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This paper reviews advanced Neural Network (NN) techniques available to process hyper-

spectral data, with a special emphasis on plant disease detection. Firstly, we provide a

review on NN mechanism, types, models, and classifiers that use different algorithms to

process hyperspectral data. Then we highlight the current state of imaging and non-

imaging hyperspectral data for early disease detection. The hybridization of NN-

hyperspectral approach has emerged as a powerful tool for disease detection and diagno-

sis. Spectral Disease Index (SDI) is the ratio of different spectral bands of pure disease spec-

tra. Subsequently, we introduce NN techniques for rapid development of SDI. We also

highlight current challenges and future trends of hyperspectral data.

� 2018 China Agricultural University. Publishing services by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

2. Mechanism of neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

3. Major types of NNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
3.1. Single-Layer Perceptron (SLP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

3.2. Multi-Layer Perceptron (MLP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

3.3. Radial-Basis Function (RBF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

3.4. Kohonen’s Self-Organising Map (SOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

3.5. Probabilistic Neural Network (PNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

3.6. Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
4. NN models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
4.1. Feed-Forward Neural Network (FFNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

4.2. Back-Propagation Neural Network (BPNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
0 Serdang,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.inpa.2018.05.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.inpa.2018.05.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:siva@upm.edu.my
www.sciencedirect.com
http://www.elsevier.com/locate/inpa


Nomenclature

AIS Airborne Imaging Spectrometer

AISA Airborne Imaging Spectrometer for Applications

AVIRIS Airborne Visible/infrared Imaging Spectrometer

ANN Artificial Neural Network

BP Back-Propagation

BPNN Back-Propagation Neural Network

CLSI Cersopora Leaf Spot- Index

CA Cluster Analysis

CNN Convolutional Neural Network

CP Counter-Propagation

DSWI Disease-Water stress Index

ELISA Enzyme-Linked Immune Sorbent Assay

ELM Extreme Learning Machine

FFNN Feed-Forward Neural Network

GLD Generalized Linear Discriminants

GRNN Generalized Regression Neural Network

GA Genetic Algorithm

HI Healthy- Index

HPLC High Performance Liquid Chromatography

HIS Hyperspectral imaging

HyMap Hyperspectral Mapping Imaging Spectrometer

Lw Laurel wilt

LRDSI Leaf Rust Disease Severity Index

LVQ Learning Vector Quantization

LS-SVM Least Squares Support Vector Machine

LDF Linear Discriminant Function

LDA Linear Discriminant Analysis

LVQ Learning Vector Quantization

MLP Multi-Layer Perceptron

NASA/JPL National Aeronautics and Space Administration

Jet Propulsion Laboratory

NIR Near Infra-Red

NN Neural Network

NDVI Normalized Difference Vegetation Index

NLRHI Normalized Leaf Rust Healthy Index

PLS-DA Partial Least Squares-Discrimination Analysis

PLS Partial Least-Square Regression

PMI Powdery Mildew-Index

PCA Principal Component Analysis

PCS Principal Component Spectra

PCs Principle Components

PNN Probabilistic Neural Network

RBF Radial-Basis Function

RF Random Forest

ROSIS Reflective Optics System Imaging Spectrometer

RT-PCR Real-Time Polymerase Chain Reaction

RT-LAMP Reverse Transcription Loop-Mediated Isother-

mal Amplification

RPA Ribonuclease Protection Assay

SWIR Shortwave Infrared

SLP Single-Layer Perceptron

SPAD Soil and Plant Analysis Development

SOM Self-Organising Map

SDI Spectral Disease Index

SMA Spectral Mixture Analysis

SBRI Sugar Beet Rust-Index

SVM Support Vector Machine

TMV Tobacco Mosaic Virus

TSWV Tomato Spotted Wilt Virus

VIs Vegetation Indices

VNIR Visible/Near-Infrared
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1. Introduction to hit 9.1 billion in 2050. Therefore, agricultural production
Plant disease has become a major threat to global food secu-

rity [1]. Plant diseases contribute 10–16% losses in the global

harvest of crops each year costing an estimated US$220 bil-

lion [2]. According to a report of the Food and Agriculture

Organization (FAO) [3], our world population is anticipated
needs to be increased up to 70% to fulfill the food require-

ments of a steadily growing population. On the other hand,

abundant use of chemicals such as bactericides, fungicides,

and nematicides to control plant diseases has been causing

adverse effects in the agro-ecosystem. Currently, there is a

need for effective early disease detection techniques to
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control plant diseases for food security and sustainability of

agro-ecosystem.

Plant disease affects the quality of fruits, vegetables,

grains, legumes and causes heavy losses in production [4,5].

Lethal plant diseases result in high mortality in plants. For

example, cadang-cadang (dying-dying) disease of coconut

palm (Cocus nucifera L.) causes premature decline and death

of coconut palms. It was reported to have killed over 40 mil-

lion coconut palms in the central Philippines since first being

described in 1914 [6]. Typically, plant disease damages the

photosynthetic apparatus and affects the growth of plant

[7]. Most plant diseases (around 85%) are caused by fungal

or fungal-like organisms. Other serious diseases of plants

are caused by bacteria, viruses, and viroids, and few diseases

are caused by certain nematodes [8].

Pathogenic microorganisms are ubiquitous in nature.

Pathogens characterize the symptoms in the plants and pro-

duce diseases due to the susceptibility of the plant against

adverse impacts of the pathogens. The majority of pathogens

carry out essential activities in nature, obtain nourishment

from the host, and associate with plants via symbiotic or

non-symbiotic relationships. Suspected plants are required

to be identified by their external fruit and foliar symptoms

on fruits and leaves prior to investigation in the laboratory.

In most cases, these visible symptoms typically manifest in

the middle to later stages of the infection [1]. However, mor-

phological identification of diseases is not reliable. An appro-

priate method is needed for detection of the causal agent.

Traditionally, fungi were identified morphologically fol-

lowed by isolating and culturing. While biochemical tests

were employed to detect bacteria, and viruses were identified

based on genetic material, transmission assays and their host

range [4]. Recently, the advancements in the field of biotech-

nology and molecular biology have revolutionized the field of

plant disease detection. Several invasive diagnostic tech-

niques such as Western blotting, Enzyme-Linked Immuno-

Sorbent Assay (ELISA), Reverse Transcription Polymerase

Chain Reaction (RT-PCR) and microarrays have been devel-

oped [4]. A plant disease can be detected with the onset of

the symptoms by these laboratory techniques. These tech-

niques are also referred to as molecular marker or destructive

techniques. They involve destructive leaf sampling followed

by chemical treatment.

Every technique has its own advantages and limitations.

Researchers prefer to adopt invasive techniques because of

their speed and accuracy in disease detection. However, inva-

sive techniques pose inconsistency and insensitivity due to

different reasons, including host-pathogen interaction and

concentration. For example, Coconut cadang-cadang viroid

(CCCVd) is a causal agent of orange spotting disease of oil

palm (Elaeis guineensis Jacq.) which can be detected using

RT-PCR [9,10], Ribonuclease Protection Assay (RPA) [11], and

Reverse Transcription Loop-mediated Isothermal Amplifica-

tion (RT-LAMP) [12]. But, a recent study found that these tech-

niques were neither consistent nor sensitive, and not able to

quantify the viroid concentrations [13]. Similarity, Sakudo

et al. [14] found that invasive techniques (i.e. ELISA, RT-PCR

and Western blotting) were effective for diagnosis of viral

infections, but none of them were ideal in terms of cost-

effectiveness, speed, and accuracy. Recently, Cui et al. [15]
have reviewed advantages and disadvantages of invasive

and non-invasive techniques.

