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Abstract—Sparse code multiple access (SCMA) has emerged as
a promising non-orthogonal multiple access (NOMA) technique
for the next generation wireless communication systems. Since
the signal of multiple users is mapped to the same resources in
SCMA, its detection imposes a higher complexity than that of
the orthogonal schemes, where each resource slot is dedicated
to a single user. In this paper, we propose a low-complexity
receiver for SCMA systems based on the radical variational
free energy framework. By exploiting the pairwise structure of
the likelihood function, the Bethe approximation is utilized for
estimating the data symbols. The complexity of the proposed
algorithm only increases linearly with the number of users, which
is much lower than that of the maximum a posteriori (MAP)
detector associated with exponentially increased complexity. Fur-
thermore, the convergence of the proposed algorithm is analyzed
and its convergence conditions are derived. Simulation results
demonstrate that the proposed receiver is capable of approaching
the error probability performance of the conventional message
passing based receiver.

Index Terms—Sparse code multiple access, variational free
energy, Bethe approximation, convergence analysis

I. INTRODUCTION

The next generation wireless communication systems aim
for an increased spectral efficiency and low latency [1], [2]. In
this context, sparse code multiple access (SCMA) has recently
attracted substantial attention, since it is capable of supporting
large-scale connectivity and improved coverage [3].

SCMA techniques can be regarded as a generalized form
of low density signature based code division multiple access
[4]. In SCMA, the bit-to-symbol mapping and spreading
operation are merged and bit streams of different users are
directly mapped to sparse codewords. With the aid of appro-
priate sparse codebook design, SCMA achieves an improved
performance. However, due to the non-orthogonal resource
allocation of the SCMA system, the optimal maximum a
posteriori (MAP) detectors impose a high complexity. By
exploiting the sparsity of the codewords, several factor graph
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and message passing algorithm (MPA) [5] based receivers
have been developed [6]–[9]. Nevertheless, the rank-deficient
SCMA system results in a factor graph having short cycles,
for which the message passing algorithm may not be able
to converge. Therefore, it is important to investigate the
convergence of iterative SCMA receivers.

Hence, we propose a low-complexity receiver based on
Bayesian inference [10]. Considering the low density of non-
zero elements in the SCMA codewords, we represent the joint
distribution of data symbols as the product of several clique
potentials. Then based on the Bethe approximation [11], we
derive the corresponding variational free energy (VFE). By
minimizing the VFE, the marginal distributions of symbols
are determined. We show that the complexity of the proposed
receiver only increases linearly with the number of users.
Moreover, since the proposed scheme is an iterative one, we
analyze its convergence. In summary, the main contributions
of this paper are as follows,
• We develop a low-complexity iterative receiver for our

SCMA system. In contrast to the conventional variational
inference method [12], we use the Bethe approximation
which explicitly considers the conditional dependencies
of users for improving the performance. Furthermore,
a belief damping scheme is employed to improve the
performance.

• We prove that the variance of symbol marginals is guaran-
teed to converge. For its mean, we conceive the necessary
and sufficient condition to guarantee its convergence.

Finally, our simulation results show that the proposed algo-
rithm approaches the optimal MAP detector’s performance
despite significantly reducing its complexity.

The remainder of this paper is organized as follows. The
model of our SCMA system is introduced in Section II. In
Section III, the proposed energy minimization based receiver
is presented, while in Section IV, we analyze the convergence
of the proposed algorithm. Simulation results are discussed in
Section V. Finally, our conclusions are provided in Section VI.

Notations: We use a boldface capital letter to denote a
matrix while lowercase letter to denote a vector. C denotes
a constant number; | · | denotes the modulus of a complex
number or the cardinality of a set; ‖ · ‖ denotes a `2 matrix
norm; ∝ represents equality up to a constant normalization
factor; (i, j) denotes the corresponding variables are included
in a pairwise potential.

II. SYSTEM MODEL

We consider the SCMA system supporting J users mul-
tiplexed onto K orthogonal resources, as shown in Fig. 1.
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Fig. 1. Block diagram of the SCMA system.

