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Abstract. 

This paper proposes a new damage index for the crack identification of beams made of functionally 

graded materials (FGMs) by using the wavelet analysis. The damage index is defined based on the 

position of the wavelet coefficient modulus maxima in the scale space. The crack is assumed to be an open 

edge crack and is modeled by a massless rotational spring. It is assumed that the material properties follow 

exponential distributions along the beam thickness direction. The Timoshenko beam theory is employed to 

derive the governing equations which are solved analytically to obtain the frequency and mode shape of 

cracked FGM beams. Then, we apply the continuous wavelet transform (CWT) to the mode shapes of the 

cracked FGM beams. The locations of the cracks are determined from the sudden changes in the spatial 

variation of the damage index. An intensity factor, which relates to the size of the crack and the coefficient 

of the wavelet transform, is employed to estimate the crack depth. The effects of the crack size, the crack 

location and the Young’s modulus ratio on the crack depth detection are investigated. 
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1. Introduction 

In recent years, functionally graded materials (FGMs) have found a wide range of applications in 

many fields [1], such as aerospace, energy, civil engineering, medical, optoelectronics, etc. Their 

properties are inhomogeneous and change along the spatial location. The gradual change in composition 

and microstructures of FGMs enables a gradient of properties and performances in the mechanical strength, 

thermal conductivity, etc. [2] which are highly desirable in many engineering and scientific applications. 

FGMs possess the ability to reduce the stress/heat concentration, control the deformation and resist the 

contact damage due to their excellent mechanical performance [3]. However, it is inevitable that small 

damages will emerge in FGM structures which may become significant damages in severe working 

environments (vibration, corrosion and high temperature, etc.). It is very important to detect the damage 

locations and estimate the severity of the damages to prevent potential loss of life and properties. 

Therefore, the research on damage identification methods for FGM structures has attracted much attention 

of researchers in recent years.  

The occurrence of a crack in a structure reduces the local stiffness and changes the global dynamic 

responses of the structure. This has led to the substantial development of vibration-based damage 

identification methods over several decades [4], including the natural frequency-based methods [5-7], the 

mode shape-based methods [8-10], the modal strain energy-based methods [11-13], etc. Owolabi et al. [14] 

reported experimental results about the effect of the crack location and depth on the frequency, mode 

shape and frequency response function of cracked beams. Then two damage identification methods based 

on changes in the frequency and frequency response function, respectively, were employed to detect 

cracks for cracked beams. Pandey et al. [15] presented a damage localization method based on the 

difference between curvature mode shapes of the intact and damaged structures. Appearance of a sharp 

peak in the curvature mode shapes indicated the presence of damage and its location. Shi et al. [16] 

proposed a damage detection method based on the change in the modal strain energy. Manoach et al. [17] 

introduced a new damage index based on Poincaré map of forced vibration and compared their results 

with popular methods based on modal displacements, modal curvatures and strain energy. Previous studies 

mainly employed methods that are based on the change of dynamic responses before and after the 

presence of damage. However, the baseline data from intact structures sometimes are not precise or not 

available. Furthermore, the natural frequency of a structure is a global parameter, and damage 

identification methods based on the natural frequency have limitations to determine the location of a local 
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damage. On the other hand, the mode shape of a structure is the other modal parameter and contains the 

local information of the structure. Damage detection method based on the mode shape is quite sensitive to 

the damage location. Moreover, the mode shape of a structure can be measured accurately by a large 

number of nodes using the non-contact vibration measurement, such as scanning laser Doppler vibrometer 

(SLDV) and digital image correlation (DIC), etc. [18-20].  

Recently, the wavelet-based damage detection methods have been studied by many researchers. The 

continuous wavelet transform (CWT) is one of signal processing method to detect singularity. By using 

CWT, the mode shape of the damaged structure can be employed to detect the damage location and its 

severity. Wang and Deng [21] conducted numerical studies on the damage identification of structures 

using CWT. They applied the Haar wavelet and Gabor wavelet to analyze the static and impact responses 

of cracked beams and plates. Hong et al. [22] proved that wavelet function with at least two vanishing 

moments should be used to detect damage in beams. They showed the estimation of the crack depth using 

the Lipschitz exponent of wavelet coefficients. Douka et al. [23] processed the first mode shape of cracked 

beams by CWT with sym4 wavelet which has four vanishing moments. They suggested that the wavelet 

with higher vanishing moment had more advantages for detecting the crack location and depth in beams. 

This method was utilized for the crack detection of double-cracked beams by Loutridis et al. [24]. Rucka 

et al. [25] conducted the crack localization in beams using CWT of the static deflection. Zhu and Law [26] 

studied the operational deflection time history of a bridge subject to a moving load by using CWT. The 

location of the crack was determined from the location of the minimum of the wavelet coefficient. To 

resist the effect of measurement noise, Cao et al. [27] proposed an improved curvature mode shape based 

on the wavelet transform and Teager energy operator for damage detection in multi-cracked beams. 

Furthermore, after CWT of the finite-length data, such as the static deflection, the mode shape and the 

response of forced vibration, wavelet coefficients have larger values in the vicinity of the signal edge. The 

reason for the occurrence of edge effect is that CWT is defined as an infinite integration, and the analysis 

window of the wavelet extends beyond the length of data [28]. To avoid the edge effect, the extension of 

the original input data [29-31], the modification of the wavelet functions [32] and the application of 

window functions [33, 34] were implemented. Most recently, Zhou and Li et al. [35] proposed a damage 

index based on CWT and mode shape curvatures in composite laminates with cutout. Tao et al. [36] used 

CWT to process the dynamic response of cracked fiber-metal laminated beams under moving loads for 

crack detection.  
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The aforementioned literatures were related to studies on the damage identification methods for 

homogeneous and laminated structures. For the application of vibration-based damage identification 

methods on FGM structures, the first step is to obtain the dynamic responses of the structures. Many 

researchers conducted the vibration analysis of cracked FGM structures. Ke et al. [37] presented the 

flexural vibration of a cracked Timoshenko beam made of FGMs. In the vibration analysis, the crack was 

assumed as the massless spring whose stiffness depended on the stress intensity factors. Wei et al. [38] 

carried out a free vibration analysis of cracked FGM beams based on transfer matrix method. Rajasekaran 

et al. [39] studied natural frequencies and mode shapes of bi-directional FGM beams with cracks using the 

Euler-Bernoulli beam theory and the finite element approach. So far, the reported studies on the damage 

identification of FGM structures are still quite limited. Yu et al. [40] used the p-version finite element 

method to calculate vibration characteristics of cracked FGM beams and developed a crack identification 

method based on the frequency change. Lu et al. [41] presented a sensitivity-based finite element model 

updating approach to identify the local damages in axially functionally graded beams. 

