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 20 

Highlights 21 
 22 

• Activated sludge can remove 10–50% of DCF by biotransformation and adsorption  23 

• Activated sludge biological function was resilient to DCF exposure at 50-5000 µg/L 24 

• Microbial community was not altered by DCF exposure at 50-5000 µg/L 25 

• Nitratireductor Asticcacaulis and Pseudacidovorax have potential to biotransform DCF 26 

  27 
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Abstract 28 

This study evaluated the removal of diclofenac (DCF) in activated sludge and its long-term 29 

exposure effects on the function and structure of the microbial community. Activated sludge 30 

could remove less than 50% of 50 µg/L DCF. The removal decreased significantly to below 31 

15% when DCF concentrations increased to 500 and 5000 µg/L.  Quantitative assessment of 32 

the fate of DCF showed that its main removal routes were biodegradation (21%) and adsorption 33 

(7%), with other abiotic removals being insignificant (< 5%). The biodegradation occurred 34 

through cometabolic mechanisms. DCF exposure in the range of 50-5000 µg/L did not disrupt 35 

the major functions of the activated sludge ecosystem (e.g. biomass yield and heterotrophic 36 

activity) over two months of DCF exposure. Consistently, 16S rRNA gene-based community 37 

analysis revealed that the overall community diversity (e.g. species richness and diversity) and 38 

structure of activated sludge underwent no significant alterations. The analysis did uncover a 39 

significant increase in several genera, Nitratireductor, Asticcacaulis, and Pseudacidovorax, 40 

which gained competitive advantages under DCF exposure. The enrichment of Nitratireductor, 41 

Asticcacaulis, and Pseudacidovorax genus might contribute to DCF biodegradation and 42 

emerge as a potential microbial niche for the removal of DCF.  43 

Key words: Diclofenac; Activated sludge; Adsorption; Biotransformation; Cometabolism; 44 

Microbial community  45 
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1. Introduction 46 

DCF can be easily found over-the-counter medicine with a variety of trade names and 47 

has been extensively used as medicine for both humans and domestic livestock. About 1400 48 

tons of DCF are consumed globally each year, giving DCF a market share comparable to that 49 

of other common nonsteroidal anti-inflammatory drugs (i.e. ibuprofen, mefenamic acid, and 50 

naproxen) (McGettigan & Henry, 2013). Therefore, DCF is one of the most commonly detected 51 

pharmaceutically active compounds in soil and aquatic environments. The occurrence of DCF 52 

was at up to 1 µg/L in (surface waters) (Vulliet et al., 2011), up to 10 µg/L (ground waters) 53 

(Vieno & Sillanpää, 2014), and up to 95 µg/L (urban wastewaters) (Luo et al., 2014; Muter et 54 

al., 2017). Even at very low concentrations, DCF causes toxicity to aquatic organisms such as 55 

rainbow trout (at 5–50 µg/L) (Hoeger et al., 2005) and hydra (0.1 µg/L) (Carlsson et al., 2006); 56 

thus DCF carries significant potential health risks at the level currently found in the 57 

environment. Accordingly, DCF is a highly prioritized emerging contaminant that needs to be 58 

regulated/monitored in natural water environments (e.g. drinking water sources) (de Voogt et 59 

al., 2009; Gerbersdorf et al., 2015).  60 

WWTPs are an important barrier to limit the spread of DCF to the environment. 61 

However, DCF is one of the most poorly removed pharmaceuticals in conventional WWTPs 62 

(Gerbersdorf et al., 2015; Luo et al., 2014). Furthermore, the overall removal of DCF varies 63 

significantly (5–81%) across various full-scale WWTPs (Luo et al., 2014; Tran et al., 2018), 64 

suggesting that DCF removal is not only unsatisfactory but also unpredictable. Accordingly, to 65 

develop ways to control effectively DCF in WWTPs, it is highly desirable to determine 66 

quantitatively how DCF is removed, along with the underlying mechanisms that control its 67 

fate.  Recent studies have shown that although DCF is considered to be not particularly 68 

biodegradable, microbial degradation of DCF using bacterial and fungal pure cultures is 69 

possible (Aissaoui et al., 2017; Bessa et al., 2017; Nguyen et al., 2013). Enterobacter from 70 
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activated sludge (AS) can degrade DCF (> 50%) as a sole carbon and energy source, and 71 

degradation improves (> 80%) with an additional carbon source (Aissaoui et al., 2017). 72 

Brevibacterium isolated from AS could remove > 30% of DCF at 10 mg/L for 30 days and 73 

increased removal up to 90% when acetate was used as a supplementary carbon source (Bessa 74 

et al., 2017). White-rot fungi such as Trametes (Nguyen et al., 2013) and Ascomycota (Gonda 75 

et al., 2016) are known to degrade up to 60% and 10% of DCF, respectively. Although the exact 76 

degradation pathways of DCF remain unclear, hydroxylation is involved in its 77 

biotransformation and detoxification, which leads to the formation of various metabolic 78 

byproducts, including 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one (Aissaoui et al., 79 

2017). Those isolate-based studies have advanced understanding of DCF biodegradation by 80 

identifying strains, degradation kinetics, and metabolic byproducts. However, the 81 

microorganisms that inhabit full-scale environmental biochemical processes such as AS 82 

represent highly complex communities, not isolated individual. Therefore, whether the 83 

previously reported isolate organisms are relevant in complex AS microbial communities 84 

remains to be clearly elucidated. Further, if they are not relevant, what microbial taxa in those 85 

communities control the fate of DCF?  86 

 The impact of DCF on AS microbial community and its functionality remains a topic 87 

for further investigation. Recently, the development of next-generation sequencing 88 

technologies has paved the way for in-depth investigation of the microbial community from 89 

different environmental matrixes. The 16S rRNA gene has been widely used as the marker 90 

gene for the microbial community in biological wastewater treatment process such as AS, 91 

biological nutrient removal and anaerobic digester (Kang et al., 2018; Nguyen et al., 2019; 92 

