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Abstract 20 

 This study evaluated short- and long-term exposure of activated sludge (AS) 21 

microbiome to cetylpyridinium chloride (CPC), a quaternary ammonium compound widely 22 

used as biocidal additive or cationic surfactant. Toxicity assay in batch mode showed that CPC 23 

(50 µg L-1) inhibited cell growth. However, in a continuous reactor, CPC concentration in the 24 

range of 50 to 500 µg L-1 did not result in any observable impact on the biological activities of 25 

the AS microbiome. Similarly, 16S rRNA gene-based community profiling revealed that CPC 26 

had no observable impact on microbial diversity. At the phylogenetic structure, Rhodobacter 27 

(15 ± 7% of the total) and Asticcacaulis (9 ± 3%) were the only two phyla with increasing 28 

population in the 500 µg L-1-exposed reactors. This was also supported by an observation of 29 

no major change in the community structure. The reactors could remove >60% of CPC at initial 30 

concentrations of 50–500 µg L-1, primarily by adsorption and biodegradation. The enrichment 31 

of Rhodobacter and Asticcacaulis genus might contribute to CPC biodegradation and emerge 32 

as a potential microbial niche for the removal of CPC.  33 

Key words: Cetylpyridinium chloride; Activated sludge microbiome; Microbial community 34 

diversity; Community phylogenetic structure  35 
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1. Introduction 36 

Quaternary ammonium compounds are commonly applied as biocidal additives or 37 

cationic surfactants. They are extensively used in a number of personal care and domestic 38 

products (e.g. shampoo, body wash and dishwashing detergents), pesticides, and industrial 39 

applications (e.g. cleaning agents and lubricants) (Ko et al., 2007; Sundheim et al., 1998; Zhang 40 

et al., 2015). They interact predominantly with phospholipid components of the cytoplasmic 41 

membrane (e.g. bacteria) and the plasma membrane (e.g. yeast). Cetylpyridinium chloride 42 

(CPC) is a frequently used quaternary ammonium compound. CPC is the active ingredient at 43 

0.01 to 1% (w/w) of many personal care products such as antiperspirant deodorants, oral 44 

hygiene products, and skin lotions (Costa et al., 2013) and surface-disinfecting agents in 45 

poultry processing facilities (Zhang et al., 2015). CPC is also used as a detergent additive (up 46 

to 5 mg L-1) to improve the removal of phenols, reactive dyes, and other organic solutes by 47 

micellar-enhanced ultrafiltration (Luo et al., 2010). Due to its extensive use, CPC has been 48 

found at 52  µg L-1 in river water and 47–88 µg L-1 in wastewater (Shrivas and Wu 2007). CPC 49 

causes acute toxicity to freshwater planarians (at 40 μg L-1), rats (90 μg L-1), and frog embryos 50 

(531 µg L-1) (Park et al., 2016), suggesting potential environmental health risks at the levels 51 

found in the environment.  52 

The impact of quaternary ammonium compounds on functionality and diversity of the 53 

microbial community in activated sludge (AS) for wastewater treatment remains a topic for 54 

further investigation. Several studies have shown that quaternary ammonium compounds may 55 

disrupt the diversity and function of (AS) (Bessa et al., 2017; Delgado et al., 2010; Jiang et al., 56 

2017; Oh et al., 2014). Exposure of benzalkonium chloride reduced microbial community 57 

diversity and resulted in the enrichment of resistant species (Oh et al., 2014). Furthermore, 58 

quaternary ammonium compounds could inhibit both nitrifying and denitrifying bacteria in 59 

biological nutrient removal (Carter 2008). While some effort has been made on understanding 60 