There is a few more techniques which are also frequently

used, i.e. Polymerase Chain Reaction (PCR) and Fluorescence

In-situ Hybridization (FISH). The PCR is easy to operate and

portable, but has been subjected to DNA extraction, and

inhibitors and polymerase activity [16,17]. FISH is a highly

sensitive technique allowing simultaneous visualization,

identification, enumeration, and localization of individual

microbial cells, but auto-fluorescence of microorganism is a

major challenge for this technique [18].

In the last decade, a number of non-invasive techniques

have been developed, which are sensitive, consistent, stan-

dard, high throughput, rapid and cost-effective. Application

of non-invasive techniques has been steadily increasing.

The most popular non-invasive techniques are: fluorescence

spectroscopy, Visible/Near-Infrared (VNIR) spectroscopy, fluo-

rescence imaging, and hyperspectral imaging [19].

Hyperspectral imaging is an important technique in

remote sensing. Hyperspectral sensors capture the data from

the visible through the Near Infra-Red (NIR) range of the elec-

tromagnetic spectrum, and acquire the spectral information

from hundreds of narrow spectral bands [20]. This paper is

intended to review the applications of hyperspectral imaging

for plant disease detection.

The concept of hyperspectral imaging came into existence

in the 1970s as a supporting field spectral measurement for

Landsat-1. In 1983, Airborne Imaging Spectrometer (AIS) was

designed by National Aeronautics and Space Administration

Jet Propulsion Laboratory (NASA/JPL) as an alternative to

satellite. The Airborne Visible/infrared Imaging Spectrometer

(AVIRIS) followed in 1987, which is the most important hyper-

spectral data provider [21]. Currently, development of hyper-

spectral imaging has reached in its blooming stage. The

hyperspectral sensors are not only orbiting around Earth

[22], but also around Mars [23].

Hyperspectral imaging is one of the most efficient and

fast-developing techniques, for extraction of more precise

and detailed information about an object [24]. For example,

hyperspectral sensors as a tool for field spectroscopy have

been applied for applications in geology [25,26] and agricul-

ture [27,28]. Hyperspectral imaging has been used for various

applications such as detection, classification, discrimination,

identification, and characterization [29,30].

These advantages of hyperspectral imaging has made pre-

cision plant protection even more achievable. Several recent

studies [31–36] have attempted to explain the role of hyper-

spectral bands in discriminating between healthy and dis-

eased plants. The literature highlights more thorough and

dynamic interpretation of hyperspectral data that are geared

toward early detection of plant diseases. For example, Mogha-

dam et al. [37] described the importance of full range hyper-

spectral imaging and machine learning techniques in

discriminating between healthy and Tomato Spotted Wilt

Virus (TSWV) infected plants of capsicum. Different Vegeta-

tion Indices (VIs) and data-driven probabilistic topic models

were used to train the classifiers for detection of TSWV.

Ahmadi et al. [38] detected Ganoderma basal stem rot disease

of oil palm in its early stage from spectroscopic and imagery

data using artificial neural network.
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More often than not, spectral signatures of a diseased

plant could not be analyzed correctly using parametric

approaches such as simple or multiple regression and func-

tional statistics. Therefore, non-parametric approaches such

as Principal Component Analysis (PCA), Fuzzy logic, Support

Vector Machine (SVM), Cluster Analysis (CA), Partial Least-

Square (PLS), and Neural Networks (NNs) have been employed

in the area of hyperspectral spectroscopy. For example, Fish-

er’s Linear Discriminant Analysis (LDA) technique is used to

classify imaging and non-imaging hyperspectral data with

two or more classes.

Hyperspectral data are basically multivariate in nature.

PCA is a multivariate statistical method that eliminates

redundancy in univariate analyses. PCA helps to identify pat-

terns of spectral data. Basically, PCA transforms large num-

bers of correlated variables into smaller number of

uncorrelated variables, called Principal Component (PC) [39].

The PCA and PLS were recently used for detection of fungal

diseases (yellow rust and fusarium head blight) of wheat

and barley [32,33]. Whetton et al. [32] conducted PCA on

healthy and yellow rust and fusarium infected cereal crops

at different growth stages and studied their temporal pattern

and serial autocorrelation. The results suggested to use PLS

for each growing stage for accurate prediction. In the second

part of the study, Whetton et al. [33] used PLS regression with

leave-one-out cross-validation for both diseases. Results

showed that the regression model developed for fusarium

head blight and yellow rust in wheat can be applied to predict

these diseases in barley.

Recently, Lu et al. [31] also conducted PCA to evaluate fifty-

seven different VIs and obtained six PCs for detecting multi-

diseased tomato leaves at different stages. The K-nearest

neighbor classifier was used for classifying each PC with

weight coefficients ranking from 1 to 30. Highest classification

accuracy (100%) was achieved for healthy leaves amongst the

tested healthy and diseased leaves of tomato. Using the con-

cept of Fuzzy set theory, Kole et al. [40] proposed digital image

processing operations with K-means for detection of downy

mildew disease in grape leaves. A total of 31 digital images

of diseased and healthy grape plants were processed. An

87% detection accuracy was obtained in this study.

The CA is one of themost widely used techniques. To orga-

nize hyperspectral data, CA allows for grouping of pixels

within similar spectral values and builds the clusters [41].

Krezhova et al. [42] applied CA and student t-test for determi-

nation of statistical significance of difference between means

of reflectance values from control and infected apple trees.

The SVM is a popular machine learning technique, which is

suitable for the analysis of high-dimensional spectral data

[43]. Nagasubramanian et al. [44] used Genetic Algorithm

(GA), an optimizer, with SVM for selection of optimal spectral

bands for early identification of charcoal rot disease in soy-

bean. GA-SVM approach identified charcoal rot disease within

three days after inoculation with 97% classification accuracy.

The machine learning techniques have two major disad-

vantages. First, they are highly dependent on the patterns of

variables, as well as on the features which are going to be

extracted. Second, classifiers are required to be trained many

times before being applied to real world applications [45].
NNs are the most promising tools for hyperspectral data

analysis. The mechanism of NNs is based on the human ner-

vous system. Basically, NNs are very useful for pattern recog-

nition, regardless of any explicit recognition rules [46]. Cui

et al. [15] reported that NNs require less formal statistics

and are able to model complex nonlinear relationships.

There is a growing interest in applying NNs to achieve the

greater goal of precision plant protection using hyperspectral

data. Precision plant protection offers a holistic means of con-

trolling plant diseases based on the concept of spatial-

temporal variability. Previously, NNs have been used for data

mining purposes but its various applications with hyperspec-

tral data have shown promise for early disease detection. It

has unique capabilities such as learning, generalization, and

imagination to facilitate a reliable diagnosis of plant disease.

NNs have a higher degree of diagnosability than other

machine learning techniques.

These days, processing huge data volume of high dimen-

sional hyperspectral imageries is one of the challenging prob-

lems [47]. Data dimensionality reduction is an important and

efficient application for managing hyperspectral data. It has

been reported that high degree of data dimensionality reduc-

tion could be achieved when good classification accuracy is

retained in hyperspectral data [48]. It is well known that

hyperspectral data contain the apparent and inherent spec-

tral information, so its accomplishments and capabilities

must be deliberated using NNs.

NNs endorse the most powerful discriminating capability

for plant diseases because they combine the best trainer sets

for accurate classification. Marini et al. [49] described a partic-

ular type of NN-based pattern recognition technique called

class-modeling. Class-modeling has a good discriminating

capability to enable development of plant disease models.