Vasiliadou et al., 2018; Zhang et al., 2016). Several studies have initially indicated the impacts 93 

of micropollutants exposure to the AS microbial community and functionality (Jiménez-Silva 94 

et al., 2018; Liao et al., 2017; Vasiliadou et al., 2018). Schmidt et al. (2012) observed a 95 
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complete inhibition on nitrification at 7.2 mg/L of ciprofloxacin, gentamicin, sulfamethoxazole 96 

and trimethoprim. Collado et al. (2013) observed a decrease in microbial diversity of AS 97 

community at 50 µg/L sulfamethoxazole exposure in two months. However, biological nutrient 98 

removal (COD and nitrogen) was unaffected at this concentration. Therefore, the compound 99 

and its concentrations could have a specific level of impacts on AS community.    100 

This study examines the removal mechanisms of DCF in AS process and its impacts on 101 

the microbial community at a range of concentrations representing environmentally relevant 102 

and catastrophic levels. Laboratory bioreactors were inoculated from a local AS process and 103 

fed with DCF-containing substrates over two months. While the bioreactors exhibited stable 104 

DCF removal performance, biochemical assays used in this study determined the detailed 105 

removal routes. The high throughput Illumina MiSeq platform was utilized to elucidate the 106 

response of the microbial community to DCF exposure. Diversity and structure of the microbial 107 

community were characterized. Finally, impacts of DCF on AS functionality were evaluated.  108 

2. Materials and Methods 109 

2.1 Laboratory scale bioreactors  110 

AS taken from an aeration tank of a municipal WWTP (Jurong, Singapore) which was 111 

acclimated to laboratory conditions for one month in the fed-batch bioreactor. The acclimated 112 

AS showed stable chemical oxygen demand removal (i.e. 91.6 ± 3.7 %) was then used for other 113 

bioreactors. Twelve identical fed-batch bioreactors (0.6 L active volume) were operated over 114 

two months. All reactors were fed every 3.5 days by withdrawing 0.2 L of the mixed liquor 115 

suspension and replacing it with 0.2 L of synthetic feed (i.e. 10.5 days of hydraulic and solid 116 

retention time). The reactors were aerated at a dissolved oxygen concentration of 4.8 ± 0.8 117 

mg/L and kept at laboratory room temperature (i.e. 22–23 °C). The synthetic feed contained  118 

per liter: glucose (1.83 g), NH4Cl (30 mg), KH2PO4 (340 mg), K2HPO4 (600 mg), MgSO4 (270 119 
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mg), FeSO4 (10 mg), and 10 mL of 100 x trace element solution (ZnSO4.7H2O 0.35 mg, 120 

MnSO4.H2O 0.21 mg, H3BO4 2.1 mg, CoCl2.2H2O 1.4 mg, CuCl2.2H20 0.07 mg, NiSO4.6H2O 121 

0.1 mg, Na2MoO4.2H2O 0.21 mg per liter) as described previously (Nguyen & Oh, 2019). The 122 

synthetic feed has a ratio of COD, total nitrogen and total phosphorous (COD: TN: TP) of 80: 123 

5: 1.   124 

A stock solution of DCF (Sigma Aldrich Singapore) was prepared at a concentration of 125 

1 g/L and stored at 4 °C prior to use. Each set of three reactors were exposed to 0 (i.e. control), 126 

50 (DCF_50), 500 (DCF_500), 5000 µg/L (DCF_5000) of DCF. The concentration range 127 

tested in this study included 50 µg/L, which is comparable to the concentration found in urban 128 

wastewaters (0.01–95 µg/L) (Luo et al., 2014). The higher concentration range (500–5000 129 

µg/L) in this study was thus higher than that found in urban wastewaters by a factor of 10–100. 130 

Accordingly, the levels tested in this study are relevant for hospital/pharmaceutical wastewater 131 

or exceptional maxima (accidental spills or highest peaks among temporal variations) in urban 132 

municipal wastewaters. 133 

2.2 Analytical methods  134 

Volatile suspended solids (VSS) and chemical oxygen demand (COD) were measured 135 

using standard methods. pH was determined with an Orion 4-Star Plus pH/conductivity meter 136 

(Thermo Scientific, Waltham, MA). Samples were collected from influent and effluent, filtered 137 

by a 0.22 µm pore-size filter for the assessment of DCF removal. A high-performance liquid 138 

chromatography (HPLC) system (Shimadzu Asia Pacific Pte. Ltd) equipped with a Shim-Pack 139 

GIST Phenyl, 5 µm, 4.6 x 250 mm column and a UV–vis detector was used to measure the 140 

DCF concentration. The system was run on isocratic mode with a mobile phase containing 141 