4 
 

CPC-mediated toxicity (Hrenovic et al., 2008; Imai et al., 2017), most studies focused on short-61 

term toxicity effects (e.g. acute toxicity and lethality) using a single model organism. It was 62 

hypothesized that relatively low levels of CPC (i.e. sub-inhibitory concentrations), rather than 63 

pulsed inputs, are continuously emitted to wastewater treatment plants (WWTPs) through 64 

urban sewage disposal. In these WWTPs, complex microbial communities (e.g. AS) are 65 

exposed to CPC over long periods of time. The chronic toxicity effects of sub-inhibitory 66 

concentrations of CPC on AS communities, rather than pure cultures, have not been 67 

systematically investigated. These effects are highly relevant to the real-world ecotoxicological 68 

consequences of CPC in AS ecosystems.  69 

WWTPs are an important barrier to limit the spread of CPC to the environment. 70 

Satisfactory removal of CPC (i.e. via the AS process) is highly desired to reduce the ecotoxicity 71 

of CPC. Thus far, there is a consensus in literature that adsorption and biodegradation are two 72 

main removal pathways of micropollutants. The contribution of these pathways to the overall 73 

removal depends on a number of factors such as physico-chemical properties, operational 74 

conditions and microbial community (Phan et al., 2016; Tadkaew et al., 2011). Since a 75 

substantial amount of CPC is released into WWTPs due to its extensive use in domestic and 76 

industrial applications, it is critical to address (1) whether CPC is removed effectively from the 77 

wastewater and (2) how CPC is removed in the AS process.  78 

This study aimed to assess the effect of CPC and removal in AS. Laboratory bioreactors 79 

were inoculated with AS and fed with CPC-containing substrates. Both short- and long-term 80 

toxicity effects of CPC on the major functions of AS were investigated under different CPC 81 

levels. Bacterial community dynamics were also assessed using 16S rRNA gene sequencing 82 

and analysis.   83 
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2. Materials and Methods 84 

2.1 Short-term toxicity assessment 85 

AS taken from an aeration tank of a municipal WWTP (Jurong, Singapore) was 86 

inoculated into three fed-batch reactors. The reactors were fed by the synthetic feed (Section 87 

2.2) and maintained at pH 6.8 ± 0.2 under aerobic conditions (4.8 ± 0.8 mg L-1 of dissolved 88 

oxygen). After one month of acclimation to the laboratory conditions, the reactors showed 89 

stable biomass (0.44 ± 0.16 g L-1 of mixed liquor volatile suspended solids [MLVSS]) and 90 

organic matter removal (91.6 ± 3.7% of soluble chemical oxygen demand [sCOD] removal). 91 

Antimicrobial susceptibility testing for determining inhibitory concentrations was performed 92 

to evaluate the short-term toxicity of CPC to AS (NCCLS 2003). Briefly, triplicate AS cultures 93 

were taken from the reactors to use as inoculum and washed twice with saline phosphate buffer 94 

(pH 7.4). The inoculum was added (100 µL) into pre-established 13-mL glass tubes containing 95 

5 mL of synthetic feed supplemented with CPC at 0–8 mg L-1. All the test tubes were incubated 96 

in an orbital shaker at 150 rpm and 25 °C for 24 h.  The relative growths of mixed cultures over 97 

the range of CPC concentrations were measured after 24 h incubation using UV 98 

spectrophotometer at wavelength of 620 nm. To determine the inhibition concentration, the 99 

relative growth data were fitted using a four-parameter logistic model (Gadagkar and Call 100 

2015).  101 

2.2 Bioreactor operation  102 

The AS from the three fed-batch reactors (Section 2.1) was mixed and used to develop 103 

another set of six identical reactors. Three of these reactors (CPC_50) were exposed to 50 µg 104 

L-1 of CPC and another three (CPC_500) to 500 µg L-1 of CPC. These two concentrations were 105 

selected given that these are environmentally relevant levels (50 – 581 µg L-1) in wastewater 106 

(Clara et al., 2007; Shrivas and Wu 2007).  107 
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The synthetic feed (1 L) contained C6H12O6 (1.83 g), NH4Cl (30 mg), KH2PO4 (340 108 

mg), K2HPO4 (600 mg), MgSO4.7H2O (270 mg), FeSO4 (10 mg) and 10 mL of 100 x trace 109 

element solution (ZnSO4.7H2O 0.35 mg, MnSO4.H2O 0.21 mg, H3BO4 2.1 mg, CoCl2.2H2O 110 

