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Large-scale Machine Learning Algorithms for Big Data

ABSTRACT

Machine learning is a research area in artificial intelligence which aims to learn a model from
data. On one hand, the target is to learn a model yielding superior performance. On the other
hand, as the rapid increase of the size of the collected data, there emerges a demand for machine
learning algorithms to deal with large-scale problems.

Recent years have witnessed a sharp increase of the scale of the collected data. Taking recom-
mender systems as an example, the Yahoo Music dataset includes more than 262 million ratings.
In image classification, Imagenet contains more than 100 million images from the Internet. Such
a large scale brings a great challenge to machine learning algorithms: how could the machine
learning algorithms achieve satisfactory performance with less computational cost? In this dis-
sertation, I mainly focus on several specific machine learning tasks and their scalability issues in
either computation or storage aspects.

Computational cost plays a crucial role in machine learning algorithms. For instance, iter-
ation complexity is a commonly-used theoretical metric to evaluate how fast an optimization
algorithm converges. An example is the full singular value decompositions (SVDs) in the nu-
clear norm minimization for low-rank matrix completion. Its computational complexity can be
O(n?) where 7 is the size of the matrix. It would be computationally unfordable when 7 scales
up.

Memory cost is also a typical concern in machine learning. Recently deep neural networks
have captured much attention and been successfully applied to a variety of applications. These
deep models are known to be hungry for data, so training them usually requires a large number

of training samples. When the entire training set cannot be loaded into the memory simultane-
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ously, online (stochastic) learning can be applied. In such a memory-restricted scenario, both
theoretical analysis and empirical investigation are expected.

Targeting on the above two aspects in large-scale machine learning tasks, in this dissertation,
I investigate a variety of machine learning tasks and analyze their specific characteristics. Specif-
ically, I mainly focus on four tasks, i.e., matrix factorization for ordinal ratings, semi-supervised
learning, active learning for image classification, online learning for imbalanced streaming data.
For the first three tasks, I analyze the specific characteristics of the underlying problems and de-
sign new algorithm to optimize the objective. Theoretical verification such as computational
complexity is provided. For the last task, I propose an online learning algorithm to deal with

imbalanced problems under the strict memory constraint.
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Introduction

0.1 BACKGROUND OF MACHINE LEARNING

Machine learning plays a crucial role in artificial intelligence. It concentrates on induction or
other types of algorithms that take as input specific training instances and learn a model that
generalizes beyond these training data [70, 110]. This term was first used by Arthur Samuel
when he was at IBM [70].

Depending on different tasks, machine learning algorithms can be categorized into two main
types, i.e., supervised learning [125] and unsupervised learning [49]. The key difference between
the two types of algorithms lies on whether there is learning feedbacks. In the supervised learn-

ing category, based on how much supervision can be provided, one can also classify supervised



learning algorithms into sub-groups. 1) Supervised learning [125]: the supervision feedbacks
are completely available. 2) Semi-supervised learning [159]: the supervision feedbacks are in-
completely available. 3) Active learning [108]: Limited supervision is initially available. The
algorithm is able to actively choose unlabeled instances and interact with human users to pro-
vide supervision. 4) Reinforcement learning [119]: learning feedbacks are provided once the
algorithms make an action in a dynamic environment. In unsupervised learning [49], learning
feedbacks are unavailable.

Recent years have witnessed the increasing prevalence of machine learning in many real-
world applications [134, 61, 117, 118][155, 86, 158, 28, 7, 75, 128, 9, 86, 65, 111, 116 ]. In recommender
systems, for example, collaborative filtering is a widely-used machine learning approach to pre-
dict the potential preferences of users based on the existing ratings. Typically, a collaborative
filtering model takes the ratings from users on products as inputs. These ratings compose the
observed elements of a rating matrix, whose two dimensions present users and products, respec-
tively. The aim of collaborative filtering is to complete the missing elements in this matrix. In
machine learning, this tasks can be modeled as low-rank matrix completion. The assumption
is the underlying low-rank structure of the rating matrix, which comes from the fact that a user
tends to have the similar taste on a product with another user, if their preferences agree on many
other products.

In computer vision tasks, machine learning algorithms have been widely applied [71, 99, 41,
74, 152, 63, 62.]. For instance, Imagenet, a large-scale image datasets for classification, detection
and segmentation, requires intensive human labor to provide the ground-truth annotations.
Active learning can be used to decrease the human labor for labeling the training data. By ex-
ploiting an initial labeled training set, it produces a ranking list for unlabeled data. This list
predicts the potential benefit if users provide the label for unlabeled data. Naturally, the best
choice is to find the most beneficial unlabeled data for user-labeling, which is the target of active
learning.

Similar issues happen in person re-identification (REID) [139]. Person REID requires tempo-

ral and spatial annotations of multiple subjects in a cross-camera scenario. It is usually expensive



to acquire such cross-camera annotations. There has been recently an expectation in the person
REID community that one can also learn a sufficiently good model with only a few training
instances and abundant unlabeled data. This task can be viewed as semi-supervised learning.

There are many real-world applications that can be coped with machine learning algorithms.
In this dissertation, I mainly consider four scenarios where machine learning algorithms are

applied. I summarized them in Section o.3.

0.2 MACHINE LEARNING ALGORITHMS FOR LARGE-SCALE DATA

Due to the advances of the Internet, recent years have seen a dramatically increase of the scale of
the collected data. Here I take a number of examples. In recommender systems, many released
datasets contain millions of ratings. In the Netfix dataset, the rating matrix consists of 17,770
movies, 480,189 users and totally 100,480,507 ratings. In the Yahoo! Music Track 1 dataset, the
rating matrix consists of 624,961 music products, 1,000,990 users and 262,810,175 ratings. In
computer vision tasks, the scale of data has also a sharp increase. In Large Scale Visual Recog-
nition Challenge 2012 (ILSVRC2012), the training set includes 10,000,000 hand-labeled images
depicting more than 10,000 object categories. Such large scale of training data imposes two main
challenges, i.c., high computational cost and high memory expense.

Computational cost plays a vital role when analyzing a machine learning algorithm. For
instance, a typical and theoretical way to measure the speed of an optimization algorithm is
the iteration complexity (or convergence rate). It is usually a function of ¢, the accuracy of the
achieved solution to the optimal solution. When the required accuracy is sufficiently small, e.g.,
¢ = 10 *, there can be a huge gap of the computational cost between two iteration complexity
of O(1/+/epsilon) and O(1/¢). The gap will be very significant especially when the scale of the
training data is large.

Another factor that heavily influences the computational cost is the computational complex-
ity of the necessary operations. Nuclear norm minimization is a convex relaxation of the rank
minimization problems, but the computational complexity of singular value decompositions

(SVDs) for a 7 by 7 full matrix can be O(7?). It can be computationally unaffordable if 7 is



large.

