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Abstract— High fidelity myoelectric control of prostheses 

and orthoses is paramount to restoring lost function to 

amputees and neuro-muscular disease sufferers.  In this study 

we prove that spatio-temporal imaging can be used to allow 

convolutional neural networks to classify sparse channel EMG 

samples from a consumer-grade device with over 94% 

accuracy.  10,572 images are generated from 960 samples of 

simple and complex isometric finger poses recorded from 4 

fully intact subjects.  Real-time classification of 12 poses is 

achieved with a 250ms continuous overlapping window. 

I. INTRODUCTION 

Surface electromyography (EMG) is the detection and 
recording of electro-muscular activity through the skin. 
Instrumentation amplifiers and cascaded signal filters 
translate instantaneous voltage potentials from muscle-fiber 
depolarization into practicable signals [1].  EMG is a painless 
non-invasive procedure unlike its intra-muscular variant 
despite yielding less accurate results [2].  It is thus a critical 
avenue of research to improve signal acquisition and 
interpretation for such a non-invasive method to improve the 
lives of those who need it. 

Applications for myoelectric-based controllers range from 
medical prosthesis [3-6] to industrial orthosis [7-11] and even 
entertainment [12].    However, high-fidelity control based on 
these multivariate quasi-random time variant signals is still 
yet to be achieved. 

The nature of EMG signals makes them a good candidate 
for neural networks which can approximate any function 
linearly separable by an 𝑛-dimensional hyperplane.  Kernel 
methods may be used to map data into a linearly separable 
space if required.  Feature mapping on the other hand is used 
to reduce dimensionality [13] and necessary classifier 
complexity accordingly.  The choice or combination of 
techniques will affect the margin of separation between each 
class and the hyperplane.  This research aims to analyze the 
effectiveness of the intrinsic feature learning properties of 
convolutional neural networks. 

Many systems base their recognition on transitional 
isotonic movements between resting states [6, 14, 15].  For 𝑛 
possible states there exists ∑ (𝑛 − 𝑖)𝑛

𝑖=1   state transitions e.g.
10 poses gives 45 transitions.  Systems that operate on 
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transient motions run the risk of de-synchronization with the 
user which can only be recovered with forced repetition of 
the intended motion.  The alternative is to perform 
recognition based on steady-state isometric poses which 
would allow a system to always remain synchronized.  The 
consequent reduction in time-variant information however 
adds complexity to the inverse problem since the average 
signal power of electro-muscular activity changes very little 
with static poses.  Prior studies have proven pre-processing in 
the time and frequency domains allows shallow network 
classifiers to achieve accurate results with transient motions 
[15, 16] given the high separability of unique gestures.  This 
study will determine whether sufficient time-variant 
information exists in steady-state isometric EMG data to 
utilize spatial convolution. 

II. DATA COLLECTION

A. Overview 

A group of 4 healthy fully intact subjects (3M-1F) 
ranging from 23 to 27 years of age were asked to perform a 
series of isometric poses.  Subjects transition from an 
arbitrary rest state to a target pose which is held for 3 
seconds.  The 12 poses include simple single flexions of 
digits (5 poses), complex flexions of digits with thumb (4 
poses), clenched fist with and without thumb extension (2 
poses) and full digit extension (1 pose). 

Figure 1- Poses used for classification from 1 to 12 (top left to 

bottom right). 

Each pose is repeated 20 times totaling a 960-sample 
8x600 dataset which is sub-sampled into 10,572 8x50 images 
(II.D).  The total sample pool was randomly distributed into 
7400 training images, 1585 validation images and 1585 
testing images (70:15:15). 

B. Hardware 

High-density EMG is limited in commercial applications 
due to size, setup complexity and expense.  This research 
instead focuses on small and portable consumer grade EMG 
devices which are relatively cheap and intuitive.  Though the 
computations in this study were performed on a computer it 
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is certainly possible for optimization to mobile and even 
embedded platforms [17]. 