1.4 mg, CuCl2.2H20 0.07 mg, NiSO4.6H2O 0.1 mg, Na2MoO4.2H2O 0.21 mg per liter) as 111 

described previously (Oh and Choi 2018). The ratio of COD, total nitrogen and total 112 

phosphorous (COD: TN: TP) in the synthetic feed was 80: 5: 1. The reactors (0.6 L working 113 

volume) were fed every 3.5 days by withdrawing one-third of a mixed liquor suspension and 114 

replacing with a freshly-prepared synthetic feed plus CPC at 50 and 500 µg L-1, resulting in 115 

solid retention time of 10.5 days. The reactors were maintained at room temperature (22–23 116 

°C) and under aerobic conditions (4.8 ± 0.8 mg L-1 of dissolved oxygen). CPC (analytical grade 117 

98% purity) was purchased from Sigma Aldrich (Singapore) with the physicochemical 118 

properties as in Table S1. A CPC stock solution 0.1 g L-1 was prepared and stored at 4 °C prior 119 

to use within one month. The reactors were operated for 1.5 months. The sCOD removal, and 120 

MLVSS levels were used were monitored at days 0, 3, 13, 27 and 42 to investigate the chronic 121 

impact of CPC on AS. The concentration of CPC in influent and effluent was also measured at 122 

days 0, 3, 13, 27 and 42. The AS microbial community samples were collected from day 0 and 123 

42 (Control) and day 42 (CPC_50 and CPC_500) for characterisation of changes due to CPC 124 

exposure.  125 

2.3 Analytical methods  126 

sCOD was measured using a HACH colorimetric method after filtering the samples 127 

through a 0.22-µm filter. MLVSS were measured following the APHA Standard Method 2540 128 

(Eaton. et al., 2005). pH was measured using an Orion 4-Star Plus pH/conductivity meter 129 

(Thermo Scientific, Waltham, MA). CPC concentrations were measured using a high-130 

performance liquid chromatography system (Shimadzu Asia Pacific Pte. Ltd) equipped with a 131 

Shim-Pack GIST Phenyl column (5 µm, 4.6 x 250 mm) and a UV–vis detector. The mobile 132 
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phase solution consisted of 20 mM sodium dihydrogen phosphate monohydrate (pH 2.5) and 133 

acetonitrile (99% purity) at a 40:60 (v/v) ratio. The injected sample volume and mobile phase 134 

flow rate were 100 μL and 1.8 mL min-1, respectively. CPC was detected at a wavelength of 135 

254 nm and the detection limit was 10 μg L-1.  136 

To quantify CPC adsorption onto sludge, AS at the end of a feeding cycle from triplicate 137 

reactors was collected and subjected to an ultrasonic solvent extraction method (Wijekoon et 138 

al., 2013). In brief, the sludge was freeze-dried for 24 hours and ground to a fine powder using 139 

a mortar and pestle. The powder was subsequently washed with 5 mL methanol in a 13-mL 140 

tube. The resulting slurry was mixed well with a vortex mixer and ultrasonicated at 30 °C for 141 

10 min, after which the resultant suspension was spun by centrifugation at 2851 x g for 10 min. 142 

The supernatant was collected and the remaining solid mixture was subjected to another round 143 

of extraction. The supernatants from all extraction steps were combined, filtered by 0.22 µm, 144 

and subjected to HPLC analysis. Independent tests contained inactive (heat-killed biomass) 145 

and abiotic settings, showing an extraction efficiency of 82 ± 5%. The mass of CPC adsorbed 146 

onto the sludge in a given reactor was estimated using the following equation: adsorption = T 147 

× CCPC × E, where T (g), CCPC (µg g-1), and E (%) denote the total sludge mass in the reactor, 148 

the concentration of CPC extracted per one gram of sludge, and the extraction efficiency, 149 

respectively.   150 

2.4 DNA extraction and 16S rRNA gene sequencing  151 

DNA was extracted from the mixed liquor samples using a MoBio PowerSoil ® DNA 152 

isolation kit (MOBIO, Carlsbad, CA, USA) following the manufacturer’s instructions. All 153 

obtained DNA concentrations were > 0.5 μg μL-1 with absorbance ratios (A260/A280) > 1.8. PCR 154 

amplification of the 16S rRNA gene was performed by Macrogen Inc. (Seoul, Republic of 155 