Memory cost is another important restriction on large-scale data. Deep learning has been suc-
cessfully applied to a wide range of real-world applications, including computer vision, natural
language processing and information retrieval [72, 55, 112]. Suppose that one would like to train
a convolutional neural networks (CNN’s) on the entire Imagenet dataset. It is not practical to
load all the images into memory and perform back-propagation to train CNNs. A solution is
to use the stochastic method to update the model, which is exactly what most researchers are do-
ing when training CNNs. Therefore, memory cost is sometimes a critical restriction of machine
learning algorithms on large-scale data. Online (stochastic) algorithms can be applied to deal
with the case where only a (batch of) data instance(s) are used to update the model. It would
be interesting to investigate both the theoretical analysis and empirical performance of these

algorithms.

0.3 CONSIDERED MACHINE LEARNING TASKS

This section summarizes a number of realistic machine learning tasks, i.e., matrix completion

by maximum margin matrix factorization, semi-supervised learning by label aggregation, active
learning for image classification by privileged information and online learning for imbalanced
data, that are considered to deal with in this dissertation. For each of the specific tasks, I would
like to provide a brief introduction to each of their backgrounds first. Then I directly indicate
and analyze the main challenges that the existing approaches are faced with. Lastly, I present the
general ideas to deal with the large-scale issue. The detailed solutions to these tasks are presented
in the subsequent Chapters. Specifically, the proposed algorithms for maximum margin matrix
factorization, semi-supervised learning, active learning and online learning are introduced in

Chapter 2 [147], Chapter 3 [148], Chapter 4 [146] and Chapter s [149], respectively.

0.3.1 MAXIMUM MARGIN MATRIX FACTORIZATION FOR ORDINAL RATINGS

The rapid increase of Web services has witnessed an increasing demand for predicting the pref-

erences of users on products of interest, such as movies and music tracks [118]. This task, also



known as the collaborative filtering (CF), is a principal task in recommender systems [134, 61].
In general, the user ratings are given in discrete values, including binary ratings and ordinal rat-
ings [117]. The binary ratings can be either “+1” (like) or “-1” (dislike); while the ordinal ratings
are in discrete values such as 1-5 “stars”, which are more popular in applications.

Given a small number of user ratings Y € R™*” (from m users on 7 items), the aim of CF is
to reconstruct the unobserved ratings. Let Q) be a subset containing the indices of the observed

entries. To perform the reconstruction, a common approach is to learn a low-rank matrix X to

fit Y by solving the following optimization problem:

s.t. rank(X) < £, (1)

where k denotes the number of latent factors (i.e. the rank of X) and f{X) denotes some loss
functions. The low-rank property has been studied in a variety of applications [142, 141, 151]. In
many studies, such as matrix completion, the least-square loss function AX) = > e (X —
Yij)" is used [21, 20, 124]. Despite of its popularity, the least-square loss may not perform well
when the ratings are discrete values [117].

To deal with rating data, the maximum margin matrix factorization (M?F) is proposed using

the hinge loss [117, 102, 134]. For binary ratings, the objective function can be written as

min  f{X) = min > b(YXy), (2)
€0
where h(z) = max(o,1 — 2). The hinge loss /(z) for binary ratings can be easily extended to
general ordinal ratings where Yj; € {1,2, ...L} by applying L + 1 thresholds &, < & < ... <9
learned from data [102]. For the discrete valued rating data, hinge loss would achieve better
performance compared to the least square loss.
Problem (1) is known to be NP-hard. Many researchers [ 44, 100] thus propose to solve its

nuclear-norm convex relaxation minx A|| X[« + AAX), where || X]||, denotes the nuclear norm

of X and A is a regularization parameter. Many convex optimization methods, such as proximal



gradient methods [121, 96] can be adopted to solve this problem. However, these methods may
scale poorly due to the requirement of singular value decompositions (SVDs) of large ranks.
To improve the scalability, some researchers assumes that the rank of X (i.e. k) is known, and

X can be explicitly factorized as X = UV, where U € R™*and V € R"™** [102, 92]. They

then solve the following variational formulation instead:
min  2([U[+ [[V]E) + AUVT) G
UV N F F ) 3

where A is a regularization parameter. Many methods, such as the stochastic gradient descent
(SGD), can be used to solve this problem. However, in real applications, the prior knowledge
about k is not likely accessible. Consequently, these algorithms may have to perform expensive
model selections to determine &, which is unaffordable in computation [143, 144]. Additionally,
since problem (3) is non-convex w.r.t. U and V simultaneously, most methods may face the
premature convergence problem [59].

Regarding the scalability issue and the latent factor detection issue of existing methods, in
Chapter 2 [147], I propose an active Riemannian subspace search for M3F (ARSS-M?F). The

main contributions of this chapter are as follows:

* Leveraging the nonlinear Riemannian conjugate gradient, I propose an efficient block-
wise nonlinear Riemannian conjugate gradient (BNRCG) algorithm, which reconstructs
X and learns multiple thresholds 3 in M3F in a joint framework. Compared to existing

M3F algorithms, the proposed algorithm is much more efficient.

* Based on BNRCG, I proposed the ARSS-M?F method which applies a simple and ef-
ficient pursuit scheme to automatically compute the number of latent factors, which

avoids expensive model selections.

* Extensive experiments on both synthetic data sets and real-world data sets demonstrate

the superior efficiency and effectiveness of the proposed methods.



0.3.2 SEMI-SUPERVISED LEARNING BY LABEL AGGREGATION

Massive data can be easily collected from social networks and online services due to the explo-
sion of Internet development. However, the vast majority of collected data are usually unlabeled
and unstructured. Labeling a large amount of unlabeled data can be expensive. Therefore, it is
natural to consider exploiting the abundance of unlabeled data to further improve the perfor-
mance of algorithms. This has led to a rising demand for semi-supervised learning methods that
leverage both labeled data and unlabeled data [155, 86, 158, 28].

Semi-supervised learning (SSL) is an active research area and a variety of SSL algorithms have
been proposed [11, 14, 29, 115, 7, 75, 128 ]. However, many existing algorithms are faced with the
scalability issue owing to the high complexity. For example, the complexity of LapSVM [9]
is O(7?) due to the requirement for the inverse of a dense Gram matrix. TSVM in [66] treats
the SVM problem as a sub-problem and infers the labels of unlabeled data via a label switch
procedure, which may lead to a large number of iterations.

In addition to the scalability issue, SSL algorithms may suffer from label noise, leading to
unreliable performance. In the SSL setting, there are usually only small amount of labeled data
and a large proportion of unlabeled data. Even small mistakes in the human (non-expert) anno-
tation process are likely to result in label noise. Thus robustness is particularly critical for SSL
methods in many applications [86, 65].

