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Abstract

Networks are everywhere and their many types, including social networks, the Internet, food web networks, etc., have been studied
for the last few decades. However, in real-world networks, it’s hard to find examples that can be easily comparable, i.e. have
the same density or even number of nodes and edges. We propose flexible and extensible NetSim framework to understand how
properties in different types of networks change with varying number of edges and vertices. Our approach enables to simulate
three classical network models (random, small-world and scale-free) with an easily adjustable variety of models’ parameters and
networks’ sizes. To be able to compare different networks, for a single experimental setup we kept the number of edges and
vertices fixed across the models. To understand how they change depending on the number of nodes and edges we ran over 30,000
simulations and analysed different networks’ characteristics that cannot be derived analytically. Two of the main findings from
the analysis are, the average shortest path does not change with the density of the scale-free network but changes for small-world
and random networks; there is a clear difference in mean betweenness centrality for scale-free networks among two other network
models.
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1. Introduction

Network properties such as closeness centrality, betweenness centrality, degree distribution, clustering coefficient,
and average geodesic path vary depending on the network’s type and size. These properties contain essential informa-
tion about the network’s structure and dynamics. For instance, a high clustering coefficient with low average geodesic
path might indicate a social network, i.e. a specific type of network that is formed through social interactions. Degree
distribution could indicate a particular growth mechanism unique to a specific kind of network – power law in the
degree distribution indicates that the growth mechanism is likely based on preferential attachment and the network
has been formed based on the ‘rich get richer’ rule. To understand how different properties of a network behave with
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regards to the type of the network, and how properties change with network’s size, we have designed and performed a
number of simulations. In these simulations we have compared properties of three network models: 1) Barabási-Albert
model for scale-free network 2) Watts-Strogatz model for the small-world network, and 3) Erdős-Rényi model for the
random network.

To compare properties across three different network models of varying size and density, all these models for a
particular size needs to have the same number of vertices and edges. Due to the different underlying mechanisms of
these three network models, this is not very trivial. This difficulty is encountered mainly with scale-free and small-
world network models, and we discuss it further in Section 3.2. To obtain comparable results we have developed a set
of mathematical formulas that allow generating networks following these three models with a set number of vertices
and edges. This, together with a network simulator that can be easily extended to include other network models and
properties, is the primary contribution of this work. The developed simulator, together with generated networks have
been open-sourced on GitHub as an R package1. The entire simulation workflow has been automated, so the user only
needs to define input parameters to get a comprehensive set of results in the shape of multiple plots and tables. The
second and equally important contribution of this research is the comprehensive analysis of the results of over 30,000
simulations which we have run to generate and investigate networks following different network models.

We have measured three types of network properties: 1) centralities (betweenness and closeness), 2) average short-
est path, and 3) global clustering coefficient. For a given network model, we varied the number of vertices and edges,
yet keeping them fixed across all three network types to make the results comparable.

In Section 2 we present a brief overview of existing network generators. Next, the proposed NetSim framework
together with implemented network models are introduced in Section 3. In Section 4, we describe the design of the
experiment that enables comparison of properties of implemented models, followed by results analysis in Section 5.
Finally, conclusions are provided in Section 6.

2. Brief Overview of Network Generators Landscape

To our knowledge, there does not exist any framework which generates comparable simulated networks in a com-
prehensive way for the random graph, scale-free, and small-world networks with a wide range of freedom in param-
eters but keeping the number of edges and vertices equal for all networks. Below we briefly introduce a few widely
used packages.

The igraph software package [2] is a collection of network analysis tools available in R, Python and C. In our
developed framework we have used igraph library in R for generating individual models and calculating network
properties. However, our NetSim framework allows to generate all three models, with same the same number of edges
and vertices for a range of different parameters and to save all the calculated properties as serialised objects which
are then used to present the results in a transparent manner with generated plots. The whole process is automated and
the user does not need to worry about keeping the number of edges and vertices the same, only vertices are taken as
inputs.

Brain Connectivity Toolbox [13] is a MATLAB toolbox for complex network analysis of structural and functional
brain connectivity data sets. This toolbox has several models, including random and scale-free networks, and includes
tools for network comparison which however focus mainly on different community structures, not network properties.

MatlabBGL[6] is another MATLAB package for working with graphs. It is based on the Boost Graph Library and
enables generation of simple models like random graphs and cycle graph [14].