In this study, we propose a new damage index for the crack identification of FGM beams using CWT. 

Free vibration behaviors of cracked FGM beams with different boundary conditions are studied by using 

the Timoshenko beam theory and the massless rotational spring model. The fundamental mode shapes of 

the cracked FGM beams are analyzed by using CWT. To identify the accurate position of a crack and 

reduce the edge effect, a new damage index is defined according to the position of the wavelet coefficient 

modulus maxima in the scale space. The merit of this method is that it does not need to compare with 

results of the intact beam. To estimate damage extent, the intensity factor is calculated by the Lipschitz 

regulation of the wavelet coefficient. Moreover, the effects of the crack location, the crack depth and the 

Young’s modulus ratio on the intensity factor are discussed in details. These methods are further employed 

in the analysis of FGM beams with multiple cracks.  

 

2. Free vibration analysis  

Fig. 1a shows an FGM beam with length L and thickness h. There is an open edge crack with crack 

depth a  and located at 1L  from the left end of the beam. It is assumed that the Young’s modulus ( )E z  

and mass density ( )zρ  vary in the thickness direction with the exponential function as 

 ( ) , ( ) ,z z
m mE z E e z eβ βρ ρ= =                            (1) 
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where 1 2ln( / ) /E E hβ =  is the gradient index, 1E  and 2E  are the elastic modulus of top and bottom 

surfaces of the beam, and mE  and mρ  are the Young’s modulus and the mass density at the midplane of 

the beam ( 0z = ), respectively. The Poisson’s ratio µ  is taken to be a constant.  

The massless rotational spring model is used to simulate the edge crack as shown in Fig. 1b. It is 

assumed that the crack is always open and parallel to the z-axis. The rotational spring connects two 

separated parts of the beam at the crack location. The bending stiffness TK  of the spring can be given as 

                              
1

TK
G

= ,                                    (2) 

where G  is the flexibility. At the cracked location, it can be expressed as [42] 

( )2 2 2
11 d

( ) 2 d
K M G

E a a
µ−

= ,                              (3) 

where M  is the bending moment at the crack location, 1K  is the stress intensity factor (SIF) under the 

mode I bending load, and ( )E a  is the Young’s modulus at the crack tip. 

   Erdogan and Wu [43] studied the surface crack problem for a plate with functionally graded properties. 

They gave the detailed results of the SIFs with various crack depth. Then, we can write the relation 

between SIF 1K  and crack depth ratio ξ  from the results given by Erdogan and Wu [43]  

1 2

6 ( )M hK F
h

π ξ
ξ= , = a

h
ξ , 0.7ξ ≤ ,                      (4) 

where ( )F ξ  is given as  

( ) 2 3 4

5 6

2 1

7

/ 0.2 :  

                  

1.910 2.752 4.742 146.776 770.750

1947.830 2409.170 1177.     980 ,

FE E ξ ξ ξ ξ ξ

ξ ξ ξ

= − − + −

+ − +

=
             (5a) 

( )2 1
2 3 4

5 6 7

/ 1:  

             

1.150 1.662 2

    

1.667 192.451 909.375

2124.310 2395.830 1031.750  ,

E FE ξ ξ ξ ξ ξ

ξ ξ ξ

= − +

−

= − +

− +
              (5b) 

( ) 2 3 4
2 1

5 6 7

/ 5 :  

            

0.650 0.859 12.511 72.627 267.910

535.236 545.139 21      1 6 .70 .

E E F ξ ξξ ξ ξ

ξ ξ ξ

= − + − +

+ −

=

−
              (5c) 

The expression of ( )F ξ  for different Young’s modulus ratio can be obtained by using Lagrange 

interpolation formula. Substitution of Eq. (4) into Eq. (3) leads to 
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( ) ( )

( )

2 2

20

72 1
G d

F
E h h

ξ π µ ξ ξ
ξ

ξ

−
= ∫ .                         (6) 

Compared with the exponential distribution, the power law distribution is used more widely in FGMs. 

However, the SIF of the edge crack for the power law case is very difficult to analytically obtain by using 

the conventional method. So far, most of the SIF results of FGMs were for the exponential distribution. 

This paper uses the exponential distribution for which the SIFs were given by Erdogan and Wu [43]. That 

is the reason of the exponential model used in the present paper. 

Based on the Timoshenko beam theory [44], the kinetic energy T of the cracked FGM beam is given 

by [37] 

1

1

2 2 2
1 1 1 1 1

1 2 3 10

2 2 2
2 2 2 2 2

1 2 3 1

1 2 d
2

1 2 d
2

L

L

L

U U WT I I I I x
t t t t t

U U WI I I I x
t t t t t

 ∂ ∂ ∂Ψ ∂Ψ ∂        = + + +         ∂ ∂ ∂ ∂ ∂          
 ∂ ∂ ∂Ψ ∂Ψ ∂        + + + +         ∂ ∂ ∂ ∂ ∂          

∫

∫
,                      (7) 

and the potential energy V is written as 

( ) ( ) 1

1

2 1 1 1
2 1 1 1 1 1 1 10

2 2 2
2 2 2 2

1 1 d
2 2

1 d
2

L

x x x

L

x x xL

T
U WV K L L N M Q x
x x x

U WN M Q x
x x x

 ∂ ∂Ψ ∂  = Ψ − Ψ + + + + Ψ      ∂ ∂ ∂  
 ∂ ∂Ψ ∂  + + + + Ψ  ∂ ∂ ∂  

∫

∫
’             (8)  

where the subscript 1, 2i =  refers to the left sub-beam and right sub-beam, iU  and iW  are 

displacement components at the midplane, Ψ i  is the rotation of the cross section of the beam, 

,xiN xiM and xiQ  are the normal resultant force, bending moment and transverse shear force, x is the 

longitudinal coordinate, and t is time, respectively.  

By using the Hamilton principle, 

( )
0

d 0,
t

T V tδ δ− =∫                                  (9) 

we can derive the governing equations of the cracked FGM beam as 

 
2 2

1 22 2 ,xi i iN UI I
x t t

∂ ∂ ∂ Ψ
= +

∂ ∂ ∂
                                (10) 

 
2

1 2 ,xi iQ WI
x t

∂ ∂
=

∂ ∂
                                    (11) 
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2 2

2 32 2 ,xi i i
xi

M UQ I I
x t t

∂ ∂ ∂ Ψ
− = +

∂ ∂ ∂
                             (12) 

where xiN , xiM and xiQ  are denoted as 

 11 11 ,i i
xi

UN A B
x x

∂ ∂Ψ
= +

∂ ∂
                               (13) 

 11 11 ,i i
xi

UM B D
x x

∂ ∂Ψ
= +

∂ ∂
                              (14) 

 55 ,i
xi i

WQ A
x

κ ∂ = + Ψ ∂ 
                               (15) 

where κ 5 / 6=  is the shear correction factor, 11,A  11,B  11D  and 55A  are stiffness components, and 

1I , 2I  and 3I  are inertia terms, respectively. They are defined by the following formulas. 