40:60% (v/v) of 20 mM sodium dihydrogen phosphate monohydrate and acetonitrile (pH 2.5), 142 

which was delivered at 1.8 mL/min through the column. The detection wavelength used for the 143 
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DCF measurement was 220 nm. The sample volume injected to the HPLC was 100 μL and the 144 

detection limit was 10 µg/L. 145 

2.3 Evaluation of DCF fate in activated sludge 146 

DCF removal in a fed-batch bioreactor was calculated using the following equation: 147 

removal (%) = (Cinf – Ceff) ×  100 ÷ Cinf, where Cinf and Ceff denote the concentration of DCF 148 

in the reactor influent and effluent, respectively. To determine the detailed routes of DCF 149 

removal in AS (hydrolysis, volatilization, photolysis, adsorption, or biodegradation), six sets 150 

of triplicate batch experiments (I through VI) were established (Table S1). The experiment 151 

regarding inoculum (active or inactivated sludge), synthetic feed, DCF, aeration, and light 152 

availability are described in Table S1. The biomass was collected from the mixed liquor 153 

suspension of the DCF_5000 reactors at day 70. The biomass was washed two times with 154 

phosphate saline buffer (pH 7.4). 50 µL of the DCF stock solution (1 g/L) was added to 50 mL 155 

of the synthetic feed medium in 400 mL-Erlenmeyer flasks, resulting in 1 mg/L of initial DCF 156 

concentration. The initial concentration of DCF was selected such that the concentration 157 

loading exceeded the environmentally relevant concentration, thus allowing the direct 158 

biotransformation of DCF to be conclusively observed. The biomass concentration inoculated 159 

into each flask was 0.8 g VSS/L. The same amount of sludge autoclaved at 121 ℃ for 15 min 160 

was used for experiment III. The DCF level and optical density from the batch experiments 161 

were followed over 5 days.  162 

2.4 16S rRNA gene sequencing and analysis 163 

The total genomic DNA from a mixed liquor sample from a reactor was extracted using 164 

a MoBio PowerSoil® DNA isolation kit (MOBIO, Carlsbad, CA, USA) following the 165 

manufacturer’s instructions. All DNA obtained in this study showed > 0.5 μg DNA/μL and > 166 

1.8 absorbance ratios (A260/A280). 16S rRNA genes were PCR-amplified by Macrogen Inc. 167 

(Seoul, Republic of Korea) using universal bacterial primers targeting the V3–V4 region 168 



9 
 

(341F–805R). The 16S rRNA gene sequences were determined using the MiseqTM platform at 169 

Macrogen Inc. Paired-end (2 × 300 bp) 16S rRNA gene sequences were analyzed using the 170 

MiSeq SOP pipeline (Kozich et al., 2013). In brief, raw sequences were preprocessed with the 171 

following parameters, no ambiguous sequence, > 200 bp in length, and < 8 bp homopolymer, 172 

with other parameters at their defaults. The preprocessed sequences were chimera-checked 173 

using chimera.vsearch and then taxonomically classified with classify.seqs. Chimera sequences 174 

and those assigned to chloroplasts, mitochondria, archaea, eukaryotes, and unknown were 175 

excluded from further analyses. The remaining sequences were clustered into operational 176 

taxonomic units (OTUs) using a 97% nucleotide identity cutoff with the dist.seqs and cluster 177 

commands. The sequences were rarefied to the lowest number of sequences per sample to 178 

calculate alpha diversity indices across different datasets. The OTU level bacterial community 179 

composition data were used for beta diversity analysis. Rarefaction curves of the 12 datasets 180 

tended to approach the saturation plateau (> 99% of Good’s coverage), indicating that the 181 

sequencing depth was adequate to capture most of the diversity in the AS communities (Fig. 182 

S1). The 16S rRNA gene sequence datasets used in this study were deposited in GenBank 183 

under the following accession numbers: DCF_50_1 (SRS2340272), DCF_50_2 184 

(SRS2340268), DCF_50_3 (SRS2340266), DCF_500_1 (SRS2340271), DCF_500_2 185 

(SRS2340267), DCF_500_3 (SRS2340264), DCF_5000_1 (SRS2340254), DCF_5000_2 186 

(SRS2340273), DCF_5000_3 (SRS2340269), Control_0_1 (SRS2340183), Control_0_2 187 

(SRS2340176), Control_0_3 (SRS2340220), Control_42_1 (SRS2340175), Control_42_2 188 

(SRS2340198), and Control_42_3 (SRS2340197). 189 

The Mann-Whitney U test was carried out to evaluate differential features. The P value 190 

threshold for statistical significance was set at P < 0.05.  191 
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3. Results and Discussion 192 

3.1 DCF removal by activated sludge 193 

DCF was not effectively removed by AS process (Fig. 1). After the introduction of DCF 194 

into the feed, the removal of DCF was below 50% in three tested DCF concentrations. The 195 

DCF_50 reactor exhibited 45 ± 2% of DCF removal at days 13–70, comparable to that (43 ± 196 

2%) in the first feeding cycle. The removals in the reactors exposed to higher DCF 197 

concentrations (DCF_500 and DCF_5000) decreased to 22 ± 5% and 12 ± 2.0%, respectively, 198 

at days 13–70. Those overall results suggest that the AS could remove less than half of 50–199 

5000 µg/L of DCF after one full retention time. The ordinary least squares analysis indicated a 200 

significant negative relation (Pearson’s r = -0.92 with P < 0.05) between the DCF feeding 201 

concentration and the resulting DCF removal rate (Fig. 1b). The results further ascertain that 202 

DCF removal is dependent on initial concentration.  203 

[FIGURE 1] 204 

The low DCF removal (12–43%) at the wide range of DCF concentrations (50–5000 205 

µg/L) is in good agreement with the poor removal characteristics of DCF previously reported 206 

from WWTPs (Luo et al., 2014). Furthermore, it is noteworthy that the fate of DCF was 207 

significantly affected by the amount of DCF in the reactor influent. The findings (decreased 208 