Stanford Network Analysis Platform (SNAP) [7] is a library written in C++ for high-performance large-scale
complex network analysis. It allows to generate regular and random graphs.

There exist a plethora of other software packages that allow to generate networks. While those presented above
are just a few examples, it is important to emphasize that none of them enables to generate, in an automatic way,
networks that are easily comparable. Existing tools enable to generate networks of different models, but each model
is used in isolation. If a user wants to create networks that can be compared, i.e. having the same number of nodes and

1 https://github.com/AkandaAshraf/netsim
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edges regardless of their structure, they have to work out all parameters by themselves which, as presented in the next
section, is not a trivial task.

3. Proposed NetSim Framework

In this section, we introduce the network models implemented in the NetSim framework as well as our approach to
generate networks with a consistent number of nodes/edges regardless of their structure. We have mathematically de-
rived and empirically demonstrated our framework to be able to simulate and support analysis with varying important
parameters of three different network models. Our proposed framework, which has been turned into an open-source
R package, NetSim, is very user-friendly. We can simulate large-scale networks once, calculate their properties and
then save those network properties as serialised objects which can then later be fetched from hard-drive to generate
plots and perform comparative analysis. This helps to reduce the complexity of the process as generating a large scale
network is computationally expensive. Our R package is based on igraph [2] and ggplot2 [18], where the former is
used for the core graph calculations and the latter for generating high resolution plots.

3.1. Network models

In our study, we have simulated three widely used network models: (1) Barabási-Albert model for the scale-free
network [1], (2) Watts-Strogatz small-world model for the small-world network [17], and (3) Erdős-Rényi model for
the random graph network [16, 3, 4, 5]. A brief introduction of these models is given below.

Random Graph: In the random graph network model, one creates a network with some properties of interest
(specific degree distribution) and otherwise random. Although random graph model was first studied by [16] this
model is mainly associated with Paul Erdős and Alfréd Rényi [3, 4, 5]. The random graph model could also be
thought of as choosing uniformly a network from the set of all possible networks with exactly n vertices and m edges.
This model is often referred as G(n,m) model for networks where n is the number of nodes and m being the number
of edges. A slightly different definition is G(n, p) model where p defines the probability of edges appearing between
every pair of vertices.

Scale-free Model: The scale-free model shows power law node degree distribution P(k) ∼ k−α (where k – node
degree and α – parameter whose value is typically in the range 2 < α < 3) which usually indicates some interesting
underlying process [8, 10]. This kind of distribution was first discussed by Price [12]. Price, in turn, was inspired
by Herbert Simon, who discusses power law in a variety of non-network economic data [15]. Simon showed mathe-
matically the fact that ‘rich get richer’ effect results in power law distribution. He called this mechanism ‘cumulative
advantage’, but it is more often known as ‘preferential attachment’ as coined by Barabási and Albert [1].

Small-world Model: Transitivity measured by the network clustering coefficient is one of the least understood
properties in network analysis [9]. Another important property we see in real networks is the small-world effect –
all nodes are connected with each other by relatively short paths. To model these two properties Watts and Strogatz
introduced a small-world network model [17]. Classical small-world model rewires edges in a simple circle model to
random positions. In a slightly modified version of the model, the whole process starts from a circle and no edges are
removed but new edges are inserted between randomly chosen vertices [11]. There is an important parameter in this
model p – the probability of rewiring/adding edges.

3.2. Network Generation Approach

To compare different properties of the three different types of networks, two parameters have been chosen to be
fixed. These are the number of edges m and the number of vertices n. For the random graph model, it is very simple
as we use the G(n,m) model and generate the ensemble directly.

In case of a scale-free network, because this is a growing network model, the final number of edges in the network
depends on how many edges are attached in each step S as well as on the total number of vertices n.