The most popular class-modeling tools were developed on

the basis of Kohonen artificial neural network [50] and multi-

layer feed-forward network [51].

Al Bashish et al. [52] used an image processing based

framework for detection of five diseases, namely, early

scorch, cottony mold, ashen mold, late scorch, and tiny

whiteness of rice leaves and stems. The K-means was used

for clustering the diseased leaf images. Then clustered

images were passed through an NN classifier. The result

described that NN classifier detected leaf diseases with an

accuracy of 93%. This framework significantly supports accu-

rate and automatic detection of leaf diseases.

Zhu et al. [53] investigated the potential of hyperspectral

imaging as a non-invasive fast detection technique. They

detected Tobacco Mosaic Virus (TMV) disease in a short period

of time using hyperspectral imaging combined with the vari-

able selection method and machine-learning classifiers. The

accuracies were up to 95% for Back Propagation Neural Net-

work (BPNN), Extreme Learning Machine (ELM), and Least

Squares Support Vector Machine (LS-SVM) models, and up to

80% for chemometric models with data fusion. In a similar

study, Zhu et al. [54] tested BPNN along with SVM, ELM, LS-

SVM, Partial Least Squares-Discrimination Analysis (PLS-DA),

LDA, and Random Forest (RF) to process the hyperspectral

images for presymptomatic detection and classification of

TMV in tobacco leaves.



Fig. 1 – The multi-layer NN consisting input layer, hidden

layer, and output layer.
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A new approach called artificial intelligent nose (electronic

nose) is a fast and non-invasive technique for diagnosis of

plant disease [15]. Pattern recognition techniques such as

RF, CA, SVM, linear regression can be applied with electronic

nose for pattern recognition. In spite of an extended range

of NN applications, including data dimensionality reduction

and classification, NNs ensure unadulterated high-quality

spectral information for hyperspectral data analysis.

A ratio of different wavelengths of pure disease spectra

called Spectral Disease Index (SDI) also requires such specific

machine-learning algorithms that could help to simplify and

possibly expedite detection of plant disease. Ashourloo et al.

[55] described that SDIs are very effective for dimensionality

reduction. SDIs increase the rate of disease estimation. How-

ever, a small number of SDIs has so far been developed from

imaging and non-imaging hyperspectral remote sensing data

and not processed using NNs. The general objectives of this

review are:

1. To discuss applicability of NNs to the analysis of hyper-

spectral data for early disease detection

2. To review new SDIs that could be employed in detecting

plant diseases using NN classifiers

2. Mechanism of neural networks

NNs are mathematical models that have been used in data

mining. Fundamentally, NNs are an interconnected network

of nodes, parallel to the vast network of neurons in the

human brain. In an Artificial Neural Network (ANN), each

node assigned to the network represents a neuron. Generally,

neurons receive the signals from other similar neurons via

synapse connection. A neuron typically connects to an indi-

vidual processing element, which is called perceptron. In a

network, the neurons play an important role, they accept

and process the inputs and create the outputs [56,57]. Gener-

ally, the connection between two neurons carries the weights

in which the electrical information is encoded implicitly.

Then electrical information simulates with specific values

stored in those weights that enable the networks to have

capabilities like learning, generalization, imagination and

creating the relationship within the network [58].

The first model of ANN was proposed by McCulloch and

Pitts in 1943 [59]. This model was based on a ‘‘computing ele-

ment” also known as Mc-Culloch-Pitts neuron. Since then,

this model has inspired many researchers to design fast com-

puting models that have the functioning ability like a human

brain; such that they are called ANNs. In the contrary, ANNs

operate in a feed-forward mode from the input layer through

the hidden layers to the output layer [60]. The hidden layer

acts somewhat like a ‘black box’ which can sometimes pose

complexity to the human brain. This drawback in ANNs has

remained an obstacle to their acceptance.

Nevertheless, NNs are a promising tool for feature selec-

tion from spectral data [61]. Almeida [62] defined NNs as arti-

ficial intelligence tools that identify arbitrary non-linear multi

parametric discriminant functions directly from experimen-

tal data. The hyperspectral data are typical example of such
experimental data. A group of neurons or perceptrons is

assembled in an interconnected network that forms an ANN

model. The ANN model represents a non-linear structure

combining input, output and hidden layers as shown in

Fig. 1. Marini et al. [49] described NNs as interconnecting

pathways of neurons organized into a sequence of layers.

In the context of hyperspectral data analysis, a simple NN

model can be obtained by defining the neurons, their connec-

tions, and outputs. For example, in a three-layer NN, the first

layer is an input layer with one node for each spectral band.

The second layer is one or more hidden layer(s), in which

nodes entail reflectance values of each spectral band. The last

layer is an output layer consisting the nodes usually com-

puted by a non-linear combination of the nodes of input

and hidden layers. A three-layer NN model is the most

dynamic and widely used.

3. Major types of NNs

This section provides a brief description of the major types of

NNs which are Single-Layer Perceptron (SLP), Multi-Layer Per-

ceptron (MLP), Radial-Basis Function (RBF) networks, Koho-

nen’s Self-Organising Map (SOM) networks, Probabilistic

Neural Network (PNN), and Convolutional Neural Network

(CNN).

3.1. Single-Layer Perceptron (SLP)

In 1958, Rosenblatt introduced Rosenblatt’s perceptron algo-

rithm and the mechanism of SLP [63]. Later in 1961, Rosen-

blatt derived the perceptron rules which yield the optimal

weight vector to the perceptron instead of the initial weight

values [64]. In the early 1960s, it was also found that SLP

can assign the input vectors to one of two classes [65]. Basi-

cally, the concept of SLP is based on an activation function

that transforms the linear combination into a non-linear

function, which is also called the simple discriminant.

Another extension of this approach is called linear discrimi-

nant in which input variables transform into non-linear func-

tions before forming linear combination. The linear

discriminants give promise that an SLP with adaptive weight

connects the input and the output. Linear Discriminant Func-

tions (LDFs), Linear separability, Generalized Linear Discrimi-

nants (GLD), Fisher’s LDA are few techniques that determine

the weights for SLP [66]. It is possible for the SLP network to

comprise one or more artificial neurons [67] that senses dif-

ferent optimal weight vectors which can be assigned to differ-
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ent neurons. Furthermore, the SLP is the key elementary com-

ponent of the multilayer feed-forward network. It is also

known as the simplest prototype for studying the general

non-linear MLPs [68].

Monteiro et al. [69] implemented SLP and MLP architec-

tures for visual inspection of blood covering surgical fields

using hyperspectral data. These architectures were capable

of learning the combinations of reflectance bands of various

spectral fields. Both the architectures had generated good

visualization, but SLP produced more noise in output. An

SLP architecture can provide a simple and comprehensible

verification for the feasibility of hyperspectral data. This

was a significant application in diagnostic hyperspectral

imaging [70]. Monteiro et al. [69] recommended remote

assessment of crop disease may be possible through this

approach. So far SLP architecture has not been applied any-

where for crop disease detection using hyperspectral data.

3.2. Multi-Layer Perceptron (MLP)

MLP consists more than one hidden layer of perceptron in a

network. A common set of layers in an MLP has input, output,

and hidden layers. In an ANN, the input layer is the first pas-

sive layer acts a conduit for entering the data. The second

layer is a hidden layer. Paola and Schowengerdt [71] empha-

sized the importance of hidden layer in a network to increase

the network’s ability and for modeling the complex problems.

