
SPECIAL SECTION ON DATA MINING AND GRANULAR COMPUTING
IN BIG DATA AND KNOWLEDGE PROCESSING

Received October 6, 2018, accepted October 28, 2018, date of publication November 9, 2018, date of current version November 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2878897

A Multimodel Fusion Engine for
Filtering Webpages
ZIYUN DENG 1,2, TINGQIN HE 2, WEIPING DING 3,4, (Member, IEEE),
AND ZEHONG CAO 4, (Member, IEEE)
1College of Economics and Trade, Changsha Commerce and Tourism College, Changsha 410116, China
2National Supercomputing Center in Changsha, Hunan University, Changsha 410082, China
3School of Computer Science and Technology, Nantong University, Nantong 226019, China
4Centre for Artificial Intelligence, Faculty of Engineering and Information Technologies, University of Technology Sydney, Ultimo, NSW 2007, Australia

Corresponding author: Ziyun Deng (dengziyun@126.com)

This work was supported in part by the National Key Technology Support Program of China under Grant 2012BAH09B02, in part by the
Natural Science Foundation of Hunan Province under Grant 2017JJ5064, in part by the Social Science Foundation of Hunan Province
under Grant 16ZDA07, and in part by the Applied Basic Research Program of Nantong under Grant GY12016014.

ABSTRACT Fusing multiple existing models for filtering webpages can mitigate the shortcomings of
individual filtering models. To provide an engine for such fusion, we propose a multimodel fusion engine for
filtering webpages for the extraction of target webpages. This engine can handle large datasets of webpages
crawled from websites and supports five individual filtering models and the fusion of any two of them. There
are two possible fusion methods: one is to simultaneously satisfy the conditions of both individual models,
and the other is to satisfy the conditions of one of the two individual models. We present the functions,
architecture, and software design of the proposed engine. We use recall ratio (RR) and precision ratio (PR)
as the evaluation indices of the filtering models and propose rules describing how PR and RR change when
individual models are fused. We use 200 000 webpages collected by crawling the popular online shopping
website ‘‘www.jd.com’’ as the experimental dataset to verify these rules. The experimental results show that
two-model fusion can improve either PR or RR. Thus, the proposed engine has good practical value for
engineering applications.

INDEX TERMS Multimodel, fusion, engine design, webpage filtering.

I. INTRODUCTION
An engine for filtering webpages is an important compo-
nent of a search engine. Its purpose is to screen incoming
webpages to determine which pages should be displayed
to users. A good webpage filtering engine allows users to
block pages fromwebsites that are likely to include unwanted
advertising, pornographic content, spyware, viruses, or other
objectionable content. The academic and engineering com-
munities have developed various webpage filtering engines
that support one or more filtering models.

At present, most vertical web crawlers support only a
single filtering model. Some researchers have fused 2–3
individual filtering models to obtain new filtering mod-
els [1]–[4], thereby proving that fusing existing filtering
models is an effective way to mitigate the shortcomings of
individual filtering models [1]–[3]. However, no engine that
supports multiple individual filtering models and their fusion
is available on the market. Therefore, to fill this gap, we

developed a multimodel fusion engine for filtering webpages
(MMFEFWP). MMFEFWP can handle large datasets from
webpages crawled fromwebsites and supports five individual
filtering models and the fusion of any two of them.

II. RELATED WORK
Four categories of webpage filtering models have been pro-
posed in existing research [4], [5]. The first category consists
of filtering models based on the uniform resource identi-
fiers (URIs) of webpages [6]. The second consists of filtering
models based on the features of webpage tags. The third con-
sists of filtering models based on the structures of webpages.
The fourth consists of filtering models based on autonomous
learning. These existing models also aim to delete redundant
tags from the webpages before filtering.

Filteringmodels based on the URIs of webpages are simple
and easy to implement, but they are not suitable for the new
mechanism of URI generation and mapping used by many

66062
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-1276-5222
https://orcid.org/0000-0001-7890-7567
https://orcid.org/0000-0002-3180-7347
https://orcid.org/0000-0003-3656-0328


Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

websites. For convenience, many websites map their URIs to
shorter URIs. Using these shorter URIs alone, models of this
kind cannot determine whether a given webpage is a target
page [6].

Filtering models based on the features of webpage tags use
several essential features to define the filtering conditions of
webpages, including specific strings, specific tags [7], [8],
specific tree nodes [9], specific tree structures in a web-
page [10], and the link ratio of a webpage. These filtering
models are applicable only to specific websites and require
programmers to have a prior understanding of the content of
these websites [11], [12].