In this dissertation, I focuses on the two aforementioned challenges of SSL, i.e. scalability
and robustness. Inspired by crowdsourcing [111, 116 ], in Chapter 3 [148], I propose an efficient
RObust Semi-Supervised Ensemble Learning (ROSSEL) method to approximate ground-truth
labels of unlabeled data through aggregating a number of pseudo-labels generated by low-cost
weak annotators, such as linear SVM classifiers. Meanwhile, based on the aggregated labels,
ROSSEL learns an inductive SSL classifier by Multiple Label Kernel Learning (MLKL) [77].
Unlike most existing SSL algorithms, the proposed ROSSEL requires neither expensive graph
Laplacian nor iterative label switching. Instead, it only needs one iteration for label aggregation

and can be solved by an SVM solver very efficiently. The major contributions are listed as fol-



lows,

* Leveraging an ensemble of low-cost supervised weak annotators, I propose ROSSEL to
efficiently obtain a weighted combination of pseudo-labels of unlabeled data to approxi-

mate ground-truth labels to assist semi-supervised learning.

* Instead of simple label aggregation strategies used in crowdsourcing (e.g.majority voting),
ROSSEL performs a weighted label aggregation using MLKL. Meanwhile it learns an
inductive SSL classifier, which only requires one iteration and linear time complexity

w.r.t. number of data and features.

* Complexity analysis of several competing SSL methods and the proposed method is

provided.

0.3.3 ACTIVE LEARNING FOR IMAGE CLASSIFICATION BY PRIVILEGED INFORMATION

With the advance of network technology and web services, numerous photos are uploaded to
the Internet every day, which makes the Internet becomes a huge repository of images. There-
fore, collecting web images as the training data has become a popular way to learn models for
image classification [71, 99, 41, 74]. Labeling large scale images is time consuming and labor in-
tensive. A more practical way is to actively sample and label a small subset of training images
which are the most informative [106, 45, 122, 33].

In Chapter 4, I propose a novel active sample selection approach (a.k.4. active learning) for
image classification by using web images. Previous research has shown that cross-media mod-
eling of various media types is beneficial for multimedia content analysis [154, 136, 130, 151, 25].
The web images are often associated with rich textual descriptions (e.g., surrounding texts, cap-
tions, ezc). While such text information is not available in testing images, I show that text fea-
tures are useful for learning robust classifiers, enabling better active learning performance of
image classification. Typical active sampling methods only deal with one media type [56, 63,
62, 152, 93], which cannot simultaneously utilize different media types. The new supervised

learning paradigm, namely learning using privileged information (LUPI), can be used to solve



this problem [126, 74]. In a LUPI scenario, in addition to main features, there is also privileged
information available in the training procedure. Privileged information can only be used in
training, and is not available in testing.

Uncertainty sampling is the most frequently used strategy in the active learning [152]. In this
work, I propose to exploit both visual and text features for active sample selection by taking text
as privileged information. By LUPL I train SVMs on visual features and slacking function on
text features. I present five strategies to combine the uncertainty measure of these two classifiers.

To ensure the selected samples to be representative, in Chapter 4 [146], I exploit the diversity
measurement, such that the selected samples are less similar to each other. I formulate a ratio
objective function to maximize cross-media uncertainty and minimize the similarity of selected
data. Then I propose to measure uncertainty and diversity for training sample selection [152].

A new optimization method is proposed to solve the proposed model, which automatically
learns the optimal ratio of uncertainty to similarity. In this way, I avoid introducing the trade-
off parameter between the two types of measurements. I summarize the main contributions of

this work as follows:

* By exploiting privileged information, I propose a new notion of cross-media uncertainty
measurement, which measures the uncertainty of unlabeled images by jointly consider-
ing visual features as the main information and text features as the privileged informa-

tion.

* I propose a new method to optimize the objective without using the trade-oft parameter

between diversity and uncertainty.

0.3.4 ONLINE LEARNING FOR IMBALANCED DATA

Streaming data are pervasive in many domains, including online social media [87, 3], clickbait
prediction [13], ad placement [84], ezc.. In these scenarios, data are coming sequentially. Mining
the streaming data requires the learner to make a prediction instantly after receiving an example

and update the model based on the received true label. As the increasing popularity of stream-



ing data, it becomes critical to design effective learning algorithms for mining streaming data
and making accurate predictions on the fly.

Online learning has emerged to be an important learning paradigm due to its ability to han-
dle streaming data. Different from traditional batch learning, in online learning, data arrive
sequentially, and the prediction is made before getting a feedback about the true label. Thus,
the online performance of a learner is a critical concern in online learning, since it measures how
much the predictions are consistent with the true label.

In most existing studies of online learning, a challenge for mining large-scale streaming data
is that examples are usually skew-distributed over different classes. Particularly for binary prob-
lems, the number of positive examples is usually significantly smaller than that of negative ones
in many applications. Therefore, the zero-one loss and its surrogates commonly used in tradi-
tional online learning algorithms are not appropriate for imbalanced data. This issue has been
long recognized as cost asymmetry, i.e., the cost for a false negative should be different from
that for a false positive. To deal with it, cost-sensitive algorithms, one of the most popular ap-
proaches for tackling imbalanced data, have been recently studied in the online setting [129],
which usually assign fixed costs, or ad-hoc costs based on the distribution of data received so far
to different classes. However, it would not necessarily achieve superior performance measures
including F-measure, area under ROC curve (AUROC), area under precision and recall curve
(AUPRCQ).

Another line of research for learning with the imbalanced streaming data is to directly opti-
mize target measures in an online fashion, which attracts increasing attention recently [47, 156].
However, there are two main limitations. Firstly, measures applied in imbalanced problems, e.g.,
F-measure, AUROC and AUPRGC, are usually not decomposable, which makes it significantly
challenging to directly optimize these measures in the online setting. Moreover, an algorithm
designed for optimizing a specific measure (e.g., F-measure) is usually not applicable for optimiz-
ing another certain measure (e.g., AUROC).

To address these issues, in Chapter 5 [149], I present a unified framework for learning with

imbalanced streaming data that is easily adapted to different performance measures. The pro-

10



posed framework simultaneously learns multiple classifiers with various cost vectors. In particu-
lar, at each iteration, the prediction is made by a classifier which is selected randomly according
to a sampling distribution, which is updated based on the current performance measures of clas-
sifiers, similarly to the well-know exponential weighted average algorithm [83]. The selection of
the optimal classifier is adaptive and evolving according to the streaming data. I would like to
emphasize that the proposed approach is different from the cross-validation approach, which
replies on a separate validation set. Furthermore, the proposed framework enjoys a rigorous the-
oretical justification for the F-measure maximization. Empirical studies demonstrate that the
proposed algorithm is more effective than previous online learning algorithms for imbalanced

streaming data.
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Literature Review

In this dissertation, I investigate the possibility of machine learning algorithms to decrease the
computational and memory cost. It is difficult to propose a general approach to achieving this
target. Therefore, I analyze a number of specific machine learning tasks and design new meth-
ods to solve the original problems. Below I summarize a literature survey on the considered

tasks respectively.