DCF removal with an increase in DCF concentration) suggest that the input DCF level is an 209 

important factor affecting the fate of DCF, in addition to other previously documented factors 210 

(e.g., biomass concentration and retention time). These results strongly suggest that the input 211 

DCF concentration is an important criterion to consider when designing/operating AS–212 

associated biological processes to treat DCF-containing wastewaters. 213 
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3.2 Removal routes for DCF in activated sludge 214 

 The removal of DCF by hydrolysis, volatilization, photolysis, adsorption, and 215 

biodegradation was 2.3 ± 1.4%, 2.5 ± 1.4%, 3.2 ± 2.1%, 6.5 ± 1.5%, and 21.3 ± 7.3%, 216 

respectively (Fig. 2). These results suggest that DCF removal occurred primarily (a total of 217 

28%) via biodegradation and adsorption, with other abiotic means (hydrolysis, volatilization, 218 

and photolysis) being relatively less significant (a total of 8%). The adsorption of a compound 219 

on sludge primarily depends on lipophilicity and environmental conditions (e.g. pH, 220 

temperature, and sludge properties) (Tadkaew et al., 2011). The degree of adsorption on sludge 221 

can be estimated by the adsorption-desorption distribution ratio (Kd), i.e. the ratio of the 222 

compound concentration at equilibrium in the solid-phase and the liquid phase. The logKd 223 

value of DCF in sludge varies from 1.3 to 2.7 across different sludges (e.g. primary, secondary, 224 

MBR, and anaerobically digested) (Vieno & Sillanpää, 2014). Because > 2.5 logKd is often 225 

associated with efficient adsorption, DCF is thought to have low adsorptive potential to sludge. 226 

The DCF removal via adsorption observed in this study was 6.5 ± 1.5%, which is comparable 227 

to previous measurements in primary sludge (5–15%) (Ternes et al., 2004). Together with 228 

adsorption, the biological route (21.3 ± 7.3%) accounted for the highest fraction of total DCF 229 

removal. The biological degradation constant (Kbiol, L/g VSS·d) of a pollutant is often used to 230 

infer pollutant biodegradability. Kbiol values are sorted into four classes (Joss et al., 2006): < 231 

0.5 (hard biodegradability), 0.5–1 (moderate), 1–5 (high), and > 5 (very high). The Kbiol 232 

constant of DCF was estimated using our experimental data based on the DCF that was 233 

biologically removed. The Kbiol constant was 0.14 ± 0.2 (L/g VSS·d) during the first day of the 234 

experiment, when the maximum biodegradation occurred. Our and previous findings 235 

(Fernandez-Fontaina et al., 2013; Joss et al., 2006) on the Kbiol constant collectively support the 236 

low biodegradation potential of DCF in AS. The synergistic effect from adsorption and 237 

biodegradation of sludge on DCF removal has not been indicated in the literature. Previous 238 
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studies reported the addition of adsorbents such as activated carbon in sludge facilitates the 239 

removal of DCF from the liquid phase (Nguyen et al., 2014; Semblante et al., 2015). However, 240 

the conceptual expectation of adsorption enhanced biodegradation is often not accomplished, 241 

which require frequent addition of adsorbents (Nguyen et al., 2014). It would be expected that 242 

there is no complementary of adsorption and biodegradation on observed DCF removal in this 243 

study.  244 

The biodegradation of DCF in AS can be due to the co-metabolism (Fig. 2a). The 245 

removal of DCF was 17.3 ± 1.4% when the feed containing DCF as sole carbon and energy 246 

source, which was comparable with the removal due to adsorption. Whereas, the removal of 247 

DCF was significantly higher (P < 0.05) when the feed containing DCF and glucose. 248 

Consistently, the optical density, which indicates microbial growth, was ca. 0.69 – 0.88, 249 

suggesting no microbial growth with DCF only in the culture medium. In wastewater, DCF 250 

occurs at very low levels (generally up to at µg/L) compared to other organic matter (generally 251 

up to mg/L). Accordingly, at the level typical in wastewater, DCF might not act as a primary 252 

carbon and energy source for microbial growth. Instead, cometabolic degradation of DCF may 253 

be the predominant biological removal route. Cometabolism is the transformation of a non-254 

growth substrate in the presence of a growth substrate. The term 'non-growth substrate' 255 

describes compounds that are unable to support cell growth as sole carbon source (Tobajas et 256 

al., 2012). A nitrifying microbial community could significantly increase DCF removal by 257 

adding an external carbon source (acetate) (Tran et al., 2009). Although several studies 258 

investigated the biodegradation of DCF in the WWTPs without considering direct and 259 

cometabolic processes, the contribution of cometabolism for the DCF removal (non-detectable 260 

direct metabolism) in the AS systems need to be further examined for understanding the 261 

involvement of enzymatic biotransformation and by-products. Currently, this study provided an 262 
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investigation on the microbial community control over the cometabolic processes of DCF 263 

removal. 264 

[FIGURE 2] 265 

3.3 Dissecting activated sludge communities metabolizing DCF  266 

DCF exposure decreased (P < 0.05) the abundance of Gammaproteobacteria, 267 

Deltaproteobacteria, and Actinobacteria, but dramatically increased the abundance of 268 

Alphaproteobacteria, Cytophagia, and Sphingobacteriia. Therefore, we conducted a further, 269 

detailed investigation at the finer level of the taxa that are differentially enriched upon DCF 270 

exposure. 271 

 OTU clustering generated 796 OTUs, of which ten were selectively enriched (with 272 

statistical significance) under DCF-exposure (Fig. 3). Four OTUs (OTU015, OTU020, 273 