Korea) using universal bacterial primers targeting the V3 to V4 region (341F-805R). The 16S 156 

rRNA gene amplicon products were sequenced using the MiSeqTM platform at Macrogen Inc.   157 



8 
 

 Raw paired-end (2×300 bp) 16S rRNA gene sequence data were analyzed according to 158 

the MiSeq SOP pipeline (Kozich et al., 2013). In brief, raw sequences were preprocessed using 159 

the following parameters: maxambig = 0, minimum length = 200, maximum length of 160 

homopolymer = 8, and all other parameters at their default settings. The preprocessed 161 

sequences were chimera-checked and classified using the commands chimera.vsearch and 162 

classify.seqs, respectively. Chimeric sequences and sequences assigned to chloroplasts, 163 

mitochondria, unknown, archaea, and eukaryotes were removed. The sequences were clustered 164 

into representative OTUs based on a 97% nucleotide identity cutoff, using the commands 165 

dist.seqs and cluster. The 16S rRNA gene sequencing generated 28,400 to 55,392 sequences 166 

per sample after preprocessing using the MOTHUR pipeline (Kozich et al., 2013). The 167 

rarefaction curves of the 12 datasets tended to approach the saturation plateau (> 99% of 168 

Good’s coverage) (Fig. S2), suggesting that the OTU diversity was almost saturated by the 169 

sequencing depth used in this study. The sequences were rarefied to 28,000 sequences (the 170 

lowest number of sequences per sample) to estimate alpha diversity indices (Chao, Ace, 171 

Shannon, and Inverse Simpson) using the MOTHUR package. Statistical testing for differential 172 

community characteristics was conducted using the Mann-Whitney U test. The 16S rRNA gene 173 

sequences were deposited in GenBank with accession numbers. Control_0_1 (SRS2340183), 174 

Control_0_2 (SRS2340176), Control_0_3 (SRS2340220), Control_42_1 (SRS2340175), 175 

Control_42_2 (SRS2340198), Control_42_3 (SRS2340197), CPC_50_1 (SRS2340199), 176 

CPC_50_2 (SRS2340202), CPC_50_3 (SRS2340203), CPC_500_1 (SRS2340200), 177 

CPC_500_2 (SRS2340201), and CPC_500_3 (SRS2340195).  178 

3. Results and Discussion 179 

3.1 Short-term toxicity of CPC to activated sludge 180 

Short-term toxicity assays showed that CPC was toxic to AS. The heterotrophic growth 181 

of the AS was inhibited by 0.063–2 mg L-1 of CPC and completely suppressed (99%) by 4 mg 182 
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L-1 of CPC (Fig. 1). The relative growth data was fitted in a four-parameter logistic function 183 

(Hill dose – response curve) (Gadagkar and Call 2015), and the model predicted that 20 mg L-184 

1 of CPC would completely inhibit cell growth. The model also predicted that environmentally 185 

relevant concentrations of CPC (i.e. 50 and 500 µg L-1) were sub-inhibitory levels (i.e. 20% 186 

and 60% of cell growth inhibition at 24 hours, respectively).  187 

[FIGURE 1] 188 

This study provides conclusive evidence that CPC is toxic to the AS community in 189 

short-term exposure. Thus far, CPC toxicity has only been demonstrated in a few pure cultures 190 

(Table 1). A wide variation of CPC toxicity has been reported across different taxa, indicating 191 

that toxicity levels may vary from one taxon to another. The toxicity threshold of CPC to 192 

complex AS communities was quantitatively assessed in this study based on the effects on the 193 

heterotrophic growths. Therefore, future investigations determining the effects and toxicity of 194 

CPC on metabolic activities of other important nutrients (e.g., nitrogen and phosphorous) in 195 

biological nitrogen removal and enhanced biological phosphorus removal processes will be 196 

highly desired.  197 

[TABLE 1] 198 

3.2 Long-term exposure of activated sludge to CPC  199 

Long-term exposure (1.5 months) of CPC (50–500 µg L-1) to AS did not affect its 200 

biological functions (e.g. organic matter removal and biomass yield). CPC_50 and CPC_500 201 

reactors showed 89 ± 3% and 87 ± 3% of COD removal, respectively, which were marginally 202 

lower than the COD removal in the control reactors (92 ± 4%) (Fig. S3) (i.e., no statistical 203 

significance with P > 0.05 by Mann-Whitney U test). The range of COD removals observed in 204 

both control and experimental reactors were similar to conventional AS process. Likewise, 205 