1.1 MATRIX COMPLETION BY MAXIMUM MARGIN MATRIX FACTORIZATION

The maximum margin matrix factorization (M?F) problem can be formulated as a semi-definite

programming (SDP) problem, thus it can be solved using standard SDP solvers [117]. However,
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the SDP solver scales very poorly. To improve the scalability, a fast M?F method is proposed

to solve problem (3) by investigating the gradient-based optimization method [102]. A low-
rank matrix fitting algorithm (LMAFIT) is proposed to solve (3) with the least square loss [135].
More recently, a lock-free approach to parallelizing stochastic gradient descent is proposed [101].
However, it is nontrivial for them to solve M3F.

Note that the fixed-rank matrices belong to a smooth matrix manifold [1, 124]. Manifold has
been also exploited in a range of applications [26, 51, 85]. Many manifold optimization methods
have been proposed to solve (3) [90, 15, 124], such as the Riemannian trust-region method for
MC (RTRMC) [15], the low-rank geometric conjugate gradient method (LRGeomCG) [124],
the quotient geometric matrix completion method (qGeomMC) [91], Grassmannian rank-one
update subspace estimation (GROUSE) and the method of scaled gradients on Grassmann
manifolds for matrix completion (ScGrassMC) [94]. However, all these methods are not appli-
cable to solve M3F.

A number of M3F extensions have been introduced in the last decades [134, 133, 69]. For ex-
ample, the authors in [133] presented a method using M*F to optimize ranking rather than rat-
ings. Some researcher further improved the performance of M3F by casting it within ensemble
approaches 35, 137].

The importance of automatic latent factor detection (i.e. the model selection problem) has
been recognized by many researchers [143, 144, 92]. For example, a probabilistic M*F model is
proposed in [143, 144], where the number of latent factors can be inferred from data. However,
these methods are usually very expensive as the probabilistic model requires a large amount of

computation, which is avoided in our method.

1.2 SEMI-SUPERVISED LEARNING BY LABEL AGGREGATION

As large scale data are easily accessible, it is usually difficult to obtain sufficient supervision in
practice. For instance, a feature selection algorithm is proposed in [53] for video recognition
where the number of labeled videos are limited. In [46], an action recognition method is pro-

posed which does not exploit any positive examplars. The authors in [78] propose a method to
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deal with weak-label learning tasks. In this section, we focus on SSL problems.

Among SSL algorithms, graph-based methods are commonly used [28]. Many graph-based
algorithms introduce the manifold structure by leveraging manifold regularization [160, 157, 8,
114, 9, 123, 113, 145, 155 ]. However, the complexity of building graph Laplacian is at least O(»*).
Consequently, these graph-based algorithms are usually difficult to handle large scale datasets.
Recently, the authors in [128] propose an adaptive SSL to optimize the weight matrix of the
model and the label matrix simultaneously, which avoids expensive graph construction. There
are some SSL methods exploiting pseudo-labels of unlabeled data. For instance, in [73], pseudo-
labels are used to make deep neural networks able to handle unlabeled data. The authors in [4]
propose to exploit pseudo-ensembles to produce models that are robust to perturbation. In [37],
pseudo-labels are exploited in an image reranking framework regularized by multiple graphs.
The authors in [27] formulate multi-label semi-supervised feature selection as a convex prob-
lem and propose an efficient optimization algorithm. A semi-supervised ranking and relevance
feedback framework is proposed for multimedia retrieval in [153]. In [76], the authors propose a
SVM-based SSL algorithm by exploiting the label mean. A cost-sensitive semi-supervised SVM
is proposed in [75]. Although these methods avoid expensive graph Laplacian, they still require
anumber of iterations for training.

Ensemble learning is a supervised learning paradigm that trains a variety of learners on a
given the training set, and derives a prediction from the votes of all its learners [38]. There
are a number of most commonly used ensemble algorithms, including bagging [17], random
forests [18] and boosting [103]. Bagging is one of the most commonly used ensemble algo-
rithms, where a number of bootstrap replicates are generated on the training set by bootstrap

sampling, and a learner is trained on each bootstrap replicate. Ensemble learning methods can

only handle labeled data.

1.3 ACTIVE LEARNING FOR IMAGE CLASSIFICATION BY PRIVILEGED INFORMATION

Active learning aims to obtain better performance when learning with fewer labeled training

samples by actively selecting a portion of the training data from a pool of unlabeled data [107].
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Uncertainty sampling is the most frequently used approach to active sample selection [107, 122,
5], which selects queries the unlabeled data that the learner is most uncertain.

There are some other criteria in addition to uncertainty, such as diversity [152], represen-
tativeness [33, 62] and density [9s, 63]. In [95], pre-clustering method was proposed to avoid
repeatedly labeling samples in the same cluster, by which diversity can be introduced. The au-
thors in [33] propose an active sampling strategy based on a hierarchical clustering of unlabeled
data. However, the performance of these methods likely depends on the performance of clus-
tering. If the result of clustering is not consistent with the target model, their active learning
performance may degrade accordingly [62]. Some works consider representativeness. Represen-
tative unlabeled data are those that best represent the underlying distribution of data [62, 107].
In [62], the authors proposed an algorithm that takes both informativeness and representative-
ness of unlabeled data into consideration. A probabilistic variant of K-Nearest-Neighbor is used
to extend active learning when the number of classes is large [63].

In a multi-view scenario, each sample is represented by multiple features. It is assumed that
a concept is possible to learn from a single feature type [93, 2]. A web page on Wikipedia, for
example, may contain various types of features, including images and texts. Co-testing is studied
in [93]. It queries the samples that cause disagreement of the learners from various views, which
are named contention points [93]. The motivation of co-testing is that at least one learner can
lead to improvement from the queried data. A combination of multi-view active sampling and
semi-supervised learning is proposed in [132].

Learning using privileged information (LUPI) is proposed in [126]. Compared to conven-
tional multi-view learning, in the LUPI scenario, privileged information is only available as aux-
iliary features in the training process rather than the testing process. LUPI has shown promising
results in many works. Various types of privileged information can be exploited to assist learn-
ing. Image attributes can be used as middle-level semantic features bridging the gap between
visual features and high-level object classes [52]. Textual descriptions, which are rather abun-
dant particularly for Web data, are frequently leveraged in classification tasks [74] and retrieval

tasks [30]. In contrast to the traditional computer vision tasks such as image classification, the
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authors in [81] proposed a new framework by infering knowledge in the multimedia domain

from the semantic domain.

1.4 ONLINE LEARNING FOR IMBALANCED DATA

In traditional online learning, studies revolve around the regret analysis of algorithms for se-
quential prediction problems (e.g., prediction with expert advice, online classification) [23,

57, 82]. In these studies, many online algorithms have been developed, e.g., the exponentially
weighted average algorithm [83] and the online gradient descent [161]. In the last ten years, we
observe substantial applications of these algorithms in machine learning and data analytics, e.g.,
online classification [48, 32].