OTU023, and OTU026) increased significantly at 5000 µg/L of DCF compared to the Control, 274 

and three OTUs (OTU025, OTU002, and OTU008) increased significantly at both 5000 µg/L 275 

and 500 µg/L of DCF. Of particular note were OTU006, OTU009, and OTU012, which were 276 

overrepresented even at a low DCF level (50 µg/L). OTU009 increased from 1.2 ± 0.7% 277 

(Control) to 2.6 ± 0.8% (DCF_50), 3.2 ± 0.3% (DCF_500), and 4.0 ± 0.6% (DCF_5000). 278 

OTU012 was selectively enriched from 1.7 ± 0.6% (Control) to 5.1 ± 1.4% (DCF_50), 4.9 ± 279 

0.4% (DCF_500), and 4.3 ± 0.6% (DCF_5000). OTU006 increased by more than 2-, 2.5- and 280 

4.5-fold in DCF_50, DCF_500 and DCF_5000, respectively. Those three organisms accounted 281 

for a substantial fraction (> 68%) of the communities in the reactors exposed to 5,000 µg/L of 282 

DCF. Phylogenetic analysis of the ten selectively enriched OTU sequences revealed that 283 

OTU009, OTU012, and OTU006 were closely related (99% 16S rRNA gene sequence 284 

similarity) to Nitratireductor, Pseudacidovorax, and Asticcacaulis, respectively (Fig. 4).  285 
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 Nitratireductor are aerobic gram-negative bacteria capable of oxidizing nitrate to nitrite 286 

in anoxic conditions (Manickam et al., 2012). Pseudoxanthomonas are metabolically versatile 287 

and have nitrogen-fixing ability (Wang et al., 2013). Nitratireductor and Pseudoxanthomonas 288 

are frequently detected in contaminated sites and are associated with detoxification of organic 289 

pollutants (e.g. pesticides and xenobiotics) (Manickam et al., 2012). Although Asticcacaulis 290 

are distributed across natural freshwater and soil environments, little is known about their 291 

physiological characteristics and biotic/abiotic interactions in their ecological niches. Previous 292 

studies have identified direct and cometabolic degradation of DCF by pure cultures of 293 

Enterobacter and Brevibacterium, but our results reveal that those organisms were very rare (< 294 

0.7%) in the DCF-exposed communities and were not enriched under DCF exposure. Thus, 295 

isolate organisms might have low biotechnological application potential in wastewater 296 

treatment systems for DCF, despite their experimentally verified metabolic capability for DCF. 297 

Instead, the 16S rRNA gene-based community profiling revealed that Nitratireductor, 298 

Pseudoxanthomonas, and Asticcacaulis gained competitive advantages (e.g. cometabolic 299 

capability for DCF) under DCF exposure, enabling them to outcompete other populations in 300 

the AS communities. Isolation of these species from AS after long-term exposure could provide 301 

some bacterial niches that can be used as inoculum source in bioaugmentation technique. For 302 

instance, Terzic et al. (2018) observed an increase from none to 99% removal of antibiotic 303 

macrolide after two months of exposure. Likewise, Nguyen et al. (2018) retrieved a 304 

Bradyrhizobium sp. from AS via an enrichment and isolation process, which showed the ability 305 

to cometabolite antibiotic ciprofloxacin. Therefore, future experiment on the isolated 306 

Nitratireductor, Pseudoxanthomonas, and Asticcacaulis could provide new insights into 307 

devising biological means for treatment of DCF-bearing waste streams.  308 

[FIGURE 4] 309 
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3.4 Long-term effects on activated sludge function 310 

The results of this study suggest that 50–5,000 µg/L of DCF exposure does not 311 

significantly alter the species richness, diversity, and composition of AS communities (Fig. 5). 312 

A principal coordinate analysis with the Euclidean distance metric (for bacterial community 313 

composition at the OTU level) indicated no shifts in community phylogenetic structure (Fig. 314 

5a). The DCF_50 (83.2 ± 1.5 by the Euclidean distance similarity), DCF_500 (79.5 ± 8.2), and 315 

DCF_5000 (77.3 ± 7.6) communities clustered closely, suggesting that the community 316 

structure among the three replicate communities was similar. We noticed that the Control 317 

communities showed more profound variation (61.4 ± 14.5) among them compared with the 318 

other three groups. The pairwise distance was 30.9 ± 5.4 (Control vs DCF_50), 29.1 ± 3.6 319 

(Control vs DCF_500), and 32.3 ± 4.3 (Control vs DCF_5000). Although inter-community 320 

distances were lower than intra-community distances, a PERMANOVA test revealed no 321 

significant difference (Bonferroni-corrected P > 0.05) in community phylogenetic structure 322 

among the four community groups. We also estimated alpha diversity indices using 33,000 323 

sequences per sample (rarefied to the lowest number per sample). The species richness and 324 

diversity indices did not show significant differences between the Control and DCF-exposed 325 

communities (Figs. 5b and 5c).  326 

[FIGURE 5] 327 

DCF at concentration of 50-5000 mg/L had no impacts on heterotrophic and microbial 328 

growth in AS. VSS values were 0.75 ± 0.06, 0.78 ± 0.12, 0.73 ± 0.07, and 0.74 ± 0.14 g/L in 329 

the Control, DCF_50, DCF_500, and DCF_5000 reactors, respectively. The soluble COD 330 

removal rates in the DCF-exposed reactors (93 ± 2.5%, 91 ± 3.4%, and 92 ± 2.5% for DCF_50, 331 