In orthogonal multiple access (OMA), J ≤ K is satisfied to
ensure that each user is allocated to an orthogonal resource. By
contrast, in the SCMA system, the number of users is larger
than the number of resource blocks, which leads to a rank-
deficient system. The ratio λ = J

K > 1 is referred to as the
normalized user-load. For each user, the bits bj are mapped to
a K-component SCMA codeword xj . The mapping function
for the jth user is xj = φ(bj), φ : Blog2M → χ, where
χ ∈ CK and |χ| = M .

The SCMA codeword of the jth user is selected from
a predefined codebook. Let xj = [xj,1, ..., xj,K ] be the
transmitted symbols of user j. Given the sparsity of SCMA
codewords, there are only D < K nonzero entries in xj .

The spread signal of user j is then transmitted through
the corresponding channel hj = [hj,1, ..., hj,K ]T . Assuming
perfect synchronization between the base station and users,
the received signal is expressed as

y =

J∑
j=1

diag(hj)xj + n, (1)

where n is the Gaussian noise having a power spectral density
of N0.

III. PROPOSED LOW-COMPLEXITY RECEIVER

Generally, utilizing message passing algorithm (MPA) based
receiver can provide the optimal maximum a posteriori
(MAP) estimate. Nevertheless, MPA has exponential complex-
ity which limits its implementation in practice. In this section,
we propose a low-complexity receiver for SCMA system based
on the variational free energy framework.

A. The Proposed Algorithm

Under the Gaussian assumption of n, we have the likelihood
function of the received signals y conditioned on the user’s
transmitted symbols xj , formulating as

p(y|x) ∝ exp

− 1

N0
‖y −

J∑
j=1

diag(hj)xj‖2
 . (2)

According to the classic Bayesian theorem, the a posteriori
distribution can be expressed as

p(x|y) ∝ p(x)p(y|x), (3)

where p(x) is the joint a priori distribution of all users’ source
symbols, which is expressed as

p(x) ∝
J∏
j=1

N (xj ;m
0
xj
,V0

x,j). (4)

In (4), m0
xj

= [m0
xj,1

, ...,m0
xj,K

]T and V0
x,j =

diag([v0xj,1
, ..., v0xj,K

]) are calculated based on the extrinsic
information gleaned from the channel decoder.

Since the SCMA source symbols and received signal sam-
ples are independent, (3) is factorized as

p(x|y) ∝
K∏
k=1

∏
j

φkj
∏
(i,j)

φki,j , (5)

where

φkj = p(xj,k) exp

(
−
h2j,kx

2
j,k − 2hj,kykxj,k

N0

)
(6)

φki,j = φkj,i = exp

(
−

2h2j,kxi,kxj,k

N0

)
(7)

are referred to as the self-potential and pairwise potential
derived in [13], respectively. Usually, we aim for finding the
estimate of every data symbol, i.e. x̂j,k, which is equivalent to
obatain the a posteriori probability p(xj,k|y). Direct marginal-
ization of p(x|y) imposes a high complexity. Motivated by the
energy minimization framework, we propose to find an appro-
priate trail distribution b(x) that can be readily marginalized
to approximate p(x|y).

The variational free energy is defined as [14]

F = FH +

∫
b(x) ln

b(x)

p(x|y)
dx, (8)

where FH = − lnZ is termed as Helmholtz free energy [14].
In our problem, Z denotes the normalization factor of p(x|y).
The simplest form for b(x) is the mean-field (MF) approach
[13], which factorizes b(x) as bMF(x) =

∏
j,k b

k
j (xj,k), where

bkj (xj,k) is a marginalized trail distribution (‘belief’) over the
single variable xj,k. Accordingly, we can readily compute the
free energy and then obtain an MF approximation for the
beliefs bkj (xj,k). However, the main problem of the factorized
MF approximation is that it assumes all variables in x to be
conditionally independent of each other, even though actually
they are not. This motivates us to find a more accurate approx-
imation than the MF approximation. The Bethe method has
been recognized as an efficient tool in probabilistic problems,
since it considers the conditional dependencies amongst the
variables as follows:

b(x) =
∏
k

∏
j

bkj (xj,k)
∏
(i,j)

bki,j(xj,k, xi,k)

bkj (xj,k)bki (xi,k)
. (9)