Filtering models based on the structures of webpages can
be divided into two subclasses. The models in one subclass
filter webpages by calculating the similarities between two
XML trees [10], [13]–[17]. The models in the other sub-
class judge the types of webpages according to their lay-
outs [18]–[20].

Filtering models based on autonomous learning are first
trained on a certain training set of webpages and then
apply certain learning algorithms and statistics, including
K-means clustering and term frequency-inverse document
frequency (TF-IDF), to cluster the input webpages [21]–[23].
After the clustering process, such a model requires a sup-
plementary algorithm to generate the target classification.
It is difficult to determine a suitable threshold for the
classification of webpages, and such programs are highly
complex [24]–[27].

Certain scholars have fused multiple filtering models to
form new filtering models. Some researchers have used the
‘‘fuzzy ontology + support vector machine (SVM) + black-
list’’ fusion approach to filter out websites with pornographic
content [1], while others have used multistring matching to
detect malicious web sites [1], [2] or ‘‘K-nearest neighbor +
SVM’’ fusion to filter out pornographic websites [3]. The
results of these studies show that the fusion of multiple fil-
tering models can improve the precision ratio (PR) and recall
ratio (RR) of the filtering results. Because these studies have
used different experimental datasets and the source codes
for the fused models are not provided in the literature, these
fusion results are difficult to reproduce. However, we have
implemented a multistring matching model as a single model
for comparative analysis.

Our research team has developed a filtering engine that
supports the processing of large sets of web data using
multiple individual webpage filtering models and fusions
thereof. We call this engine MMFEFWP. MMFEFWP cur-
rently supports the following functions:

1) MMFEFWP supports five individual filtering mod-
els. These models include a model for filtering pages
by strings (MFPS), a model for filtering pages by tags
and attributes (MFPTA), a model for filtering pages by
trees (MFPT), a model for filtering pages by link ratios
(MFPLR), and a model for filtering pages by similarity
degree (MFPSD). Among them, MFPS, MFPTA, MFPT, and
MFPLR are filteringmodels based on the features of webpage

tags, while MFPSD is a filtering model based on the struc-
tures of webpages.

2)MMFEFWP supports the fusion of any two of the five
individual filtering models. There are two possible fusion
methods. One is to simultaneously satisfy the conditions of
both individual models. The other is to satisfy the conditions
of one of the two individual models. Such fusion can improve
either PR or RR.

3) MMFEFWP can process millions of webpages
in a day. In this study, we use 200,000 webpages col-
lected by crawling the popular online shopping website
‘‘www.jd.com’’ as our experimental dataset.

III. ENGINE DESIGN
To develop MMFEFWP, we followed the research route
shown in Figure 1. First, we designed the engine func-
tions, the engine architecture, and the engine software. Then,
we conducted a performance analysis. We used open-source
software such as Spring, jsoup, and HtmlUnit to develop
MMFEFWP.

A. ENGINE FUNCTIONS
The functions of MMFEFWP are shown in Figure 2.
First, the engine deletes redundant tags from the collected
webpages. Then, the engine filters these webpages.

FIGURE 1. Research route of MMFEFWP.

FIGURE 2. Functions of the proposed engine.

VOLUME 6, 2018 66063



Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

When filtering webpages, the engine can use any one of the
five individual filteringmodels or a fusion of any two of them.
As our research continues to develop, our engine will support
more filtering models and more complex fusions.

MMFEFWP requires a large dataset for experimental anal-
ysis. Our research team has developed a multimachine and
multithread vertical crawler that can crawl tens of millions of
webpages in a day.

B. ENGINE ARCHITECTURE
To realize the fusion function depicted in Figure 2 and to
implement the filtering models, we designed MMFEFWP
with the hierarchical architecture shown in Figure 3. The
technical details of the architecture, including the data pro-
cessing, filtering algorithms, and open-source software used,
are fully described here.

FIGURE 3. Engine architecture.

The engine architecture consists of five layers: a data layer,
a component encapsulation layer, a filtering component layer,
a component combination layer and a data presentation
layer. In the data layer and the component encapsulation
layer, webpage queues are implemented as database tables
using SQL Server, and jsoup is used as the tool for tree
processing. All operations on the queues and all operations
on the trees are encapsulated as JavaBeans.

In addition, to speed up data processing, we use a buffer for
queue operations. The encapsulated JavaBeans are managed
by a Spring container using the Inversion of Control (IoC)
design concept. These JavaBeans are encapsulated using two
bean types: singleton and prototype.