DCF_500, and DCF_5000, respectively) were relatively constant over two months and 332 

comparable to those (91.6 ± 3.7%) of the Control reactors. Statistical testing using the Mann-333 
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Whitney U test revealed no significant differences (P > 0.05) between the Control and DCF 334 

exposure reactors.  335 

Previous studies documented acute toxicity values for several isolates by determining 336 

their minimum inhibition concentrations (MICs) against DCF at grams per liter levels: 337 

Enterobacter cloacae (1.6 g/L), Pseudomonas aeruginosa (1.6 g/L), and Acinetobacter 338 

baumannii (0.8 g/L) (Laudy et al., 2016). These levels are significantly higher than both the 339 

dose level tested in this study and the environmentally relevant level in wastewaters. In 340 

addition, our antimicrobial susceptibility testing of the Control communities against DCF 341 

revealed > 1 g/L of MIC. DCF is a pharmaceutically active compound, which is indeed 342 

intended to be biologically active. However, unlike antimicrobial pharmaceuticals, DCF is 343 

designed to reduce inflammation in humans and animals, rather than act as a bactericidal or 344 

bacteriostatic drug. Taken together, the present data (16S rRNA gene-based and experimental 345 

results given in Fig. 5) and previously reported results suggest that DCF exposure 100 times 346 

greater than environmentally relevant in urban wastewaters (i.e. potential environmental 347 

maxima representing accidental spills or the highest peaks among temporal variations) might 348 

not cause acute or chronic toxicity to major ecosystem functions (e.g. microbial growth and 349 

heterotrophic activities) and the overall biodiversity of AS communities. These results have 350 

important implications for designing and operating environmental biochemical processes 351 

treating DCF-bearing waste streams. 352 

4. Conclusions  353 

 This study showed that DCF was poorly removed by AS (< 50%). Our quantitative 354 

analyses revealed that biodegradation and adsorption were the major two removal pathways in 355 

AS, and biodegradation occurred via cometabolic degradation rather than direct metabolism. 356 

Long-term exposure to DCF at 50–5000 µg/L did not cause disturbances in the major functions 357 

of AS ecosystems, which is consistent with our 16S rRNA gene-based results. Several bacterial 358 
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taxa (Nitratireductor, Asticcacaulis, and Pseudoxanthomonas) increased significantly with 359 

exposure to DCF, suggesting the need for further experimental investigations of their functional 360 

capacity in the cometabolism of DCF.  361 
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List of Figures: 367 

 368 

Figure 1: Time course removal of DCF in fed-batch reactors (a) and correlation between the 369 
DCF feeding concentration and DCF removal rate (b). The ordinary least squares (OLS) 370 
regression analysis shows a significant negative correlation (Pearson correlation = -0.92 with 371 
P < 0.05) between the DCF removal rate and DCF feeding concentration. The center and 372 
outer lines represent the OLS slope and 95% confidence bands, respectively.  373 
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 374 

Figure 2: DCF concentrations in batch tests under six different conditions. Time course 375 

concentration of DCF (a) and optical density (OD620nm) (b). Error bars present the standard 376 

deviation of triplicate samples. Each experiment (I through VI) is described in detail in Table 377 

S1.  378 
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 379 

Figure 3: Relative abundance of ten major OTUs (> 1% of the total). Asterisks indicate 380 

differential relative abundance with statistical significance (P < 0.05 by Mann-Whitney U test): 381 

*** (Control vs DCF_50, DCF_500, DCF_5000), ** (Control vs DCF_500 and DCF_5000), 382 

and * (Control vs DCF_5000). 383 

  384 
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 385 

Figure 4: Phylogenetic tree of the ten selectively enhanced OTUs. The OTUs shown here are 386 

the same as those listed in Fig. 3. The tree was constructed using MEGA7.0 (Kumar et al., 387 

2016) with the maximum likelihood method and the Tamura-Nei model. The closest relative 388 

(> 99% nucleotide identity) of each OTU was obtained from the 16S ribosomal RNA sequence 389 

database (GenBank) and is included to deduce the phylogenetic affiliation of each OTU. The 390 

bootstrap support with 100 replicates is shown on the tree nodes. The accession number of the 391 

reference strain is shown in parentheses. The taxonomic affiliation of each OTU at the class 392 

level is listed on the right side. 393 

 394 

  395 
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 396 

Figure 5: Shifts in community phylogenetic structure and diversity. Principal coordinate 397 

analysis of community structure using the Euclidean distance metric (a). Solid circles, open 398 

squares, open triangles, and solid triangles represent the Control, DCF_50, DCF_500, and 399 

DCF_5000 communities, respectively. Alpha diversity indices of the control and DCF-exposed 400 

communities: Chao1 (b) and Shannon (c). The whiskers of the box represent the minimum and 401 

maximum values. The bottom and top of the box are the first and third quartiles, respectively, 402 

and the line inside the box denotes the median.  403 

 404 
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References 406 

Aissaoui, S., Ouled-Haddar, H., Sifour, M., Harrouche, K., Sghaier, H. 2017. Metabolic and 407 
co-metabolic transformation of diclofenac by Enterobacter hormaechei D15 isolated 408 
from activated sludge. Curr. Microbio., 74(3), 381-388. 409 

Bessa, V.S., Moreira, I.S., Tiritan, M.E., Castro, P.M.L. 2017. Enrichment of bacterial strains 410 
for the biodegradation of diclofenac and carbamazepine from activated sludge. Int. 411 
Biodeterior. Biodegrad., 120, 135-142. 412 