Learning with cost asymmetry has attracted much attention recently. Most studies cast
the problem into cost-sensitive learning that assigns different costs to mistakes of different
classes [42, 89, 104]. While there exist a long list of literatures on batch learning with cost-
sensitivity, few studies were devoted to online learning with cost-sensitivity [31, 129]. These
studies assume a given cost vector (or matrix) and modify conventional loss functions to incor-
porate the given cost vector/matrix. The issue with this approach is that the cost vector/matrix
is usually unknown when applying to imbalanced data. Recent studies have found that the opti-
mal costs assigned to different classes have an explicit relationship with the optimal performance
measure [97]. Besides the cost-sensitive approach, some resampling based methods are proposed
to deal with imbalanced data. However, most of them focus on batch learning, e.g., [79], while
there are a few works concerning the online setting, e.g., [131].

Recently, there emerge some works about online optimization for a particular performance
measure, ¢.g., F-measure, AUROC. For example, [156, 47] proposed online learning algorithms
for AUROC optimization. However, both works focus on the offline performance evaluation.
In [19], the authors proposed an online learning algorithm for F-measure optimization with an
automatic threshoding strategy based on the online F-measure. However, they innocently ig-
nored the strategy for updating the model by simply assuming a given algorithm that can learn

the posterior probability Pr(y|x). In [60], a method is proposed to directly optimize AUROC,
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but requires extra resources to store the learned support vectors. The authors in [68] proposed
an online learning framework for non-decomposable loss functions based on the structural
SVM. The drawback of this method is that their online learning algorithm needs to solve a dif-
ficult optimization problem at each iteration. As for AUPRC, there still lacks of efforts. Recent
studies [50, 34] have found that when dealing with highly skewed datasets, Precision-Recall
(PR) curves might give a more informative picture of an algorithm’s performance, which gives
the measure of AUPRC.

Finally, we note that the proposed algorithm is different from online Bayesian learning that
maintains and updates the posterior distribution of model parameters [39], and is also differ-
ent from the online ensemble algorithm in [127] that aggregates all classifiers for prediction.
The synthesis of online gradient descent for updating individual classifiers and the exponential
weighted average algorithm for updating probabilities is similar to the work of online kernel se-
lection [150]. However, the two work have different focuses. In particular, their goal is to select
the best kernel classifier among multiple kernel classifiers for optimizing traditional measures
while our goal is to select the best cost-sensitive classifier among multiple cost-sensitive classifiers
for optimizing a target measure suited for imbalanced data. Therefore, their analysis can not be

borrowed for our purpose.
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Matrix Completion by Maximum Margin

Martrix Factorization

2.1 INTRODUCTION

Targeting on the scalability issue and the latent factor detection issue of existing methods for
maximum margin matrix factorization, in this chapter, I propose an active Riemannian sub-

space search for M3F (ARSS-M3F). The main contributions of this chapter " are as follows:

“The main results of this chapter were previously published in Yan Yan, Mingkui Tan, Ivor W. Tsang,
Yi Yang, Chenggqi Zhang and Qinfeng (Javen) Shi. Scalable Maximum Margin Matrix Factorization by
Active Riemannian Subspace Search. In International Joint Conference on Artificial Intelligence (I[JCAIL)

2015, 3988-3994.
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* Leveraging the nonlinear Riemannian conjugate gradient, I propose an efficient block-
wise nonlinear Riemannian conjugate gradient (BNRCG) algorithm, which reconstructs
X and learns multiple thresholds 3 in M3F in a joint framework. Compared to existing

M3F algorithms, the proposed algorithm is much more efficient.

* Based on BNRCG, I proposed the ARSS-M?F method which applies a simple and ef-
ficient pursuit scheme to automatically compute the number of latent factors, which

avoids expensive model selections.

* Extensive experiments on both synthetic data sets and real-world data sets demonstrate

the superior efficiency and effectiveness of the proposed methods.

2.2 M3F oN FIXED-RANK MANIFOLD

Without loss of generality, I first study M?F where the rank of the rating matrix X to be recov-
ered is known. I propose the BNRCG method by exploiting the Riemannian geometries to

address it.

2.2.1 NOTATIONS

Throughout the chapter, I denote by the superscript T the transpose of a vector/matrix, o a
vector/matrix with all zeros, diag(v) a diagonal matrix with a vector of diagonal entries equal
tov.Let A ® Band (A, B) = #(AB") represent the element-wise product and inner
product of the matrices A and B, respectively. The singular value decomposition (SVD) of
matrix X € R™*"is given by X = U(diag(¢))V . Based on the SVD, the nuclear norm
(or trace-norm) of X is defined as | X||« = |[|¢]|; = )_, |oi|, and the Frobenius norm of X is

defined as || X||r = ||7]]..

2.2.2 THE PROPOSED MODEL

In collaborative filtering tasks, the preference scores are often ordinal ratings, where Y;; €

{1,2,...L}. To generalize the hinge loss for binary case to ordinal ratings, I introduce L + 1
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thresholds 3, < & < ..., < 91. By default, T have 3, = —oo and 91 = +o0. Therefore, there
are L — 1 free threshold parameters to be determined, namely $ = [3, %, ..., SL_I]T € R In

a hard-margin case, X must satisfy the following conditions on observed entries
Sy;— +1< Xy <dy,; — 1.

In a soft-margin setting, the hinge loss error for each entry of X can be written as
L—1
i = b(TE- (3 — Xy)), Vi € Q, (2.1)
Z=1

+1 for z>VYj
where T3 = and /(z) = max(o,1 — 2).

-1 for z<Yj

Principally, I propose to reconstruct X by minimizing the squared hinge loss error

I 2
ijeQ
Additionally, to prevent from over-fitting, I regularize £(X, &) by a regularizer Y (X) =
L(||X|[3 + #||XT[[3), where XT denotes the pseudo-inverse and v > o is a small scalar (e.g.,
y = 0.0001 in this chapter by default) and || XT||3 is a barrier to avoid decreasing of the rank of

X [124]. The M?F problem is formulated as the following optimization problem

min {X,9), s.t. rank(X) =&, (2.2)
X9

where 1X,3) = AY(X) + £(X,3) ando < A < 1denotes the regularization param-
eter. Note that this regularizer is different from that used in [124], and it is very important for
preventing from the over-fitting issue in the context of M?F (see more details in experimental

studies).
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After addressing problem (2.2), the prediction can be easily made by
Y, = max{2[X; > %,z =1,..., L}. (2.3)

Unfortunately, since f{X, &) is non-convex due to the constraint rank(X) = £, the opti-
mization of (2.2) is very difficult. Noting X is restricted on fixed-rank matrices, I accordingly

propose to address it by exploiting the Riemannian geometries on fixed-rank matrices.