In the filtering component layer, the following algorithms
are implemented in the form of JavaBeans: a tag deleting
function, MFPS, MFPTA, MFPT, MFPLR, and MFPSD.
In the component combination layer, these components are
managed and combined using the aspect-oriented program-
ming (AOP) characteristics of Spring. Spring configuration
files are used to configure the pre-Advice and post-Advice

parts of the Spring container to manage JavaBeans and form
a combined filtering workflow.

In the data presentation layer, HTML and JFreeChart are
used to visualize the results of data analysis and show the
commodity price analysis curve. By using JavaScript Object
Notation (JSON), we can access web services in a simple way
to obtain the data for the engine.

C. ENGINE SOFTWARE
According to the architecture design shown in Figure 3,
we need a buffer for quickly processingwebpages. The design
of the filtering function is shown in Figure 4. Based on the
original design depicted in Figure 4, we further consider the
following two factors.

FIGURE 4. Design of the filtering function.

1) QUEUE AND BUFFER STORAGE
The queues are stored as database tables using SQL
Server. The queue of pages waiting to be filtered is mapped
to one table. The queue of filtered pages is mapped to another
table. We use the BasicDataSource class in Spring to encap-
sulate the data sources. The elements in these queues have the
structure Key–Value, where Key is the URI of the webpage
and Value is the content of the webpage. The elements in
the buffer queue are all Page objects, each of which has two
properties: the ‘‘url’’, which is the URI of the webpage, and
the ‘‘pageContent’’, which is the content of the webpage.
We assume that the buffer contains k queues, a queue has n
elements, the length of a URI is l bytes, and the length of
the content of a page is m bytes. Then, the buffer size BS is
calculated using the following formula:

BS = k × n× (l + m) (1)

66064 VOLUME 6, 2018



Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

We set k = 10, n = 10, l = 300, and m = 40, 000; then,
the buffer size is:

BS = k × n× (l + m)

= 10× 10× (300+ 40, 000)

= 4, 030, 000 bytes

Therefore, the buffer occupies approximately 4 MB of
memory space, which is acceptable for the current config-
urations of mainstream servers.

2) FILTERING PROCESS
During the data preparation stage, the crawler pushes the
crawled webpages into the queue of pages waiting to be
filtered. The buffer maintenance thread is used to provide the
datasets of thewebpages to the filtering thread. The procedure
executed by the buffer maintenance thread is provided in
algorithm 1.

Algorithm 1 Buffer Maintenance Algorithm
/∗ While the queue of pages waiting to be filtered is

not empty ∗/
1:While (QueueWaiting is not empty)

//Traverse the buffer to find an empty block
2: For i = 1 to 10 step 1

//If a block in the buffer is empty
3: If Blocki is empty Then

/∗ Pop out n webpages from
QueueWaiting into block ∗/

4: popup(QueueWaiting, block, n)
// Push block into Blocki

5: push(Blocki, block)
6: End If
7: End For
8: End While

According to algorithm 1, once the buffer maintenance
thread discovers an empty block in the buffer, it pops out n
webpages from the queue of pages waiting to be filtered and
then pushes these webpages into the empty block found.

The procedure executed by the filtering thread is given in
algorithm 2.

According to algorithm 2, once the filtering thread finds a
data block that is not empty, it uses either a single filtering
model or a fused filtering model to filter the webpages in that
data block. Then, the thread pushes the filtering results into
the filtered page queue.

D. FUSION RULES
At present, MMFEFWP supports the fusion of two of the five
individual filtering models. We derived the rules describing
how the PR and RR change for two methods of fusion, which
are given below:

1) Fusion rule 1. The conditions of both individual mod-
els are simultaneously satisfied. If we denote the individual

Algorithm 2Webpage Filtering Algorithm
/∗While the queue of pages waiting to be filtered is not
empty and the buffer is not empty

∗/
1:While (QueueWaiting is not empty and buffer is

not empty)
/∗ Traverse the buffer to find a block that is not

empty ∗/
2: For i = 1 to 10 step 1

// If a block in the buffer is not empty
3: If Blocki is not empty Then

// Pop out Blocki in buffer into block
4: popup(buffer, Blocki, block)

/∗ Filter the webpages using the filtering
models ∗/

5: filterResult=filterWebPages(block)
/∗ Push the filtering result into the

filtered page queue ∗/
6: push(filterResult, QueueFiltered)
7: End If
8: End For
9: End While

filtering conditions of the two fused filtering models by filter-
Model1.conditions and filterModel2.conditions, respectively,
then the conditions to be satisfied for this fusion method are
expressed as follows:
filterModel1.conditions and filterModel2.conditions
Theoretically, we believe that the filtering performance

after fusion should be described by the following two rules.
First, the RR of the fused results should be less than or

equal to the smaller of the RRs of the two individual filtering
models. This rule is expressed as follows:

RR ≤ Min(RR1,RR2) (2)

Second, the PR of the fused results should be greater than
or equal to the larger of the PRs of the two individual filtering
models. This rule is expressed as follows:

PR ≥ Max(PR1,PR2) (3)

Here, the formulas for calculating RR and PR are as fol-
lows:

RR =
TAF
TUF

× 100% (4)

where TAF is the number of target pages obtained after
filtering and TUF is the number of target pages in the pages
to be filtered;

PR =
TAF
AF
× 100% (5)

where AF is the number of pages obtained after being
filtered.

We derive the two rules above as follows. For RR, the num-
ber of target pages in the pages to be filtered is fixed, and the

VOLUME 6, 2018 66065



Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

number of target pages obtained after filtering should either
decrease or remain unchanged. Therefore, the calculated RR
should also either decrease or remain unchanged.

For PR, the number of target pages obtained after filtering
and the number of pages obtained after filtering should either
be reduced or remain unchanged. The range of variation of
the number of pages obtained after filtering is greater than the
range of variation of the number of target pages obtained after
filtering. Therefore, the calculated PR should either increase
or remain unchanged. Moreover, the change in PR should be
smaller than the change in RR. These rules will be shown to
hold in the subsequent experimental analysis.

2) Fusion rule 2. The conditions of only one of the two
individual models must be satisfied. The conditions to be
satisfied for this fusion method are expressed as follows:
filterModel1.conditions or filterModel2.conditions
Theoretically, we believe that the filtering performance

after fusion should be described by the two following rules.
First, the RR of the fused results should be greater than or

equal to the larger of the RRs of the two individual filtering
models. This rule is expressed as follows:

RR ≥ Max(RR1,RR2) (6)

Second, the PR of the fused results should be less than or
equal to the smaller of the PRs of the two individual filtering
models. This rule is expressed as follows:

PR ≤ Min(PR1,PR2) (7)

The derivation of these rules is similar to that for fusion
method 1, and so it is not repeated here. To determine which
fusion method should be used in practice, we proposed the
following selection principles. If theRRs of the two individual
filtering models are both acceptable and the PRs are unac-
ceptable, PR needs to be improved. Thus, we suggest choos-
ing fusion rule 1. If the PRs of the two individual filtering
models are both unacceptable and the RRs are also unaccept-
able, RR needs to be improved. Thus, we suggest choosing
fusion rule 2. To enable this determination, an acceptance
threshold can be set for RR and PR (e.g., 85%).

IV. PERFORMANCE ANALYSIS
To verify the functions ofMMFEFWP and the rules described
above, we used 200,000 webpages crawled from the popular
online shopping website ‘‘www.jd.com’’ as our experimen-
tal dataset. The dataset contains 57,570 pages with detailed
information. The filtering goal is to find these detailed infor-
mation pages.

A. EXPERIMENTAL ENVIRONMENT
We used a laptop as the experimental environment, with
‘‘SQLServer 2017Desktop Edition’’ as the database software
and ‘‘Eclipse Java EE IDE for Web Developers Neon.3’’ as
the development software. The specifications of the computer
hardware and the operating system are listed in Table 1.

TABLE 1. Computer configuration used in the experiments.

FIGURE 5. Structure tree used for filtering.

B. EXPERIMENTAL ANALYSIS OF THE INDIVIDUAL
FILTERING MODELS
The effects of the individual filteringmodels were experimen-
tally analyzed. The main configuration of MMFEFWP for
each model is listed in Table 2. In each experiment, the same
200,000 pages were filtered. The experimental results are
shown in Figure 6 and Figure 7. The performances of the
filtering models were assessed in terms of the processing
time per thousand pages and the cumulative processing time.
The accuracies of the filtering models were assessed in terms
of RR and PR. For effective calculation in real experiments,
the number of detailed information pages obtained after being
filtered is considered as TAF and the number of target pages
in the pages to be filtered is considered as TUF .

In Figure 6 and Figure 7, the abscissa represents the num-
ber of webpages filtered, whereas the ordinate is the RR or
PR value. Because the trends in the RR and PR values can be
clearly seen in Figure 6, detailed explanations are not given
below.

C. FUSED APPLICATION OF THE FIVE FILTERING MODELS
The purpose of combining individual filtering models is to
improve the RR and PR of the filtering results. As seen

66066 VOLUME 6, 2018



Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

TABLE 2. Main configurations of MMFEFWP.