 { } ( ) { }/2 2
11 11 11 2/2

1, , d ,
1

, ,
h

h

E z
A B D z z z

µ−
=

−∫                          (16a) 

     
( )

( )
/2

55 /2
d ,

2 1
h

h

E z
A z

µ−
=

+∫                                (16b) 

 { } ( ){ }/2 2
1 2 3 /2

1, , d ., ,
h

h
I I I z z z zρ

−
= ∫                           (16c) 

In the present study, three kinds of boundary conditions are considered: 

clamped-free (C-F): 1 1 1 2 2 20,  0;  ,  N 0,x x xx U W x L M Q= = = Ψ = = == =                  (17a) 

clamped-clamped (C-C): 1 1 1 2 2 20,  0;  ,  0,x U W x L U W= = = Ψ = = = = Ψ =                 (17b) 

hinged-hinged (H-H): 1 1 1 2 2 20,  0;  ,  0.= = = = = = = =x xx U W M x L U W M                  (17c) 

At the cracked location 1x L= , the following compatibility conditions are required: 

1 2 1 2 1 2 1 1 2 1 2 1 2,  ,  ( ) ,  ,  ,  .xT x x x x xU U W W K M N N M M Q Q= = Ψ = =− Ψ = =              (18) 

By introducing the dimensionless quantities:  

( ) ( ) 10 110

110 110 10

,  
η ,  ,= ,  ,  , ,  , τ ,  i i

i i i i
T

T
I AKL tK

U Wx U L
h A A Lh I

W
L h

ωζ = = Ω Ψ= = Ψ==     (19a) 

( ) ( )3 551 2 11 11 11
1 2 3 11 55 11 112 2

10 10 10 110 110 110 110

,  ,  ,  ,  , , , , ,  ,  ,  ,I AI I A B DI I I a a b d
I I h I h A A A h A h

   
= =   

   
       (19b) 
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we can re-write the dimensionless governing equations as  

 
2 2 2 2

11 11 1 22 2 2 2 ,i i i iU Ua b I I
ζ ζ τ τ

∂ ∂ Ψ ∂ ∂ Ψ
+ = +

∂ ∂ ∂ ∂
                          (20)                 

2 2

55 12 2 2η ,i i iW Wa Iκ
ζ ζ τ

 ∂ ∂Ψ ∂
+ = ∂ ∂ ∂ 

                              (21) 

 
2 2 2 2

11 11 55 2 32 2 2 2η ,i i i i i
i

U W Ub d a I Iκη
ζ ζ ζ τ τ

 ∂ ∂ Ψ ∂ ∂ ∂ Ψ
+ − + Ψ = + ∂ ∂ ∂ ∂ ∂ 

              (22) 

and the dimensionless boundary conditions as 

1 1 1 0,  at 0,ζ= = Ψ = =U W                             (23) 

2 2 2 2 2
11 11 11 11 2 b  d 0  1= ,  ,atU U Wa b ζ

ζ ζ ζ ζ η ζ
∂ ∂Ψ ∂ ∂Ψ ∂

+ + + Ψ =
∂ ∂

=
∂

=
∂ ∂

               (24) 

for the C-F FGM beam,  

1 1 1 0,  at 0,ζ= = Ψ = =U W                                (25) 

2 2 2 0,  at 1,ζ= = Ψ = =U W                                (26) 

for the C-C FGM beam, 

1 1
11 111 1  d 0 0,,  at U W Ub ζ

ζ ζ
∂ ∂Ψ

=
∂

= + =
∂

=                         (27) 

2 2
11 112 2  d 0 1,,  at U W Ub ζ

ζ ζ
∂ ∂Ψ

=
∂

= + =
∂

=                         (28) 

for the H-H FGM beam, and the dimensionless compatibility conditions at the cracked section, 

1 2 1 2,  ,U U W W= =                            (29a) 

1 11 1 11 2 2
1 2 11 11 11 11 11 11 ( )  d ,   b  b ,  T

U U UK b a a
η ζ η ζ ζ ζ ζ ζ
∂ ∂Ψ ∂ ∂Ψ ∂ ∂Ψ

Ψ − Ψ = + + = +
∂ ∂ ∂ ∂ ∂ ∂

 (29b) 

 1 1 2 2 1 2
11 11 11 11 1 2 d  d  .,U U W Wb b

ζ ζ ζ ζ η ζ η ζ
∂ ∂Ψ ∂ ∂Ψ ∂ ∂

+ = + + Ψ + Ψ
∂ ∂ ∂ ∂ ∂ ∂

=         (29c) 

For the harmonic vibration of the beam, the displacements and rotation are assumed to be  

 ( ) ( ) i, ,i iU u e ωτζ τ ζ=                                (30) 

 ( ) ( ) i, ,i iW w e ωτζ τ ζ=                                (31) 
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 ( ) ( ) i, .i i e ωτζ τ ψ ζΨ =                                 (32) 

Neglecting the axial inertia and substituting Eqs. (30)-(32) into Eqs. (20)-(22) lead to 

 
2 2

2
11 11 22 2

d d ,
d d

i i
i

ua b Iψ ω ψ
ζ ζ

+ = −                               (33) 

2
2

55 12

d d ,
d d

i i
i

wa I wψκ η ω
ζ ζ

 
+ = − 

 
                              (34) 

2 2
2

11 11 55 32 2

d d d .
d d d

ψ κη ηψ ω ψ
ζ ζ ζ

 
+ − + = − 

 
i i i

i i
u wb d a I                      (35) 

Eliminating iu  from Eqs. (33)-(35), they are decoupled into two independent equations 

 ( ) ( )
4 2

4 2

d d 0,
d d

i i
i

w wm n mn p w
ζ ζ

+ + + − =                         (36) 

( ) ( )
4 2

4 2

d d 0,
d d

ψ ψ ψ
ζ ζ

+ + + − =i i
im n mn p                         (37) 

where 

  
2

11
11

11

,bD d
a

= −  1

55

,Im
aκ

=  
2

2 11 2
3

11

1 ,b In I
D a

ωω
 

= − 
 

 
2 2

1 .Ip
D

η ω
=             (38) 

Since 2( ) 4 0m n p− + > , the transverse displacement, axial displacement and rotation can be solved as 

