"This is the peer reviewed version of the following article:

EP2 and EP4 receptor antagonists: Impact on cytokine production and ?2 -adrenergic receptor desensitization in human airway smooth muscle J Cell Physiol, 2018

Which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.27938
This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

EP_2 and EP_4 receptor antagonists: impact on cytokine production and β_2 -adrenergic receptor desensitization in human airway smooth muscle

Peta Bradbury^{1,2}, Nowshin N. Rumzhum³, and Alaina J. Ammit^{1,2}

¹Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney,

NSW Australia

²School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW Australia

³ Faculty of Pharmacy, University of Sydney, NSW Australia

Corresponding author: Alaina J. Ammit

Phone: +61 2 91140368

E-mail: Alaina.Ammit@uts.edu.au

Contribution: Conceived, designed and performed the experiments: PB, NNR, AJA. Analysis and interpretation: PB, NNR, AJA. Wrote the paper: PB, AJA.

Abstract

Prostaglandin E₂ (PGE₂) is a key prostanoid known to have both pro-inflammatory and antiinflammatory impact in the context of chronic respiratory diseases. We hypothesize that these opposing effects may be the result of different prostanoid E (EP) receptor-mediated signaling pathways. In this study, we focus on two of the four EP receptors, EP₂ and EP₄, as they are known to induce cAMP-dependent signaling pathways. Using primary human airway smooth muscle (ASM) cells, we first focussed on PGE2-induced production of two, cAMP-dependent, pro-inflammatory mediators; interleukin 6 (IL-6) and cyclo-oxygenase 2 (COX-2) production. We show that PGE₂-induced interleukin 6 (IL-6) protein secretion occurs via an EP₂-mediated pathway, in a manner independent of receptor-mediated effects on mRNA expression and temporal activation kinetics of the transcription factor cAMP response element binding (CREB). Moreover, stimulation of ASM with PGE₂ did not establish a positive, receptor-mediated, feedback loop, as mRNA expression for EP2 and EP4 receptors was not upregulated, and receptor antagonists were without effect. Secondly, our studies revealed that the EP₂, but not the EP₄, receptor is responsible for β_2 -adrenergic desensitization induced by PGE₂. We demonstrate that PGE₂-induced heterologous receptor desensitization responsible for tachyphylaxis to short-(salbutamol) or long- (formoterol) β₂-agonists (measured by cAMP release) can be reversed by the EP₂ receptor antagonist PF-04418948. Importantly, this study highlights that inhibiting the EP₂ receptor restores β_2 -adrenergic receptor function in vitro and offers an attractive novel therapeutic target for treating infectious exacerbations in people suffering from chronic respiratory diseases in the future.

Keywords: prostaglandin E_2 ; CREB; airway smooth muscle; inflammation; desensitization; EP_2 receptor; EP_4 receptor.

Introduction

Prostaglandin E₂ (PGE₂) is a prostanoid with diverse actions in health and disease. In chronic respiratory diseases driven by inflammation, PGE₂ has both positive and negative effects that may emerge as being the consequence of different receptor-mediated cellular functions (see our recent review (Lebender et al., 2018)). Four receptors are responsible for inducing PGE₂-induced effects. Known as the prostanoid E (EP) receptors (EP₁- EP₄), EP₂ and EP₄ in particular exert their effects via cAMP-mediated signaling pathways. In the context of chronic respiratory diseases, our in vitro studies utilizing human airway smooth muscle (ASM) have confirmed that PGE₂ exerts both positive (production of anti-inflammatory molecules, i.e. mitogen activated protein kinase phosphatase 1 (MKP-1) (Rumzhum and Ammit, 2016b)) and negative effects (production of pro-inflammatory molecules (including interleukin 6 (IL-6) and cyclo-oxygenase 2 (COX-2)) as well as β_2 -adrenergic desensitization (Alkhouri et al., 2014; Ammit et al., 2000; Rumzhum et al., 2016a; Rumzhum et al., 2016b)) in a manner linked with cAMP. However, as selective receptor antagonists continue to emerge (Lebender et al., 2018) it may prove possible in the future to separate the "good" from the "bad" effects of this important prostanoid. Accordingly, in this study, we focus on investigating the role of the EP₂ or EP₄ receptor on some of the PGE₂-induced negative outcomes in ASM cells (*viz* cytokine production and β_2 -adrenergic desensitization) utilizing the selective receptor antagonists PF-04418948 and GW 627368X for the EP₂ and EP₄ receptors, respectively.