MLVSS concentrations in the control, CPC_50 and CPC_500 were 0.75 ± 0.07, 0.76 ± 0.18 206 
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and 0.71 ± 0.16 mg L-1, respectively (Fig. S3), which were comparable with each other (P > 207 

0.05 by Mann-Whitney U test). The MLVSS concentration was noticeably lower than that of 208 

conventional AS, which could be attributed to the reactor operation without sludge recycling 209 

in this study.   210 

The difference between short-term toxicity assay and long-term exposure findings can 211 

be attributed to the different incubation periods. Although a singular addition of CPC had short 212 

term toxic effects on AS (Section 3.1), the continuous presence of the compound appeared to 213 

have negligible impact on AS functionality in the reactors. One cycle duration of the fed-batch 214 

reactors was 3.5 days, which was much longer than the cell growth period (24 hours) in the 215 

acute toxicity testing. Therefore, toxicology assays in batch mode may not yield meaningful 216 

results that can be applied for AS process. The impact of CPC and other micropollutants on the 217 

AS process can only be ascertained through long-term evaluation of AS performance and 218 

microbial community.   219 

3.3 Effects of CPC on bacterial community diversity and structure 220 

CPC addition at 50–500 µg L-1 did not influence AS microbial diversity in reactors. 221 

The diversity index measurements including species richness and evenness were compared 222 

amongst control, CPC_50 and CPC_500 reactors. At 50 µg L-1-exposed, the communities 223 

showed a comparable species richness and evenness to the control communities (Table 2). At 224 

higher CPC exposure, a slight increase in species evenness (Shannon and Inverse Simpson) 225 

was observed. However, these differences in the community diversity amongst the three 226 

community groups were not statistically significant (P > 0.05).   227 

[TABLE 2] 228 

16S rRNA gene-based analysis also suggested that exposure to 50–500 µg L-1 of CPC 229 

did not significantly change community structure (Fig. 2). The OTU (a total of 796 OTUs) 230 
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relative abundance data were used to carry out nonmetric multidimensional scaling (NMDS) 231 

analysis for community structural comparison. The CPC_50 (81.5 ± 3.0 by the Euclidean 232 

distance similarity), and CPC_500 (78.4 ± 4.2) communities clustered closely within each 233 

community group, confirming the high level of community structure similarity of the replicate 234 

communities. The control communities showed only a moderate level of similarity (61.4 ± 14.5) 235 

within the group. The pairwise similarity between communities was 41.5 ± 7.5 (control vs. 236 

CPC_50) and 36.3 ± 6.0 (control vs. CPC_500). A permutational multivariate analysis of 237 

variance (PERMANOVA) test (Anderson 2001) revealed that the community phylogenetic 238 

structure did not differ significantly (Bonferroni-corrected P > 0.05) among the three 239 

community groups.  240 

[FIGURE 2] 241 

The degree of perturbation posed by a micropollutant on AS microbial diversity and 242 

structure can be influenced by compound concentrations (Jiang et al., 2017; Phan et al., 2016; 243 

Zhang et al., 2016). A slight increase in species evenness was observed when AS community 244 

was exposed to tetracycline or sulfamethoxazole at concentration of 5 µg L-1. At higher 245 

concentration 50 – 10,000 µg L-1, the community diversity dropped significantly (Zhang et al., 246 

2016), indicating the effective dose at 50 µg L-1 and above. Jiang et al. (2017) observed no 247 

impact of diclofenac, ibuprofen and naproxen  on AS communities at concentration of 5 µg L-248 

1. It is indicated that each individual antimicrobial agent has its own effective dose level (i.e. 249 

concentration for a significant biological response to be observed), below which no 250 

deterministic effects occur. No significant effects of long-term CPC exposure on the phenotype 251 