The last layer is the output layer that produces the output sig-

nals at the network. Since the SLP is not of practical utility

these days, the MPL is most suitable for analyzing hyperspec-

tral data specifically in the context of non-destructive disease

detection for high performance classification [72,73]

Moshou et al. [73] used MLP architecture in order to

detect yellow rust in wheat crop. The MLP architecture was

designed for input layer having neurons equal to the number

of processed spectral bands, one hidden layer with different

numbers of neurons varying from 5 to 25, and output layer

consisting of two neurons, each for healthy and diseased

crop. They used a handheld spectrograph (460–900 nm) for

capturing the images in wheat field. In this work, four opti-

mal spectral bands were selected. They tested different

quantities of neurons, then most efficient neurons were

selected for final MLP architecture. The MLP architecture

produced over 98% classification accuracy for the healthy

plants and over 99% classification accuracy for diseased

plants.

Recent researches have demonstrated that the MLP is a

highly applicable network. Most of the MLP networks are

trained with the back-propagation algorithms. Therefore

MLP is a very popular choice among researchers [74]. Back-

propagation algorithms employ a supervised learning para-

digm in MPL, which minimizes errors between the desired

outputs and the calculated outputs driven from the inputs

and network learning [75].

3.3. Radial-Basis Function (RBF)

RBF networks were first proposed by Moody and Darken [76].

In a three-layer network, an RBF network combines a layer of

inputting neurons, a hidden layer of RBF neurons and a layer
of outputting neurons [77]. Alexandridis et al. [78] described

the importance of hidden layer in the RBF networks. They

showed that hidden layer linearly connects to the output

node and calculates the input variables passed via input layer

to the hidden layer. A process of non-linear transformation is

also carried out at the hidden layer resulting in a map

between the neurons of input and hidden layers. Chen et al.

[79] also described that in order to establish the nonlinear

relationships in the input data, the hidden layer of the RBF

network plays an important role in data modeling. Yang

et al. [80] focused on its various advantages such as paramet-

ric modeling, nonlinear interpolation, function approxima-

tion, and classification of the sensory data (vis-à-vis the

hyperspectral remote sensing data).

In a recent study, Abdulridha et al. [72] used RBF, MLP and

stepwise discriminant analysis for detecting Laurel wilt (Lw)

disease of avocado at early and late stage of infection. They

found that VNIR range (400–950 nm) was sufficient to show

spectral differences between Lw, healthy trees, and trees that

have other stresses such as Phytophthora root rot and

salinity-damage. They collected reflectance using handheld

spectroradiometer and averaged total number of spectral

bands in two bandwidths i.e. 10 nm and 40 nm. Subsequently,

the narrower bandwidth (10 nm) did not produce better

results than wider bandwidth (40 nm). Almost parallel classi-

fication results were obtained at both the bandwidths. An

MLP model registered the best classification accuracy (over

98%) than stepwise discriminant analysis and RBF models at

early and late stages. They further mentioned that developing

classification model like RBF is useful for disease detection at

both the early and the late stage but results in lower detection

accuracy.

3.4. Kohonen’s Self-Organising Map (SOM)

SOM [81] is known as an unsupervised learning network.

Fundamentally, SOM follows the architecture of a two-layer

feed-forward network. These two layers are input layer and

Kohonen layer. In SOM network, neurons are arranged in

the grid form, either in hexagonal or rectangular array. Input

layer is connected to the Kohonen layer where Kohonen

map is formed. Technically, a map is created at the input

space. Kohonen map is a discrete representation used for

visualizing high-dimensional data at the low-dimensional

view. This network uses a neighborhood function that pre-

serves the topological properties of the map and detects reg-

ularities of input [82].

Lawrence et al. [83] used aerial and handheld hyperspec-

tral sensors for studying infestation of Reniform nematode

(Rotylenchulus reniformis) in cotton using supervised NN-SOM

architecture. Different hyperspectral signatures were devel-

oped on the basis of nematode colonization and level of infec-

tion in cotton plants. The NN-SOM architecture predicted

infection in a range between 83 and 97%. According to Lawr-

ence et al. [83] evaluation of larger amounts of hyperspectral

data needs an advance NN model (like NN-SOM) with

expanded capacity for data processing in computer. In a sim-

ilar study, Lawrence et al. [84] demonstrated spatial distribu-

tion of the nematode infestation and established different

zones for nematicides applications.
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3.5. Probabilistic Neural Network (PNN)

Specht [85] introduced the PNN based on the statistical

approach called Bayesian classifiers. Specht [86] showed that

Bayesian classifier could improve the predictability by taking

relative likelihood and priori information into consideration.

PNN is a feed-forward network comprising input, hidden

and output layers. The hidden layer is also known as pattern

layer. In particular, pattern layer consists of Bayesian classi-

fier. The PNN is functioned upon utilizing a non-parametric

estimator for obtaining multivariate probability and estimat-

ing density. At present, PNN remains the most appropriate

neural architecture for solving classification problems.

Fordetection of rice leaves infected byAphelenchoides besseyi

Christie (at rice booting stage) and by rice leaf roller (at the rice

tillering stage), Li et al. [87] applied PNN architecture over visi-

ble (490–670 nm) and Shortwave Infrared (SWIR) (1520–1750

nm) spectral bands. PCA was used to transform visible and

SWIR bands into principal component spectrum. PNN pre-

dicted both disease and pest infection with an accuracy of

95.65%. The PCA and PNN together have been proved to be a

reliable predictor of disease and pest infection in rice leaves.
3.6. Convolutional Neural Network (CNN)

In the recent years, deep learning in NNs has been getting

much prominences. Unsupervised classification is the most

active research area in hyperspectral data analysis. CNN is a

leading unsupervised deep learning architecture that learns

‘filters performing convolutions’ in the image domain [88]. A

measure difference between CNN and conventional NNs is

that CNN is inspired from retinal fields in the vision system.

In a simple word, CNN is an integration of biological vision

and neural system. Lowe et al. [88] described CNN is a com-

plex architecture which takes considerably more time to train

the neurons. Nonetheless, it has remarkable classification

accuracy, and rate of object recognition is very high.

Mohanty et al. [89] deployed an automated image recogni-

tion system in which widespread smartphone penetration,

HD cameras, and high performance processors were used

for plant disease detection. This model based on an auto-

mated image recognition system and CNN achieved an over-

all accuracy of 99.35% on a held-out test data. This

classification accuracy demonstrates the technical feasibility

of CNN approach. They used the CNN to detect 26 diseases

over 14 crop species. A total of 54,306 colour images was

tested. Sladojevic et al. [90] also developed a plant disease

recognition model based on leaf image classification using

CNN. They downloaded a large set of online available images

of 13 crop diseases, including powdery mildew, rust (apple),

leaf spot (pear), and wilt, mites, downey mildew (grapevine).

This model achieved an overall detection accuracy of 96.3%.

In particular, CNN has proven to be a powerful tool for

recognition and classification of hyperspectral images, as well

as extracting their nonlinear, discriminant, and invariant fea-

tures [91–93]. In a recent study, Langford et al. [94] imple-

mented the CNN to develop an arctic vegetation map using

multi-sensor data fusion approach integrating hyperspectral,

multispectral, radar, and terrain datasets. They found that
hyperspectral datasets provide highest data content to the

CNN model. Spectral signatures developed from hyperspec-

tral data played a very significant role to the predictability of

vegetation. From the perspective of multi-sensor data fusion,

we believe that such vegetation maps will facilitate remote

detection of plant diseases that spread over large areas.

Generally, more than one NNs were used for classification

of hyperspectral dataset in studying prediction accuracy.