( ) ( ) ( ) ( ) ( )1 3 1 2 3 1 3 4 2 4 4 2sinh cosh sin cos ,ζ ζ ζ ζ ζ ζ= + − + + +i i i i i i iu f q k f q k f q k f q k g r       (39) 

( ) ( ) ( ) ( ) ( )1 1 2 1 3 2 4 2cosh sinh cos sin ,ζ ζ ζ ζ ζ= + + +i i i i iw f k f k f k f k                 (40) 

( ) ( ) ( ) ( ) ( )1 1 1 2 1 1 3 2 2 4 2 2sinh cosh sin sin .i i i i if q k f q k f q k f q kψ ζ ζ ζ ζ ζ= + − +            (41) 

where  

2

1 ,
2 2

m n m nk p− + = + − 
 

 
2

2 ,
2 2

m n m nk p− + = + + 
 

              (42a) 

2
1

1
1

,k mq
k η

+
= −  

( )2
2

1
2

,
k m

q
k η

−
= −

2 2
1 11 1 2

3 2
1 11 11

,q b k Iq
k a a

ω 
= − + 

 
 

2 2
1 11 2 2

4 2
2 11 11

.q b k Iq
k a a

ω 
= − − 

 
    (42b) 

The unknown constants 1 jf , 2 jf , ig and ir  ( 1, 2;  1, 2,3, 4= =i j ) are determined from the boundary 

conditions and compatibility conditions in Eqs. (23)-(29). Then, applying these boundary conditions and 

compatibility conditions of the C-F, C-C and H-H beams, we can obtain the nonlinear algebraic equations 

in the matrix form  
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 ( ) { } { }0 ,H Xω =                                    (43) 

where { } { }11 12 13 14 1 1 1 2 3 4, , , , , , , , , , , , T
i i i i i iX f f f f g r f f f f g r= … ; [ ]( )H ω  is a matrix nonlinearly 

dependent on the natural frequency. According to the condition of the equations with the nonzero solution, 

the determinant of ( )H ω  must satisfy  

 ( )det 0.H ω =                                     (44) 

The determinants ,  ,  C F C C H HH H H− − −  for C-F, C-C, H-H FGM beams are given in Appendix A, 

respectively. According to Eqs. (43) and (44), the natural frequencies and the corresponding mode shapes 

can be obtained. 

 

3. Crack identification using continuous wavelet transform 

The wavelet transform is a valid mathematical tool for analyzing singularities and irregular structures 

in signals. So it can characterize the local singularities from the mode shape of cracked beams. This 

damage detection technique was applied in homogenous and laminated structures successfully. 

 

3.1 Continuous wavelet transform 

   In CWT technique, we introduce that the function ( ) ( )2x RLϕ ∈  is said to be a wavelet if and only 

if its Fourier transform ( )ϕ̂ ϖ  satisfies [45] 

      
( ) 2ˆ

d Cϕ

ϖ
ϖ

ϕ
ϖ

+∞

−∞
= < +∞∫ .                           (45) 

Eq. (45) implies ( )xϕ  with a zero average, i.e., 

 ( )d 0.x xϕ
+∞

−∞
=∫                                   (46) 

CWT of a signal function 2( ) ( )f x L R∈  is defined by 

 ( ) ( ) ( ) ,
1 ,, ds b sWf f fbb s f x x

s
b

s
ϕ ϕ ϕ

+∞

−∞

 = ∗ = ∗ = 
  ∫                   (47) 

where b and s are the translation parameter and scale parameter, respectively, ( , )Wf b s  is the wavelet 

transform coefficient of ( )f x  at the bounded scale interval, ( )xϕ  denotes the complex conjugate of 
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the wavelet function ( )xϕ , the symbol ( )∗  means the convolution of two functions, and 

,
1

b s
x b

ss
ϕ ϕ −= 

 
 

  .   

The type of singularities is often measured with the Lipschitz exponent α . It is defined that a 

function ( )f x  has Lipschitz exponent 0α ≥  at x v= , if there exists 0K >  that is independent of 

v , and a polynomial vp  of degree χ  ( χ  is the largest integer satisfying χ α≤  ). Therefore, we 

have [46] 

 ( ) ( ) ( ) ,v vf x p x xε= +                               (48) 

 ( ) .αε ≤ −v K x vx                                 (49) 

For example, if ( )f x  is χ  times continuously differentiable in a neighborhood of v, then vp  is the 

Taylor expansion of ( )f x  at v. Lipschitz exponent α  is equal to χ . In contrast, when a function is 

not differentiable at v, Lipschitz exponent ( )0,1α ∈  while ( )vp x  is equal to ( )f v .  

To measure Lipschitz exponent α  by ignoring polynomial vp  in Eq. (47), we must impose that 

the wavelet has enough number of vanishing moments vn . A wavelet ( )xϕ  is said to have vn  

vanishing moments, if and only if the positive integer vk n< , it satisfies 

 ( )d 0.kx x xϕ
+∞

−∞
=∫                                 (50) 

It is clear that the wavelet having vn  vanishing moments is orthogonal to polynomials of up to degree 

1vn − . ( ),Wf b s  can be reduced to 

 ( )1( , ) ( ) ( ) ( )d ( , ),v v v
x bWf b s p x x x W b s

ss
ε ϕ ε

+∞

−∞

−
= + =∫               (51) 

In other words, Lipschitz exponent measured from ( , )vW b sε  is vnα ≤ .  

Mallat [45] proved that if ( )xϕ  has vn  vanishing moments, we can introduce a fast decay 

function ( )xϑ  to satisfy Eq. (45). It is defined by 
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( )( ) ,)

d
(

d
1 v

v

v

p
p

p

x
x

x
ϑ

ϕ = −                               (52) 

where integer v vp n< . Hence ( , )Wf b s  is written as 

 ( ) ( ) ( )( )d /
,, 1 d

d d

vv v
v

v v

pp p
p

sp p

b ssf f s f b
s b bs
bWf b

s
s

ϑ
ϕ ϑ ∗ = ∗ = ∗


= 




           (53) 

where ( ) ( )1/2 /s b s b sϑ ϑ−= − .  

Eq. (53) is called the multi-scale differential operator that builds the relationship between the decay of 

( , )Wf b s  when the scale s decreases and the differentiability of ( )f x . Singularities are detected where 

the value of ( , )Wf b s  decays as the scale s decreases to zero. At the fine scale 0s , the singularities 

including the discontinuity and non-differentiability create the wavelet coefficient modulus maxima at the 

location of singularities, i.e., 

 
( )0 0,

0.
Wf b s

b
∂

=
∂

                                (54) 

The line , which is composed of the modulus maxima in the scale space ( ),b s , is called the maxima line. 