Substituting (9) into (8) yields

F =
∑
k

(∑
(i,j)

∫
bki,j(xj,k, xi,k) ln

bki,j(xj,k, xi,k)

φki,j
dxj,kdxi,k

+ (J − 1)
∑
j

∫
bkj (xj,k) ln

bkj (xj,k)

φkj
dxj,k

)
+ C. (10)
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The variational free energy is constrained by the normalization
and consistency constraints of:∫

bkj (xj,k)dxj,k = 1 (11)∫
bki,j(xj,k, xi,k)dxi,k = bkj (xj,k). (12)

We invoke the classic Lagrangian multipliers λj for the
normalization constraint and λj,i(xj,k) for the consistency
constraints. Thus the Lagrangian is constructed as

L =F +
∑
k

(∑
i

λj

(
1−

∫
bkj (xj,k)dxj,k

)
+ (13)

∑
(i,j)

∫
λi,j(xj,k)

(∫
bki,j(xj,k, xi,k)dxi,k − bkj (xj,k)

)
dxj,k

)
.

According to the calculus of variations, setting δ(L) = 0 gives
the beliefs bki,j(xj,k, xi,k) and bkj (xj,k) at stationary points,
which yield

bki,j(xj,k, xi,k) =Cφki,jb
k
i (xi,k)bkj (xj,k)

× exp [−λj,i(xj,k)− λi,j(xi,k)] (14)

bkj (xj,k) =Cφkj exp

∑
(i,j)

λi,j(xj,k)

 . (15)

By substituting (15) into (14), we arrive at

bki,j(xj,k, xi,k) ∝ φkjφki φki,j (16)

× exp

 ∑
(j,l),l 6=i

λj,l(xj,k) +
∑

(i,m),m 6=j

λi,m(xi,k)

 .

For simplicity, we introduce the shorthand

bki\j(xi,k) ∝ φki exp

 ∑
(i,m),m6=j

λi,m(xi,k)

 . (17)

After integrating bki,j(xj,k, xi,k) over xi,k and comparing it to
(15), finally we infer

λj,i(xj,k) = ln

(∫
φki,jb

k
i\j(xi,k)dxi,k

)
. (18)

Without loss of generality, we denote the mean and variance
of bki\j(xi,k) by mk

i\j and vki\j . Then λj,i(xj,k) is expressed
as a quadratic polynomial

λj,i(xj,k) =
h4j,kv

k
i\j

N2
0

x2j,k − 2
h2j,km

k
i\j

N0
xj,k + C

= −βkj,ix2j,k + 2γkj,ixj,k + C. (19)

Based on (15) and (19), we can now calculate the mean and
variance of the approximate marginal bkj (xj,k)

mxj,k
= vxj,k

m0
xj,k

v0xj,k

+
2hj,kyk
N0

+
∑
(i,j)

γkj,i

 (20)

vxj,k
=

 1

v0xj,k

+
h2j,k
N0

+
∑
(i,j)

βkj,i

−1 . (21)

Since the terms 1
v0xj,k

+
h2
j,k

N0
and

m0
xj,k

v0xj,k

+
2hj,kyk
N0

do not change

during the iterations, we use ρkj and %kj to denote those two
terms for simplicity. We further consider a damping scheme
which is expected to improve the performance in a high density
connected network [15]. Denoting the belief obtained at the
lth iteration as bkj (l), the damped belief is computed as

b̃kj (l) = (bkj (l))α(bkj (l − 1))(1−α), (22)

where 0 < α < 1 is the damping factor. That is to say the
updating of the belief is based on a combination of the new
belief and the old one. The mean and variance of the damped
belief are given as

m̃xj,k
(l) = ṽxj,k

(l)

(
αmxj,k

(l)

vxj,k
(l)

+
(1− α)mxj,k

(l − 1)

vxj,k
(l − 1)

)
(23)

ṽxj,k
(l) =

(
α

vxj,k
(l)

+
1− α

vxj,k
(l − 1)

)−1
. (24)

Given the mean and variance of b̃kj (xj,k), we can calculate
the log likelihood ratios (LLRs) Laj fed to the channel decoder.
Note that updating mxj,k

and vxj,k
relies on other variables,

hence the extrinsic information corresponding to different data
symbols is updated iteratively. After decoding, the output
LLRs Lej are converted to p(xj,k) and we start the next turbo
iteration. The details of the proposed algorithm is summarized
in Algorithm 1.