(biomass yield and organic matter removal) and overall community diversity of AS suggest 252 

that the concentration (50–500 µg L-1) of CPC exposure tested in this study is likely below the 253 

threshold level.  254 
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3.4 Phylogenic structure of activated sludge after CPC exposure 255 

CPC exposure affected the abundance of bacteria under the classes 256 

Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria (Fig. 3). While 257 

Gammaproteobacteria was dramatically decreased in abundance from the control (32.9 ± 258 

10.4%) to the CPC_50 (17.8 ± 12.2%) and the CPC_500 (6.3 ± 0.9%) communities, 259 

Alphaproteobacteria was significantly enriched in the CPC_50 (30.1 ± 5.8%) and CPC_500 260 

(31.2 ± 5.3%) communities compared to the control (17.7 ± 2.8%). The relative abundance of 261 

Actinobacteria was 7.8 ± 2.3% in the CPC_500 communities, making this class significantly 262 

more abundant than in the control (4.7 ± 1.3%). Although major variations were observed at 263 

the class level, no significant change was observed at phylum levels. In fact, 16S rRNA gene 264 

sequence analysis uncovered nine major phyla (> 1% of the total) of the AS communities (Fig. 265 

S4) including Proteobacteria (64%), followed by Bacteroidetes (16%), Verrucomicrobia 266 

(4.8%), Candidatus Saccharibacteira (2.5%), Chloroflexi (1.5%), Phanctomycetes (1.3%), 267 

Fimicutes (1.2%), and Acidobacteria (1.0%). These major phyla exhibited similar levels of 268 

abundance to those found in full-scale AS processes (Saunders et al., 2016; Zhang et al., 2012), 269 

suggesting that acclimation of AS to laboratory condition could still preserve phylogenic 270 

structure of microbial community.    271 

[FIGURE 3] 272 

Analysis of the major OTUs with >1% of the total abundance identified seven species 273 

whose relative abundances significantly differed (P < 0.05) between the control and CPC-274 

exposed communities (Table 3). The two Gammaproteobacteria OTUs (OTU013 and OTU001) 275 

were underrepresented in the CPC-exposed communities, consistent with the changes in the 276 

class-level bacterial community composition (Fig. 3). OTU006, OTU014, and OTU009 277 

(taxonomically affiliated with Alphaproteobacteria), OTU019 (Actinobacteria), and OTU007 278 

(Cytophagia) were selectively enriched in the CPC-exposed communities. OTU006 and 279 
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OTU014 were two of the most abundant species (9.1 ± 4.1% and 15.2 ± 6.9%, respectively) in 280 

the CPC_500 communities and were phylogenetically closely related (> 99% 16S rRNA gene 281 

sequence similarity) to Asticcacaulis excentricus and Rhodobacter maris (Fig. 4).  282 

[FIGURE 4] 283 

The enrichment of the two species in response to CPC exposure might be attributable 284 

to the biological removal (biotransformation/biodegradation) of CPC observed in this study 285 

(Section 3.5). Rhodobacter are a genus of Rhodobacteriaceae, which have a diverse metabolic 286 

range including aerobic/anaerobic respiration, photosynthesis and lithotrophy. Rhodobacter 287 

spp. are capable of cleaning up soil and water environments contaminated with various organic 288 

micropollutants (e.g. aromatic hydrocarbons and explosives) (Idi et al., 2015). Rhodobacter 289 

spp. can generate an array of catalytic enzymes such as monooxygenase and dioxygenase 290 

(Oberoi et al., 2015). These enzymes enable the N-dealkylation step in the degradation of 291 

quaternary ammonium compounds. In addition, dioxygenase is a broad-substrate enzyme that 292 

can catalyse the hydroxylation of aromatic compounds and N-dealkylation (Resnick et al., 293 

1996). The previously reported catabolic capabilities of Rhodobacter spp. and the selective 294 

enrichment of Rhodobacter observed in this study upon CPC exposure imply the potential 295 

participation of Rhodobacter in mediating CPC biotransformation (e.g. CPC dealkylation 296 

and/or benzene ring hydroxylation). Asticcacaulis are a genus of Caulobacteraceae; two 297 

species in this genus (A. excentricus and A. biprosthecium) were previously isolated from 298 

freshwater environments (Liu et al., 2005). The Asticcacaulis genome (GenBank accession no.: 299 

