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 
Abstract—This paper presents experimental results 

evaluating the performance of a new multiple Rapidly-
exploring Random Tree (RRT) algorithm. RRTs are 
randomised planners especially adept at solving difficult, high-
dimensional path planning problems. However, environments 
with low-connectivity due to the presence of obstacles can 
severely affect convergence. Multiple RRTs have been 
proposed as a means of addressing this issue. However, this 
approach can adversely affect computational efficiency. This 
paper introduces a new and simple method which takes 
advantage of the benefits of multiple trees, whilst ensuring the 
computational burden of maintaining them is minimised. 
Results indicate that multiple RRTs are able to reduce the 
logarithmic complexity of the search, most notably in 
environments with high obstacle densities. 

I. INTRODUCTION 

INTEREST IN RAPIDLY-EXPLORING RANDOM TREES (RRTS) 

has grown in recent years due to the increasing number of 
complex path and motion planning problems. The RRT 
search algorithm is a type of randomised path planner, 
especially suited to finding connected routes through 
complex environments. The RRT was first presented in [1] 
as a means of rapidly searching high-dimensional search 
spaces that have both algebraic and differential constraints 
[2]. It is primarily designed to act as a fast, single-query 
planner and has the key advantage that pre-processing of the 
environment is not required. The effectiveness of the RRT is 
demonstrated in [3] and has since been applied to many 
complex path and motion planning problems such as in [12, 
13 and 15]. 
 
The RRT is a data-structure of connected states which grows 
in tree-like fashion to explore a search space. As randomly 
selected states are added to the tree it expands, thereby 
incrementally building a path from an initial state. The tree 
expands to explore the environment until a desired end state 
is reached. A key factor is that expansion of the tree is 
implicitly biased towards unexplored regions. Furthermore, 
the final path is always connected. Additional benefits 
include its simplicity to implement and few or no problem 
specific parameters [1] that require tuning. These desirable 
features make the RRT a popular path planning tool.  
 
Normally the RRT is rooted at a starting point and 
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expansion is guided by the random selection of new points 
from the search space. A nearest-neighbour calculation is 
performed to determine the closest node of the tree to the 
new point. An attempt is made to connect the new point with 
the nearest node found. If no obstacles are encountered the 
new point is connected to the tree. However, if a collision 
occurs the point is discarded and the process begins again. 
As the algorithm progresses, a tree of connected states is 
constructed until a complete path to the goal state is found. 
Figure 2 shows the pseudo-code which summarises these 
steps. 
 
Ultimately, the distribution of the RRT vertices converges 
toward the sampling distribution, which is usually uniform 
[2]. This means that if a solution exists, ultimately the RRT 
will find it. However, it is difficult to characterise the rate of 
convergence as this property is heavily dependent on the 
shape and position of obstacles in the environment. Thus, 
convergence is a function of search space connectivity, 
which is often difficult to model. 
 
Empirically the RRT is observed to be very fast [2] in 
relatively open environments. However, when many 
obstacles are present, the time required to find a complete 
path can increase significantly. Addressing this problem is 
the objective of this paper. Multiple trees may lead to faster 
convergence and prove advantageous where narrow 
passages exist. 

Rapidly-exploring Random Tree Pseudo-code: 
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Figure 1.  A Rapidly-Exploring Random Tree in 3-Dimensions 
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 do while path not found 
   NEW_POINT 

NEAREST_NEIGHBOUR 
COLLISION_CHECK 
if no collision 

     CONNECT 
end if  

 end do 

 
Figure 2. The RRT algorithm. 

 
This section presented the basic underpinnings of the RRT 
search algorithm. The rest of the paper is organised as 
follows. Section 2 focuses on particular areas where 
previous research has concentrated and outlines some of the 
most significant challenges currently faced by the RRT. 
Section 3 describes an experiment devised to test a new 
multiple RRT strategy designed to improve performance in 
search spaces with low connectivity. Section 4 presents the 
results of this experiment. Finally, Section 5 outlines the 
main conclusions and also describes avenues for further 
research. 