Algorithm 1 Energy Minimization Based Turbo Detector for
SCMA System

1: Initialization:
2: The initial a priori distribution of user’s source symbol is

set as Gaussian distribution with zero mean and infinite
variance;

3: for iter=1:NIter (number of iterations) do
4: For all users ∀j
5: Determine βkj,i and γkj,i according to (19);
6: Compute bki\j(xi,k) and bkj (xj,k) according to (17) and

(20), (21);
7: Update the mean and variance of the damped belief

according to (23), (24);
8: Calculate LLR Laj based on b̃kj (xj,k) and feed them to

the channel decoder;
9: Perform standard BP channel decoding;

10: Calculate m0
xj,k

and v0xj,k
based on the output extrinsic

information from the channel decoder ;
11: end for

B. Computational Complexity

Note that the complexity of the proposed algorithm is dom-
inated by the integration in (18). For the symbol xj,k of user
j, there are a total of (D − 1) interfering symbols. Note that
with the beliefs being Gaussian, when obtaining the marginal
of symbol xj,k, only simple addition and multiplication calcu-
lations are involved. As a result, a complexity on the order of
O[(D − 1)]) is imposed and the complexity of the proposed
algorithm is then O[J(D − 1)]. The original MPA receiver
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requires an optimal MAP detector, having a complexity order
ofO(|χ|D). The Max-log based SCMA detector of [7] still has
a complexity order of |χ|D, although the number of operations
has been significantly reduced. By contrast, the complexity
of the proposed algorithm only increases linearly with the
number of users. Compared to the method of [9], the proposed
algorithm has the same complexity order. In summary, the
different algorithms’ complexities summarized in Table I.

TABLE I
COMPLEXITY COMPARISON

Algorithm Name Computational Complexity

Conventional MPA O(J |χ|D)

Max-log based MPA O(J |χ|D)

Modified MPA [9] O[J |χ|(D − 1)]

The proposed algorithm O[J |χ|(D − 1)]

IV. CONVERGENCE ANALYSIS

The convergence is a key issue for an iterative algorithm. In
this section, we derive the realistic conditions that guaranteed
the convergence of the proposed energy minimization based
receiver.

According to (17), at the lth iteration, mk
i\j and vki\j are

updated based on the parameters determined in the previous
iteration, following

vki\j(l) =

ρki +
∑

(i,m),m 6=j

βki,m(l − 1)

−1 (25)

mk
i\j(l) = vki\j(l)

%ki +
∑

(i,m),m6=j

γki,m(l − 1)

 . (26)

Proposition 1 The variance ṽxj,k
of the belief is guaranteed

to converge, satisfying

ṽxj,k
(l) ≤ ṽxj,k

(l − 1).

Proof: See Appendix A.
Next let’s analyze the convergence of m̃xj,k

, which is equiv-
alent to proving that the difference between mxj,k

obtained
in two consecutive iterations becomes smaller as l becomes
larger, yielding,

|m̃xj,k
(l + 1)− m̃xj,k

(l)| ≤ |m̃xj,k
(l)− m̃xj,k

(l − 1)|. (27)

Provided that the number of iterations is large enough, we
can assume that the parameters, vxj,k

and vki\j converge to v∗

and v̄∗ for all j, respectively. According to (24), ṽxj,k
also

converges to v∗. Thus (20) and (23) can be rewritten as

mxj,k
(l) = v∗

%kj +
∑
(i,j)

γkj,i(l)

 (28)

m̃xj,k
(l) = αmxj,k

(l) + (1− α)mxj,k
(l − 1). (29)

Then we have

m̃xj,k
(l + 1)− m̃xj,k

(l) = α(mxj,k
(l + 1)−mxj,k

(l))

+ (1− α)(mxj,k
(l)−mxj,k

(l − 1))

= v∗
∑
(i,j)

[
α
(
γkj,i(l + 1)− γkj,i(l)