FIGURE 6. PRs of the individual filtering models and fusion models.

from the above analysis, the RRs of the five filtering
models are acceptable, but their PRs are not ideal. There-
fore, we adopt the following approaches in our fusion
analysis.

1) Choose a fusion method. To improve RR, fusion rule 1
should be chosen.

2) Merge two filtering models. Considering that the
effects of the MFPTA and MFPT models are very similar,

VOLUME 6, 2018 66067



Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

FIGURE 7. RRs of the individual filtering models and fusion models.

TABLE 3. RRs and PRs of the models when filtering nearly 200,000 webpages.

with MFPTA having a higher efficiency and a slightly higher
RR, the MFPTA filtering model is considered representative
of both these models for the remainder of the experimental
analysis.

Accordingly, we consider the following six fused filtering
models.

1) The fusion of theMFPTA andMFPLRfilteringmod-
els, denoted by TagAndLinks. The filtering conditions of
TagAndLinks are that the conditions of MFPTA and MFPLR
are all satisfied.

2) The fusion of the MFPTA and MFPS filtering mod-
els, denoted by TagAndString. The filtering conditions of
TagAndString are that the conditions of MFPTA and MFPS
are all satisfied.

3) The fusion of the MFPTA and MFPSD filtering
models, denoted by TagAndSim. The filtering conditions of
TagAndSim are that the conditions of MFPTA and MFPSD
are all satisfied.

4) The fusion of the MFPLR and MFPS filtering mod-
els, denoted by LinksAndString. The filtering conditions of
LinksAndString are that the conditions of MFPLR andMFPS
are all satisfied.

5) The fusion of theMFPLR andMFPSDfilteringmod-
els, denoted by LinksAndSim. The filtering conditions of
LinksAndSim are that the conditions of MFPLR andMFPSD
are all satisfied.

6) The fusion of the MFPS and MFPSD filtering mod-
els, denoted by StringAndSim. The filtering conditions of
StringAndSim are that the conditions of MFPS and MFPSD
are all satisfied.

The RRs and PRs of the six fused models above are shown
in Figure 6 and Figure 7.

D. DISCUSSION
To facilitate a comparative analysis, Table 3 lists the RRs
and PRs achieved by the models when the number of fil-
tered webpages is nearly 200,000. The curve for the fused
TagAndLinks model in Figure 6 and Figure 7 is similar to
that for the individual MFPTA model. When the number
of webpages filtered is nearly 200,000, the RR and PR of
the fused TagAndLinks model are the same as those of the
MFPTAmodel, whereas the RR and PR of the fused TagAnd-
String model are 90.3% and 73.1%, respectively. We abstain

66068 VOLUME 6, 2018



Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

FIGURE 8. Average processing time for every thousand pages of the filtering models.

FIGURE 9. Accumulative processing time of the filtering models.

from reiterating the RRs and PRs of the other four fused
filtering models here.

The curve for MFPTA is similar to that for MFPT.
The similarity in the RRs and PRs of these two fil-
tering models can be explained by considering the
conditions applied in these models. As seen from
Table 2, the conditions ‘‘page.containsTag(divTag) and

page.divTags.containsAttribute(classAttribute)’’ are included
in Condition 1 of MFPTA and Condition 1 of MFPT.

The execution efficiencies of the filtering models are
shown in Figure 8 and Figure 9. In Figure 8, the ordinate is the
average processing time in seconds for every thousand pages.
In Figure 9, the ordinate is the cumulative processing time for
all pages in seconds.

VOLUME 6, 2018 66069



Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

In general, the MFPTA model has the highest speed.
This model takes only 1802.4 seconds, or approximately
30 minutes, to process 200,000 pages. The TagAnd-
Sim model is the slowest, taking 10447.4 seconds, or
approximately 174.1 minutes, to process 200,000 pages;
this is approximately six times slower than the MFPTA
model.

From Figures 6–9 and Table 3, we can infer the following
rules.

1) Among the six fused models, if the fused model was
obtained by fusing MFPLR with another filtering model,
then the graph for the fused model is biased towards that
for the other model. For example, the graph for the fused
TagAndLinks model is biased towards that for the individual
MFPTA model. According to our analysis, the reason for this
behavior is that the set of results produced by MFPLR is
too large. When the number of filtered webpages is nearly
200,000, the number of MFPLR results is approximately
173,000, indicating that the MFPLR model has no obvious
filtering effect.

