
© [2008] IEEE. Reprinted, with permission, from [Clifton, M.; Paul, G.; Kwok,

N.; Liu, D.; Wang, D.-L, Evaluating Performance of Multiple RRTs, Mechtronic and

Embedded Systems and Applications, 2008. MESA 2008. IEEE/ASME International

Conference on]. This material is posted here with permission of the IEEE. Such

permission of the IEEE does not in any way imply IEEE endorsement of any of the

University of Technology, Sydney's products or services. Internal or personal use of

this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or

redistribution must be obtained from the IEEE by writing to pubs-

permissions@ieee.org. By choosing to view this document, you agree to all

provisions of the copyright laws protecting it

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Clifton,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Paul,%20G..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Kwok,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Kwok,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Liu,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Wang,%20D.-L..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4721588
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4721588
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4721588


Abstract—This paper presents experimental results

evaluating the performance of a new multiple Rapidly-
exploring Random Tree (RRT) algorithm. RRTs are
randomised planners especially adept at solving difficult, high-
dimensional path planning problems. However, environments
with low-connectivity due to the presence of obstacles can
severely affect convergence. Multiple RRTs have been
proposed as a means of addressing this issue. However, this
approach can adversely affect computational efficiency. This
paper introduces a new and simple method which takes
advantage of the benefits of multiple trees, whilst ensuring the
computational burden of maintaining them is minimised.
Results indicate that multiple RRTs are able to reduce the
logarithmic complexity of the search, most notably in
environments with high obstacle densities.

I. INTRODUCTION

INTEREST IN RAPIDLY-EXPLORING RANDOM TREES (RRTS)

has grown in recent years due to the increasing number of
complex path and motion planning problems. The RRT
search algorithm is a type of randomised path planner,
especially suited to finding connected routes through
complex environments. The RRT was first presented in [1]
as a means of rapidly searching high-dimensional search
spaces that have both algebraic and differential constraints
[2]. It is primarily designed to act as a fast, single-query
planner and has the key advantage that pre-processing of the
environment is not required. The effectiveness of the RRT is
demonstrated in [3] and has since been applied to many
complex path and motion planning problems such as in [12,
13 and 15].

The RRT is a data-structure of connected states which grows
in tree-like fashion to explore a search space. As randomly
selected states are added to the tree it expands, thereby
incrementally building a path from an initial state. The tree
expands to explore the environment until a desired end state
is reached. A key factor is that expansion of the tree is
implicitly biased towards unexplored regions. Furthermore,
the final path is always connected. Additional benefits
include its simplicity to implement and few or no problem
specific parameters [1] that require tuning. These desirable
features make the RRT a popular path planning tool.

Normally the RRT is rooted at a starting point and

 Manuscript received June 15, 2008. This work was supported in part

by the Australian Research Council (ARC) Grant (LP0776312), the Roads
and Traffic Authority, New South Wales, and the University of Technology,
Sydney.

 All of the researches listed are part of the ARC Centre of Excellence
in Autonomous Systems (CAS), University of Technology, Sydney, P.O.
Box 123, Broadway, New South Wales 2007, Australia.

expansion is guided by the random selection of new points
from the search space. A nearest-neighbour calculation is
performed to determine the closest node of the tree to the
new point. An attempt is made to connect the new point with
the nearest node found. If no obstacles are encountered the
new point is connected to the tree. However, if a collision
occurs the point is discarded and the process begins again.
As the algorithm progresses, a tree of connected states is
constructed until a complete path to the goal state is found.
Figure 2 shows the pseudo-code which summarises these
steps.

Ultimately, the distribution of the RRT vertices converges
toward the sampling distribution, which is usually uniform
[2]. This means that if a solution exists, ultimately the RRT
will find it. However, it is difficult to characterise the rate of
convergence as this property is heavily dependent on the
shape and position of obstacles in the environment. Thus,
convergence is a function of search space connectivity,
which is often difficult to model.

Empirically the RRT is observed to be very fast [2] in
relatively open environments. However, when many
obstacles are present, the time required to find a complete
path can increase significantly. Addressing this problem is
the objective of this paper. Multiple trees may lead to faster
convergence and prove advantageous where narrow
passages exist.