 

Figure 2 – Myo armband radial electrode configuration worn on 

the upper forearm. 

Acquisition was performed with a Myo; originally 
developed by Thalmic Labs as a consumer level peripheral 
device.  It features 8 medical-grade stainless steel dry surface 
electrodes positioned radially in a band worn on the upper 
forearm.  It provides a maximum EMG acquisition rate of 
200Hz with signal amplitudes mapped between -1 and 1.  
Additionally, but not used in this experiment, it contains an 
inertial measurement unit (IMU) which itself can be utilized 
for other forms of gesture recognition [16] or fused with 
EMG [18, 19]. 

C. Procedure 

The electrode band was fitted relative to the subject’s 
forearm length (measured along the ulna).  Where necessary, 
plastic clips were fastened into the band per manufacturer 
recommendations to provide tighter fitment for smaller 
forearm diameters.  A video clip of each pose was played to 
provide each subject adequate time to move into position 
before a 3 second pause for recording.  Each pose was held in 
isometric tension just as one would for typical daily activities 
such as grasping a cup.  This was followed by a rest clip 
guiding the subject to relax and move in an intentionally 
arbitrary manner.   

While this relaxation period is necessary for subject 
recovery it has the added benefit of increasing intra-class 
variability to promote better classifier generalization.  This is 
furthered by having each pose recorded in sequence as single 
repetitions of 𝑛 classes for 𝑖 samples (sequential recording) 
rather than 𝑖 repetitions of each class (batch recording). 

D. Imaging 

Images can be created by encoding higher-dimensional 
data into pixel position and color parameters.  It is typical to 
use a single feature vector when using shallow networks like 
multi-layer perceptrons however multi-dimensional temporal 
information can be mapped to images to take advantage of 
the pattern recognition power of convolutional neural 
networks. 

The use of CNN imaging has been proven with high-
density EMG [20].  In that study, images were created from 
instantaneous samples of 2-dimensional electrode arrays and 
classified per temporal frame giving a total of 4 dimensional 
parameters: x, y, amplitude and time.  However, for sparse 
single-dimensional electrode placement, EMG data becomes 
3-dimensional.  If sampled over time, the resulting 𝑟 × 𝑡 

matrix can be encoded into the height, width and pixel 
luminance of a greyscale image.  The hypothesis that class 
separable time-variant information exists within isometric 
EMG data is tested by classification with a CNN.   

 

Figure 3 - The process of imaging the EMG signal involves moving 

the signal mean from 0 to 0.5 and scaling the normalized amplitude 

for 8-bit single channel pixel depth. 

III. CLASSIFIER ARCHITECTURE 

A. Convolutional Neural Network 

CNNs operate on the principle of spatial convolution: 

 𝑔(𝑖, 𝑗) = ∑ 𝑓(𝑖 + 𝑘, 𝑗 + 𝑙) ∙ ℎ(𝑘, 𝑙)𝑘,𝑙  (1) 

This involves sliding a kernel mask over an input image and 
writing the summation of the element-wise product to each 
pixel of a new image.  This process has the effect of 
extracting features that can be defined by the kernel 
parameters.  This linear process can be stacked as is shown in 
Fig. 4. 

 

Figure 4 – Structure of convolutional neural network used in this 

study with adjustable network depth. 

The architecture of the CNN used for this study is shown 
above.  Training stops when the validation error gradient 

condition 𝐸�̇� > 0 is reached 𝑚 times (initially set to 5).  
Critically, a dropout layer is added between the final non-
linear and fully connected layers.  The dropout layer 
simulates random neuron disconnection with a probability 
𝑝 = 0.5 thereby reducing neuron dependency and the risk of 
over fitment [21]. 