2) The correctness of formula 2 and formula 3 is veri-
fied. RR decreases significantly with the fusions considered
here, while PR does not markedly increase. For example,
when the number of filtered webpages is nearly 200,000,
the RR and PR of the fused StringAndSim model are 80.9%
and 72.7%, respectively. The RR of this fused model is
decreased by 9.7 percentage points and 5.7 percentage points
compared with those of the individual MFPS and MFPSD
models, respectively, while PR is correspondingly increased
by only 0.9 percentage points and 2.1 percentage points,
respectively.

We abstain here from describing fused models obtained
using fusion rule 2 and from demonstrating the correctness of
formula 6 and formula 7. As discussed above, the developed
MMFEFWP engine supports five individual filtering models
and their fusion, but the following three problems still remain.

1) We could not find a filtering model with both high
RR and high PR. MMFEFWP supports several individual
filtering models with high RRs, the lowest value of RR being
86.6%. However, the PRs of these individual models are
not ideal, with the highest being only 72.9%. Even when
two individual filtering models are fused, the highest PR
is increased to only 73.4%. One possible way to solve this
problem is to use an artificial intelligence algorithm, such as
a deep neural network.

2) The number of individual filtering models supported
by the engine is low. At present, MMFEFWP supports only
five individual filtering models, and the PRs of these models
are not high. More individual filtering models need to be
supported.

3) The fusion capability supported by the engine is
limited. Currently, MMFEFWP supports the fusion of only
two individual filtering models. In the future, the fusion of
three or more filtering models should be supported by the
engine. It will also be necessary to study the rules governing
how the PRs and RRs change with such complex fusions.

Our research team will address these three problems in our
future work.

V. CONCLUSION
We have proposed the MMFEFWP architecture for the fil-
tering of large datasets of webpages crawled from websites.
Our proposedmultimodel fusion engine for webpage filtering
can extract target webpages using multiple models, including
models based on strings, trees, link ratios, similarity degrees,
and tags and attributes. We downloaded 200,000 pages from
the popular online shopping website ‘‘www.jd.com’’ for use
in experimental analysis. Our results show that fused filtering
models achieve better PR values than the individual models;
for example, the PR of the TagAndLinks model is 72.9%,
which is considerably higher than the PR of 32.9% achieved
by the individual MFPLR model. Although the PRs of the
fused models are still not high, it is obvious that two-model
fusion results in improved performance compared with the
individual filteringmodels. Through fusion, thePR of an indi-
vidual filtering model can be improved if its RR is acceptable,
or the RR can be improved if the PR is acceptable.

In summary, our proposed MMFEFWP engine can filter a
large number of webpages. This engine can be profitably used
in engineering practice. In the future, in addition to solving
the three problems mentioned in the previous section, we will
integrate MMFEFWP with a crawler and a web system for
displaying data.

REFERENCES
[1] F. Ali et al., ‘‘A fuzzy ontology and SVM–basedWeb content classification

system,’’ IEEE Access, vol. 5, pp. 25781–25797, 2017.
[2] A. Díaz-Manríquez, A. B. Ríos-Alvarado, J. H. Barrón-Zambrano,

T. Y. Guerrero-Melendez, and J. C. Elizondo-Leal, ‘‘An automatic doc-
ument classifier system based on genetic algorithm and taxonomy,’’ IEEE
Access, vol. 6, pp. 21552–21559, 2018.

[3] V. K. Bhalla and N. Kumar, ‘‘An efficient scheme for automatic Web pages
categorization using the support vector machine,’’ New Rev. Hypermedia
Multimedia, vol. 22, no. 3, pp. 223–242, 2016.

[4] A. Ahmadi, M. Fotouhi, and M. Khaleghi, ‘‘Intelligent classification of
Web pages using contextual and visual features,’’ Appl. Soft Comput.,
vol. 11, no. 2, pp. 1638–1647, 2011.

[5] A. I. Saleh, M. F. Al Rahmawy, and A. E. Abulwafa, ‘‘A semantic based
Web page classification strategy using multi-layered domain ontology,’’
World Wide Web, vol. 20, no. 5, pp. 939–993, 2017.

[6] J.-H. Lee, W.-C. Yeh, and M.-C. Chuang, ‘‘Web page classification based
on a simplified swarm optimization,’’ Appl. Math. Comput., vol. 270,
pp. 13–24, Nov. 2015.

[7] Y. Du, Q. Pen, and Z. Gao, ‘‘A topic-specific crawling strategy based on
semantics similarity,’’ Data Knowl. Eng., vol. 88, pp. 75–93, Nov. 2013.