II. RELATED WORK 

 
This section describes the development of the RRT as well 
as the major contributions made to the algorithm up until 
now. The first RRT algorithm extended the search tree an 
incremental distance towards each new point. One of the 
first innovations was RRT-Connect [2] and is now the most 
commonly used method. This approach connects the tree 
directly to the new point rather than extending a small 
distance towards it. RRT-Connect enables long paths to be 
constructed with only a single nearest-neighbour calculation 
[2]. In addition, it allows faster exploration of the search 
space. However, the ability to extend further can lead to 
higher chances of collisions with obstacles in some (notably 
highly cluttered) environments.  
 
Collision checking is the most computationally expensive 
function in the RRT algorithm. Consequently, it is important 
to consider the number of times collision checking is 
performed during each search iteration. The cost to the 
search is greatest when many obstacles are present and thus, 
the direct connection method can adversely affect the 
amount of time required to find a solution. However, on the 
whole the RRT-Connect approach appears to provide a 
significant increase in performance [2], particularly when 
planning in large search spaces. 
 
Connecting to the goal point is a crucial part of the 
algorithm. There are several methods that may be employed 
to make the final connection to the goal. When multiple 
solutions are acceptable, it is possible to define an 
acceptable goal region rather then a single point. However, 
when a precise end-point is required there is a very low 
probability that the goal point will be selected at random. 
Exact solutions may be required for example, when a 
manipulator must reach a specific end-effector position and 

orientation. In such cases, an additional step to connect each 
new tree node to the goal point may be included. 
 
The use of a second tree rooted at the goal is another 
approach (proposed in [2]) which facilitates connecting the 
goal to the tree. This prevents the tree from failing to reach 
the goal through mischance as the two trees actively work 
towards connecting to each other. In [3] the advantages of 
bidirectional over single search are confirmed. Having two 
trees growing simultaneously can greatly reduce the time 
required to find a path. However, this introduces new 
problems to consider, such as when to attempt inter-tree 
connections. 
 
Regardless of whether one or two RRTs are employed, the 
rate of convergence to a solution is largely determined by 
the shape of the environment. Figure 3 illustrates one such 
example. Despite the fact that the algorithm has quite 
effectively explored one particular region of the 
environment, it has great difficulty reaching the region 
separated by the obstacle. In this example, the connectivity 
of the search space is greatly affected by the shape and 
position of the obstacle. Each time a point is selected on the 
other side of the barrier, a collision is very likely to occur. 
This results in a large number of failed connection attempts. 
Such situations waste the opportunity to link to the new 
point, despite having incurred the computational cost of the 
nearest neighbour search and collision check. 
 

 
 
Figure 3. Environments exhibiting low-connectivity, such as that caused by 
some obstacles, can severely affect the convergence rate of the RRT. In the 
above example, the RRT is unable to extend into the top half of the search 
space until it has successfully navigated through the narrow passageway. 
The problem of stunted growth is exacerbated when multiple obstacles 
cause narrow passages to exist in serial. 
Note: In order to clearly illustrate the problem, a simplified algorithm where 
only one tree, beginning at the starting point, has been permitted to grow. 
Even when growing from the goal is made possible, the RRT suffers similar 
problems when multiple obstacles exist. 

The problems caused by obstacles are not only restricted to 
the narrow passageways they may create. When the RRT 
shown in Figure 3 is indeed able to navigate through the 
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small gap, it will not be able to successfully connect to many 
of the points in the newly discovered region. Despite 
successfully finding a path through the narrow passageway, 
the growth is still perturbed by the presence of the obstacle. 
Randomly selected points are more likely to be closer to 
nodes on the opposite side of the obstacle rather than the 
node that has penetrated the gap. Thus, these points will 
suffer from collisions when they attempt to connect to the 
tree. This is yet another example in which an ordinary RRT 
search can be adversely affected by its environment. 
 
Is it possible to make changes to the RRT to overcome these 
problems? It may seem worthwhile to allow the algorithm to 
continue with its nearest neighbour searching until it 
discovers a node with which it is indeed able to make a 
connection. However, modifying the algorithm in this way 
requires the added computational expense of a potentially 
large number of additional nearest neighbour searches. 
Subsequently, it may lead to many expensive collision 
checks for each search iteration. 
 