NC_014816.1) contains conserved genes encoding aldehyde dehydrogenase, alcohol 300 

dehydrogenase, and malate dehydrogenase, which are involved in β-oxidation and the 301 

tricarboxylic acid cycle of alkyl chain metabolism. A previous metatranscriptomic study of a 302 

quaternary ammonium compound-degrading microbial community revealed significantly 303 

higher expression of monooxygenase, dioxygenase, aldehyde dehydrogenase and alcohol 304 
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dehydrogenase (Oh et al., 2014). The results (e.g., putative genes) reported here would be a 305 

useful basis for future investigations into the exact role of the Rhodobacter and Asticcacaulis 306 

populations on CPC biodegradation. These results have important implications for biologically 307 

engineered systems for treating CPC-bearing waste streams. 308 

3.5 CPC removal by activated sludge 309 

The removal efficiency of CPC from AS was impacted by influent CPC concentrations 310 

(Fig. 5a). In the first feeding cycle, more than 95% of the fed CPC was removed from the 311 

CPC_50 and CPC_500 reactors. The mean CPC removal by the CPC_50 reactors was slightly 312 

decreased to 89 ± 6% at days 13–42, whereas the mean CPC removal by the CPC_500 reactors 313 

decreased significantly from 96 ± 0.3% to 66 ± 15%. At steady state (day 13–42), the removal 314 

efficiency was significantly different (P < 0.05) between CPC_50 and CPC_500. 315 

The removal of CPC in AS reactors was mainly via adsorption and biodegradation. Due 316 

to its low volatility (Henry’s constant=1.05 x 10-8 atm m3 mole-1; Table S1), CPC is unlikely 317 

to be eliminated via evaporation. Other abiotic pathways (i.e., hydrolysis and photolysis) were 318 

examined in separate batch reactors under identical operational conditions. These batch 319 

reactors showed no significant changes (within ± 2% difference) of CPC at 50 or 500 µg L-1 320 

for one week. These results are consistent with a consensus in the literature that adsorption and 321 

biodegradation are the removal pathways of quaternary ammonium compounds (Tezel and 322 

Pavlostathis 2015; Ying 2006; Zhang et al., 2015).  323 

A substantial amount of CPC was adsorbed on sludge in AS reactors (Fig. 5b). CPC 324 

concentrations on sludge were 41 ± 3.4 and 230 ± 15.6 µg g-1 in the CPC_50 and CPC_500 325 

reactors, respectively at the end of experiment. The octanol-water partition coefficient (Kow) of 326 

CPC is 1.7 (Table S1), suggesting a moderate level of hydrophobicity  (Wells 2006). However, 327 

the CPC molecule contains both hydrophobic and positively charged regions that could 328 
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facilitate its binding to negatively charged protein moieties of the cell membrane in AS. The 329 

affinity of CPC to adsorb on sludge could explain for the instantly high removal of CPC at the 330 

first cycle in this study. The results also implied that a considerable amount of CPC can be 331 

released with wasted AS from WWTPs. Future investigations into the fate and effects of CPC 332 

in post-treatment processes (e.g. anaerobic digestion and biosolid application) of activated 333 

waste sludge are suggested. 334 

[FIGURE 5a&b] 335 

4. Conclusions  336 

 This study provides new insights on the effects of CPC on the phenotypes and bacterial 337 

community structure of AS. Environmentally relevant concentrations of CPC (50–500 µg L-1) 338 

caused short term effects on AS heterotrophic growth. However, long term exposure to the 339 

same concentrations had no impact on AS biological function (i.e. organic matter removal and 340 

biomass yield). This was consistent with the lack of significant changes in the microbial 341 

community diversity and structure between control and experimental reactors.  In addition, 342 

more than half of CPC was removed from CPC-containing waste streams through 343 

biodegradation and adsorption. Two genera (Rhodobacter and Asticcacaulis), which were 344 

enriched in the 500 µg L-1-exposed reactors, potentially play important roles in CPC 345 

biodegradation. A substantial portion of CPC was adsorbed on sludge, which may require 346 

further treatment if beneficial re-use of biosolids is desired.  347 
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