[8] M. Sahami and T. D. Heilman, ‘‘A Web-based kernel function for measur-
ing the similarity of short text snippets,’’ in Proc. 15th Int. Conf. World
Wide Web, 2006, pp. 377–386.

[9] S. Kohli, S. Kaur, and G. Singh, ‘‘A Website content analysis approach
based on keyword similarity analysis,’’ in Proc. IEEE/WIC/ACM Int. Joint
Conf. Web Intell. Intell. Agent Technol., vol. 1, Dec. 2012, pp. 254–257.

[10] D. A. Popescu and D. Radulescu, ‘‘Approximately similarity measurement
of Web sites,’’ in Proc. Int. Conf. Neural Inf. Process., 2015, pp. 624–630.

[11] H. Li, Z. Xu, T. Li, G. Sun, and K.-K. R. Choo, ‘‘An optimized approach for
massive Web page classification using entity similarity based on semantic
network,’’ Future Gener. Comput. Syst., vol. 76, pp. 510–518, Nov. 2017.

[12] E. Ilbahar and S. Cebi, ‘‘Classification of design parameters for E-
Commerce Websites: A novel fuzzy Kano approach,’’ Telematics Inform.,
vol. 34, no. 8, pp. 1814–1825, 2017.

[13] G. S. Reddy and D. R. V. Krishnaiah, ‘‘Clustering algorithm with a novel
similarity measure,’’ J. Comput. Eng., vol. 4, no. 6, pp. 37–42, 2012.

66070 VOLUME 6, 2018



Z. Deng et al.: Multimodel Fusion Engine for Filtering Webpages

[14] M. E. Crovella and A. Bestavros, ‘‘Self-similarity in World Wide Web
traffic: Evidence and possible causes,’’ IEEE/ACM Trans. Netw., vol. 5,
no. 6, pp. 835–846, Dec. 1997.

[15] Z. Deng, J. Zhang, and T. He, ‘‘Automatic combination technology of fuzzy
CPN for OWL-S Web services in supercomputing cloud platform,’’ Int.
J. Pattern Recognit. Artif. Intell., vol. 31, no. 7, p. 1759010, 2017.

[16] Y. Du and Y. Hai, ‘‘Semantic ranking of Web pages based on formal
concept analysis,’’ J. Syst. Softw., vol. 86, no. 1, pp. 187–197, 2013.

[17] X. Xie and B. Wang, ‘‘Web page recommendation via twofold clustering:
Considering user behavior and topic relation,’’ Neural Comput. Appl.,
vol. 29, no. 1, pp. 235–243, 2018.

[18] A. S. Bozkir and E. A. Sezer, ‘‘Layout-based computation of Web page
similarity ranks,’’ Int. J. Hum. Comput. Stud., vol. 110, pp. 95–114,
Feb. 2018.

[19] C. Fang and B. Y. Liu, ‘‘Exploration of Web page structural patterns
based on request dependency graph decomposition,’’ Int. J. Digit. Crime
Forensics, vol. 8, no. 4, pp. 1–13, 2016.

[20] J. Kumar, P. Ye, and D. Doermann, ‘‘Structural similarity for docu-
ment image classification and retrieval,’’ Pattern Recognit. Lett., vol. 43,
pp. 119–126, Jul. 2014.

[21] G. Kou and C. Lou, ‘‘Multiple factor hierarchical clustering algorithm for
large scaleWeb page and search engine clickstream data,’’ Ann. Oper. Res.,
vol. 197, no. 1, pp. 123–134, 2012.

[22] T. T. S. Nguyen, H. Y. Lu, and J. Lu, ‘‘Web-page recommendation based
on Web usage and domain knowledge,’’ IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 10, pp. 2574–2587, Oct. 2014.

[23] A. A. AbdulHussien, ‘‘Comparison of machine learning algorithms to
classify Web pages,’’ Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 11,
pp. 205–209, 2017.

[24] R. Malhotra and A. Sharma, ‘‘Quantitative evaluation of Web metrics for
automatic genre classification of Web pages,’’ Int. J. Syst. Assurance Eng.
Manage., vol. 8, no. 2, pp. 1567–1579, 2017.

[25] K. Chinniyan, S. Gangadharan, and K. Sabanaikam, ‘‘ Semantic similarity
based Web document classification using support vector machine,’’ Int.
Arab J. Inf. Technol., vol. 14, no. 3, pp. 285–292, 2017.

[26] A. R. W. Sait and T. Meyyappan, ‘‘An automated Web page classifier and
an algorithm for the extraction of navigational pattern from the Web data,’’
J. Web Eng., vol. 16, nos. 1–2, pp. 126–144, 2017.