Failed attempts to link nearest neighbours with random 
points are a waste of computational resources and should be 
avoided. In [11] it is suggested that a search visibility region 
or boundary domain (a sphere of certain radius around 
nodes) is defined to reduce the size of the search space. This 
was found to improve performance in general but did lead to 
a trade-off with the additional computational time required 
to define the search sub-space. Incorporating knowledge of 
failures as proposed in [8] is an interesting approach which 
leads to the notion of intelligent sampling. 
 
Non-uniform sampling is an area of research which has 
much potential to improve the performance of the RRT. The 
search algorithm can explore very slowly when the sampling 
domain is not well adapted to the problem [11]. Normally, a 
point is selected from the search space based upon a 
uniformly random distribution. However, as shown 
previously, this approach can be ineffective where narrow 
passageways exist and the search space has low 
connectivity. 
 
Rather than uniform random sampling, many researchers 
have focussed on other sampling methods, some even 
adaptive. The elegance of the RRT search algorithm is the 
manner in which randomisation implicitly computes the 
Voronoi regions created by each node of the tree [7]. The 
largest regions are more likely to be selected and so the tree 
is pulled from its root out into the search space [1, 7]. In 
[10], the Voronoi regions are computed explicitly which 
results in a more predicable search but at a higher 
computational cost. By making the probability non-uniform, 
such as increasing it around the goal as in [13], the rate of 
convergence of the RRT can be increased. Without biasing, 
the tree can come very close to the goal but still fail to 
connect to it. However, such biasing can also lead the RRT 
to become trapped in local minima during the search. Thus, 

a trade-off exists as making the algorithm domain specific 
(by definition) reduces its generality. 
 
Another problem is that RRTs typically do not consider 
factors such as path length or smoothness during the search. 
Thus, path quality is usually sub-optimal. In [7] and [14] a 
path cost is taken into account which biases the tree growth 
to produce shorter paths while exploring its environment. In 
[14], after running an initial search, the algorithm 
recommences using previous tree information to find better 
solutions. This approach incrementally improves the quality 
of the solution while time permits. This work is extended in 
[15] where the performance of RRTs is analysed in dynamic 
environments. RRTs are shown to work well for three 
mobile robots in partially unknown environments. In cases 
of such complexity, and where solutions are required in real-
time, the efficiency of algorithms is of even greater 
importance. 
 
Computational efficiency of search algorithms is generally 
of significant interest to researchers. Due to their relatively 
recent introduction, there is still much work being carried 
out to analyse and improve RRTs. As discussed previously, 
central problems involve algorithm efficiency (which is 
heavily correlated with the frequency of nearest-neighbour 
and collision checking functions), and the problems 
associated with obstacles, narrow passages and low search 
space connectivity. 
 
The most expensive steps in the search algorithm are the 
nearest neighbour and collision checking functions. The cost 
of nearest neighbour calls is one of the major bottle-necks in 
the performance of sampling-based motion-planning 
algorithms such as the RRT. Therefore, it is crucial to 
develop efficient techniques for nearest neighbour searching 
[6]. Normally, nearest neighbour searches involve 
calculating the squared distance between two or more 
different points and comparing these measurements to find 
the minimum. Despite this being a straight-forward 
calculation, when a very large number of nodes must be 
searched, this process can take a significant amount of time. 
Inexact methods may be considered in cases where time or 
computational resources are restricted. However, it is 
foreseeable that approximate nearest neighbour searches, 
whilst providing greater efficiency, may lead to poorer 
solutions or not finding paths at all. 
 
Multiple RRTs is a solution that has potential to provide 
greater robustness across environments of varying 
complexity. Some researchers have considered this idea 
such as in [5] and [9]. Maintaining a number of RRTs makes 
possible the use of previous learned knowledge [5], which is 
normally wasted if a collision occurs. Multiple RRTs are 
created in [5] to form a forest of trees which can be merged, 
split and pruned. The focus of this work was how to manage 
the forest of RRTs. By contrast, this paper shows how 
multiple trees may lead to faster convergence and prove 
advantageous where narrow passages exist. Multiple RRTs 



 
 

are also studied in [9] where many important issues are 
identified. Factors to consider include; when to create a local 
tree, how often the local trees should be allowed to grow, 
and when to look for inter-tree connections. Consideration 
of these issues and ways to address them has prompted the 
experiments carried out in this paper. 
 
