of regenerative braking on the SOC of the battery during the examp | le of |
| high congestion drive cycle                                                   |       |
| 7.4 Ultracapacitor SOC                                                        |       |
| 7.4.1 Capacity calculation                                                    | 132   |
| 7.5 Summary                                                                   | 134   |
| CHAPIER 8: CUSI ANALYSIS                                                      | 127   |
| 8.1 Production Cost                                                           | 13/   |
| 8.1.1 Electric propulsion system (EPS) Cost                                   | 138   |
| 8.1.2 Battery cost                                                            | 140   |
| 8.2 Payback period                                                            | 140   |
| 8.5 Ultracapacitor cost                                                       | 141   |
| 8.4 Venicles daily and annual operation cost                                  | 142   |
| 0,5 SUMMARY                                                                   | 145   |
| 0.1 Design and system definition                                              | 143   |
| 9.1 Design and system definition                                              | 1/10  |
| 9.1.1 Simulation model                                                        | 150   |
| 9.2 FIGOUYPHIG and deployment                                                 | 150   |
| 9.2.1 Ers areintecture                                                        | 154   |
| 9.2.3 Supervisory controller                                                  | 154   |
| 9.2.4 FPS control panel                                                       | 156   |
| 9.2.5 Motor control                                                           | 150   |
| 9.2.6 Protoshield kit and relay shield board                                  | 160   |
| 9.2.7 Mechanical coupling                                                     | 160   |
| 928 Shaft                                                                     | 162   |
| 9.2.9 Companion flange                                                        |       |
| 1 U                                                                           |       |

| 9.2.10 Validation                                   |            |
|-----------------------------------------------------|------------|
| 9.2.11 Testing results                              |            |
| 9.3 HIL phase                                       |            |
| 9.3.1 System structure and integration              |            |
| 9.3.2 Test rig model                                |            |
| 9.3.3 Control panel                                 |            |
| 9.3.4 Electric drive interface levels               |            |
| 9.4 Test scenario                                   |            |
| 9.5 Summary                                         |            |
| CHAPTER 10: THESIS CONCLUSIONS                      |            |
| 10.1 Contributions                                  |            |
| 10.2 Future research                                |            |
| Appendix A : Internet multimedia                    |            |
| A.1 Simulink model                                  |            |
| A.2 Thesis solicopy                                 |            |
| A.3 Presentation                                    |            |
| A.4 Thesis ligures                                  |            |
| A.5 Lab videos and photos                           |            |
| P 1 Lournal Papars                                  |            |
| D.1 Journal papers under reviewing                  |            |
| B.2 Journal papers under reviewing                  |            |
| B.5 Conference proceedings                          |            |
| D.4 Special sessions                                |            |
| B.5 Awards                                          |            |
| Appendix D : HIL tost rig                           |            |
|                                                     |            |
| $D_{1} = II 0$ and $ABB$                            | 202        |
| D.3 Sensors                                         | 202        |
| D.5 Schools                                         | 202        |
| D.5 Couplers                                        | 202        |
| D.5 Couplets                                        | 203        |
| Annendix E : Internal combustion engine (ICE) Data  |            |
| Appendix E : Internal compusition engine (ICE) Data | 203<br>207 |
| Appendix G · Posters                                | 207        |
| rippendix G . 1 Osters                              |            |