Carlsson, C., Johansson, A.-K., Alvan, G., Bergman, K., Kühler, T. 2006. Are pharmaceuticals 413 
potent environmental pollutants?  Part II: Environmental risk assessments of selected 414 
pharmaceutical excipients. Sci. Total Environ., 364(1), 88-95. 415 

Collado, N., Buttiglieri, G., Marti, E., Ferrando-Climent, L., Rodriguez-Mozaz, S., Barceló, 416 
D., Comas, J., Rodriguez-Roda, I. 2013. Effects on activated sludge bacterial 417 
community exposed to sulfamethoxazole. Chemosphere, 93(1), 99-106. 418 

de Voogt, P., Janex-Habibi, M.-L., Sacher, F., Puijker, L., Mons, M. 2009. Development of a 419 
common priority list of pharmaceuticals relevant for the water cycle. Water Sci. 420 
Technol., 59(1), 39-46. 421 

Fernandez-Fontaina, E., Pinho, I., Carballa, M., Omil, F., Lema, J.M. 2013. Biodegradation 422 
kinetic constants and sorption coefficients of micropollutants in membrane bioreactors. 423 
Biodegradation, 24(2), 165-177. 424 

Gerbersdorf, S.U., Cimatoribus, C., Class, H., Engesser, K.-H., Helbich, S., Hollert, H., Lange, 425 
C., Kranert, M., Metzger, J., Nowak, W., Seiler, T.-B., Steger, K., Steinmetz, H., 426 



22 
 

Wieprecht, S. 2015. Anthropogenic trace compounds (ATCs) in aquatic habitats — 427 
Research needs on sources, fate, detection and toxicity to ensure timely elimination 428 
strategies and risk management. Environ. Int., 79, 85-105. 429 

Gonda, S., Kiss-Szikszai, A., Szűcs, Z., Balla, B., Vasas, G. 2016. Efficient biotransformation 430 
of non-steroid anti-inflammatory drugs by endophytic and epiphytic fungi from dried 431 
leaves of a medicinal plant, Plantago lanceolata L. Int. Biodeterior. Biodegrad., 108, 432 
115-121. 433 

Hoeger, B., Köllner, B., Dietrich, D.R., Hitzfeld, B. 2005. Water-borne diclofenac affects 434 
kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta 435 
f. fario). Aquat. Toxicol., 75(1), 53-64. 436 

Jiménez-Silva, V.A., Santoyo-Tepole, F., Ruiz-Ordaz, N., Galíndez-Mayer, J. 2018. Study of 437 
the ibuprofen impact on wastewater treatment mini-plants with bioaugmented sludge. 438 
Proc. Saf. Envir. Prote. 439 

Joss, A., Zabczynski, S., Göbel, A., Hoffmann, B., Löffler, D., McArdell, C.S., Ternes, T.A., 440 
Thomsen, A., Siegrist, H. 2006. Biological degradation of pharmaceuticals in municipal 441 
wastewater treatment: Proposing a classification scheme. Water Res, 40(8), 1686-1696. 442 

Kang, A.J., Brown, A.K., Wong, C.S., Huang, Z., Yuan, Q. 2018. Variation in bacterial 443 
community structure of aerobic granular and suspended activated sludge in the presence 444 
of the antibiotic sulfamethoxazole. Bioresour. Technol., 261, 322-328. 445 

Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., Schloss, P.D. 2013. Development 446 
of a dual-index sequencing strategy and curation pipeline for analyzing amplicon 447 
sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 448 

Laudy, A.E., Mrowka, A., Krajewska, J., Tyski, S. 2016. The influence of efflux pump 449 
inhibitors on the activity of non-antibiotic NSAIDS against gram negative rods. PLoS 450 
One, 11(1). 451 

Liao, X., Zou, R., Li, B., Tong, T., Xie, S., Yuan, B. 2017. Biodegradation of chlortetracycline 452 
by acclimated microbiota. Proc. Saf. Envir. Prote, 109, 11-17. 453 

Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C. 2014. 454 
A review on the occurrence of micropollutants in the aquatic environment and their fate 455 
and removal during wastewater treatment. Sci. Total Environ., 473–474, 619-641. 456 

Manickam, N., Pareek, S., Kaur, I., Singh, N.K., Mayilraj, S. 2012. Nitratireductor 457 
lucknowense sp. nov., a novel bacterium isolated from a pesticide contaminated soil. 458 
Antonie van Leeuwenhoek, 101(1), 125-131. 459 

McGettigan, P., Henry, D. 2013. Use of Non-Steroidal Anti-Inflammatory Drugs That Elevate 460 
Cardiovascular Risk: An Examination of Sales and Essential Medicines Lists in Low-, 461 
Middle-, and High-Income Countries. PLOS Medicine, 10(2), e1001388. 462 

Muter, O., Perkons, I., Svinka, V., Svinka, R., Bartkevics, V. 2017. Distinguishing the roles of 463 
carrier and biofilm in filtering media for the removal of pharmaceutical compounds 464 
from wastewater. Proc. Saf. Envir. Prote, 111, 462-474. 465 

Nguyen, L.N., Hai, F.I., Nghiem, L.D., Kang, J., Price, W.E., Park, C., Yamamoto, K. 2014. 466 
Enhancement of removal of trace organic contaminants by powdered activated carbon 467 
dosing into membrane bioreactors. J. Taiwan Inst. Chem. Eng., 45(2), 571-578. 468 