Rapidly-exploring Random Tree Pseudo-code:

Evaluating Performance of Multiple RRTs

Matthew Clifton, Gavin Paul, Ngai Kwok, Dikai Liu

Figure 1. A Rapidly-Exploring Random Tree in 3-Dimensions

path

 do while path not found
 NEW_POINT

NEAREST_NEIGHBOUR
COLLISION_CHECK
if no collision

 CONNECT
end if

 end do

Figure 2. The RRT algorithm.

This section presented the basic underpinnings of the RRT
search algorithm. The rest of the paper is organised as
follows. Section 2 focuses on particular areas where
previous research has concentrated and outlines some of the
most significant challenges currently faced by the RRT.
Section 3 describes an experiment devised to test a new
multiple RRT strategy designed to improve performance in
search spaces with low connectivity. Section 4 presents the
results of this experiment. Finally, Section 5 outlines the
main conclusions and also describes avenues for further
research.

II. RELATED WORK

This section describes the development of the RRT as well
as the major contributions made to the algorithm up until
now. The first RRT algorithm extended the search tree an
incremental distance towards each new point. One of the
first innovations was RRT-Connect [2] and is now the most
commonly used method. This approach connects the tree
directly to the new point rather than extending a small
distance towards it. RRT-Connect enables long paths to be
constructed with only a single nearest-neighbour calculation
[2]. In addition, it allows faster exploration of the search
space. However, the ability to extend further can lead to
higher chances of collisions with obstacles in some (notably
highly cluttered) environments.

Collision checking is the most computationally expensive
function in the RRT algorithm. Consequently, it is important
to consider the number of times collision checking is
performed during each search iteration. The cost to the
search is greatest when many obstacles are present and thus,
the direct connection method can adversely affect the
amount of time required to find a solution. However, on the
whole the RRT-Connect approach appears to provide a
significant increase in performance [2], particularly when
planning in large search spaces.

Connecting to the goal point is a crucial part of the
algorithm. There are several methods that may be employed
to make the final connection to the goal. When multiple
solutions are acceptable, it is possible to define an
acceptable goal region rather then a single point. However,
when a precise end-point is required there is a very low
probability that the goal point will be selected at random.
Exact solutions may be required for example, when a
manipulator must reach a specific end-effector position and

orientation. In such cases, an additional step to connect each
new tree node to the goal point may be included.

The use of a second tree rooted at the goal is another
approach (proposed in [2]) which facilitates connecting the
goal to the tree. This prevents the tree from failing to reach
the goal through mischance as the two trees actively work
towards connecting to each other. In [3] the advantages of
bidirectional over single search are confirmed. Having two
trees growing simultaneously can greatly reduce the time
required to find a path. However, this introduces new
problems to consider, such as when to attempt inter-tree
connections.

Regardless of whether one or two RRTs are employed, the
rate of convergence to a solution is largely determined by
the shape of the environment. Figure 3 illustrates one such
example. Despite the fact that the algorithm has quite
effectively explored one particular region of the
environment, it has great difficulty reaching the region
separated by the obstacle. In this example, the connectivity
of the search space is greatly affected by the shape and
position of the obstacle. Each time a point is selected on the
other side of the barrier, a collision is very likely to occur.
This results in a large number of failed connection attempts.
Such situations waste the opportunity to link to the new
point, despite having incurred the computational cost of the
nearest neighbour search and collision check.

Figure 3. Environments exhibiting low-connectivity, such as that caused by
some obstacles, can severely affect the convergence rate of the RRT. In the
above example, the RRT is unable to extend into the top half of the search
space until it has successfully navigated through the narrow passageway.
The problem of stunted growth is exacerbated when multiple obstacles
cause narrow passages to exist in serial.
Note: In order to clearly illustrate the problem, a simplified algorithm where
only one tree, beginning at the starting point, has been permitted to grow.
Even when growing from the goal is made possible, the RRT suffers similar
problems when multiple obstacles exist.

The problems caused by obstacles are not only restricted to
the narrow passageways they may create. When the RRT
shown in Figure 3 is indeed able to navigate through the

goal

start

obstacl
narrow

passageway

small gap, it will not be able to successfully connect to many
of the points in the newly discovered region. Despite
successfully finding a path through the narrow passageway,
the growth is still perturbed by the presence of the obstacle.
Randomly selected points are more likely to be closer to
nodes on the opposite side of the obstacle rather than the
node that has penetrated the gap. Thus, these points will
suffer from collisions when they attempt to connect to the
tree. This is yet another example in which an ordinary RRT
search can be adversely affected by its environment.