Herein, we show that PGE₂-induced IL-6 protein secretion occurs in an EP₂-mediated pathway in a manner independent of receptor-mediated effects on mRNA expression and cAMP response element binding (CREB) protein phosphorylation. Furthermore, blocking EP₂ receptor activation with PF-04418948 restores β_2 -adrenergic receptor function. Notably, the EP₄ receptor antagonist,

GW 627368X, was without effect. Taken together, these *in vitro* studies indicate that targeting the EP₂ receptor with selective antagonists offer a potential *in vivo* strategy for minimizing the negative effects of PGE₂ in chronic respiratory disease.

Material and Methods

Cell culture

Human bronchi were obtained from patients undergoing surgical resection for carcinoma or lung transplant donors in accordance with procedures approved by the Sydney South West Area Health Service and the Human Research Ethics Committee of the University of Sydney. ASM cells were dissected and purified as previously described by Johnson *et al.* (Johnson et al., 1995). A minimum of three different ASM primary cell lines were used for each experiment.

Chemicals

PGE₂, PF-04418948 and GW 627368X were purchased from the Cayman Chemical Company (Ann Arbor, MI). Unless otherwise specified, all chemicals used in this study were purchased from Sigma-Aldrich (St. Louis, MO).

Real-time RT-PCR

Total RNA was extracted using the RNeasy Mini Kit (Qiagen Australia, Doncaster, VIC, Australia) and reverse transcription performed by using the RevertAid First strand cDNA Synthesis kit (Fermentas Life Sciences, Hanover, MD) according to the manufacturer's protocol. Real-time RT-PCR was performed on an ABI Prism 7500 with IL-6 (Hs00174131_m1), COX-2 (Hs0015133_m1), EP₂ (Hs00168754_m1) and EP₄ (Hs00168761_m1) TaqMan gene expression assays and the eukaryotic 18S rRNA endogenous control probe (Applied Biosystems, Foster City, CA) subjected to the following cycle parameters: 50°C for 2 min, 1 cycle; 95°C for 10 min, 1 cycle; 95°C for 15 s, 60°C for 1 min, 40 cycles and mRNA expression quantified by delta delta Ct calculations.

ELISAs

IL-6 and IL-8 ELISAs were performed using kits from BD Biosciences Pharmingen, San Diego, CA.

Western blotting

COX-2 was detected using a mouse monoclonal antibody (29: Santa Cruz Biotechnology, Santa Cruz, CA), compared to α-tubulin as the loading control (DM1A: Santa Cruz). Phosphorylated (Ser¹³³) and total CREB were detected with rabbit monoclonal antibodies from Cell Signaling Technology, Danvers, MA. Primary antibodies were detected with goat anti-mouse or anti-rabbit HRP-conjugated secondary antibodies (Cell Signaling Technology) and visualized by enhanced chemiluminescence (PerkinElmer, Wellesley, MA).

cAMP assay

Desensitization of the β_2 -adrenergic receptor was assessed by measuring production of cAMP in response to stimulation with the β_2 -agonists salbutamol (10 μ M) and formoterol (10 η M) for 15 min, in the presence of the pan-phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX: 30 min pretreatment at 10 μ M), in accordance with previously published methods (Alkhouri et al., 2014). cAMP was measured by enzyme immunoassay (cAMP EIA 581001: Cayman Chemical Company) according to the manufacturer's instructions.

Statistical analysis

Statistical analysis was performed using one-way ANOVA then Fisher's PLSD post-test or two-way ANOVA with Dunnett's multiple comparison test. P values < 0.05 were sufficient to reject the null hypothesis for all analyses.