This section covered many of the major contributions made 
towards the RRT up to now. The above discussion also 
highlights many of the problems faced when implementing 
RRTs. The following section will describe the experimental 
procedure used to evaluate the performance of multiple 
RRTs as a means of improving computational efficiency in 
search spaces of high obstacle density. 

III. EXPERIMENTAL PROCEDURE 

 
This section describes the experiments carried out to 
measure the efficacy of multiple RRTs. The work presented 
in this paper proposes a connection policy which ensures 
high computational efficiency is maintained despite the 
presence of numerous trees. A simple but effective strategy 
is implemented where new trees are permitted to grow 
whenever a point is not able to be connected to an existing 
tree. The pseudo-code of the proposed Multi-RRT algorithm 
is shown in Figure 4. Whenever a collision occurs a new 
tree is initialised. Inter-tree connections are attempted to all 
trees at each step, however only the nearest neighbour of 
each tree is considered. 
 

Multi-RRT Pseudo-code: 
  
 do while path not found 
   NEW_POINT 
   for each tree 

NEAREST_NEIGHBOUR 
     COLLISION_CHECK 
     if no collision 
       CONNECT 

else 
       NEW_TREE 

end if 
end for 

 end do 

 
Figure 4. The proposed new Multi-RRT algorithm. 

 
In order to keep computational efficiency close to optimal, 
only the nearest neighbour (rather than every node) of each 
individual tree is considered for connection. This is 
important because attempts to connect to a greater number 
of nodes would lead to a large increase in the amount of 
computationally expensive collision checks required. 
Another key advantage of the proposed Multi-RRT 
algorithm is that new trees are only created as required. The 
number of trees employed is adjusted dynamically and is 
determined automatically depending on the connectivity of 
the environment. Search spaces that have no or few 
obstacles will have fewer collisions and thus a lower number 
of trees will be created during the search. By contrast, 
additional trees will be generated when collisions occur in 

environments exhibiting high obstacle densities or when 
regions are isolated by narrow passageways.  
 
While a limit on the maximum number of trees could be 
imposed, the search environment does this implicitly. For 
example, Figure 5 depicts an environment with two large 
obstacles. The search space is effectively divided into three 
possible exploration regions, which are connected together 
by only two small windows. After 100 search iterations it 
can be seen in Figure 5 (a) that trees have begun to grow in 
each of the sub-sections.  
 
Each time a new point is selected, the respective nearest 
neighbours belonging to each tree in existence will be 
determined. At this stage of the search, every new point is 
able to connect to at least one of the three trees and there is 
no need for any additional trees. Thus, although no explicit 
restriction is placed on the algorithm with respect to the 
maximum number of trees possible, no more than what is 
necessary is created. In this way, multiple RRTs can be 
implemented without introducing additional parameters 
which may require tuning; ensuring the generality of the 
algorithm and simplicity of its application are preserved. 
 
Additionally, when a connection between two or more trees 
is found, the trees are merged, helping to manage the total 
number of trees. This event occurs at step 150 in Figure 5 
(b) where the two trees on the left become one. Similarly, in 
Figure 5 (c) the final two trees are united to form one tree, 
and hence a complete path from the starting point to the goal 
is found. 
 
The performance of the proposed Multi-RRT strategy is 
evaluated with respect to the standard RRT-Connect 
algorithm. RRT-Connect is limited to a maximum of two 
trees, one rooted at the start and one at the goal. This is 
considered as the benchmark against which the proposed 
Multi-RRT is compared. The Multi-RRT algorithm has no 
limit to the number of trees it may create and is free to 
multiply depending on its environment. 
 