The Lipschitz regularity at 0b b=  can be calculated from the decay of the maxima modulus  

( )0 ,Wf b s  with the decrease of scale s . According to Jaffard [47], if 2( ) ( )f x L R∈  has the Lipschitz 

exponent vnα ≤  at 0b b= , then the asymptotic behavior of ( , )Wf b s  near 0b b=  becomes 

 
1

02( , ) 1 ,b bWf b s As
s

α
α +  −

≤ +  
 

                        (55) 

and when 0b b= , Eq. (55) can be reduced to 

 
1
2( , ) ,Wf b s As

α +
≤                               (56) 

which can be further written as 

 2 2 2
1log ( , ) log log ,
2

Wf b s A sα ≤ + + 
 

                    (57) 

where Lipschitz regularity at 0b  is the maximum slope of ( )2log ,Wf b s  as a function of 2log s  

along the maxima line converging to 0b , and 2log A  is the intercept of the function of 2log s .  
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Assuming that ( )0 ,Wf b s  is the wavelet transform coefficient at the maxima line of the largest 

slope at the location 0b , inequality (57) is rewritten as [24] 

  2 0 2 2
1log ( , ) log log .
2

Wf b s A sα = + + 
 

                    (58) 

Then, Lipschitz exponent α  and constant A which characterize the Lipschitz regulation of the wavelet 

coefficient at location 0b  can be estimated by the least squares method.  

. 

3.2 Crack identification method using CWT 

In order to identify the damage of a cracked FGM beam, it is assumed that the function ( )f x  is the 

mode shape of the beam and ( )xϕ  is a real wavelet. ( , )Wf b s  is the coefficient of the wavelet 

transform of the mode shape. At the crack location, the wavelet transform coefficient change suddenly in 

the spatial variation. Moreover, the decay of the wavelet coefficient modulus maxima converges to the 

crack location with decreasing scale. 

For the beam with an open edge crack, the crack location is always a maxima point when the scale 

parameter varies. The maxima line of the largest slope is approximately perpendicular to abscissa in the 

scale space ( ) ,b s . In this paper, a new damage index is defined by  

 ( )

( )

( )
max

min

,
0    ,   

DI ,  
1

0,

,
0    , , 

s

s s

Wf x s
b

Wf x s
x DWf Wf

b

D
=


= = 

∂
≠

∂
∂

=
∂




∑                       (59) 

where x  denotes the distance of the detection point at the beam length direction from the left end, mins  

is the minimum scale parameter, and maxs  is the maximum scale parameter. 

In fact, the maximum damage index is located at the crack location where maxima lines converge to. 

Then, for the damage severity estimation, the Lipschitz exponent α  and the constant A can be measured 

by both the wavelet modulus of maxima lines of the largest slope and Eq. (58). If the crack depth is 

changed, Lipschitz exponent has the fixed value; however, the constant A  varies with the crack depth. 

So, the constant A  can be defined as the intensity factor to characterize the depth of crack. 

The compatibility conditions (18) and (29) show that the mode shape of the cracked FGM beam is a 
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second order non-differentiable function at the crack location. Hence, the Lipschitz exponent is between 1 

and 2, i.e., 

1 2.α< <                                      (60) 

Therefore, the number of vanishing moments of the wavelet should be chosen at least 2. It is noted that 

wavelet with the higher vanishing moments and smaller support width can provide more stable 

performance. Hence, we can choose wavelet family with higher vanishing moments but relatively short 

support width. After some numerical tests, the sym8 wavelet is suitable to the crack identification in this 

paper. 

 

4. Numerical results and discussion 

Table 1 gives the fundamental frequency of an isotropic homogeneous cantilever beam with an open 

edge crack. The parameters used in this example are: 0.2m,L = 0.0078m, h = 216GPa, E =  

37850kg/m ,ρ =  0.28,µ =  and / 0.2,0.4.=a h  The finite element results given by Kisa et al. [48] is 

also given in Table 1. Obviously, both results show a good agreement. 

By using the wavelet analysis, this section will study the crack identification of C-F, H-H and C-C 

FGM beams containing one or two open edge cracks. Unless otherwise stated, it is assumed that the beam 

thickness 0.1m=h  and the slenderness ratio / 6=L h . The ratio of Young’s modulus is taken as 

2 1/ 5,  1,  0.2E E = . The top surface of the FGM beam is 100% aluminum with material parameters 

1 70GPaE =  and 3
1 2780kg/mρ = . The Poisson’s ratio µ  is taken to be constant value 0.33.  

It should be pointed out that the axial inertia is omitted in Eqs. (33)-(35) in order to solve the problem 

analytically. In our previous paper [49], we solved the cracked FGM Timoshenko beam by using the Ritz 

method where the axial inertia was taken into account. To address the error induced by omitting the axial 

inertia, Table 2 gives the comparison between the Ritz results and present results of the cracked FGM 

Timoshenko beam. The parameters in this example are selected as 1 70GPaE = , 3
1 2780kg/mρ = , 

0.33µ = , / 6=L h , 0.1m=h , / 0.2a h =  and 1 / 0.5L L = . The data in the brackets are the relative 

error between the Ritz results with axial inertia and present results without axial inertia. It can be seen that 

the error between the Ritz results and present results is small. This indicates that the omission of the axial 

inertia will have a slight effect on the crack identification of FGM beams. 
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4.1 Mode analysis 

Fig. 2 presents the effect of the crack depth ratio /a h  on the first mode shape of the FGM beam 

with  2 1/ 5E E =  and 1 / 0.5L L = . The mode shape for the intact FGM beam is also plotted for 

comparison. Deflection data with 501 sampling points are normalized so that the maximum deflection 

value equals one. As can be seen from Fig. 2, the crack has a slight effect on the mode shape of C-F, H-H 

and C-C FGM beams. We can observe that the mode shapes of the cracked FGM beams and intact FGM 

beams are nearly the same. Therefore, it is difficult to detect the accurate crack location and distinguish 

the crack depth according to mode shapes directly. We need to explore a new method for the crack 

identification of FGM beams. The wavelet transform method, which is one of signal processing methods, 

has been widely used to detect damage. By using wavelet analysis, the mode shape data are transformed 

into the spatial domain with multiple scales to provide wavelet coefficients. The sharp data transitions 

enable wavelet coefficients to create large amplitude, and therefore it can be used for the damage 

identification of FGM beams. In the next sub-sections, we will give a detailed discussion for the 

wavelet-based crack identification for FGM beams. 