4 Akanda Wahid -Ul- Ashraf et al. / Procedia Computer Science 00 (2018) 000–000

The total number of edges in a scale-free network with n nodes and S edges added in each growth step is:

m = n· S −
S · (S + 1)

2
. (1)

For a small-world network, the total number of edges for a network with n vertices and Nei number of neighbourhood
within which the vertices of the lattice will be connected are:

m = n·Nei. (2)

To keep the number of edges to m for the small-world network same as the scale-free network (i.e. same as in Equa-
tion 1) we randomly delete a fixed number of edges x from the small-world network in Equation 2. As a result, the
total number of edges for a small-world network is:

m = n·Nei − x. (3)

If we now solve both Equations 1 and 3 for x:

x = n· (Nei − S ) +
S · (S + 1)

2
(4)

From Equation 4, we can see that number of edges that needs to be deleted does not depend on the number of
vertices when Nei and S are equal as the first part of the equation on the right-hand side becomes 0. This is why in
our comparison, we have considered S and Nei parameters to be equal. When it is 0, S (S +1)

2 might not have an impact
on the type of the model for a large number of vertices as long as S is comparatively small. In our comparisons, we
have considered S up to 16. The value is chosen as power of 2, where the power is from 1 to 4 i.e. S ∈ {2, 4, 8, 16}.

We have generated networks for scale-free and random graphs with n vertices and m edges. The number of edges
is calculated from Equation 1, which is the number of edges we get in scale-free networks for a different number of
vertices n. For small-world networks, first, a lattice with n vertices and Nei number of neighbourhood within which
the vertices of the lattice will be connected is generated. From the generated lattice x edges (Equation 4) are randomly
removed. After that, the edges are rewired with probability p to obtain small-world network.

Following the process described above, we obtained networks of the three discussed models that are comparable
as they have the same number of nodes and edges which, in turn, enables comparative analysis of different networks’
properties including clustering coefficient, different types of centralities and average shortest paths.

4. Design of the Experiment

We have varied a number of parameters to generate different networks within three models. For all three network
types we have n ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,
9000, 10000} vertices. For scale-free networks α ∈ {1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5} and for small-world net-
works p ∈ {0.3, 0.4, 0.5, 0.6, 0.7} are used.

The number of edges for scale-free and small-world networks is calculated using Equations 1 and 3 respectively.
For the random graph, we have used G(n,m) model where the number of edges is directly defined. Note, that number
of edges will be the same for all networks for a given set of S and Nei values. Table 1 shows number of edges which
correspond to each S and Nei parameters for each vertex count defined from set n.
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Table 1: Number of edges for different values of S and Nei

S Nei Number of edges in a network

2 2
197, 397, 597, 797, 997, 1197, 1397, 1597, 1797, 1997, 3997, 5997, 7997, 9997,
11997, 13997, 15997, 17997, 19997

4 4
390, 790, 1190, 1590, 1990, 2390, 2790, 3190, 3590, 3990, 7990, 11990, 15990,
19990, 23990, 27990, 31990, 35990, 39990

8 8
764, 1564, 2364, 3164, 3964, 4764, 5564, 6364, 7164, 7964, 15964, 23964, 31964,
39964, 47964, 55964, 63964, 71964, 79964

16 16
1464, 3064, 4664, 6264, 7864, 9464, 11064, 12664, 14264, 15864, 31864, 47864,
63864, 79864, 95864, 111864, 127864, 143864, 159864

Table 2: Number of simulated networks.

Network Model | n | | α | | p | | S | or | Nei | Sampling
Scale-free 19 19 × 9 = 171 171 × 4 = 684 684 × 30 = 20520
Small-world 19 19 × 5 = 95 95 × 4 = 380 380 × 30 =11400
Random Graph 19 19 19 19 × 30 = 570

Total 1083 32490

In our simulation, we have shown empirically that our method keeps the number of edges and vertices the same for
all types of networks and is consistent with Equations 1 and 3.

For each combination of α and p, both S and Nei are increased as a power of 2. S ,Nei ∈ {2, 4, 8, 16}. The reason
behind keeping S and Nei the same is described in Section 3.2. Each of the networks was generated 30 times, and
the mean for each analysed property was calculated over those 30 samples. Table 2 summarises the total number of
generated networks. Without sampling, we have in total 1,083 different types of networks with different parameters.

5. Results and analysis

In this section, we present results that were obtained using the NetSim framework for five different properties and
three different network models with varying size and density.

5.1. Number of Edges and Vertices
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Fig. 1: Edge and Vertices plot for random graph networks, small-world networks, and scale-free networks; S = 2 Nei = 2.

Figure 1 shows the number of edges in relation to the number of vertices for different networks. Plots for all
networks overlap and form a straight line. This is because in each of the networks we have the same number of
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vertices and edges which shows empirically that our proposed method described in Section 3.2 is viable. In Figure 1
the number of edges in relation to the number of vertices is presented for Nei = 2 and S = 2 and the same trend holds
for all other experimental settings from Table 1.