2.2.3 RIEMANNIAN GEOMETRY OF FIXED-RANK MATRICES

Suppose rank(X) = 7 with 7 being known, then X lies on a smooth manifold of fixed rank-»

matrices [124 ], which is defined as

M, = {X eR™":rank(X)=r}

= {Udiag(e)VT : U € S,V € St ||]|o = 7}

with St” = {U € R”™*” : UTU = I} the Stiefel manifold of 7 x 7 real and orthonormal

matrices. The tangent space Tx M, of M, at X = Udiag(o‘)VT € R™*" is given by

TxM, = {UMV'+U,V'+UV, : M € R,

U, e R™, U U =0,V, € R™", V]V =o}. (2.4)

By defining a metricgx (A, B) = (A,B) on M,, where X € M,and A,B € TxM,,
then M, becomes a Riemannian manifold by restricting (A, B) to the rangent bundle, which
is defined as the disjoint union of all tangent spaces TM, = Uxecp {X} X TxM, =
{(X,E) e R™*" x R™*": X € M,,E € TxM,}.
Let G be the gradient of any smoothing function fAX) in Euclidian space at X = Udiag(s)VT.

The Riemannian gradient of f{X) on M, is given as the orthogonal projection of G onto the
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tangent space at X:

gradfiX) = Pryu,(G). (25)

Here Pryam,(Z) @ Z — PyZPy + PSZPy + PyZPy denotes the orthogonal projection
ofany Z € R™ 7" onto the tangent space at X = Udiag(¢) VT, where Py = UUT and
Pz =1-UUT forany U € Sc”.

With prior knowledge about differential geometries on fixed-Rank matrices, I can compute
the Riemannian gradient of X, $) w.r.t. X on M,. Let gradf(X, &) denote the Riemannian
gradient. To compute gradf{X, &), I need to calculate the gradient of {X, %) on Euclidean
space. Firstly, the gradient of ¢(X, 9) w.r.t. X, denoted by G, can be calculated by

S oUX,9) X
GU:W:ZT;],.;,(T;.

Z=1

(Sz - Xl])) (2'6>

where7j € Q. Note that the gradient of Y (X) w.r.t. X is Udiag(¢ — v/#) VT ac X =
Udiag(s) V. The gradient of AX, 9) w.r.t. X in Euclidian space, denoted by G, can be com-

puted by
G=0G+ AUdiag(s — v/@) V. (2.7)

Once G is computed, gradf{X, §) can be calculated according to equation (2.s). The details of

computation can be found in Appendix A.

Finally, the gradient of AX, %) w.r.t. 3, denoted by g = [g1, 5., ..., gL_JT, can be calculated
by
OAX, S
o= PR S w5 Xy), (28)
z ijeQ

wherez € {1,2,..., L — 1}
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2.2.4 Brock-wiSE NONLINEAR RIEMANNIAN CONJUGATE GRADIENT DESCENT FOR

M3F

The objective function in (2.2) involves two types of variables, namely the rating matrix X &
M, and the thresholding parameter 3 € RL—, Accordingly, I propose a Block-wise Nonlinear
Riemannian Conjugate Gradient (BNRCG) to solve problem (2.2), which is shown in Algo-
rithm 1. The basic idea is that, at each iteration, I first minimize f{X, %) w.r.t. X with fixed & by
a Nonlinear Riemannian Conjugate Gradient method (Steps 1-3), and then minimize AX, $)
w.r.t. 3 with fixed X by applying a standard gradient descent method (Steps 4-5). I will illustrate

Steps 2-5 in details.

Algorithm 1 BNRCG for Fixed-rank M’F.

Given rank(X) = 7. Initialize X, #,,and 3. Let r = 1.
: Compute E, = —gradf{X,, &) according to (2.5).
2: Compute the conjugate direction with PR+ rule:
y, = E, + ﬁth,_[ﬁX,(%ﬂ) e TM,.
3: Choose a step size o, and set X4, = Rx, (ar7,).
4: Compute g; according to (2.8).
s: Choose a step size y, and set 9, = & — 7,8
6: Quit if stopping conditions achieve.
7: Lett = ¢+ 1and go to step 1.

When updating X, different from the classical gradient methods on Euclidean space, the
search direction in manifold optimization needs to follow a path on the manifold. Let X, be the

iteration variable in the BNRCG method on Euclidean space, the search direction 7, is calcu-

lated by

1, = —gradfiX;) + B, (2.9)

where 8, can be calculated by a Polak-Ribiere (PR+) rule [124]:

_ gradf(X,)T(gradﬂX,) — gradf{X,,))
(gradfiX;—,), gradfAX;—,)) '

8

(2.10)
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Unfortunately, since gradf{X;), gradf{X,_,) and #,_, are in different tangent spaces 7x, M
and Tx,_,/M, the above two equations are not applicable on Riemannian manifolds. To ad-
dress this issue, I need two geometric operations, namely, Retraction and Vector Transport. With
the retraction mapping, one can move points in the direction of a tangent vector and stay on the

manifold. In [124], the retraction on M can be computed in a closed form by

Rx(E)=Py (X+E)= 2 a’i]),-q;r, (2.11)

i=1

where ). o'ipiq;r denotes the best rank-¢ approximation to X + E. In addition, the following
Vector Transport makes the calculations of (2.9) and (2.10) meaningful. A vector transport 7 on
a manifold M is a smooth map which transports tangent vectors from one tangent space to
another. For convenience, let 7x v (7x ) denote the transport from one tangent space 7x M
to another tangent space Ty M, where 5x denotes the tangent vector on X. The step size in
the Step 3 and Step 5 is computed by the line search method. When updating X, given a

descent direction 5, € Tx,M,, the step size o, is determined such that

AR, (i) < fAXe) + e (gradfiXe), mz) (2.12)

where ¢ is the parameter. When updating 9, by the standard gradient descent method, the

step size y, can be computed by the line search on the following condition

ﬂxk+17 SkJrI) SﬂXkJrh Sk) + Yl (2“13)

where ¢, is the parameterand o < ¢, < ¢, < 1/2.

Lastly, Algorithm 1 is guaranteed to converge to a stationary point of X, 9).

Proposition 1. The BNRCG algorithm is guaranteed to converge to a stationary point (X*, ¥*)

of X, 9) where gradfiX*, ") = 0 and V ¢fIX*,3") = o.

The proof can be found in Appendix B.
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2.2.5 AUTOMATIC LATENT FACTOR DETECTION BY ACTIVE SUBSPACE SEARCH

Based on BNRCG for fixed-rank M3F, I propose an active subspace search method to detect the
number of latent factors automatically presented in Algorithm 2.

Starting from X = o where £° = b, ARSS-M’F iterates with two main steps: to identify the
most-active subspace through the worst-case analysis in Step 1, and to find the solution of the
fixed-rank M*F problem by BNRCG in step 2. In the following, I present the details of the two
main steps.