Is it possible to make changes to the RRT to overcome these
problems? It may seem worthwhile to allow the algorithm to
continue with its nearest neighbour searching until it
discovers a node with which it is indeed able to make a
connection. However, modifying the algorithm in this way
requires the added computational expense of a potentially
large number of additional nearest neighbour searches.
Subsequently, it may lead to many expensive collision
checks for each search iteration.

Failed attempts to link nearest neighbours with random
points are a waste of computational resources and should be
avoided. In [11] it is suggested that a search visibility region
or boundary domain (a sphere of certain radius around
nodes) is defined to reduce the size of the search space. This
was found to improve performance in general but did lead to
a trade-off with the additional computational time required
to define the search sub-space. Incorporating knowledge of
failures as proposed in [8] is an interesting approach which
leads to the notion of intelligent sampling.

Non-uniform sampling is an area of research which has
much potential to improve the performance of the RRT. The
search algorithm can explore very slowly when the sampling
domain is not well adapted to the problem [11]. Normally, a
point is selected from the search space based upon a
uniformly random distribution. However, as shown
previously, this approach can be ineffective where narrow
passageways exist and the search space has low
connectivity.

Rather than uniform random sampling, many researchers
have focussed on other sampling methods, some even
adaptive. The elegance of the RRT search algorithm is the
manner in which randomisation implicitly computes the
Voronoi regions created by each node of the tree [7]. The
largest regions are more likely to be selected and so the tree
is pulled from its root out into the search space [1, 7]. In
[10], the Voronoi regions are computed explicitly which
results in a more predicable search but at a higher
computational cost. By making the probability non-uniform,
such as increasing it around the goal as in [13], the rate of
convergence of the RRT can be increased. Without biasing,
the tree can come very close to the goal but still fail to
connect to it. However, such biasing can also lead the RRT
to become trapped in local minima during the search. Thus,

a trade-off exists as making the algorithm domain specific
(by definition) reduces its generality.

Another problem is that RRTs typically do not consider
factors such as path length or smoothness during the search.
Thus, path quality is usually sub-optimal. In [7] and [14] a
path cost is taken into account which biases the tree growth
to produce shorter paths while exploring its environment. In
[14], after running an initial search, the algorithm
recommences using previous tree information to find better
solutions. This approach incrementally improves the quality
of the solution while time permits. This work is extended in
[15] where the performance of RRTs is analysed in dynamic
environments. RRTs are shown to work well for three
mobile robots in partially unknown environments. In cases
of such complexity, and where solutions are required in real-
time, the efficiency of algorithms is of even greater
importance.

Computational efficiency of search algorithms is generally
of significant interest to researchers. Due to their relatively
recent introduction, there is still much work being carried
out to analyse and improve RRTs. As discussed previously,
central problems involve algorithm efficiency (which is
heavily correlated with the frequency of nearest-neighbour
and collision checking functions), and the problems
associated with obstacles, narrow passages and low search
space connectivity.

The most expensive steps in the search algorithm are the
nearest neighbour and collision checking functions. The cost
of nearest neighbour calls is one of the major bottle-necks in
the performance of sampling-based motion-planning
algorithms such as the RRT. Therefore, it is crucial to
develop efficient techniques for nearest neighbour searching
[6]. Normally, nearest neighbour searches involve
calculating the squared distance between two or more
different points and comparing these measurements to find
the minimum. Despite this being a straight-forward
calculation, when a very large number of nodes must be
searched, this process can take a significant amount of time.
Inexact methods may be considered in cases where time or
computational resources are restricted. However, it is
foreseeable that approximate nearest neighbour searches,
whilst providing greater efficiency, may lead to poorer
solutions or not finding paths at all.