Results

PGE₂ induces IL-6 and COX-2 mRNA expression and protein upregulation, but not IL-8 protein secretion

We showed some time ago (Ammit et al., 2000) that the prostanoid PGE₂ dose-dependently increases cAMP production in ASM cells. A number of mediators with pro-inflammatory roles in respiratory disease can be upregulated in a cAMP-dependent manner, including the cytokine IL-6 (Ammit et al., 2000) and the enzyme cyclooxygenase-2 (COX-2) (Rumzhum and Ammit, 2016a). Herein, using ASM cells we demonstrate that PGE₂ (100 nM) induced IL-6 mRNA expression and protein secretion in a time-dependent manner (Figures 1A and 1B: *P*<0.05). Similarly, COX-2 mRNA and protein was also upregulated following PGE₂ stimulation. COX-2 mRNA was significantly increased by approximately 6-fold at both 1 h and 2 h post stimulation (Figure 1C: *P*<0.05) resulting in increased COX-2 protein expression at 3 h (Figure 1D). In parallel studies, the cAMP dependence of PGE₂-induced synthetic responses in ASM cells was supported by the lack of significant secretion of IL-8 over the same time course (Figures 1E); IL-8 is a chemokine that is not upregulated by cAMP (Manetsch et al., 2013).

PGE2-induced IL-6 protein secretion occurs via the EP2 receptor

We then examined whether the EP₂ or EP₄ receptor was responsible for the PGE₂-induced effects. We utilized the selective EP₂ and EP₄ receptor antagonists PF-04418948 and GW 627368X, respectively, and used IL-6 secretion as an exemplar functional outcome. Firstly, we performed a dose-response analysis by pretreating growth-arrested ASM cells for 30 min with a range of concentrations of PF-04418948 or GW 627368X (0, 0.25, 0.5, 1, 2.5, 5 and 10 μM), before stimulation with 100 nM PGE₂ for 24 h. As shown in Figure 2A, IL-6 secretion was

significantly reduced in a dose-dependent manner for those cells treated with EP₂ receptor antagonist, PF-04418948. ASM cells treated with 0.25 μ M and 0.5 μ M PF-04418948 had no inhibitory impact on PGE₂-induced IL-6 protein secretion, however, significant repression was observed at 1 μ M PF-04418948 (P<0.05). Interestingly, the level of repression did not increase with higher concentrations of receptor antagonist (2.5-10 μ M), thus, all future experiments were carried out using 1 μ M PF-04418948. Notably, ASM cells treated with GW 627368X did not significantly inhibit IL-6 secretion regardless of concentration (Figure 2A). Secondly, we performed a time course and pretreated ASM cells with either 1 μ M PF-04418948 or GW 627368X before stimulating with PGE₂ (100 nM) for up to 24 h. We observed significant repression of PGE₂-induced IL-6 protein secretion with 1 μ M PF-04418948, but not GW 627368X, as early as 4 h (P<0.05). Taken together, these results show that PGE₂-induced IL-6 protein secretion was mediated via the EP₂, not the EP₄, receptor.

PGE2-induced IL-6 and COX-2 mRNA expression is not repressed by EP2/EP4 receptor antagonists

We were then interested in examining whether inhibition of PGE₂-induced IL-6 by EP₂ receptor antagonism was observed at the mRNA expression level. Growth-arrested ASM cells were pretreated with either vehicle, 1 μM PF-04418948, or 1 μM GW 627368X before stimulating with PGE₂ (100 nM) for 0, 1, 2, 4, 8 and 24 h. As shown in Figure 3A, there was no significant effect of PF-04418948 or GW 627368X on PGE₂-induced IL-6 mRNA expression at any time point. We extended these studies further and also observed that PGE₂-induced COX-2 mRNA was also unaffected (Figure 3B). Thus, EP receptor antagonists were without effect on mRNA expression on key PGE₂-induced messages.

PGE2 does not induce EP2 or EP4 receptor mRNA expression

We then examined whether the prostanoid PGE₂ might exert a positive feedback loop by increasing mRNA expression of the EP₂ or EP₄ receptor, as there is the potential that differential regulation by EP receptor antagonism might exert confounding effects. Accordingly, we measured the temporal kinetics of EP₂ (Figure 4A) or EP₄ receptor (Figure 4B) mRNA expression induced by PGE₂. As shown in Figure 4A and 4B, PGE₂ did not induce significant upregulation of EP₂ or EP₄ receptor expression. In fact, it appeared that EP₂ receptor mRNA levels at 8 h were significantly reduced (Figure 4A: *P*<0.05) and may represent a down-regulation of EP₂ expression. However, the time course was unaffected by antagonists of the EP₂ or EP₄ receptors, as PF-04418948 or GW 627368X were without effect on PGE₂-induced EP₂ (Figure 4A) or EP₄ receptor (Figure 4B) mRNA expression.