Nguyen, L.N., Hai, F.I., Yang, S., Kang, J., Leusch, F.D.L., Roddick, F., Price, W.E., Nghiem, 469 
L.D. 2013. Removal of trace organic contaminants by an MBR comprising a mixed 470 
culture of bacteria and white-rot fungi. Bioresour. Technol., 148, 234-241. 471 

Nguyen, L.N., Nghiem, L.D., Oh, S. 2018. Aerobic biotransformation of the antibiotic 472 
ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge. Chemosphere, 473 
211, 600-607. 474 

Nguyen, L.N., Nguyen, A.Q., Nghiem, L.D. 2019. Microbial Community in Anaerobic 475 
Digestion System: Progression in Microbial Ecology. in: Water and Wastewater 476 



23 
 

Treatment Technologies, (Eds.) X.-T. Bui, C. Chiemchaisri, T. Fujioka, S. Varjani, 477 
Springer Singapore. Singapore, pp. 331-355. 478 

Nguyen, L.N., Oh, S. 2019. Impacts of antiseptic cetylpyridinium chloride on microbiome and 479 
its removal efficiency in aerobic activated sludge. Int. Biodeterior. Biodegrad., 137, 480 
23-29. 481 

Schmidt, S., Winter, J., Gallert, C. 2012. Long-Term Effects of Antibiotics on the Elimination 482 
of Chemical Oxygen Demand, Nitrification, and Viable Bacteria in Laboratory-Scale 483 
Wastewater Treatment Plants. Arch. Envir. Contam. Toxi, 63(3), 354-64. 484 

Semblante, G.U., Hai, F.I., Huang, X., Ball, A.S., Price, W.E., Nghiem, L.D. 2015. Trace 485 
organic contaminants in biosolids: Impact of conventional wastewater and sludge 486 
processing technologies and emerging alternatives. J. Hazard. Mater., 300, 1-17. 487 

Tadkaew, N., Hai, F.I., McDonald, J.A., Khan, S.J., Nghiem, L.D. 2011. Removal of trace 488 
organics by MBR treatment: The role of molecular properties. Water Res., 45(8), 2439-489 
2451. 490 

Ternes, T.A., Herrmann, N., Bonerz, M., Knacker, T., Siegrist, H., Joss, A. 2004. A rapid 491 
method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals 492 
and musk fragrances in sewage sludge. Water Res, 38(19), 4075-4084. 493 

Terzic, S., Udikovic-Kolic, N., Jurina, T., Krizman-Matasic, I., Senta, I., Mihaljevic, I., Loncar, 494 
J., Smital, T., Ahel, M. 2018. Biotransformation of macrolide antibiotics using enriched 495 
activated sludge culture: Kinetics, transformation routes and ecotoxicological 496 
evaluation. J. Hazard. Mater., 349, 143-152. 497 

Tobajas, M., Monsalvo, V.M., Mohedano, A.F., Rodriguez, J.J. 2012. Enhancement of 498 
cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as 499 
carbon sources by Comamonas testosteroni. J. Environ. Manage., 95, 116-121. 500 

Tran, N.H., Reinhard, M., Gin, K.Y.-H. 2018. Occurrence and fate of emerging contaminants 501 
in municipal wastewater treatment plants from different geographical regions-a review. 502 
Water Res., 133, 182-207. 503 

Tran, N.H., Urase, T., Kusakabe, O. 2009. The characteristics of enriched nitrifier culture in 504 
the degradation of selected pharmaceutically active compounds. J. Hazard. Mater., 505 
171(1), 1051-1057. 506 

Vasiliadou, I.A., Molina, R., Martinez, F., Melero, J.A., Stathopoulou, P.M., Tsiamis, G. 2018. 507 
Toxicity assessment of pharmaceutical compounds on mixed culture from activated 508 
sludge using respirometric technique: The role of microbial community structure. Sci. 509 
Total Environ., 630, 809-819. 510 

Vieno, N., Sillanpää, M. 2014. Fate of diclofenac in municipal wastewater treatment plant — 511 
A review. Environ. Int., 69, 28-39. 512 

Vulliet, E., Cren-Olivé, C., Grenier-Loustalot, M.-F. 2011. Occurrence of pharmaceuticals and 513 
hormones in drinking water treated from surface waters. Environ. Chem. Lett., 9(1), 514 
103-114. 515 

Wang, G., Zhao, Y., Gao, H., Yue, W., Xiong, M., Li, F., Zhang, H., Ge, W. 2013. Co-516 
metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. AAP-7 isolated 517 
from a long-term acetamiprid-polluted soil. Bioresour. Technol., 150, 259-265. 518 

Zhang, Y., Geng, J., Ma, H., Ren, H., Xu, K., Ding, L. 2016. Characterization of microbial 519 
community and antibiotic resistance genes in activated sludge under tetracycline and 520 
sulfamethoxazole selection pressure. Sci. Total Environ., 571, 479-486. 521 

 522 

  523 



24 
 

 524 

 525 


	Highlights
	Abstract
	1. Introduction
	2. Materials and Methods
	2.1 Laboratory scale bioreactors
	2.2 Analytical methods
	2.3 Evaluation of DCF fate in activated sludge
	2.4 16S rRNA gene sequencing and analysis

	3. Results and Discussion
	3.1 DCF removal by activated sludge
	3.2 Removal routes for DCF in activated sludge
	3.3 Dissecting activated sludge communities metabolizing DCF
	3.4 Long-term effects on activated sludge function

	4. Conclusions
	Acknowledgements
	Conflicts of interest
	References