Multiple RRTs is a solution that has potential to provide
greater robustness across environments of varying
complexity. Some researchers have considered this idea
such as in [5] and [9]. Maintaining a number of RRTs makes
possible the use of previous learned knowledge [5], which is
normally wasted if a collision occurs. Multiple RRTs are
created in [5] to form a forest of trees which can be merged,
split and pruned. The focus of this work was how to manage
the forest of RRTs. By contrast, this paper shows how
multiple trees may lead to faster convergence and prove
advantageous where narrow passages exist. Multiple RRTs

are also studied in [9] where many important issues are
identified. Factors to consider include; when to create a local
tree, how often the local trees should be allowed to grow,
and when to look for inter-tree connections. Consideration
of these issues and ways to address them has prompted the
experiments carried out in this paper.

This section covered many of the major contributions made
towards the RRT up to now. The above discussion also
highlights many of the problems faced when implementing
RRTs. The following section will describe the experimental
procedure used to evaluate the performance of multiple
RRTs as a means of improving computational efficiency in
search spaces of high obstacle density.

III. EXPERIMENTAL PROCEDURE

This section describes the experiments carried out to
measure the efficacy of multiple RRTs. The work presented
in this paper proposes a connection policy which ensures
high computational efficiency is maintained despite the
presence of numerous trees. A simple but effective strategy
is implemented where new trees are permitted to grow
whenever a point is not able to be connected to an existing
tree. The pseudo-code of the proposed Multi-RRT algorithm
is shown in Figure 4. Whenever a collision occurs a new
tree is initialised. Inter-tree connections are attempted to all
trees at each step, however only the nearest neighbour of
each tree is considered.

Multi-RRT Pseudo-code:

 do while path not found
 NEW_POINT
 for each tree

NEAREST_NEIGHBOUR
 COLLISION_CHECK
 if no collision
 CONNECT

else
 NEW_TREE

end if
end for

 end do

Figure 4. The proposed new Multi-RRT algorithm.

In order to keep computational efficiency close to optimal,
only the nearest neighbour (rather than every node) of each
individual tree is considered for connection. This is
important because attempts to connect to a greater number
of nodes would lead to a large increase in the amount of
computationally expensive collision checks required.
Another key advantage of the proposed Multi-RRT
algorithm is that new trees are only created as required. The
number of trees employed is adjusted dynamically and is
determined automatically depending on the connectivity of
the environment. Search spaces that have no or few
obstacles will have fewer collisions and thus a lower number
of trees will be created during the search. By contrast,
additional trees will be generated when collisions occur in

environments exhibiting high obstacle densities or when
regions are isolated by narrow passageways.

While a limit on the maximum number of trees could be
imposed, the search environment does this implicitly. For
example, Figure 5 depicts an environment with two large
obstacles. The search space is effectively divided into three
possible exploration regions, which are connected together
by only two small windows. After 100 search iterations it
can be seen in Figure 5 (a) that trees have begun to grow in
each of the sub-sections.

Each time a new point is selected, the respective nearest
neighbours belonging to each tree in existence will be
determined. At this stage of the search, every new point is
able to connect to at least one of the three trees and there is
no need for any additional trees. Thus, although no explicit
restriction is placed on the algorithm with respect to the
maximum number of trees possible, no more than what is
necessary is created. In this way, multiple RRTs can be
implemented without introducing additional parameters
which may require tuning; ensuring the generality of the
algorithm and simplicity of its application are preserved.

Additionally, when a connection between two or more trees
is found, the trees are merged, helping to manage the total
number of trees. This event occurs at step 150 in Figure 5
(b) where the two trees on the left become one. Similarly, in
Figure 5 (c) the final two trees are united to form one tree,
and hence a complete path from the starting point to the goal
is found.

The performance of the proposed Multi-RRT strategy is
evaluated with respect to the standard RRT-Connect
algorithm. RRT-Connect is limited to a maximum of two
trees, one rooted at the start and one at the goal. This is
considered as the benchmark against which the proposed
Multi-RRT is compared. The Multi-RRT algorithm has no
limit to the number of trees it may create and is free to
multiply depending on its environment.

An experiment is conducted to compare the efficiency of the
two algorithms in search spaces of increasing complexity.
As the number of obstacles is increased, each search space
exhibits progressively decreasing connectivity. The number
of obstacles ranges from two to fifteen, providing fourteen
different testing environments. One obstacle is not
implemented since both algorithms would simply grow two
trees and the results of each method would be the same. In
the first environment, two walls are positioned to divide the
search space into three equal sections. Each subsequent
search space has a wall added up to the maximum of fifteen.
For each environment the obstacles are positioned such that
the search space is equally divided.