EP₂/EP₄ receptor antagonists do inhibit PGE₂-induced CREB phosphorylation

As stimulation of EP₂ and EP₄ receptors by PGE₂ activates adenylate cyclase, resulting in cAMP production and phosphorylation of the transcription factor cAMP response element binding protein (CREB) at Ser¹³³ (Lebender et al., 2018), we were interested to examine the effect of PF-04418948 or GW 627368X on PGE₂-induced CREB phosphorylation in ASM cells. As shown in Figures 5A and 5B, PGE₂ significantly induced phosphorylation of CREB at Ser¹³³ at 15 min and 30 min in ASM cells (*P*<0.05), however pretreatment with PF-04418948 or GW 627368X was without effect. The cell permeable cAMP analogue, dibutyryl cAMP, was used a positive control and was shown to induce CREB phosphorylation in ASM cells in accordance with our earlier publication (Che et al., 2012). Collectively, these studies reveal that while the EP₂ receptor, but

not the EP₄ receptor, was involved in PGE₂-induced IL-6 protein secretion, this repression was not mediated via effects on CREB phosphorylation, nor mRNA expression.

EP₂ receptor antagonism restores β₂-adrenergic receptor function

As we have previously shown, PGE₂ induces heterologous desensitization of the β_2 -adrenergic receptor (Alkhouri et al., 2014; Rumzhum et al., 2016a; Rumzhum et al., 2016b) thus, we hypothesized that EP₂ or EP₄ receptors may be involved in regulating β₂-adrenergic receptor function in ASM cells. In accordance with our previous publication (Alkhouri et al., 2014), PGE₂-induced tachyphylaxis to short- (salbutamol) or long- (formoterol) β₂-agonists (measured by cAMP release). Because of β₂-adrenergic receptor hyporesponsiveness, the levels of bronchodilatory mediator cAMP induced by short and long β₂-agonists (salbutamol (Figure 6A) and formoterol (Figure 6B), respectively) are significantly reduced. Since β₂-adrenergic receptor sensitization in vivo limits the efficacy of bronchodilator treatment in chronic respiratory disease, it was of interest to examine whether EP2 and EP4 prostanoid receptor antagonists could restore β₂-adrenergic receptor function. Importantly, our data showed that the EP₂ receptor antagonist PF-04418948 ameliorated the effects of PGE₂ (at all concentrations tested; 1-1000 nM) and restored the effect of both salbutamol and formoterol on cAMP production in ASM cells (Figures 6A and 6B: P<0.05). In contrast, the EP₄ receptor antagonist was without effect (except at very low concentrations of PGE₂ in Figure 6A). Taken together, these results demonstrate that PGE₂induced β₂-adrenergic desensitization occurs via the EP₂ receptors and suggests that targeting EP₂ with receptor antagonists may be an effective pharmacotherapeutic strategy to restore β_2 adrenergic receptor function.

Discussion

Our study has revealed that EP₂ receptor is involved in PGE₂-induced IL-6 cytokine secretion and β_2 -adrenergic receptor function. These studies add to the growing realization that EP receptor subtypes may be targeted to separate the "good" from the "bad" impacts of PGE₂ (Lebender et al., 2018).