More than 90% classification accuracy was achieved in all

the NNs, as shown in Table1. However, Monteiro et al. [69]

encountered a nontrivial problem in selecting the optimal

spectral bands, which can be resolved using a non-linear

solution technique.

In NNs, major problems are observed due to its structure

itself where decision regions pose complexity in making deci-

sion. Single layer networks are half plan, bound by hyper-

plane, two-layer networks are either open or closed regions,

and multi-layer networks are arbitrary depending on the

number of nodes [95]. Stefanowski [95] described MLPs

separate the classes via hyperplans while RBFs separate

classes via hyperspheres. Additionally, MLPs use distributed

learning while RBFs use localized learning. There are also

many differences in terms locality, separation surface,

approximation capability, and interpretability within the

different types of NNs.

4. NN models

Different types of NNs are implemented on the basis of speci-

fic neural architectures and learning algorithms which in

combination are called NN models. The most important NN

models are discussed in this following section.

4.1. Feed-Forward Neural Network (FFNN)

Several studies [96–98] have attempted to explain FFNN as a

transformation network that transforms input layers to out-

put layers in the forward direction. FFNN is most useful when

an end user is interested in input and output layers and not in

the hidden layers. Therefore, FFNNs have been increasingly

used in non-parametric data analysis. FFNN is an alternative

to classic pattern classification and clustering techniques.

Hawkins and Bodén [97] explored the relationship between

input and hidden layers in a standard FFNN. They highlighted

that one set of connections could be fully connected from the

input layer to the hidden layer. The network consisted of

three layers and two mapping functions for hidden and out-

put nodes. Such dynamics of the FFNN was described in fol-

lowing formula:

f xð Þ ¼ rðWF � xþ bÞ
where: WF is the weight matrix, b is the set of biases, r is a

non-linear activation function that uses logistic function for

hidden nodes and softmax function for output nodes.

The FFNN algorithm is one of the important standard

methods for chemical characterization of sediments using

hyperspectral data. Udelhoven and Schütt [99] tested chemi-

cal properties including inorganic carbon, iron, sulfur,

aluminium, silica, calcium, potassium and magnesium. The

214 samples of spectral observation were collected from



Table 1 – List of major contributions according to different types of NNs for plant disease detection.

Authors and year Types of NNs Species Disease/pest Disease recognition (Detection
accuracy %)

Types of decision regions

Monteiro et al. [69]
Towards applying hyperspectral
imagery as an intraoperative vi-
sual aid tool (2004)

SLP, MLP – Recommended for remote
assessment of plant disease

– Half plan bounded by
hyperplane

Moshou et al. [73]
Automatic detection of ‘‘yellow
rust” in wheat using reflectance
measurements and neural net-
works (2004)

MLP, SOM Wheat
(Triticum sp.)

Yellow rust 99% Arbitrary
(Complexity limited by no. of
nodes)

Abdulridha et al. [72]
Detection and differentiation
between Laurel wilt disease,
phytophthora disease, and
salinity damage using a hyper-
spectral sensing technique
(2016)

RBF, MLP Avocado
(Persea americana)

Laurel wilt (Lw) disease 98% Arbitrary

Lawrence et al. [83]
Remote sensing and precision
nematicide applications for
Rotylenchulus reniformis manage-
ment in cotton (2004)

NN-SOM Cotton (Gossypium sp.) Reniform nematode 97% Arbitrary

Liu et al. [87]
Hyperspectral identification of
rice diseases and pests based on
principal component analysis
and probabilistic neural network
(2009)

PNN Rice
(Oryza sativa L.)

Aphelenchoides besseyi, Rice
leaf roller

95% Arbitrary

Mohanty et al. [89]
Using deep learning for image-
based plant disease detection
(2016)

CNN – 26 crop diseases 99.3% Arbitrary

Sladojevic et al. [90]
Deep neural networks based
recognition of plant diseases by
leaf image classification (2016)

CNN – 13 crop diseases 96.3% Arbitrary
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Fig. 2 – A GRNN that process the time series data for disease

diagnosis.
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various drilling locations from all over the central part of the

Iberian Peninsula. They estimated chemical properties using

spectral data and trained them simultaneously in an FFNN

model. Bishop [100] described a variety of different training

algorithms for FFNN such as gradient descent methods, con-

jugate gradient methods, and Levenberg-Marquardt algo-

rithm. Currently, the ELM learning algorithm has been

proposed to train single hidden-layer forward network

[101,102], and this concept has been extended to

multihidden-layer networks [103] and kernel learning [104].

4.2. Back-Propagation Neural Network (BPNN)

BPNN is an important and widely used ANN model. Its appli-

cation is very prospective for a variety of purposes for nonlin-

ear data analysis. Paul and Munkvold [105] highlighted

relevance of BPNN with FFNN. In FFNN, information is fed

through the input layer to the output layer (forward) via the

hidden layer, thus the network is called FFNN. In the BPNN,

further processing is directed at the output layer. A

network-estimated output is generated and compared with

the actual output. The errors are calculated as a difference

between the actual output and the estimated output. Then,

estimated errors are propagated from the output layer to

the input layer, thus the term back-propagation.

Zhang et al. [106] showed how BPNN is used to generate

derivatives of performance (i.e. per f) with respect to the

weight and bias variables associated with the neurons. Each

variable is adjusted according to gradient descent with a

momentum. Hence BPNN algorithm is expressed as:

dX ¼ mc� dXprevþ lr� ð1�mcÞ � dperf=dX

where: dX is derivatives of per f,mc is the value of momentum,

dXprev is the previous change to the weight or bias, and lr is

the learning parameters.

BPNN can be more robust and operational using the

Bayesian decision theory which has become more popular

over the past decade. Sajda [107] reported that the Bayesian

decision theory may also be applicable to other NN models.

It helps to design an intelligent system, which explicitly

represents uncertainty in the data and decision making

process.

4.3. Generalized regression Neural Network (GRNN)

GRNN is a very important network having an immense pre-

diction capability. It is an adequate model for time series

hyperspectral data analysis. GRNN can also be a robust

model for real-time disease prediction by adding weather

and vegetation variables with hyperspectral data (Fig. 2).

Chtioui et al. [108] predicted leaf wetness based on weather

parameters such as temperature, relative humidity, wind

speed, solar radiation, and precipitation in order to forecast

the crop disease. GRNN performed statistically better than

multiple linear regression. GRNN out-performed the multi-

ple linear regression in prediction accuracy. However, a sub-

stantial computational time is required for training the

datasets. GRNN is called the realistic NN model. Chtioui

et al. [108] used following algorithm to express GRNN:
Eðy=xÞ ¼ ŷðxÞ ¼
Rþ1
�1 yfðx; yÞdyR1
�1 fðx; yÞdy

where: E (y/x) is the conditional mean of y given x, (y xÞ, or
regression of y on x. f x; yð Þ is the joint probability density

function of a vector random input variable x (independent

feature), and a scalar random output variable y (dependent

feature). The probability density is estimated from the traning

set using the Parzen’s nonparametric estimator [109]:

f x; yð Þ ¼ 1

n 2pð Þpþ1
2 r1r2: : :rpry

Xn

i¼1

e�d x;xið Þe�d y;yið Þ

where: d x; xið Þ ¼ Pp
j¼1½ðxj � xiÞ=ðrjÞ�2 and d y;yi

� �¼ ½ðy�yiÞ=ðrjÞ�2;
n is the number of traning patterns, p is the number of inde-

pendent features.