(a)

(b)

(c)

Figure 5. An example of multiple RRTs path planning in the presence of
two obstacles and two narrow passageways. In (a), three trees are exploring
the environment. In (b), two of them have connected with each other. In (c),
a completed path from the start point to the goal has been discovered.

Small windows exist through which the planner must pass in
order to connect the start and goal points. Although obstacle
data is necessary for the algorithm to perform collision
checks, no attempt is made to process this data to extract
information. This reduces the computational expense of the
search and makes the RRT appropriate for use as a single-
query planner.

In this experiment, one hundred trial runs of each of the two
algorithms, in each of the fourteen different search spaces
are performed. Several statistics are measured in order to
compare the Multi-RRT and RRT-Connect approaches. The
respective number of collision checks, nearest-neighbour
searches, and search iterations are taken as proxies for
evaluating the efficiency of the two algorithms. The number
of search iterations is limited to a maximum of 20,000 due
to time constraints. The following section presents the
findings of these experiments.

IV. RESULTS

The experimental results confirm the hypothesis that
multiple RRTs prove advantageous in environments that
have many narrow passageways. The results of the average
number of nearest neighbour function calls versus the
number of narrow passageways present in the search space
for both algorithms are shown in Figure 6.

Number of Nearest Neighbour Function Calls Vs. Number of Narrow Passageways

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Number of Narrow Passageways

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

N
e

a
re

s
t

N
e

ig
h

b
o

u
r

F
u

n
c

ti
o

n
 C

a
ll

s

RRT-Connect

Multi-RRT

RRT-Connect 146 213 414 751 1,609 2,964 5,494 10,041 16,031 19,954 >20,000 >20,000 >20,000 >20,000

Multi-RRT 174 193 195 242 292 356 424 464 575 623 704 772 912 968

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6. Graph showing the average number of nearest neighbour function
calls versus the number of narrow passageways. The number of function
calls made by RRT-Connect grows exponentially as additional obstacles are
added while the performance of the Multi-RRT is linear.

It is clear from the graph that the Multi-RRT method
resulted in significantly fewer nearest neighbour
calculations. When the number of narrow passageways was
greater than 12 the RRT-Connect method failed to find a
path within the maximum number of search iterations
provided. Obstacles did not pose considerable hindrances to
multiple RRTs.

narrow
passageway

obstacle

Number of Collision Checks Vs. Number of Narrow Passageways

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Number of Narrow Passageways

A
ve

ra
g

e
N

u
m

 o
f

C
o

n
n

ec
t

A
tt

em
p

ts

RRTConnect

MultiRRT

RRTConnect 291 425 829 1,502 3,217 5,927 10,987 20,082 32,062 39,908 >40,000 >40,000 >40,000 >40,000

MultiRRT 410 503 599 829 1,105 1,563 1,979 2,425 3,222 3,930 4,783 5,675 7,124 8,105

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7. Graph showing the average number of collision checks versus the
number of narrow passageways. Once again, the number of function calls
made by RRT-Connect grows exponentially as connectivity of the search
space is reduced while the performance of the Multi-RRT is superior.

In Figure 7 it is clear that as the number of narrow

passageways is raised, the performance of the multiple RRT
becomes increasingly superior to the RRT-Connect method
on the basis of computational efficiency. More significant
however, is the ability of the Multi-RRT algorithm to find
paths when RRT-Connect could not. Not only was the
Multi-RRT method more efficient, it was better at finding
solutions, especially in environments containing many
obstacles.

The number of search iterations is equal to the number of

nearest neighbour checks. Since the Multi-RRT is
completing fewer search iterations and the average number
of collision checks is also reduced, the convergence rate is
improved.

V. CONCLUSIONS AND FUTURE WORK

The connection policy presented in this paper facilitates the
use of multiple Rapidly-exploring Random Trees in path
planning. The approach is simple to implement and in
environments with no obstacles the algorithm functions as a
normal RRT. In the presence of obstacles and when new
points are unable to connect to an existing tree, a new search
tree will be invoked. Thus, this method ensures the highly
desirable parameter-free nature of the RRT is preserved.