We showed that PGE2-induced IL-6 protein secretion was repressed in a time- and dosedependent manner by EP₂, but not EP₄, receptor antagonism. While we are yet to fully understand the mechanism responsible for repressive effects of PF-04418948 on PGE₂-induced IL-6 protein secretion, we have ruled out a number of possible explanations: inhibition is not at the level of CREB signalling; nor does PF-04418948 repress PGE2-induced IL-6 mRNA expression. Importantly, stimulation of ASM cells with PGE₂ did not upregulate EP₂ and EP₄ mRNA expression, suggesting that PGE₂ does not exert a receptor-mediated positive feedback loop. It was interesting to note however that there was down-regulation of the EP₂ receptor after 8 hours stimulation with PGE₂, suggesting potential biphasic regulation of this EP receptor subtype. Moreover, pretreatment of ASM cells with PF-04418948 or GW 627368X did not increase EP₂ and EP₄ mRNA expression. The possibility remains that inhibition may occur at the translational level, as recent reports have implicated inhibition of protein translation as a novel mechanism for PGE₂ regulation of cellular functions in other cell types (Degraaf et al., 2014; Okunishi et al., 2014). Future studies examining whether PGE₂ controls protein translation in ASM cells are warranted. Additionally, it would be of interest to examine the impact of antagonising both the EP₂ and EP₄ receptor at the same time by pretreating ASM cells with PF-04418948 and GW 627368X concomitantly.

There are broad-ranging implications of our *in vitro* studies targeting PGE₂-mediated functions. Prostanoids, such as PGE₂, have been linked with infectious exacerbation of chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). When a person with asthma or COPD experiences a respiratory infection their lung function worsens as a result of inadequate respiratory medicines. Therapeutics such as bronchodilatory relievers (i.e. β₂agonists such as salmeterol and formoterol) lose their effectiveness because viral or bacterial infections change the molecular pathways by which respiratory medicines act, making them less sensitive or resistant. A body of evidence (reviewed in (Rumzhum and Ammit, 2015)) has demonstrated that respiratory infections induce heterologous desensitization of the β_2 -adrenergic receptor in a COX-2/prostanoid (especially PGE₂)-dependent manner. Infections ultimately induce PGE₂ and cause β₂-adrenergic desensitization, severely curtailing the beneficial bronchodilatory actions of β_2 -agonists. Our current study has enabled us to learn more about the receptor-mediated pathway responsible for prostanoid PGE₂ effects on β₂-adrenergic receptor desensitization in ASM cells. Our data clearly shows that blocking the EP2 receptor with PF-04418948 reverses β_2 -adrenergic hyporesponsiveness to both short- and long-acting β_2 -agonists in vitro. These data demonstrate the potential of the selective EP₂ receptor antagonist PF-04418948 to restore β_2 -agonist efficacy in vitro and supports the prevailing view (reviewed in (Lebender et al., 2018; Rumzhum and Ammit, 2015)) that targeting prostanoid receptors, rather than prostanoids themselves, or their upstream enzymatic pathways (such as COX-2), offers the exciting potential of future therapeutics.

Treating exacerbation in chronic respiratory disease is clinically challenging. Given that hyporesponsiveness to bronchodilators is a hallmark feature of acute exacerbation in respiratory disease, an important clinical goal is to restore β_2 -agonist efficacy. Prostanoid receptor selective

antagonists that target EP_2 receptors offer great potential and may advance better treatment options to treat infectious exacerbation in asthma and COPD in the future.

Acknowledgements

PB and AJA are funded by the: Woolcock Emphysema Centre; National Health and Medical Research Council of Australia; Centre for Health Technologies, Faculty of Science, University of Technology Sydney; and the Rebecca Cooper Medical Research Foundation. NNR was a recipient of an International Postgraduate Research Scholarship from the University of Sydney. The authors wish to thank our colleagues at the Woolcock Institute of Medical Research (especially Dikaia Xenaki and Brian Oliver) and acknowledge the collaborative effort of the cardiopulmonary transplant team and the pathologists at St Vincent's Hospital, Sydney, and the thoracic physicians and pathologists at Royal Prince Alfred Hospital, Concord Repatriation Hospital and Strathfield Private Hospital and Healthscope Pathology, Sydney.