 

4.2 Crack location identification 

To identify the crack location, the mode shape of beams is analyzed by using the sym8 wavelet to 

obtain wavelet coefficients. The scale s  is taken from 1 to 32. Fig. 3 shows the results of the wavelet 

coefficient modulus ( , )Wf b s  for edge cracked FGM beams with 2 1/ 5,E E = 1 / 0.5=L L  and 

/ 0.3a h = . For C-C and H-H beams, ( , )Wf b s  has obvious wavelet coefficient modulus maxima near 

/ 0.5x L = . The amplitude of ( , )Wf b s  decays asymptotically with decreasing scale and converges at 

/ 0.5x L = . It is proved that the crack location can be indicated by the fluctuations of wavelet coefficients. 

For a C-F beam, there is no significant perturbation at the crack location. In other words, the wavelet 

coefficient modulus does not provide the visual information about the crack location. The reason is that 

the sudden variability of the signal due to crack has a relatively negligible amplitude in comparison to the 

higher deflection value at free-end. The results of the wavelet transform for C-C and H-H beams also have 

the similar border distortion problem, though they can indicate the presence and location of the crack.  

Note that CWT is defined as an infinite integration in Eq. (47). Hence, the mode shape of the finite 
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beam must result in the appearance of the higher value at support ends. There is no known method to 

remove the higher value at support ends. However, the reduction of the edge effect can be implemented by 

the extrapolated displacement method and modification of CWT. In the present study, we develop a new 

damage index based on position of the wavelet coefficient maximum at the scale space. It is capable of 

reducing the edge effect and detecting the location of crack. As mentioned above, the damage index of 

each sampling point ( [ ]0,1ζ ∈ ) is defined by Eq. (59). The scale parameter mins  and maxs  are taken to 

be 1 and 32, respectively. According to the calculated wavelet coefficient, the position of the wavelet 

coefficient maximum at scale space can be obtained.  

Fig. 4 gives the damage index for FGM beams with an open edge crack and  2 1/ 5,E E =  

1 / 0.5L L =  and / 0.3a h = . It is clearly shown in Fig. 4 that the damage index has a peak at 

/ 0.5x L =  for all three beams. In fact, the spatial position of the damage index peak indicates the crack 

location where the wavelet coefficient modulus converges. The value of the damage index around 

boundaries does not lead to the confusion during the crack detection. The introduction of the damage 

index can reduce the edge effect compared to the wavelet coefficient modulus. Indeed, the damage index 

is better than the wavelet coefficient modulus for the crack location identification. Furthermore, the 

presence of cracks and their locations are well predicted by the damage index for C-C, H-H and C-F FGM 

beams. The crack localization can be achieved by finding the maximum damage index.  

 

4.3 Crack depth estimation 

After the crack localization, the damage severity can also be estimated by using the wavelet analysis. 

The detection of crack depth is implemented by computing the Lipschitz regularity of wavelet maximum 

lines of the largest slope at the crack position. The intensity factor relating to the wavelet modulus 

maximum and crack depth can be measured by Eq. (58).  

Fig. 5 shows the wavelet modulus maxima lines of the largest slope versus the scale of cracked FGM 

beams with 2 1/ 5E E =  and 1 / 0.5L L = . The optimized scale s  is taken from 4 to 24. For C-C, H-H and 

C-F beams, there are a set of parallel lines for different crack depths. By computing the slopes of the lines, 

the Lipschitz exponents can be solved and are approximately equal to 1.01. This means that the mode 

shape is the second order non-differentiable at the crack location. The value of ( , )Wf b s  becomes larger 
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as the crack depth increases. The crack depth can be distinguished by each line’s ordinate intercept, which 

is equal to 2log A . Therefore, the constant A  can be defined as the intensity factor for the crack depth 

estimation. 

Fig. 6 presents the effect of Young’s modulus ratio 2 1/E E  on the intensity factor versus crack depth 

with 1 / 0.5L L = . For C-C, H-H and C-F FGM beams, the intensity factor increases as the crack depth 

increases. When the crack location and depth are fixed, the intensity factor becomes smaller as 2 1/E E  

increases. This is due to the fact that the mode shape of FGM beams with lower bending stiffness is more 

sensitive to crack [37].  

Similarly, the mode shape of FGM beams is sensitive to the crack location, which in turn affects the 

intensity factor. Fig. 7 gives the effect of Young’s modulus ratio on the intensity factor versus crack 

position with / 0.2a h = . It is observed that the relationship between the crack location and intensity 

factor is completely different for C-C, H-H and C-F beams. For C-C beams, the intensity factor curve has 

the turning points at 0.2L , 0.5L  and 0.8L . However, the turning point is at 0.5L  for H-H beams 

and C-F beams do not have the turning point. For a C-F beam, the intensity factor is quite small when the 

crack is close to the free end. The reduction of the intensity factor is observed when Young’s modulus ratio 

changes from 0.2 to 5.0. 

In summary, the values of the intensity factor are influenced by the Young’s modulus ratio, the crack 

location and the crack depth. Tables 3, 4 and 5 show the intensity factor of C-C, H-H and C-F FGM beams 

with a single crack, respectively. These detailed data could serve as the referencing value to estimate the 

depth of crack in future measurements. 

 

4.4 Double-cracked FGM beam 

Fig. 8 highlights the damage index of the FGM beam with two edge cracks located at 0.2L  and 

0.8L  and 2 1/ 5E E = . The two cracks have the depth ratio 1 / 0.3a h =  and 2 / 0.2a h = , respectively. 

The cracks are detected accurately by the position of the peak value, i.e. the No.101 and No.401 sampling 

points (0.2L and 0.8L). The crack depth is detected by the Lipschitz regularity of wavelet maximum lines 

of the largest slope at the crack position. The magnitude of the intensity factor is shown in Table 6. These 

results indicate that the present crack identification method can be employed universally for multi-cracked 
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beams. 

 

4.5 The effect of the noise 

In the practical condition, the measurement noise always exists in the displacement mode shape. The 

performance of crack identification under noisy conditions need to be investigated. For simulating noise, 

white noise is added to analytical mode shape of the cracked FGM beam. The mode shapes 

incorporating noise can be obtained by the following formula [26]: 

 ( )noise calulated noise noise calulatedw w Z N wσ= + ,                    (61) 

where noisew  is the polluted mode shape, noiseZ  is the noise level, oiseN is the standard normal 

distribution vector with a zero mean value and a unit standard deviation, calulatedw is the 

normalized deflection data, and ( )calulatedwσ  is the standard deviation for the mode shape. 