Through these experiments it has been demonstrated that the
rate of convergence can be greatly improved through the use
of multiple RRTs. Furthermore, when compared to the
standard RRT algorithm, the Multi-RRT approach also
exhibits greater computational efficiency, most notably in
environments with high obstacle densities.

It would be worthwhile extending these experiments by
including a greater variety of environments. In addition,

another advantage of multiple RRTs is there ability to
explore without being restricted to regions nearest the start
and goal points. This may prove especially beneficial when
path planning involves multiple goals.

ACKNOWLEDGMENT

This work is supported in part by the ARC Centre of Excellence
program, funded by the Australian Research Council (ARC) and the New
South Wales State Government, Australia. The authors also wish to
acknowledge the support of the University of Technology, Sydney and the
RTA of NSW.

REFERENCES

[1] LaValle, S. M., ‘Rapidly-Exploring Random Trees: A New Tool for
Path Planning’, TR 98-11, Computer Science Department, Iowa State
University, http://janowiec.cs.iastate.edu/papers/rrt.ps, Oct. 1998.

[2] Kuffner, J. J., LaValle, S. M., ‘RRT-Connect: An Efficient Approach
to Single-Query Path Planning’, Proceedings IEEE International
Conference on Robotics and Automation (ICRA 2000), San Francisco,
CA, 2000.

[3] LaValle, S. M., Kuffner, J. J., ‘Rapidly-Exploring Random Trees:
Progress and Prospects’, In Proceedings Workshop on the Algorithmic
Functions of Robotics, 2000.

[4] LaValle, S. M., Kuffner, J. J., ‘Randomized Kinodynamic Planning’,
Robotics and Automation, 1999. Proceedings. 1999 IEEE
International Conference on, Pages 473-479 Volume 1, 1999.

[5] Li, T., Shie, Y., ‘An Incremental Learning Approach to Motion
Planning with Roadmap Management’, Proceedings. ICRA 2002.
IEEE International Conference on Robotics and Automation,
Washington, DC, Pages 3411-3416, Volume 4, 2002.

[6] Yershova, A., LaValle, S. M., ‘Improving Motion-Planning
Algorithms by Efficient Nearest-Neighbor Searching’, Robotics, IEEE
Transactions on, Pages 151-157, Volume 23, No. 1, February 2007.

[7] Urmson, C., Simmons, R., ‘Approaches for heuristically biasing RRT
growth’, Intelligent Robots and Systems. Proceedings. 2003 IEEE/RSJ
International Conference on, Pages 1178-1183, Volume 2, 2003.

[8] Kavralu, L. E., Svestka P., Latombe J. C., Overmars, M. H.,
‘Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces’, Robotics and Automation, IEEE Transactions
on, Pages 556-580, Volume 12, No. 4, August 1996.

[9] Strandberg, M., ‘Augmenting RRT-planners with local trees’,
Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE
International Conference on, Pages 3258-3262, Volume 4, 2004.

[10] Lindemann, S. R., LaValle, S. M., ‘Incrementally Reducing
Dispersion by Increasing Voronoi Bias in RRTs’, Robotics and
Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International
Conference on, Pages 3251-3257 Volume 4, 2004.

[11] Yershova, A., Jaillet, L., Simeon, T., LaValle, S.M., ‘Dynamic-
Domain RRTs: Efficient Exploration by Controlling the Sampling
Domain’, Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, Pages 3856-3861,
2005.

[12] Miyazawa, K., Maeda, Y., Arai, T., ‘Planning of Graspless
Manipulation Based on Rapidly-Exploring Random Trees’, Assembly
and Task Planning: From Nano to Macro Assembly and
Manufacturing, 2005. (ISATP 2005). The 6th IEEE International
Symposium on, Pages 7-12, 2005

[13] Bertram, D., Kuffner, J., Dillmann, R., Asfour, T., ‘An Integrated
Approach to Inverse Kinematics and Path Planning for Redundant
Manipulators’, Robotics and Automation, 2006. Proceedings 2006
IEEE International Conference on, Pages1874-1879, 2006.

[14] Ferguson, D., Stentz, A., ‘Anytime RRTs’, Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, Pages 5369-
5375, 2006.

[15] Ferguson, D., Stentz, A., ‘Anytime, Dynamic Planning in High-
dimensional Search Spaces’, Robotics and Automation, 2007 IEEE
International Conference on, Pages 1310-1315, 2007.