)
+ (1− α)

(
γkj,i(l)− γkj,i(l − 1)

) ]
,
(30)

which implies that the convergence of mxj,k
is related to that

of γkj,i.
Substituting mk

i\j from (26) into (19) yields

γki,m(l) = −b

%ki +
∑

(i,m),m 6=j

γki,m(l − 1)

 (31)

with b =
h2
j,kṽ

∗

N0
. Similar to (35) in Appendix A, we obtain

γki,m(l + 1)− γki,m(l) = b
∑

(i,m),m 6=j

[
γki,m(l − 1)− γki,m(l)

]
. (32)

Again, by stacking all γ having the index k as a vector, we
have the following equation

γk(l + 1)− γk(l) = bA
[
γk(l)− γk(l − 1)

]
. (33)

Proposition 2 The mean mxj,k
of the symbol belief is guar-

anteed to converge, if and only if the spectral radius of A
satisfies ρ(A) < 1

b .

Proof: See Appendix B.

V. SIMULATION RESULTS

We consider a pair of SCMA systems using parameters of:
a) J = 6 and K = 4, λ = 150%, where the corresponding
codebook is defined in [16]; b) J = 12 and K = 6, λ = 200%,
where the corresponding codebook is defined in [17]. A rate-
5/7 LDPC code is employed and a flat-fading Rayleigh channel
associated with perfect channel state information (CSI) is used.
The number of iterations between the channel decoder and the
multiuser detector is set to NIter = 10.

The bit error rate (BER) performance of the proposed
algorithm is compared to that of the state-of-the-art methods
in Fig. 2 and Fig. 3. The damping factor of the proposed
algorithm is α = 0.3.1 It can be seen from both figures
that the proposed algorithm matches the performance of the
MPA receiver, but the complexity of the conventional MPA
receiver increases exponentially with the number of users.
The variational inference method has a low complexity as a
benefit of the mean-field approximation. Nevertheless, due to
ignoring the conditional dependencies amongst data symbols,
the variational inference method leads to a significant perfor-
mance loss. When λ = 150%, the modified MPA method of [9]
has a similar performance to that of the proposed algorithm.
However, when λ = 200%, the modified MPA [9] experiences
performance loss. This is because the factor graph has more
cycles due to the more severe interference, which will result
in convergence problems for the modified MPA.

1There are several methods proposed to find the optimal damping factor
under different criteria. Here we use the value in [15].
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To evaluate the convergence of the proposed algorithm, in
Fig. 4 we depict its BER performance for a single user versus
the number of iterations at different values of Eb/N0. An
SCMA system associated with λ = 150% is considered. We
can observe that increasing the number of iterations improves
the performance of the proposed algorithm. Moreover, at
Eb/N0 = 3 dB, the performance improvement becomes
marginal, as the number of iterations increases. When Eb/N0

becomes higher, more iterations are required to guarantee con-
vergence. We additionally invoked the extrinsic information
transfer (EXIT) chart to reveal the mutual information (MI)
convergence property between the channel decoder and the
proposed SCMA detector, which is shown in Fig. 5. We use
IA,dec to denote the MI between the transmitted bits and the
LLRs fed to the channel decoder and IE,dec to denote the
MI between the bits and the extrinsic LLRs output by the
channel decoder. Similar definitions of IA,det and IE,det are
used for the SCMA detector. We can see from Fig. 5 that at
Eb/N0 = 4dB, an open tunnel is attained and both curves
reach the (1,1) point of perfect convergence to a vanishingly
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low BER. Hence, it shows that the proposed algorithm is
expected to converge.