## List of figures

| Figure 1-1: System Architecture                                                          | 5   |
|------------------------------------------------------------------------------------------|-----|
| Figure 2-1. The global temperature for both the annual and 5-year means [2].             | 10  |
| Figure 2-2. Greenhouse emissions distribution.                                           | 11  |
| Figure 2-3: Energy consumption statistics in different sectors [5].                      | 12  |
| Figure 2-4: Carbon-dioxide emission statistics in different sectors [5]                  | 12  |
| Figure 2-5. Fuel economy standards for new passenger vehicles by country                 | 14  |
| Figure 2-6: Comparison of global CO2 regulations for passenger cars, in terms of NEDC    |     |
| gCO2/km [15]                                                                             | 16  |
| Figure 2-7: Conceptual illustration of an automobile powertrain                          | 17  |
| Figure 2-8: Forecast for the progress of different drivetrain concepts [20]              | 19  |
| Figure 2-9: Classifications of HEVs [21].                                                | 19  |
| Figure 2-10: HEV architectures based on the position of the motor.                       | 22  |
| Figure 2-11: Different Mild Hybrid Powertrains Architecture [26]                         | 27  |
| Figure 2-12: a. Effect of torque-fill on half shaft torque – torque-fill is shown below  |     |
| Figure 3-1. General powertrain layout with hybridization.                                | 39  |
| Figure 3-2: (a)-(c). NYC cycle analysis                                                  | 43  |
| Figure 3-5: Mars 0915 PMISM/BLDC motor                                                   | 4/  |
| Figure 3-4. Electric motor test facility at UTS.                                         | 48  |
| shown)                                                                                   | 10  |
| Figure 3-6: Clutch assembly [58]                                                         | 49  |
| Figure 4-1: Lumped parameter model for a mild HEV equipped powertrain                    |     |
| Figure 4-2. Natural frequencies of each gear ratio                                       | 63  |
| Figure 5-1: A high-level view of the powertrain of the mild HEV model in Simulink        | 66  |
| Figure 5-2: Engine map.                                                                  | 68  |
| Figure 5-3: Driver control unit                                                          | 73  |
| Figure 5-4: Driver model for throttle and brake.                                         | 74  |
| Figure 5-5: Up-shift process.                                                            | 77  |
| Figure 5-6: Gearshifting schedule                                                        | 77  |
| Figure 5-7: The flowchart of an Up-shift process                                         | 78  |
| Figure 5-8: Transmission control unit (TCU).                                             | 79  |
| Figure 5-9: EM modes of operation                                                        | 82  |
| Figure 5-10: (a)-(b). Rural Drive Cycle simulation for both conventional and mild hybrid |     |
| vehicles.                                                                                | 86  |
| Figure 5-11: Shift process analysis.                                                     | 86  |
| Figure 5-12: 0-100 km/h acceleration in ICE and Mild HEV models.                         | 88  |
| Figure 5-13: Output shaft torque profile during 0-100km/h acceleration cycle.            | 88  |
| Figure 5-14: (a)-(d). Mild hybrid manual transmission performance study with different   | 0.1 |
| motor powers.                                                                            | 91  |
| Figure 5-15: Shift-optimized                                                             | 93  |
| Figure 5-16: Speed and Torque profile for the NEDC, UDDS and NYCC                        | 98  |
| Figure 6-1: Benchmarking test: venicle speed and acceleration profile                    | 10/ |
| Figure 6-3: The speed profile of the HWFET Drive Cycle                                   | 110 |
| Figure 6-4 Cumulative distribution of daily driving distance in Australia [102]          | 11/ |
| Figure 6-5: The low-density traffic nattern drive cycle                                  | 114 |
| Figure 6-6. The high-density traffic pattern drive cycle                                 | 115 |
| 0                                                                                        |     |