Fig. 9(a)-(c) shows the damage index DI of the H-H cracked FGM beam ( 2 1/ 5E E = , 

1 / 0.5L L = , 1 / 0.3a h = ) with noise level noiseZ =  0.1%, 0.5% and 1%, respectively. The scale 

parameter s  for CWT is taken from 1 to 64. As expected, the value of the damage index reduces 

with the increase of the noise level. It is clear that the damage index has a singular peak at 

/ 0.5x L =  for all three different noise level. Hence, in suitable noisy condition, the presence of cracks 

and their locations still can be well indicated by the damage index. 

 

5. Conclusion 

This paper proposes a new damage index for the crack identification of FGM beams. The damage 

index is defined according to the position of the wavelet coefficient modulus maxima in the scale space. 

The mode shape of the cracked FGM beam is analyzed by using CWT. The damage index is employed to 

identify the accurate position of the crack and reduce the edge effect. To estimate damage extent, the 

intensity factor is calculated by the Lipschitz regulation of the wavelet coefficient. 

The results show that:  

(1) It is difficult to detect the accurate crack location and distinguish the crack depth according to mode 

shapes directly; 

(2) The results of the wavelet transform for C-C and H-H FGM beams also have the similar edge effect 
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problem, though they can still indicate the presence and location of the crack;  

(3) The introduction of the damage index can reduce the edge effect compared to the wavelet coefficient 

modulus. The presence of cracks and their locations are well predicted by the damage index for C-C, 

H-H and C-F FGM beams. The crack localization can be achieved by finding the maximum damage 

index; and 

(4) The intensity factor is effective for the crack depth estimation of cracked FGM beams. The intensity 

factor is sensitive to the Young’s modulus ratio, the crack location and the crack depth. 
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Appendix A 

Suppose that ( )10 1θ cosh k= , ( )20 2θ sinh k= , ( )30 2θ cosh k= , ( )40 2θ sin k= , 

( )11 1 0θ cosh k ζ= , ( )21 1 0θ sinh k ζ= , ( )31 2 0θ cos k ζ= , ( )41 2 0θ sin k ζ= , *
110/T TK K A h= , 

( )0 11 3 11 1 1D a q b q k= + , ( )1 11 4 11 2 2D a q b q k= + , ( )3 11 3 11 1 1D b q d q k= + , ( )4 11 4 11 2 2D b q d q k= + , 

0 1 1J k qη= + , 1 2 2J k qη= + , *
3 1TJ K qη= , *

4 2TJ K qη= .  

The determinants ,  ,  C F C C H HH H H− − −  for C-F, C-C, H-H FGM beams with an edge crack are 

given as follows, respectively. 

3 4

1 2

0 10 0 20 1 30 1 40 11

3 10 3 20 4 30 4 40 11

0 20 0 10 1 40 1 30

3 21 3 11 4 41 4 31 0 3 21 3 11 4 41 4 31 0

11 21 31

0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 θ θ θ θ 0
0 0 0 0 0 0 θ θ θ θ 0
0 0 0 0 0 0 θ θ θ θ 0 0
θ θ θ θ 1 θ θ θ θ 1

θ θ θ θ

C F

q q

q q
D D D D a
D D D D b
J J J J

H
q q q q q q q qζ ζ−

− −
− −
−

=
− − − − − −

41 11 21 31 41

0 11 0 21 1 31 1 41 11 0 11 0 21 1 31 1 41 11

3 11 3 21 4 31 4 41 11 3 11 3 21 4 31 4 41 11
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Figure captions 

 

Fig.1. A cracked FGM beam (a) and the massless rotational spring model connecting two sub-beams (b). 

Fig.2. Effect of crack depth ratio on the first normalized mode shape of the FGM beam with 2 1/ 5E E =  

and 1 / 0.5L L = : (a) C-C beam; (b) H-H beam; (c) C-F beam. 

Fig.3. Wavelet coefficients modulus for edge cracked FGM beams with 2 1/ 5E E = , 1 / 0.5L L =  and 

/ 0.3a h =  for scale 1 ~ 32s = : (a) C-C beam; (b) H-H beam; (c) C-F beam. 

Fig.4. Damage index for FGM beams with an open edge crack and 2 1/ 5E E = , 1 / 0.5L L =  and 

/ 0.3a h = : (a) C-C beam; (b) H-H beam; (c) C-F beam. 

Fig.5. Wavelet modulus maxima of edge cracked FGM beams with 2 1/ 5E E =  and 1 / 0.5L L = : (a) 

C-C beam; (b) H-H beam; (c) C-F beam. 

Fig.6. Effect of the Young’s modulus ratio on the intensity factor of edge cracked FGM beams with 

1 / 0.5L L =  versus crack depth: (a) C-C beam; (b) H-H beam; (c) C-F beam. 

Fig.7. Effect of the Young’s modulus ratio on the intensity factor of edge cracked FGM beams with 

/ 0.2a h =  versus crack position: (a) C-C beam; (b) H-H beam; (c) C-F beam. 

Fig.8. Damage index of the FGM beam with two edge cracks ( 2 1/ 5E E = , 1 / 0.2L L = , 2 / 0.8L L = , 

1 / 0.3a h = , 2 / 0.2a h = ): (a) C-C beam; (b) H-H beam; (c) C-F beam. 

Fig. 9 Damage index of the H-H cracked FGM beam with single crack ( 2 1/ 5E E = , 1 / 0.5L L = , 

1 / 0.3a h = ) in noisy conditions: (a) Z 0.1%noise = ; (b) Z 0.5%noise = ; (c) Z 1%noise = . 

 
 
 
 
 
 
 
 
 
 
 
 



26 
 

 
 
 
 

Table 1 Fundamental frequency of an isotropic homogenous cantilever beam with an edge crack. 

 
1 / 0.2L L =  1 / 0.4L L =  1 / 0.6L L =  1 / 0.8L L =  

Present 
Kisa et 
al. [48] Present 

Kisa et 
al. [48] Present 

Kisa et 
al. [48] Present 

Kisa et 
al. [48] 

0.2 1020.103 1020.137 1029.871 1030.095 1034.963 1035.284 1036.534 1036.884 
0.4 967.7161 966.9525 1006.995 1006.856 1029.033 1029.262 1036.070 1036.414 
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Table 2 The effect of axial inertia on the fundamental frequency of cracked FGM beams. 