References

- Alkhouri H, Rumzhum NN, Rahman MM, FitzPatrick M, de Pedro M, Oliver BG, Bourke JE, Ammit AJ. 2014. TLR2 activation causes tachyphylaxis to beta2 -agonists in vitro and ex vivo: modelling bacterial exacerbation. Allergy 69(9):1215-1222.
- Ammit AJ, Hoffman RK, Amrani Y, Lazaar AL, Hay DWP, Torphy TJ, Penn RB, Panettieri RA, Jr. 2000. TNFα-induced secretion of RANTES and IL-6 from human airway smooth muscle cells: Modulation by cAMP. Am J Respir Cell Mol Biol 23(6):794-802.
- Che W, Manetsch M, Quante T, Rahman MM, Patel BS, Ge Q, Ammit AJ. 2012. Sphingosine 1-phosphate induces MKP-1 expression via p38 MAPK- and CREB-mediated pathways in airway smooth muscle cells. Biochim Biophys Acta 1823(10):1658-1665.
- Degraaf AJ, Zaslona Z, Bourdonnay E, Peters-Golden M. 2014. Prostaglandin E2 reduces Toll-like receptor 4 expression in alveolar macrophages by inhibition of translation. Am J Respir Cell Mol Biol 51(2):242-250.
- Johnson PR, McKay KO, Armour CL, Black JL. 1995. The maintenance of functional activity in human isolated bronchus after cryopreservation. Pulm Pharmacol 8(1):43-47.
- Lebender LF, Prunte L, Rumzhum NN, Ammit AJ. 2018. Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. Pulm Pharmacol Ther 49:75-87.
- Manetsch M, Rahman MM, Patel BS, Ramsay EE, Rumzhum NN, Alkhouri H, Ge Q, Ammit AJ. 2013. Long-acting beta2-agonists increase fluticasone propionate-induced mitogenactivated protein kinase phosphatase 1 (MKP-1) in airway smooth muscle cells. PLoS One 8(3):e59635.

- Okunishi K, DeGraaf AJ, Zaslona Z, Peters-Golden M. 2014. Inhibition of protein translation as a novel mechanism for prostaglandin E2 regulation of cell functions. FASEB J 28(1):56-66.
- Rumzhum NN, Ammit AJ. 2015. Cyclooxygenase 2: its regulation, role and impact in airway inflammation. Clin Exp Allergy 46(3):397-410.
- Rumzhum NN, Ammit AJ. 2016a. Cyclooxygenase 2: its regulation, role and impact in airway inflammation. Clin Exp Allergy 46(3):397-410.
- Rumzhum NN, Ammit AJ. 2016b. Prostaglandin E2 induces expression of MAPK phosphatase 1 (MKP-1) in airway smooth muscle cells. Eur J Pharmacol 782:1-5.
- Rumzhum NN, Patel BS, Prabhala P, Gelissen IC, Oliver BG, Ammit AJ. 2016a. IL-17A increases TNF-alpha-induced COX-2 protein stability and augments PGE2 secretion from airway smooth muscle cells: impact on beta2 -adrenergic receptor desensitization. Allergy 71(3):387-396.
- Rumzhum NN, Rahman MM, Oliver BG, Ammit AJ. 2016b. Effect of Sphingosine 1-Phosphate on Cyclo-Oxygenase-2 Expression, Prostaglandin E2 Secretion, and beta2-Adrenergic Receptor Desensitization. Am J Respir Cell Mol Biol 54(1):128-135.

Figure Legends

Figure 1. PGE₂ induces IL-6 and COX-2 mRNA expression and protein upregulation, but not IL-8 protein secretion. Growth-arrested ASM cells were treated with PGE₂ (100 nM) for 0, 1, 2, 4, 8, and 24 h. (A, C) IL-6 and COX-2 mRNA expression was quantified by real-time RT-PCR (results expressed as fold increase compared to 0 h). (B, E) IL-6 and IL-8 protein secretion (pg/mL) was detected by ELISA. (D) COX-2 protein was measured by Western blotting (compared to α-tubulin as a loading control). Statistical analysis was performed using one-way ANOVA then Fisher's PLSD post-test (where * denotes a significant effect of PGE₂ compared to 0 h (P<0.05)). (A, B, C, E) Data are mean+SEM values from n=6 primary ASM cell cultures and (D) representative blots from n=4 primary ASM cell cultures.