| Figure 6-7: Speed and torque profile depending on drive style                                                      | 120   |
|--------------------------------------------------------------------------------------------------------------------|-------|
| Figure 7-1. Specific energy and power of the main battery technologies [107]                                       | 124   |
| Figure 7-2: Battery SOC calculation in the Simulink environment                                                    | 127   |
| Figure 7-3. SOC profile.                                                                                           | 128   |
| Figure 7-4. SOC 50% profile.                                                                                       | 128   |
| Figure 7-5: Battery SOC and Speed of High Congestion Drive Cycles.                                                 | 130   |
| Figure 7-6: General Powertrain layout with an ultracapacitor.                                                      | 131   |
| Figure 7-7: Supercapacitor bank                                                                                    | 133   |
| Figure 7-8: SOC of ultracapacitors with regenerative braking on the NEDC Drive Cycle.                              | 134   |
| Figure 9-1: Model-Based Design Adoption Grid.                                                                      | 146   |
| Figure 9-2: V-Cycle for automotive system design.                                                                  | 147   |
| Figure 9-3: MHEV Powertrain.                                                                                       | 148   |
| Figure 9-4: A high-level view of the powertrain of the mild HEV model in Simulink                                  | 149   |
| Figure 9-5: Automotive Development Process.                                                                        | 150   |
| Figure 9-6: The functional block diagram of an electric propulsion system.                                         | 153   |
| Figure 9-7: System architecture of an electric propulsion system.                                                  | 154   |
| Figure 9-8: Modeling control design.                                                                               | 157   |
| Figure 9-9: EPS control panel.                                                                                     | 158   |
| Figure 9-10: Eddy-current dynamometer and its characteristic curve [140].                                          | 160   |
| Figure 9: 9-11: Motor Mount                                                                                        | 161   |
| Figure 9-12: Shaft installation and line drawing (Hardy Spicer, 2014)                                              | 162   |
| Figure 9-13: Companion Flange                                                                                      | 163   |
| Figure 9-14: Efficiency map of the electric propulsion system.                                                     | 166   |
| Figure 9-15: EPS test facility at UTS.                                                                             | 166   |
| Figure 9-16: Torque and Power vs Speed of the motor at different throttles.                                        | 167   |
| Figure 9-17: System structure schematic.                                                                           | 170   |
| Figure 9-18: Plan view of the test rig                                                                             | 171   |
| Figure 9-19: System in the loop.                                                                                   | 171   |
| Figure 9-20: Torque sensors.                                                                                       | 172   |
| Figure 9-21: B-DAQ Torque Sensor Calibration                                                                       | 173   |
| Figure 9-22: Real torque on the shaft VS Labview display Bluetooth DAQ.                                            | 173   |
| Figure 9-23: Induction Motor and ABB ACS355 assembly                                                               | 174   |
| Figure 9-24: Eddy current brake Eaton Dynamatic.                                                                   | 175   |
| Figure 9-25 Kubler Encoder.                                                                                        | 176   |
| Figure 9-26: Power supply assembly.                                                                                | 176   |
| Figure 9-27: The top level of the RTI-Simulink blocks used for the Test Rig                                        | 177   |
| Figure 9-28: Test rig modeling control design.                                                                     | 178   |
| Figure 9-29: PC display panel for data acquiring, variables changing in ControDesk                                 | 179   |
| Figure 9-30: HIL Interface Levels.                                                                                 | 180   |
| Figure 9-31: shows the torque and rotation speed output of a gearshift from 2 <sup>nd</sup> to 3 <sup>rd</sup> gea | r.183 |
| Figure 9-32: HIL torque profile.                                                                                   | 185   |

### List of tables

| Table 2-1: Hybrid classification based on functionalities                                   | .21  |
|---------------------------------------------------------------------------------------------|------|
| Table 2-2: Existing MHEV with its hybridization factor of various and fuel economy          | .25  |
| Table 2-3: Gearbox Type                                                                     | .29  |
| Table 3-1: Level of hybrid assistance.                                                      | .37  |
| Table 3-2: Vehicle global specifications                                                    | .39  |
| Table 3-3: Qualitative comparison of commercial electric motors                             | .44  |
| Table 3-4: Selected motor parameters and specifications                                     | .47  |
| Table 3-5: Mars 0913(Etek Comparable) PMSM/BLDC motor.                                      | .47  |
| Table 4-1: Model parameters                                                                 | .59  |
| Table 4-2: Parameters                                                                       | . 59 |
| Table 4-3: Damped free vibration results of ICE powertrain and mild HEV in first gear       | .62  |
| Table 4-4. Natural frequencies of each gear ratio                                           | .62  |
| Table 5-1: VDV profile                                                                      | .94  |
| Table 5-2: Characteristic parameters of different driving cycles                            | .95  |
| Table 6-1. The reported consumption L/100 km1                                               | 104  |
| Table 6-2. Comparison chart for all vehicles tested Fuel and electricity consumption of the |      |
| modelled vehicles                                                                           | 105  |
| Table 6-3. Fuel Economics for conventional and Mild HEV.                                    | 105  |
| Table 6-4. Comparison chart for configurations tested through the acceleration event 0-100  | )    |
| km/h1                                                                                       | 107  |
| Table 6-5. GHG Emissions for conventional and Mild HEV.                                     | 108  |
| Table 6-6: Characteristic parameters of different driving cycles                            | 109  |
| Table 6-7: Fuel economy and emissions for INDIAN URBAN drive cycle 1                        | 111  |
| Table 6-8. Fuel economy and emissions for HWFET drive cycle1                                | 111  |
| Table 6-9. Fuel economy and emissions comparison for the composite drive cycles1            | 112  |
| Table 6-10. The characteristics of low and high-density traffic patterns drive cycles1      | 115  |
| Table 6-11. Fuel economy and emissions during the developed low and high-density traffic    | С    |
| patterns drive cycles1                                                                      | 115  |
| Table 6-12. Fuel Economics for conventional and Mild HEV by three driver styles1            | 120  |
| Table 7-1. Battery Specifications                                                           | 126  |
| Table 8-1: Payback period of years                                                          | 141  |
| Table 8-2: Vehicle and components parameters and specifications                             | 142  |
| Table 8-3: Vehicles daily and annual fuel cost under same distance                          | 143  |
| Table 9-1: KHB1260124                                                                       | 159  |
| Table 9-2: EPS test results                                                                 | 168  |
| Table 9-3: McCOLL 180M IM motor                                                             | 174  |