In the first step, I compute the gradient G of {X, §) w.r.t. X and the active subspace can be
found by performing a truncated SVD on G with the dimensionality of ¢. In the second step,
Linitialize X* = Rt (—tminx ) where the step size #y, is determined by the line search

method on the following condition:
ARgime(—tminGE1)) < KR — 0 (gl ghoy (2.14)
2

Then, the initialized X* is used as the input of the Algorithm 1, namely BNRCG, by which Xk
and 9 can be updated iteratively. Note that after initializing X in the step 2(a), I increase the
estimated rank of BNRCG by ¢. Due to (2.14), the objective value f(Xk) monotonically decrease

w.r.t. k. Therefore, I stop Algorithm 2 once the following condition is achieved

(AXET) = AXF)/(AXET) <, (2.15)

where ¢ is a stopping tolerance. In this way, as the algorithm is performed iteratively, I are able

to detect the rank of the matrix to be recovered.

2.3 EMPIRICAL STUDIES

I demonstrate the performance of the proposed methods, namely BNRCG-M?F with fixed-
rank problems and ARSS-M?F, by comparing with several related state-of-the-art methods,

including FMPF [102], GROUSE [6], LMAFIT [135], ScGrassMC [94], LRGeomCG [124]
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Algorithm 2 Active Riemannian Subspace Search for M?F .

Initialize X° = 0,7 = 0,£” = band 3. Letk = 1.
1: Find active subspaces as follows:
(a): Compute G = 8ﬂ;§:; ),
(b): Dothinswoon G: [P |2 ,Q |=SVD(G,g).
2:LeeX =P ¥ QT,do master problem optimization:
(a): Find an appropriate step size i, by (2.14) and initialize X* =
Rxi+(—tminX ) (Warm Start).
(b): Let 7 = 4 ¢ and update X* and 9 by Algorithm 1
3: Quit if stopping conditions are achieved. Let £ = & + 1and go to step 1.

and RTRMC [15] , on both synthetic and real-world CF tasks. Seven data sets are used in the
experiments, including three synthetic data sets and four real-world data sets, Movielens 1M,
Movielens 10M (58], Netflix [10] and Yahoo! Music Track 1 data set [40].

The root-mean-square error (RMSE) on both training and testing set will be used as the

comparison metric: RMSE = \/ >ient(Y5 — Y;3)*/|TI|, where Y™ denoted the recon-
structed ratings according to (2.3), and |IT| denotes number of emblements in the set TT. All
the experiments are conducted in Matlab on a work station with an Intel(R) CPU ( Xeon(R)

Es-2690 v2 @ 3.00GHz) and 256GB memory.

2.3.1 SYNTHETIC EXPERIMENTS

In the synthetic experiments where I know the ground-truth, I will demonstrate four points:

1) The sensitivity of the regularization of the proposed M?F methods; 2) The scalability of
BNRCG-M’F and ARSS-MPF over other methods; 3) The importance of the squared hinge loss
measure over other measures for rating data, e.g., the least square error; 4) The effectiveness of
latent factor detection by ARSS-M?F. To demonstrate the above points, I study three synthetic

problems of two scales.

SYNTHETIC PROBLEM

For each of the three synthetic problems, motivated by [94, 120], I first generate a ground-truth

low-rank matrix by X = Udiag(3) VT, where 4 is a 7-sparse vector with each nonzero entry
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sampled from Gaussian distribution NV (0, 1000), U e St/ and Ve St”’. In the both two
small-scale problems, X is of size 1,000 X 1,000 with 7 = 20, while the large-scale problem X is
of size 20, 000 X 20, 000 with 7 = so. After sampling the original entries, I respectively produce
the binary ratings by ?ij = sgn()/i,-j), and the ordinal ratings {1, 2, 3, 4, 5} by projecting the
entries of X into five bins according to their values, which results in a rating matrix Y.Once Y
is generated, I'sample / = r(m + n — r) x {_ entries from Y uniformly to form the observed

ratings Y, where { _is the oversampling factor [80]. In the experiments Iset { = 3.5.

SENSITIVITY OF REGULARIZATION PARAMETER

In this section, to demonstrate the sensitivity of regularization, I perform experiments on the
small-scale binary matrix. To illustrate the impact of the regularization in the proposed meth-
ods, I test BNRCG-M?F with various regularization parameters \. Figure 2.1 reports the train-
ing RMSE and testing RMSE. The convergence is shown in Figure 2.2a. As can be seen, the

regularization is crucial for preventing overfitting.
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Figure 2.1: RMSE of BNRCG-M?3F on binary rating data.

CONVERGENCE OF M?F oN ORDINAL RATING DaTA

In this section, I perform experiments on the small-scale ordinal matrix. I compare the proposed
algorithms with the six baseline methods and collect the convergence behavior of the three M3F

methods. The ground-truth rank is used as the estimated rank for all methods excluding ARSS-

M3F.
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Figure 2.2: Relative objective values of various methods.

The convergence behavior of our methods and FM?F is illustrated in Figure 2.2b, which
shows that our methods can converge better and faster. Table 2.2 reports the resultant RMSE
on the testing set and the computational time of each method on the small-scale synthetic ordi-

nal rating data set.

ScALABILITY OF M3F oN OrRDINAL RATING DATA

In this section, I perform experiments on the large-scale ordinal matrix. I compare our methods
with the 5 baseline algorithms. I use the ground-truth rank as the estimated rank for all meth-
ods except ARSS-M3F. The average estimated rank of ARSS-M3F is 42, which is close to the
groundtruth rank of so. According to the estimated rank in the two synthetic datasets, the la-
tent factor detection of ARSS-M? is effective. The RMSE on the testing set and computational

time of each algorithm are listed in Table 2..2.

Table 2.1: Statistics of the Real-world Data Sets.

Data Sets # users # items # ratings

Movielens IM 6,040 3,952 1,000,209
Movielens 10M 71,567 10,681 10,000,054
Netflix 480,189 17,770 | 100,480,507
Yahoo! Music Track 1 | 1,000,990 | 624,961 | 262,810,175
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Table 2.2: Experimental results on synthetic and real-world data sets. Computational time is recorded in sec-
onds.

Small Synthetic* | Large Synthetic* | Movielens IM{ | Movielens oM} |  Netflix{} Yahoo Musicf
RMSE | Time | RMSE | Time |RMSE| Time | RMSE| Time |RMSE | Time | RMSE | Time
FMPF [102] 0.3811 11.99 0.3899 2186 | 0.9344 | 212.2051| 0.9143 | 13001 | 1.O97I | 65662 - -
GROUSE [6] 0.4718 | 27.84 0.512 214 | 0.9225 | 39.4184 | 0.8653 3853 - - - -
LMAFIT [135] 0.4701 6.08 0.4973 827 0.9373 | 19.9465 | 0.8424 832 0.9221 | 4374 | 24.222 | 24349
ScGrassMC [94] | 0.4638 | 10.I9 0.4714 2149 | 0.9372 | 213109 | 0.8427 917 0.9192 | §787 | 24.7982 | 37705
LRGeomCG [124] | 0.4679 | 6.01 |0.4904 814 0.9321 [10.2484 | 0.849 312 0.9015 | 3IST | 25.2279 | 8666
RTRMC [15] 0.4676 | 8.68 0.4715 884 0.9311 | 14.1038 | 0.846 673 0.9102 | 6465 | 24.5971 | 32592
BNRCG-M?*F 0.3698 534 0.3915 635 0.9285 | 13.4437 | 0.8437 714 0.9022| 418 | 23.8573 | 24631
ARSS-M3F 0.3693 5.33 0.3684 542 0.9222 | 9.5482 | 0.8411 650 0.9001 | 3583 | 23.7902 | 22065

Methods

* No cost of model selections is included for all fix-rank methods as the ground-truth rank is avail-
able.