2 1/E E  H-H  C-C 

 

with axial 

inertia  [49] 

without axial 

inertia 

 with axial 

inertia   [49] 

without axial 

inertia 

0.2 0.41921 0.41415 (1.22%)  0.82329 0.81249 (1.32%) 

1 0.42454 0.41987 (1.11%)  0.86882 0.85841 (1.21%) 

5.0 0.43757 0.43232 (1.21%)  0.83964 0.82894 (1.29%) 
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Table 3 Intensity factor of cracked C-C FGM beam ( )410−   

1 /L L  2 1/E E  
/a h  

0.1 0.2 0.3 0.4 0.5 
0.1 5 0.121 0.571 1.179 1.814 2.421 

1 0.185 0.812 1.547 2.289 2.932 
0.2 0.259 1.045 1.904 2.654 3.237 

0.2 5 0.034 0.128 0.263 0.431 0.621 
1 0.051 0.180 0.360 0.580 0.814 

0.2 0.064 0.253 0.478 0.723 0.940 
0.3 5 0.105 0.373 0.779 1.314 1.959 

1 0.151 0.532 1.094 1.838 2.694 
0.2 0.190 0.679 1.401 2.253 3.124 

0.4 5 0.194 0.690 1.410 2.284 3.219 
1 0.280 0.977 1.935 3.054 4.121 

0.2 0.353 1.235 2.413 3.591 4.593 
0.5 5 0.222 0.777 1.544 2.433 3.361 

1 0.319 1.088 2.083 3.200 4.272 
0.2 0.402 1.362 2.563 3.736 4.735 
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Table 4 Intensity factor of cracked H-H FGM beam ( )410−   

1 /L L  2 1/E E  
/a h  

0.1 0.2 0.3 0.4 0.5 
0.1 5 0.052 0.151 0.430 0.888 1.709 

1 0.067 0.208 0.603 1.327 3.781 
0.2 0.055 0.343 0.966 3.502 5.593 

0.2 5 0.101 0.391 0.894 1.644 2.708 
1 0.133 0.510 1.151 2.142 3.527 

0.2 0.182 0.764 1.773 3.249 5.098 
0.3 5 0.152 0.555 1.179 2.013 3.011 

1 0.196 0.707 1.477 2.505 3.638 
0.2 0.279 1.024 2.144 3.441 4.560 

0.4 5 0.176 0.627 1.275 2.057 2.882 
1 0.226 0.790 1.569 2.469 3.367 

0.2 0.320 1.118 2.171 3.207 4.123 
0.5 5 0.177 0.646 1.276 2.020 2.806 

1 0.238 0.810 1.553 2.414 3.271 
0.2 0.334 1.119 2.127 3.125 3.990 
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Table 5 Intensity factor of cracked C-F FGM beam ( )510−  

1 /L L  2 1/E E  
/a h  

0.1 0.2 0.3 0.4 0.5 
0.1 5 0.481 1.829 3.582 5.630 7.797 

1 0.754 2.566 4.819 7.302 9.657 
0.2 0.965 3.166 5.930 8.680 11.070 

0.2 5 0.415 1.520 3.136 5.149 7.443 
1 0.624 2.198 4.342 6.909 9.570 

0.2 0.769 2.743 5.455 8.431 11.285 
0.3 5 0.339 1.273 2.693 4.586 6.925 

1 0.514 1.853 3.812 6.359 9.262 
0.2 0.631 2.347 4.891 7.988 11.302 

0.4 5 0.257 1.011 2.208 3.901 6.139 
1 0.391 1.497 3.182 5.580 8.598 

0.2 0.498 1.902 4.170 7.230 10.924 
0.5 5 0.186 0.754 1.695 3.081 5.065 

1 0.285 1.127 2.487 4.548 7.446 
0.2 0.354 1.451 3.316 6.096 9.935 

0.6 5 0.123 0.512 1.178 2.200 3.759 
1 0.194 0.773 1.755 3.347 5.777 

0.2 0.237 1.003 2.386 4.612 8.100 
0.7 5 0.052 0.300 0.667 1.334 2.358 

1 0.106 0.423 1.033 2.071 3.749 
0.2 0.135 0.562 1.450 2.924 5.497 

0.8 5 0.006 0.133 0.336 0.583 1.057 
1 0.012 0.207 0.452 0.931 2.017 

0.2 0.028 0.278 0.645 1.614 2.928 
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Table 6 Intensity factor of the FGM beam with two cracks ( )410−  

 
1IF   2IF  

C-C 0.258 0.136 

H-H 0.866 0.338 

C-F 0.313 0.0101 
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(a) 

 

 

 

 

(b) 

Fig.1. A cracked FGM beam (a) and the massless rotational spring model connecting two sub-beams (b). 
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(c) 

Fig.2. Effect of crack depth ratio on the first normalized mode shape of the FGM beam with 2 1/ 5E E =  

and 1 / 0.5L L = : (a) C-C beam; (b) H-H beam; (c) C-F beam. 
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(a) 

 

(b) 

 

(c) 

Fig.3. Wavelet coefficients modulus for edge cracked FGM beams with 2 1/ 5E E = , 1 / 0.5L L =  and 

/ 0.3a h =  for scale 1 ~ 32s = : (a) C-C beam; (b) H-H beam; (c) C-F beam. 
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(c) 

Fig.4. Damage index for FGM beams with an open edge crack and 2 1/ 5E E = , 1 / 0.5L L =  and 

/ 0.3a h = : (a) C-C beam; (b) H-H beam; (c) C-F beam. 
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(c) 

Fig.5. Wavelet modulus maxima of edge cracked FGM beams with 2 1/ 5E E =  and 1 / 0.5L L = : (a) 

C-C beam; (b) H-H beam; (c) C-F beam. 
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(c) 

Fig.6. Effect of the Young’s modulus ratio on the intensity factor of edge cracked FGM beams with 

1 / 0.5L L =  versus crack depth: (a) C-C beam; (b) H-H beam; (c) C-F beam. 
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(c) 

Fig.7. Effect of the Young’s modulus ratio on the intensity factor of edge cracked FGM beams with 

/ 0.2a h =  versus crack position: (a) C-C beam; (b) H-H beam; (c) C-F beam. 
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(c) 

Fig.8. Damage index of the FGM beam with two edge cracks ( 2 1/ 5E E = , 1 / 0.2L L = , 2 / 0.8L L = , 

1 / 0.3a h = , 2 / 0.2a h = ): (a) C-C beam; (b) H-H beam; (c) C-F beam. 



40 
 

0.0 0.2 0.4 0.6 0.8 1.0
0

8

16

24

32

40

48

56

64

 Znoise = 0.1%

D
am

ag
e 

in
de

x

x/L
 

(a) 

0.0 0.2 0.4 0.6 0.8 1.0
0

8

16

24

32

40

48

56

64

 Znoise = 0.5%

D
am

ag
e 

in
de

x

x/L
 

(b) 
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(c) 

Fig. 9 Damage index of the H-H cracked FGM beam with single crack ( 2 1/ 5E E = , 1 / 0.5L L = , 

1 / 0.3a h = ) in noisy conditions: (a) Z 0.1%noise = ; (b) Z 0.5%noise = ; (c) Z 1%noise = . 

 