### Acronyms and abbreviations

| ACG     | Auto code generation                                   |
|---------|--------------------------------------------------------|
| ADC     | Analog to digital converter                            |
| ADVISOR | Advanced vehicle simulator                             |
| AGO     | Australian greenhouse office                           |
| AMT     | Automated manual transmission                          |
| AT-PZEV | Advanced technology partial zero-emissions vehicle     |
| AWD     | All-Wheel Drive                                        |
| B-DAQ   | Bluetooth data acquisition                             |
| BLDC    | Brushless dc electric motor                            |
| BSA     | Belt starter alternator                                |
| BSG     | Belt starter generator                                 |
| CAFE    | Corporate average fuel economy                         |
| CAGR    | Compound annual growth rate                            |
| CAN     | Control area network protocol                          |
| СО      | Carbon monoxide                                        |
| $CO^2$  | Carbon dioxide                                         |
| CSHVR   | City-suburban heavy vehicle route                      |
| CV      | Conventional vehicle                                   |
| CVT     | Continuously variable transmission                     |
| DAC     | Digital to analog converter                            |
| DAI     | Data acquisition interface                             |
| DCT     | Dual-clutch transmissions                              |
| DOF     | Degree-of-freedom                                      |
| ECU     | Engine control unit                                    |
| EM      | Electric machine                                       |
| EMC     | Energy management controller                           |
| EMF     | Electromotive force                                    |
| EMS     | Energy management strategy                             |
| EPA     | Environmental Protection Agency                        |
| EPS     | Electric-propulsion system                             |
| ESC     | Electronic speed control                               |
| EV      | Electric vehicles                                      |
| FEAD    | Front-end accessory drive                              |
| FOC     | Field Oriented Control                                 |
| GHG     | Greenhouse gas emissions                               |
| НС      | Hydrocarbons                                           |
| HEV     | Hybrid electric vehicles                               |
| HIL     | Hardware-in-the-loop                                   |
| <br>I/O | Digital inputs and outputs                             |
| ICE     | Internal combustion engine                             |
| IM      | Induction motor                                        |
| ISG     | Integrate Starter-Generator                            |
| Li-ion  | Lithium-ion                                            |
| MBD     | Model-based design                                     |
| MHEV    | Mild hybrid electric vehicle                           |
| MT      | Manual transmission                                    |
| NFDC    | New Furonean drive cycle                               |
| NiMH    | Nickel metal hydride                                   |
|         | Ovides of nitrogen                                     |
|         | Noise vibration and barshness                          |
| NVC     | Naw Vork avala                                         |
|         | New York city dynamometer drive schedule               |
| NTCDD5  | New York city dynamometer drive schedule               |
| UECD    | Organization for economic co-operation and development |

| OEM     | Original equipment manufacturer    |
|---------|------------------------------------|
| PC      | Personal computer                  |
| PID     | Proportional-integral-derivative   |
| PM      | Permanent magnet motor             |
| PMSM    | Permanent magnet synchronous motor |
| PWM     | Pulse width modulation             |
| PZEV    | Partial zero-emissions vehicle     |
| RBM     | Rigid body mode                    |
| RCO     | Relative cost of ownership         |
| RCP     | Rapid control prototyping          |
| RDC     | Rural driving cycle                |
| RPM/rpm | Revolutions per minute             |
| RTI     | The real-time interface            |
| RTP     | Real-time processor unit           |
| SIL     | Software-in-the-loop               |
| SOC     | The state of charge                |
| SPF     | Sale price factor                  |
| SRM     | Switched reluctance motor          |
| SULEV   | Super ultra-low emissions vehicle  |
| TCO     | Total cost of ownership            |
| TCU     | Transmission control unit          |
| UDDS    | Dynamometer drive schedule         |
| ULEV    | Ultra-low emissions vehicle        |
| VDV     | Vibration dose value               |
| ZEV     | Zero-emissions vehicle             |