[27] F. Ali et al., ‘‘A fuzzy ontology and SVM-basedWeb content classification
system,’’ IEEE Access, vol. 5, pp. 25781–25797, 2017.

ZIYUN DENG was born in Shuangfeng County,
China, in 1979. He received the B.Eng. degree
in computer science and technology from Central
South University, Changsha, China, in 2003, and
the M.S. degree in software engineering and the
Ph.D. degree in control science and engineering
from Hunan University, Changsha, in 2006 and
2016, respectively. From 2013 to 2016, he was
a Professor with the Hunan Vocational College
of Modern Logistics. Since 2016, he has been

a Professor with the Changsha Commerce and Tourism College. His
recent research interests lie in high-performance computing and logistics
information technology.

TINGQIN HE received the M.S. degree from
the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, China.
He is currently pursuing the Ph.D. degree with
the College of Information Science and Engi-
neering, Hunan University. His research interests
include data mining, cloud computing, and big
data analysis.

WEIPING DING (M’16) received the Ph.D.
degree in applied computing from the Nan-
jing University of Aeronautics and Astronautics
(NUAA), Nanjing, China, in 2013. He was a Visit-
ing Researcher with the University of Lethbridge,
Lethbridge, AB, Canada, in 2011. From 2014 to
2015, he was a Post-Doctoral Researcher with
the Brain Research Center, National Chiao Tung
University, Hsinchu, Taiwan. In 2016, he was a
Visiting Scholar with the National University of

Singapore, Singapore. From 2017 to 2018, he was a Visiting Scholar with
the University of Technology Sydney, Ultimo, NSW, Australia. He has
authored over 50 papers in flagship journals and conference proceedings as
the first author; to date, he holds 10 approved invention patents among a
total of 18 issued patents. His current research interests include data mining,
machine learning, and granular computing.

Dr. Ding was a recipient of the NUAA Excellent Doctoral Dissertation
Award in 2015, the Best Paper of ICDMA 2015, Hong Kong, and two
Chinese Government Scholarships for Overseas Studies in 2011 and 2016.
He received the Computer Education Excellent Paper Award (First Prize)
from the National Computer Education Committee of China in 2009.
He was an Excellent Young Teacher (Qing Lan Project) of Jiangsu Province
in 2014 and a High-Level Talent (Six Talent Peak) of Jiangsu Province
in 2016. He served/serves as an Associate Editor for the IEEE Transactions
on Fuzzy Systems, Information Sciences, and Swarm and Evolutionary
Computation.

ZEHONG CAO (M’18) received the B.Eng.
degree in electronic and information engineering
from Northeastern University, Shenyang, China,
in 2012, the M.S. degree in electronic engineering
from The Chinese University of Hong Kong, Hong
Kong, in 2013. He received the dual Ph.D. degrees
in Information Technology from UTS and Electri-
cal and Control Engineering from National Chiao
Tung University in 2017. He is currently a Post-
Doctoral Research Fellowwith the Center for Arti-

ficial Intelligence, UTS. His current research interests include data science,
human–machine interfaces, computational intelligence, pattern recognition,
machine learning, and clinical applications.

Dr. Cao was a recipient of the CAMP Award in 2018, the UTS CAI Best
Paper Award in 2017, the UTS FEIT Publication Award in 2017, the UTS
President’s Scholarship in 2015, and the NCTU & Songshanhu Scholarship
in 2013. He serves as an Associate Editor for the IEEE Access and as a
member for the editorial boards of several journals, including Advances in
Robotics and Automation and the International Journal of Sensor Networks
and Data Communications. He was invited to give oral presentations at the
IEEE-FUZZY in 2017, the IJCNN in 2015, and the BMEAnnual Conference
of Taiwan in 2015.

VOLUME 6, 2018 66071


	INTRODUCTION
	RELATED WORK
	ENGINE DESIGN
	ENGINE FUNCTIONS
	ENGINE ARCHITECTURE
	ENGINE SOFTWARE
	QUEUE AND BUFFER STORAGE
	FILTERING PROCESS

	FUSION RULES

	PERFORMANCE ANALYSIS
	EXPERIMENTAL ENVIRONMENT
	EXPERIMENTAL ANALYSIS OF THE INDIVIDUAL FILTERING MODELS
	FUSED APPLICATION OF THE FIVE FILTERING MODELS
	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	ZIYUN DENG
	TINGQIN HE
	WEIPING DING
	ZEHONG CAO