  

The CNN structure is governed by a variable network 
depth.  Each level contains a convolution layer, normalization 
layer and non-linearization layer.  Non-linearization is 
performed with rectified linear units[22]: 

 𝑅(𝑥) = max(0, 𝑥) (2) 

These have the added advantage of reducing computational 
requirements.  Between each level is a pooling layer to down-
sample kernel features.  Increasing the network depth 
increases the amount of convolution before down-sampling 
occurs.  To keep the computational load balanced between 
network levels (i.e. after pooling) the number of filters in 
subsequent levels is increased (by a factor of 2 for a down-
sampling ratio of 0.5).  Finally, the output neuron firing 
values are converted to probabilities with a SoftMax function 
layer: 

 𝜎(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗

𝑗
 (3) 

Classification is performed on a 250ms window of data 

for every 𝑛𝑡ℎ point chosen based on processing speed.  This 
continuous overlapping window allows for fluid recognition 
in real-time. 

IV. RESULTS 

A. Preliminary 

Initial hyperparameters produced 79.02% classification 
accuracy which was a promising start.  Confusion was 
concentrated between classes 2, 6 and 7 (all of which have 
shared tendon activity). 

 

Figure 5 – Average RMS signal power variance across each class 

grouped by channel.  Color represents class. 

One of the problems with a fixed sparse electrode 
arrangement is the effect small variances in placement can 
have on observed signal energy.  The average signal power 
was calculated for each channel and compared between 
subjects.  Channels 5 and 6 which were located over the 
medial-anterior area of the upper ulna observed relatively low 
but stable electro muscular activity across all subjects.  This 
was in contrast with channels 2 and 8 which observed 
relatively high intra-class variance between subjects.  Since 
electrode placement is fixed with respect to the armband 

itself we are not able to place electrodes in the ideal 
innervation zones. 

B. Bayesian Optimization 

While it is possible to iterate over a predefined range for 
each hyperparameter in a typical grid search, it’s an 
unfeasible approach for functions with significant cost.  
Instead a Bayesian optimization strategy is used to determine 
the appropriate network depth, initial learning rate, 
momentum and regularization. 

Bayesian optimization [23] is a non-parametric approach 
that bases subsequent hyperparameter testing point selection 
on an expected improvement function which maximizes 
either exploration of unknown regions or cost minimization 
based on prior information.  This results in maximum 
exploitation of a minimal number of test values.  For our 
network this process was continued for 100 function 
evaluations, eventually settling on a network depth of 
𝑛𝑑𝑒𝑝𝑡ℎ = 2. 

D. Final Result 

 

Figure 6 - Optimized confusion matrix for test set. 

A final classification accuracy of 94.9% was achieved on 
a test dataset consisting of 1587 unseen images.  Using this 
result, the optimized network’s real-time performance was 
evaluated with a 20 second continuous sample of a subject 
performing 5 different poses.  Fig. 7 shows the raw signal 
plotted against the classifier probability for each class.  There 
is a clear output step shown for the duration of each pose 
with some marginal false activity between transitional states 
which is to be expected. 

In future it would be worthwhile testing the effect of the 
aforementioned isotonic movements on CNN accuracy.  A 
state recognition or other control system would need to be 
implemented to switch between transitional movement and 
steady state pose classification; this is where IMU fusion 
would be useful.  Additionally, image augmentation 
techniques such as pixel translation or image flipping should 
be used to test the CNNs spatio-temporal invariance. 



  

 
Figure 7 – Simultaneous classifier probability outputs from 0 to 1 

for classes 1 to 5 during a real-time session of a subject performing 
different poses.  Transient states (between poses) are reflected by 

step transitions such as those ocurring at 4s, 7s and 10s. 

V. CONCLUSION 

This study has put forward and tested the hypothesis that 
adequate time-variant information exists to classify isometric 
EMG samples spatio-temporally.  Moreover, it proves that 
sparse channel consumer grade EMG devices can still be 
used for relatively accurate classification of static finger 
poses.  This is in contrast with high-density arrangements and 
isotonic or dynamic hand gestures.  Real-time classification 
was achieved with an overlapping 250ms processing 
window. 
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