5. The NN classifiers

Classifiers are basically classification learning systems. NN

classifiers are non-parametric classifiers that classify non-

parametric data. In particular, the classifiers make few pre-

sumptions for classification without any prior knowledge of

the pattern of the data. It shows up in many different ways,

some examples include Back-propagation (BP) classifier,

Counter-propagation (CP) classifier and Multilayer perceptron

(MLP) classifier. Wu et al. [110] reported that NN classifiers are

the best classifiers among all approaches having the fastest

speed and best accuracy for classification work.

Currently, BP classifiers are the more prevalent classifica-

tion paradigm. BP classifiers yield better outcomes in terms

of classification accuracy, simplicity, and robustness. BP clas-

sifiers can be used as an alternative approach to the large

database with several advantages in speed, sensitivity and

automation [111]. Liu and Zhou [112] have done a significant

study on rice brown spot using artificial means. They showed

that BP classifiers classified the healthy and diseased leaves of

rice resulting to its ability to identify rice brown spots.

CP classifiers usually extract statistical properties from the

input data. Therefore, on the basis of statistical properties,
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samples of network training become easier and perform fas-

ter. CP is a supervised learning algorithm, which is closely

related to the nearest-neighbor classifier [113].

Mostly, in order to establish non-linear relationship, multi-

layer FFNN such as the MLP classifiers have been used. How-

ever, the success of any non-linear relationship is not only

subject to NN classifier, but also depends on the quality of

the input data [114]. Lorente et al. [115] described the impor-

tance of MLP classifiers. MLP classifiers have been shown to

be relevant to a wide range of non-linear classifiers such as

regression trees or fuzzy classifiers. Many approaches, how-

ever, have addressed the importance of MLP classifiers by

comparison with other classifiers. Liu and Wu [116] reported

that its superior performance compared to regression tree is

based on four factors: accuracy, model complexity, interpola-

tion ability and error distribution.

6. Early disease detection

Early detection of crop disease using non-destructive meth-

ods can minimize direct human intervention in plant protec-

tion. Several NN methods have been used for early disease

detection. Learning capabilities of NNs are very helpful in

detecting and diagnosing plant diseases. An effective disease

diagnosis requires an accurate NN model, which is usually

coupled with a learning function that adjusts all the weights

and biases to the assigned layers. Rapid and accurate diagno-

sis of plant disease at an early stage is essential for effective

disease control. In recent years, it has become possible to

detect and diagnose plant disease at an early stage by

employing hyperspectral data and NN models together. How-

ever, visual scouting is still an initial way of early inspection

of disease symptoms.

Hyperspectral sensors are promising tools for non-

destructive disease detection and diagnosis. In order to attain

reliable early detection and diagnosis of plant diseases, new

approaches (i.e. imaging and non-imaging spectroscopy)

must be introduced and incorporated into laboratory scale

to compliment molecular, serological and microbiological

techniques such as ELISA and RT-PCR. These techniques have

been facing challenges in resource consumption in terms of

time, cost and skilled labor. On the other hand, a highly con-

trolled and contamination-free environment has to be main-

tained in a laboratory. Nonetheless, a wide gap remains

between destructive and non-destructive diagnosis. Recent

literature therefore suggests the application of NNs [117] with

hyperspectral data [37] as a measure to cover this gap. In

particular, NN-hyperspectral approach will improve the clas-

sification results in non-destructive diagnosing of plant

diseases.

The various microbial pathogens cause a wide range of

diseases in the plants such as mottle, mosaic, ringspot, and

systemic necrosis caused by viruses [118]; leaf spot, blight,

rot, wilt, steaming, cankers, galls, overgrowths, specks, and

scabs caused by bacteria [119] and anthracnose, rust, root

rot and damping off mostly caused by fungi [120]. Neverthe-

less, Some diseases often do not manifest symptoms but

remain asymptomatic, for example: orange spotting disease

in oil palm caused by viroids [10].
Hyperspectral sensors measure reflectances from infected

plants. Then reflectance data are used to design an NN model

to produce a decision support system. Hyperspectral and NN-

based models act significantly on early disease detection. The

basic principle of this approach is modeling of crop reflec-

tance data which are measured through hyperspectral imag-

ing and/or non-imaging techniques. Then optimal

wavelength features (i.e. spectral bands) are extracted and

processed using the multivariate or NN techniques. VIs are

developed from these spectral bands, which are very helpful

for characterizing crop status. In the meantime, though, the

NN can use either spectral bands or VIs for data modeling.

6.1. Early detection using non-imaging field spectroscopy

Hyperspectral data typically consist of a large number (>100)

of narrow and contiguous spectral bands. Pre-processing of

these spectral bands is required for spectral data analysis

and modelling. Thenkabail et al. [121] have mentioned the

benefits of using a generous data processing approach such

as ANN to select the best spectral bands. NN algorithms have

been successfully implemented in identifying outliers and

spectral features. Additionally, NN is also a data dimensional-

ity reduction method. Using the NN technique, hyperspectral

data can be processed much faster than other techniques.

The NNs transform hyperspectral data into a very reasonable

data form [122]. Hyperspectral data offer high diagnostic

capability for early disease detection. The spectral bands with

high absorption are more sensitive to several leaf pigments

including chlorophyll a, chlorophyll b, violaxanthin, b-

carotene, neoxanthin, and carotenoids. Pathogenesis in

plants directly affects biochemical concentrations.

Traditionally, a wet chemistry method involves leaf extrac-

tion with organic solvents to estimate chlorophyll content

using High Performance Liquid Chromatography (HPLC).

These days, chlorophyll estimation is carried out non-

destructively using the non-imaging spectroradiometer and

portable Soil and Plant Analysis Development (SPAD) meter.

Non-destructive techniques measure chlorophyll content in

real time and render worthwhile savings in cost, labor and

time. However, further efforts are required to estimate other

plant pigments using a non-imaging spectroradiometer.

During pathogenesis, pathogen-specific toxins or enzymes

induce plant tissues and influence the optical properties of

plants. Changes in reflectance pattern due to plant-pathogen

interaction can be altered by impairments in the leaf structure

and chemical composition [123]. Hyperspectral data can be

evaluated with a trained and representative NN [124]. VIs

can also be classified using NN classifiers. Wu et al. [125]

detected Botrytis cinerea on eggplant leaves using NN-

hyperspectral approach. They applied NN classifiers and PCA

to hyperspectral signatures and accurately identified small

symptoms of gray mold on eggplants. In another study, le

Maire et al. [126] studied VIs derived from red-edge using NNs.

Recent researches have demonstrated great value of using

VNIR spectroscopy for early disease detection in a wide range

of applications. Pydipati et al. [127] found that a multilayer

BPNN has the highest correction and discriminating capabili-

ties of reflectance wavelength between 460 nm and 1130 nm,
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at 10 nm increments. Similarly, Miller et al. [128] used multi-

layer BPNN with a pattern recognition algorithm to classify

surface blemishes of various apple varieties.

Hyperspectral non-imaging data are most interesting and

challenging. Real-time spectral measurement using field

spectroradiometer produces large amount of spectral data

which require spectral pre-processing. In spectral pre-

processing, many spectral bands are reduced, therefore selec-

tion of optimal wavebands is very important [129]. It is noted

that spectral processing with NN algorithm has increased the

accessibility of non-imaging data in disease detection. For

selection of optimal spectral bands, Kohonen’s SOM model

can be applied, that will be a better option to random selec-

tion of wavebands. Application of BPNN [127,128] for differen-

tiating between healthy and diseased plant spectra has

become one of the most efficient and fast-developing net-

works in precision plant protection. We recommend other

types of NNs (such as FFNN, GRNN) for spectral segregation,

so that would simplify the disease detection process.