VI. CONCLUSIONS

In this paper, we proposed an energy minimization based
low-complexity iterative receiver for SCMA systems. By
factorizing the joint distribution into the product of several
potentials, we used the Bethe approximation to derive the
marginal of data symbols. The complexity of the proposed
algorithm only increases linearly with the number of users,
instead of the exponential complexity of the optimal MAP
detector. We further analyzed the convergence of the proposed
algorithm and derived its convergence conditions. Our simu-
lation results for two SCMA systems with normalized user-
load λ = 150% and λ = 200%, respectively, showed that the
low-complexity energy minimization based algorithm closely
approaches the performance of the conventional MPA scheme
and outperforms both the modified MPA and the variational
inference methods.
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APPENDIX A
PROOF OF PROPOSITION 1

According to (19) and (25), the update equation of βkj,i(l)
is rewritten as

βkj,i(l) = −a

ρki +
∑

(i,m),m6=j

βki,m(l − 1)

−1 , (34)

with a = h4j,k/N
2
0 . Note that if βki,j ≤ 0, we can derive the

following inequality

βkj,i(l + 1)− βkj,i(l) =

a
∑

(i,m),m 6=j
[
βki,m(l)− βki,m(l − 1)

](
ρki +

∑
(i,m),m6=j β

k
i,m(l − 1)

)(
ρki +

∑
(i,m),m 6=j β

k
i,m(l)

)
≥ a

(ρki )2

∑
(i,m),m 6=j

[
βki,m(l)− βki,m(l − 1)

]
. (35)

By stacking all β values with respect to the resource index k to
form βk, the above inequality can be expressed in a vectorial
form as

βk(l + 1)− βk(l) ≥ a

(ρki )2
A
[
βk(l)− βk(1− 1)

]
≥ al

(ρki )2l
Al
[
βk(1)− βk(0)

]
, (36)

where A is an adjacent matrix with Aij = 1 if and only if user
i and j are interfering with each other. Since the symbols are
initialized with vxj,k

(0) =∞, which indicates that vxj,k
(1) ≤

vxj,k
(0), therefore βkj,i(1) ≥ βkj,i(0) holds and we arrive at

βk(l+1)−βk(l) ≥ 0, which shows that the parameter βkj,i(l+
1) is monotonically increasing. According to (21), we have
vxj,k

(l + 1) < vxj,k
(l), which proves that vxj,k

is guaranteed
to converge.

Considering the belief damping, to prove ṽxj,k
(l + 1) <

ṽxj,k
(l) is equivalent to prove

α

vxj,k
(l)

+
1− α

vxj,k
(l + 1)

≥ α

vxj,k
(l − 1)

+
1− α
vxj,k

(l)
. (37)

Obviously, with the conclusion drawn above, α
vxj,k

(l) ≥
α

vxj,k
(l−1) and 1−α

vxj,k
(l+1) ≥

1−α
vxj,k

(l) always hold. Therefore
the variance of damped belief is also guaranteed to converge.

APPENDIX B
PROOF OF PROPOSITION 2

• Necessary Condition: Based on (33), we can express γk(l+
1)− γk(l) as

γk(l + 1)− γk(l) = blAl
[
γk(1)− γk(0)

]
. (38)

Deriving the limits of both sides of (38) yields

lim
l→∞

[
γk(l + 1)− γk(l)

]
= lim
l→∞

(bA)l
[
γk(1)− γk(0)

]
. (39)

If m̃xj,k
converges, we have

lim
l→∞

[
α
(
γk(l + 1)− γk(l)

)
+ (1− α)

(
γk(l)− γk(l − 1)

)]
= lim
l→∞

[
α(bA)l + (1− α)(bA)l−1

]
·
[
γk(1)− γk(0)

]
= 0

(40)

which in turn requires liml→∞(bA)l = 0. Assuming that λ
and ν are the eigenvalue and eigenvector of A, we have

ν lim
l→∞

(bA)l = lim
l→∞

[
(bA)lν

]
= lim
l→∞

[
(bλ)lν

]
= ν lim

l→∞
(bλ)l. (41)

Since ν 6= 0, liml→∞(bλ)l = 0 must be satisfied. Therefore
|λ| < 1

b holds for any eigenvalue of the matrix A. Conse-
quently, ρ(A) < 1

b .
• Sufficient Condition: According to the matrix theorem of
[18], we have

‖γk(l + 1)− γk(l)‖ = ‖bA
[
γk(l)− γk(l − 1)

]
‖

≤ b · ρ(A)‖γk(l)− γk(l − 1)‖. (42)

If ρ(A) < 1
b , then ‖γk(l+1)−γk(l)‖ < ‖γk(l)−γk(l−1)‖

holds and therefore m̃xj,k
is convergent.
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