5.2. Closeness Centrality
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Fig. 2: Closenesss Centrality in relation to edges for random graph, small-world, and scale-free networks with different values of S and Nei.

Figure 2 shows mean closeness centrality in relation to the number of edges. Closeness centrality is expected
to have higher values in social networks due to the small-world effect, which implies that every vertex should be
connected with other vertices via a short path even if the network is large.

As network size is increased closeness centrality decreases for all types of networks. This is because all generated
networks become sparser as they grow in terms of the number of vertices (i.e. moving from left to right of a single
plot). Although we have increased the number of vertices and edges together, the number of edges is not increased
sufficiently with respect to vertices to maintain a dense network. However, increasing the value of S and Nei implies
more edges, thus a denser network. For the value of 16 of both Nei and S , the simulation results in networks with the
biggest number of edges among all generated networks. For Nei = 16 and S = 16 mean closeness centrality is similar
for all generated networks. This implies that as the network density grows, different types of networks might exhibit
similar behaviour in terms of closeness centrality.

When comparing different network types one can see that random graph has the lowest value for mean closeness
centrality. This is something expected as a purely randomly grown network does not have the small-world effect.
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Fig. 3: Betweenness Centrality in relation to edges for random graph, small-world, and scale-free networks with different values of S and Nei.

Scale-free networks with higher values of α seem to have a higher value of mean closeness centrality. This might, in
turn, imply that the ‘rich get richer’ effect has a positive impact on the mean closeness centrality of the entire network.

5.3. Betweeness Centrality

Betweenness centrality is a measure of how much influence a vertex has on the information flow within a network.
We see a linear increase in the mean betweenness centrality values for all the networks with increasing size of the
network (Figure 4). This is due to the fact that as a network becomes bigger in terms of the number of vertices, each
vertex lies between more vertices in general.

One important observation here is that there are two clusters of networks in each of the plots. There is a clear
difference between scale-free networks and small-world/random networks. As we make networks denser by increasing
values for S and Nei, networks in those two clusters remain separate but tend to behave more like each other within
the same cluster. We also see that as the network gets denser, betweenness centrality decreases.

Scale-free networks tend to have lower values of betweenness centrality, and the value decreases with growing
values of α. This can imply that the ”rich get richer” effect is responsible for the decrease in mean betweenness
centrality values. Although for small-world and random networks this centrality measure is far higher than scale-free
networks, randomness tends to play a negative role here. We see that with higher values of p in small-world networks,
they tend to have lower mean betweenness centrality although they lie in the upper cluster.
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5.4. Average Shortest Path

0

2

4

6

0 5000 10000 15000 20000
Number of Edges

Av
g 

G
eo

de
si

c 
Pa

th

networkType
randomGraph

SF (alpha=1.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=2.75)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

(a) S & Nei =2

0

2

4

6

0 10000 20000 30000 40000
Number of Edges

Av
g 

G
eo

de
si

c 
Pa

th

networkType
randomGraph

SF (alpha=1.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=2.75)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

(b) S & Nei =4

0

2

4

6

0 20000 40000 60000 80000
Number of Edges

Av
g 

G
eo

de
si

c 
Pa

th

networkType
randomGraph

SF (alpha=1.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=2.75)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

(c) S & Nei =8

0

2

4

6

0 50000 100000 150000
Number of Edges

Av
g 

G
eo

de
si

c 
Pa

th

networkType
randomGraph

SF (alpha=1.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=2.75)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

(d) S & Nei =16

Fig. 4: Average Shortest Path in relation to edges for random graph, small-world, and scale-free networks with different values of S and Nei.

The average shortest path is calculated as the mean shortest path for all pairs of vertices. In our analysis, the average
of shortest paths between all pairs of vertices are plotted against growing number of edges, see Figure 4.

It is interesting to see that as S and Nei are increased resulting in a denser network, the shortest path is decreased for
all three types of networks with different parameters. This implies that the small-world phenomena are more apparent
in a denser network and this is true for every small-world, random graph, and scale-free network.