6.2. Early detection using imaging spectroscopy

Several studies on hyperspectral image processing have been

conducted in recent years since remote sensing imageries

became easier to archive. Highly flexible NN techniques have

been developed to investigate spectral characteristics of crop.

Nevertheless, the use of innovative hyperspectral imaging

systems for early disease detection and disease severity

assessment are still at the research stage [130,131].

To our knowledge, purely non-parametric NN classifiers

have not so far been evaluated for early disease detection

using hyperspectral imageries. Space-born imaging hyper-

spectral spectroradiometers such as Airborne Imaging Spec-

trometer for Applications (AISA) Eagle system, AVIRIS,

Hyperion, the Reflective Optics System Imaging Spectrometer

(ROSIS) and Hyperspectral Mapping Imaging Spectrometer

(HyMap) have been deployed to detect disease without NN

applications.

NNs are suitable for classification of hyperspectral ima-

geries. NNs generate classifier using training inputs that are
Table 2 – Use of hyperspectral sensor in detecting and diagnosi

Sensor Crop Disease

ASD field spectroradiometer
(350–2500 nm)

Rice Fungal infe
Rice Rice brown
Eggplant Gray mould

GER-2600
(400–2500 nm)

Tomato Late blight

ImSpector V10E
(400–1000 nm)

Wheat Yellow rus
Oil seed Fungal infe

AISA Citrus Citrus gree
Oil Palm Ganoderm

Hyperspectral imaging (HIS) Sugar beet Leaf spot, P
Hyperion Sugar beet Orange rus
Hyperspectral image scanner Wheat Fusarium h
Portable hyperspectral imaging system Citrus Citrus cank

Maize Fungal infe
Hyper spectrometer
(350–1050 nm)

Wheat Powdery m
employed for classification purposes. The NNs are basically

used to extract image features as their training inputs. NN

classifiers enhance the accuracy of classification and reduce

the overall effects of noise from the images.

NNs offer a dynamic range of algorithms for hyperspectral

image analysis. Mostly, a two-dimensional algorithm is used

for detecting diseases from hyperspectral image features.

The basic algorithms are for data reduction, feature extrac-

tion, segmentation, object recognition and image optimiza-

tion. The advanced algorithms are for abstraction at pixel,

feature, structure, object-set levels and scene characteriza-

tion [98,132,133].

NNs overcome the limitations of hyperspectral data anal-

ysis significantly. Hyperspectral images contain high-

dimensional information in multidimensional data cubes.

CNN is a new concept for hyperspectral data analysis, which

has proven to be very effective for classification of high-

dimensional hyperspectral images [91,92]. CNN is composed

by a set of blocks that can be applied both across space and

across time [92]. Paoletti et al. [92] developed a new deep 3-

D CNN architecture for spatial-spectral classification of

hyperspectral images. For better classification results, a joint

consideration of spectral information together with spatial

information is required in this architecture.

Mutanga and Skidmore [134] integrated spectral features

over the full spectral range (400–2500 nm) of HyMap data with

NNs. It is worth mentioning that AVIRIS hyperspectral images

are useful in characterizing and estimating various fungal

and bacterial diseases [135,136]. Thus, NNs are highly recom-

mended for AVIRIS data analysis especially for vegetation dis-

ease. Table 2 summarizes some important studies on early

disease detection using hyperspectral data.

7. An overview of two studies on rice (Oryza
sativa L.) disease detection using NN-
hyperspectral approach

For crop disease detection, the spectral data acquired from a

non-imaging spectroradiometer have been analyzed using

PCA for a long time. Almost all the NNs have been evaluated
ng crop disease at an early stage.

Reference

ctions Liu et al. [137]
spot Liu et al. [138]

Wu et al. [125]
Wang et al. [139]

t Moshou et al. [73]
ctions Baranowski et al. [140]
ning Lee and Ehsani [141]
a basal stem rot Shafri and Hamdan [142]
owdery mildew and leaf rust Mahlein et al. [143]
t Apan et al. [144]
ead blight Bauriegel and Herppich [145]
er Qin et al. [146]
ctions Del Fiore et al. [147]
ildew Shen et al. [148]
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using Principal Component Spectra (PCS). PCS are achieved

after reducing and/or compacting the spectral dimension of

data into small and finite components called Principle Com-

ponents (PCs) having equal dimensions. In this overview,

two case studies are thoroughly reviewed in the context of

non-destructive bacterial and fungal disease detection in rice

(Oryza sativa L.) using a full range spectroradiometer. These

case studies deliberately and iteratively applied PCS onto

the NN framework.

7.1. RBF network with PCA

The first study on brown spot disease of rice [138] examined

the capability of RBF network and PCA for determining the

disease severity. The disease severity of brown spot was

determined in terms of percentage of the infected surface

area. Three methods, namely, spectral transformation, PCA,

and RBF network were employed to gain a preliminary under-

standing of the severity of brown spot disease. The spectrora-

diometer was deployed over healthy and diseased rice leaves

separated from the rice plant in order to obtain leaf spectra.

These spectra of rice leaves were transformed through three

different preprocessing techniques – spectral resampling at

an interval of 10 nm, first-order derivatives, and second-

order derivatives.

Liu et al. [138] further processed the transformed spectra

to attain PCS using PCA. Then, preprocessed spectra and

PCS were trained as the input vectors in an RBF network.

The efficient extrapolation capability of RBF has been mostly

deployed for classifying the datawith high operation rate. The

most surprising aspect of this study was first-order derivative

spectra yielded the best prediction result using RBF network.

Additionally, good prediction was recorded by resampling the

spectra. They concluded that PCA-RBF network was an accu-

rate predictor and superior model for estimating disease

severity of rice brown spot.

7.2. Learning Vector Quantization (LVQ) NN with PCA

In the second study, glume blight disease of rice panicles was

detected using PCA and LVQ NN classifiers by Liu et al.[137].

PCA is a powerful statistical tool used to analyze the spectra

of glume blight disease infected panicles while the LVQ NN

classifier classified these spectra into four infection levels:

healthy, light, moderate and serious infection levels. The

spectral processing methods – raw, inverse logarithmic, first

and second derivative were chosen to process the original

spectra to obtain in-depth band information. Then, PCs were

derived from the different spectral data set of different spec-

tral processing methods.

In LVQ network, finding a relationship among the PCs of

different spectral processing methods was the main object

of the learning process. For assigning the nodes in the layers,

those PCs that responded to about 95% proportion of variance

at each spectral data set were selected to determine the num-

ber of nodes in the input layer. While the nodes for output

layer assigned from the classified infection levels. Kappa coef-

ficient was used to evaluate of classification accuracy in this

study.
Liu et al. [137] investigated the changes in the spectral

behavior of spectrum, specifically in the visible and NIR

regions. These spectral changes occurred due to fungal infec-

tion in the panicles of rice. A common observation within the

spectrum was the visible region received a higher reflectance

and NIR received a lower reflection in diseased panicle as

compared to healthy panicle. In SWIR region, healthy rice

panicles observed a dramatic lower reflectance than the mod-

erately and seriously infected panicles. Liu et al. [137] cau-

tioned that the spectral behavior of rice under fungal

infection could be different at different atmospheric and

edaphic field conditions.