Figure 2. PGE2-induced IL-6 protein secretion occurs via the EP2 receptor. (A) Growth-arrested ASM cells were pretreated for 30 min with a range of concentrations (0, 0.25, 0.5, 1, 2.5, 5, 10 μM) of PF-04418948 (EP2 receptor antagonist) or GW 627368X (EP4 receptor antagonist) or vehicle controls, prior to 24 h treatment with PGE2 (100 nM). (B) Growth-arrested ASM cells were pretreated for 30 min with 1 μM PF-04418948 (EP2 receptor antagonist) or GW 627368X (EP4 receptor antagonist), then treated with PGE2 (100 nM) for 0, 1, 2, 4, 8, and 24 h. IL-6 protein secretion was measured by ELISA. Statistical analysis was performed using two-way ANOVA with Dunnett's multiple comparison test (where * denotes significant repression by the EP2 receptor antagonist PF-04418948 (*P*<0.05)). Data are mean+SEM values from (A) n=5 and (B) n=6 primary ASM cell cultures.

Figure 3. PGE₂-induced IL-6 and COX-2 mRNA expression is not repressed by EP₂/EP₄ receptor antagonists. (A) Growth-arrested ASM cells were pretreated for 30 min with vehicle, 1 μM PF-04418948 (EP₂ receptor antagonist) or GW 627368X (EP₄ receptor antagonist), then treated with PGE₂ (100 nM) for 0, 1, 2, 4, 8, and 24 h. (A) IL-6 and (B) COX-2 mRNA expression was quantified by real-time RT-PCR (results expressed as fold difference to vehicle control at 0 h). Data are mean+SEM values from n=6 primary ASM cell cultures.

Figure 4. PGE₂ **does not induce EP**₂ **or EP**₄ **receptor mRNA expression.** Growth-arrested ASM cells were pretreated for 30 min with vehicle, 1 μM PF-04418948 (EP₂ receptor antagonist) or GW 627368X (EP₄ receptor antagonist), then treated with PGE₂ (100 nM) for 0, 1, 2, 4, 8, and 24 h. (A) EP₂ and (B) EP₄ mRNA expression was quantified by real-time RT-PCR (results expressed as fold difference to vehicle control at 0 h). Statistical analysis was performed using one-way ANOVA then Fisher's PLSD post-test (where * denotes a significant reduction in EP₂ mRNA expression compared to 0 h (*P*<0.05)). Data are mean+SEM values from n=4 primary ASM cell cultures.

Figure 5. EP₂/EP₄ receptor antagonists do inhibit PGE₂-induced CREB phosphorylation. Growth-arrested ASM cells were pretreated for 30 min with vehicle, 1 μM PF-04418948 (EP₂ receptor antagonist), GW 627368X (EP₄ receptor antagonist), then treated with PGE₂ (100 nM) for 0, 15, and 30 min. The cell permeable cAMP analogue, dibutyryl cAMP (1 mM), was used a positive control over the same time course. Western blotting to detect CREB phosphorylation (Ser¹³³) was performed with total CREB as loading controls. Results are (A) representative Western blots and (B) densitometric analysis (results expressed as CREB phosphorylation (fold

increase over vehicle control at 0 min)) from n=3 primary ASM cell cultures. Statistical analysis was performed using one-way ANOVA then Fisher's PLSD post-test (where * denotes a significant increase in CREB phosphorylation induced by PGE₂, compared to vehicle control at 0 min (P<0.05)).

Figure 6. EP₂ receptor antagonism restores β₂-adrenergic receptor function. ASM cells were pretreated for 30 min with vehicle, 1 μ M PF-04418948 (EP₂ receptor antagonist), GW 627368X (EP₄ receptor antagonist), then treated for 24 h with vehicle, or a range of PGE₂ concentrations (1-1000 nM). Desensitization of the β₂-adrenergic receptor was assessed by measuring production of cAMP in response to stimulation with (A) 10 μ M salbutamol or (B) 0.01 μ M formoterol for 15 min compared to vehicle, in the presence of the pan-phosphodiesterase inhibitor IBMX. Results are expressed as a percentage of β₂-agonist-induced cAMP. Statistical analysis was performed using two-way ANOVA with Dunnett's multiple comparison test (where * denotes significant repression by the EP receptor antagonists (*P*<0.05)). Data are mean±SEM values from n=4 primary ASM cell cultures.