Another important observation is, when plotted, every figure shows two clusters with regards to the average shortest
path length. Small-world networks with lower values of p tend to fall in the lower cluster which has shorter average
shortest paths, whereas networks with higher values of p fall in the upper cluster. This is intuitive as having lower
values of p means fewer connections are rewired in our networks from the initial lattice which has less small-world
phenomena. When the value of p is increased, it is closer to a random network, which has lower values of the average
geodesic path. Random network falls into the lower cluster having a very low value of average geodesic path in
comparison to the top cluster. All scale-free networks fall in the cluster with low values of the average geodesic path.

Interestingly size of the network does not seem to influence the value of average geodesic/shortest path of scale-
free networks, and they stay almost constant, whereas, for the cases of small-world and random graph networks as
the number of edges and vertices increase, the average shortest path also increase. In fact, for some of the scale-free
networks, increasing the size of the network tends to result in smaller values of the average geodesic paths. This
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is expected, as new edges tend to be attached to vertices where we already have edges due to the ‘rich get richer’
phenomena. This results in a stable value of average geodesic path with regards to the size of the network.

One important note for all the plots in Figure 4 is that as we go right on the x-axis, we have more edges and vertices
as detailed in Table 1. However, with a higher number of vertices, the network tends to become sparser as we are not
increasing the number of edges at a rate which will keep the density constant. On a single plot, as we move from left
to right, we have sparser and larger networks while in four plots with different parameters of S and Nei, increasing
the number of S and Nei results in denser networks.

5.5. Global Clustering Coefficient

The global clustering coefficient (a.k.a. transitivity) is measured as the ratio of the triangles (for given three vertices
it includes three closed triplets) to the connected triples in networks.
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Fig. 5: Global Clustering Coefficient in relation to edges for random graph, small-world, and scale-free networks with different S and Nei.

We observe larger values for transitivity for small-world networks with lower values of p, which is expected
(Figure 5). The lower the values of p, smaller the number of connections that are rewired, and the network is closer
to the initial lattice which has a higher number of connected triples. Also, scale-free network tends to have lower
values of transitivity and it decreases with increasing α (Figure 5). This is also expected as a scale-free network is
biased towards already existing links, and they are not evenly spread, resulting in a lower number of connected triples.
Another important observation is that transitivity seems to be constant with respect to increasing number of edges and
vertices but not density. With denser networks (increasing S and Nei) transitivity tends to decrease until it reaches
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a stable point. This is more visible with small-world networks that have smaller number of edges rewired. Other
networks seem not to be significantly influenced by the changes in density.

6. Conclusions

Our NetSim software allowed us to conduct a simulation study that resulted in comparative analysis of three
main network models: random, small-world and scale-free. For all generated networks, we analysed closeness and
betweenness centrality as well as average shortest path and global clustering coefficient.

Our experiments allowed to compare selected properties of different network models. The conducted study revealed
some interesting insights into how different network structures influence the properties in question.

Results for clustering coefficient and average shortest path confirmed the analytical results that are known for the
three considered models [9]. Additionally, it is apparent that for scale-free networks the average shortest path does not
depend on network density, whereas for small-world and random networks the average shortest path decreases as the
density increases. The clustering coefficient achieves the biggest value, regardless of the density, for the small-world
network with the smallest probability of rewiring p = 0.3. This confirms the theoretical consideration as this network
in its structure, is closest to regular lattice which has very high clustering.

For closeness centrality, especially for denser networks, there is not much difference in its values across the network
models. For sparse networks, closeness centrality tends to be smaller for small-world and random networks than in the
case of scale-free networks. For scale-free networks, density does not influence closeness centrality, and it becomes
stable whereas for small-world and random networks the closeness centrality is bigger as the network gets denser.
For betweenness centrality, there is a clear difference between scale-free networks and other models. Betweenness for
scale-free networks is consistently smaller than for other models. We attribute that to the ‘rich get richer’ phenomenon
that causes a concentration of edges in hub nodes.

This study offers a generic network simulator and a set of analyses which have revealed some interesting, and
previously unknown characteristics of the networks. Our results indicate that only by looking at a wide spectrum of
generated networks we can identify extraordinary phenomena (e.g. mean betweenness centrality differentiates a scale-
free network from a random graph or small-world network) that can otherwise be overlooked. Such information could
be useful not only to identify the type of real-world networks but also to calculate properties that cannot be derived
analytically.
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[4] Erdős, P., Rényi, A., 1960. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 43.
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