An experiment is conducted to compare the efficiency of the 
two algorithms in search spaces of increasing complexity. 
As the number of obstacles is increased, each search space 
exhibits progressively decreasing connectivity. The number 
of obstacles ranges from two to fifteen, providing fourteen 
different testing environments. One obstacle is not 
implemented since both algorithms would simply grow two 
trees and the results of each method would be the same. In 
the first environment, two walls are positioned to divide the 
search space into three equal sections. Each subsequent 
search space has a wall added up to the maximum of fifteen. 
For each environment the obstacles are positioned such that 
the search space is equally divided. 
 



 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5. An example of multiple RRTs path planning in the presence of 
two obstacles and two narrow passageways. In (a), three trees are exploring 
the environment. In (b), two of them have connected with each other. In (c), 
a completed path from the start point to the goal has been discovered. 

Small windows exist through which the planner must pass in 
order to connect the start and goal points. Although obstacle 
data is necessary for the algorithm to perform collision 
checks, no attempt is made to process this data to extract 
information. This reduces the computational expense of the 
search and makes the RRT appropriate for use as a single-
query planner.  
 

In this experiment, one hundred trial runs of each of the two 
algorithms, in each of the fourteen different search spaces 
are performed. Several statistics are measured in order to 
compare the Multi-RRT and RRT-Connect approaches. The 
respective number of collision checks, nearest-neighbour 
searches, and search iterations are taken as proxies for 
evaluating the efficiency of the two algorithms. The number 
of search iterations is limited to a maximum of 20,000 due 
to time constraints. The following section presents the 
findings of these experiments. 

IV. RESULTS 

 
The experimental results confirm the hypothesis that 
multiple RRTs prove advantageous in environments that 
have many narrow passageways. The results of the average 
number of nearest neighbour function calls versus the 
number of narrow passageways present in the search space 
for both algorithms are shown in Figure 6. 
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Figure 6. Graph showing the average number of nearest neighbour function 
calls versus the number of narrow passageways. The number of function 
calls made by RRT-Connect grows exponentially as additional obstacles are 
added while the performance of the Multi-RRT is linear. 

 
It is clear from the graph that the Multi-RRT method 
resulted in significantly fewer nearest neighbour 
calculations. When the number of narrow passageways was 
greater than 12 the RRT-Connect method failed to find a 
path within the maximum number of search iterations 
provided. Obstacles did not pose considerable hindrances to 
multiple RRTs. 
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Number of Collision Checks Vs. Number of Narrow Passageways
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Figure 7. Graph showing the average number of collision checks versus the 
number of narrow passageways. Once again, the number of function calls 
made by RRT-Connect grows exponentially as connectivity of the search 
space is reduced while the performance of the Multi-RRT is superior. 

 
In Figure 7 it is clear that as the number of narrow 

passageways is raised, the performance of the multiple RRT 
becomes increasingly superior to the RRT-Connect method 
on the basis of computational efficiency. More significant 
however, is the ability of the Multi-RRT algorithm to find 
paths when RRT-Connect could not. Not only was the 
Multi-RRT method more efficient, it was better at finding 
solutions, especially in environments containing many 
obstacles. 

 
The number of search iterations is equal to the number of 

nearest neighbour checks. Since the Multi-RRT is 
completing fewer search iterations and the average number 
of collision checks is also reduced, the convergence rate is 
improved. 

V. CONCLUSIONS AND FUTURE WORK 

 
The connection policy presented in this paper facilitates the 
use of multiple Rapidly-exploring Random Trees in path 
planning. The approach is simple to implement and in 
environments with no obstacles the algorithm functions as a 
normal RRT. In the presence of obstacles and when new 
points are unable to connect to an existing tree, a new search 
tree will be invoked. Thus, this method ensures the highly 
desirable parameter-free nature of the RRT is preserved. 
 
Through these experiments it has been demonstrated that the 
rate of convergence can be greatly improved through the use 
of multiple RRTs. Furthermore, when compared to the 
standard RRT algorithm, the Multi-RRT approach also 
exhibits greater computational efficiency, most notably in 
environments with high obstacle densities. 
 
It would be worthwhile extending these experiments by 
including a greater variety of environments. In addition, 

another advantage of multiple RRTs is there ability to 
explore without being restricted to regions nearest the start 
and goal points. This may prove especially beneficial when 
path planning involves multiple goals. 
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