8. Challenges of NN

The main challenge of ANN in hyperspectral data processing

is the training of large quantity of spectral inputs and defining

their targets. This is made even more challenging with appli-

cation of NN classifiers for classification of VIs and SDIs. Over

all, the Hughes phenomenon or ‘‘the curse of dimensionality”

is the most complex problem for hyperspectral data which

deals with diversity and distortions in spectral bands. The

Hughes phenomenon may affect the NN modeling. Generally,

it happens where the ratio of number of training pixels or the

number of spectral bands are above the minimum value to

achieve statistical fit [149]. In particular, one of most challeng-

ing aspect is the use of NN classifiers for analyzing the spec-

tral mixtures. Spectral Mixture Analysis (SMA) is good linear

model, non-linear NNs are required for training a large data-

set of plant disease spectra. In addition, ANN is often

regarded as a black box since it does not contain priori infor-

mation, which itself is complex.

Generally, NN classifiers classify different plant diseases

on the basis of combination of optimal parameters such as

texture, colour, and shape in a normal camera image [74].

The optimal parameters could be trained easily as the normal

images are linearly separable. On the other hand, the hyper-

spectral image is different from a normal camera image.

Hyperspectral data cannot be trained linearly as long as it

contains more than hundred contiguous spectral bands. The

MLP architectures typically deal with such non-linear fea-

tures. In addition, adjacent spectral bands in different spec-

tral regions (such as, visible, NIR, SWIR) are highly

redundant in extracting information for an ANN. The spectral

bands are found to be highly interconnected to each other.

9. SDI

The most of common VIs have been computed from red and

NIR wavelengths. Normalized Difference Vegetation Index

(NDVI) [150] is one of the most popular and widely used VIs

for monitoring crop health. Balasundram et al. [151] used

NDVI for preliminary screening of red tip disease in pineapple

(Ananas comosus). They demonstrated and inferred NDVI as a

reliable disease predictor for predicting disease severity. Nev-

ertheless, NDVI has not been shown to be suitable for identi-

fying the causal agent of crop disease. Peñuelas et al. [152]

found that NDVI does not follow specific wavebands that rep-

resent physiological changes caused by pathogens. Therefore,
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disease sensitive spectral features must be extracted to

develop an SDI. Generally, SDI is a ratio of the different dis-

ease sensitive spectral bands which are extracted on the basis

of spectral responses from diseased vegetation.

Early detection of disease based on hyperspectral remote

sensing is more precise and significant. Therefore, new SDIs

are being developed based on general interest for detecting

disease in an early stage using hyperspectral data. Different

SDI values represent specificity, sensitivity and severity of

the vegetation at different stages of infection. SDIs have been

used to provide a unique, scientific and detailed understand-

ing of pathogenesis. In contrast to common VIs, SDIs have the

potential to discriminate and differentiate one plant disease

from another. However, each disease may affect the leaf

reflectance spectrum in a specific way [153].

It is important to develop disease-specific indices based on

the progression of disease symptoms. Ashourloo et al. [154]

have developed two SDIs on the basis of disease progression

for detection of wheat leaf rust using hyperspectral data.

Rumpf [155] showed via comparative studies that SDIs are

superior to common VIs for early disease detection. SDIs

developed from imaging spectroradiometer can be correlated

to SDIs developed from non-imaging field spectroradiome-

ters. The generalization ability of the developed SDIs could

be improved by correlation and cross-validation. Generally,

non-imaging field spectroradiometers calculate SDIs within

a very short period. Whereas imaging spectroradiometers

can take comparatively longer time in selecting sensitive

end members (pixels) from hyperspectral imageries. Hyper-

spectral data can detect diseases at various scales, ranging

from an individual plant to fields. Table 3 summarizes differ-

ent SDIs applied for early disease detection using hyperspec-

tral data.

10. Future trends: deep learning of
hyperspectral data

Deep learning is an advance technique for big data analysis. A

deep learning model contains many layers (typically deeper

than three layer model). Neurons of its each layer intensely
Table 3 – Well-established SDIs for early disease detection usin

Device SDI

Hyperion Disease-Water stress Index 1(DSWI-1)
DSWI-2
DSWI-3
DSWI-4
DSWI-5

ASD field spec
Spectroradiometer

Healthy- Index (HI)

Cersopora Leaf Spot- Index (CLSI)

Sugar Beet Rust-Index (SBRI)

Powdery Mildew –Index (PMI)

ASD field spec
Spectroradiometer

Leaf Rust Disease Severity Index 1 (LRDSI

Leaf Rust Disease Severity Index 2 (LRDSI

ASD field spec
Spectroradiometer

Normalized Leaf Rust Healthy Index (NLR
are connected with features of the data, thereby more com-

plex information can be obtained. Deep learning models learn

features of input data through a hierarchically organized net-

work of neurons [88]. Recent literature [90,156,157] is available

on evaluation of deep learning models with digital photogra-

phy, image analysis and hyperspectral imaging for plant dis-

ease detection.

It is believed that deep learning is a future of hyperspectral

remote sensing. CNN is a most popular deep model that

works on an image domain. CNN can utilize for hyperspectral

image in order to detect and classify plant disease at an early

onset. Currently, multimedia [156] and computer vision and

natural language processing [20] are most promising areas

of deep learning application [90].

Cloud computing architecture that have been identified in

the recent literature [158,159], were reviewed, along with

future scope for NN-hyperspectral approach. Haut et al.

[158] explored for the first time the possibility of using a dis-

tributed framework for clustering of huge volume of hyper-

spectral images based on cloud computing architecture.

Quirita et al. [159] proposed an architecture, called InterCloud

Data Mining Architecture, for cloud computing environments.

InterCloud will allow users to allocate processing power and

storage space in order to manage very large datasets, such

as hyperspectral imagery.

11. Conclusion

Previously, NNs have been used for data mining purposes only

but its various applications with hyperspectral data are now

showing significant promise for disease detection. More often

than not, like many other technologies, researchers have been

confronted with emerging challenges in NN applications. For

example, detection of three different categories of diseases

manifestation viz. pre-symptomatic, symptomatic and

asymptomatic diseases from a single plant requires best trai-

ner sets for accurate classification. NNs have shown incredible

capabilities in adapting new challenges of disease detection

using hyperspectral data. NNs have been used for a variety

of purposes, such as reduction of data dimensionality, training
g hyperspectral data.

Formula References

R800/R1660 Apan et al. [144]
R1660/ R550
R1660/R 680
R550/R 680
(R800 + R550)/(R1660 + R680)
R534�R698
R534þR698 � 1

2 � R704 Mahlein et al. [153]
R698�R570
R698þR570 � R734
R520�R513
R570þR513 � 1

2 � R704
R520�R584
R520þR584 � R724

_1) 6:9 q605
q455 � 1:2 Ashourloo et al. [154]

_2) 4:2 q695
q455 � 0:38

HI)
DS� q675

q775ð Þ
DSþ q675

q775ð Þ Ashourloo et al. [55]
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of image pixels or spectra as the input sets, generalization of

the input sets and classification of wavebands or SDIs.

This paper has extensively reviewed the available litera-

ture on SDIs. To the best of our knowledge, there is no report

on the application of NNs to analyze SDIs. In the near future,

SDIs will be processed with NNs to achieve more reliable

results. Since NNs have not been evaluated for SDIs else-

where, there is a possibility to exemplify some directions

for possible development in the future, such as data pre-

processing, reduction of data dimensionality, and efficient

data analysis. These processes can be carried out using NNs

before the development of an SDI. After the development of

an SDI, NNs can also play a major role to accelerate the per-

formance of SDIs in order to obtain pertinent information

for disease diagnosis. As long as SDIs are gaining high traction

in precision plant protection, they should be tested on various

hyperspectral sensors at the canopy and leaf scale.
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