T The rank detected by ARSS-M?F is used as the estimated rank for other methods. Thus no
model selection is considered. The average ranks estimated by ARSS-M’F on Movielens 1M,
Movielens 10M, Netflix and Yahoo Music are 8, 14, 16 and 28 respectively.

2.3.2 REAL-WORLD EXPERIMENTS

In real-world data experiments, to demonstrate the significance of the hinge loss to the rating
data and effectiveness of latent factor estimation of our method, I study four real-world large
scale data sets, namely Movielens 1M, Movielens 1oM data set, Netflix data set and Yahoo! Mu-
sic Track 1 data set. The baseline methods include FM3F, GROUSE, LMAFIT, ScGrassMC,
LRGeomCG and RTRMC.

Table 2.1 lists the size statistics of the four data sets. The vast majority (99.71%) of ratings in
Yahoo! Music Track 1 are multiples of ten. For convenience, I only consider these ratings. For
Movielens 1oM and Yahoo! Music Track 1, I map the ratings to ordinal integer values before the
experiment. For each data set, I sample 80% of data into the training set and the rest into the
testing set.

Table 2.2 reports the computational time of all comparison methods and testing RMSE on
the four data sets. According to the resultant RMSE, compared to other loss measure, i.e. least
square loss, our method can recover the matrix with lower error. Note that in all experiments in
both synthetic and real-world data, no model selection cost is included for all comparison meth-
ods. If model selections are considered, the comparison methods will cost much more time.
Some results for GROUSE and M?F are not available due to their high computation cost. From

the table, ARSS-MPF and BNRCG-M?F recover the rating matrix efficiently and outperform
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other comparison methods in terms of RMSE on the four real-world data sets. It is worth men-
tioning that though LRGeomCG shows faster speed on Yahoo data set, it achieves much worse

RMSE than M3F based methods.

2.4 CONCLUSION

To deal with the ordinal discrete ratings in recommendation systems, MF is proposed. How-
ever, existing M?F methods is faced with the scalability and latent factor detection issues. To
address the two challenges, I present ARSS-M?F, a scalable MPF method based on active Rie-
mannian subspace search. Specifically, the proposed algorithm first treat the M3F problem as
the fixed number of latent factors and solve it using BNRCG. In the meantime, a simple and
efficient active subspace search approach is applied to automatically compute the number of la-
tent factors. Experiments on both synthetic and real-world data demonstrate that the proposed

method can provide competitive performance.

2.5 APPENDIX A: COMPUTATION OF gradf{X, 9)

According to [124], a tangent vector 5 € T M, isrepresentedasy = UMV T+ U,V T+
UV; (see equation (2.4) for details). By definition, the Riemannian gradient of X, &) w.r.t.
X, denoted by gradfiX, 9),at X = Udiag(s) VT can be calculated by Pry a4, (G ), where
Prym,(Z) = PyZPy+ PEZPy+ PyZPy is the projection of G onto the tangent space T M, .
Let = = Adiag(c — v/¢?). For convenience, I first present the computation of gradf{X, %) in

Algorithm 3.

Lemmar. Suppose Uy, Vp, and M are obtained from Algorithm 3, then gradfiX, %) =
UMV' +U,VT +UV,.
Proof. To verify the validity of Algorithm 3, I just need to show that, Pry uq,(G) = UMV T+
U,vi+UV,.

Notice that, UTU = Iand VTV = I On one hand, T have Pry 1, (G) = PTXM,(C\} +

UEVT) = GPV + PUa — PUGPV + UZVT. On the other hand, according to Algorithm
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Algorithm 3 Compute Riemannian gradient gradf{X).

: Let = = Adiag(c — v/¢?), and compute G via (2.6).

2: Compute G, = aTU, and G, = GV.

3: Compute M = U'G,.

4: Compute U, = G, — U/l\/\I, andV, = G, — VM.

6: Update M = M + E.

6: Output Uy, V,,, and M, and gradfiX, 3) = UMVT+UPVT—I— UV;.

=

3,Thavey = UMVT+U,VT+UV] = UMVT + U,VT+UV] + UEVT =
GVVT4+UUTG-UMVT 4+ UEVT, which actually equals to Pry a1, (G). This completes

the proof. O

2.6  APPENDIX B: PROOF OF PROPOSITION I

The proof parallels the proof in [124]. Notice that, the optimization on ¥ is conducted in Eu-
clidian space RE"". Moreover, {3, } is bounded; otherwise £(X, &) will go to infinity according
to (2.1). Without loss of generality, suppose 3; € [—1, /|-, where / > o is a finite number.
Following [124], I can also show that {X} stay in a closed and bounded subset of M,..

Let ¥ = {X € M, AAX,Y) < AAX,,3)} be the level set at (X, &, ). Due to the line

search, Thave £(X;, &) + + (||Xd| |5 + || XI[[) < AXo, %)- Therefore, Thave —||X|[z <

A1Xo,%), whichimpliess; = /|| X[ < /2Xo, %) /. Here, g, denotes the largest
singular value of X;. Similarly, [have ——[X[|lz = 37, ;= < AAXo, %), which implies
; < AXos %), Vi € {1, ..., 7}. This furcher implies that &, > /sA/2(X,, 3,), where
o, is the least singular value of X,.

Clearly, all X, stay inside thesetS = {X € M, : ¢ < \/m, oy >
VN 21X, %) }, which is closed and bounded, hence compact.

Now I complete the proof by contradiction. Without loss of generality, suppose

that

2

tlgglo l|gradAXs, )| + HVSﬂX“ $)|]> # o,
then there existsan ¢ > o, and a subsequence in {(X, 9;) }ser such that ||gradf{X,, 3)||r +
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IVofiXs, 9)|[. > ¢ > oforallz € I. Since X; € Sand 9 is constrained in [/, ], the
subsequence { (X, 9) }rer should have a limit point (X*, %) in S x [/, /J-". By continuity
of gradf{X, 9) and Vgf{X, 9) (which can be easily verified for squared hinge loss), this implies
that |[gradf{X;, %)||[r > ¢ which contradicts Theorem 4.3.1in [1] that every accumulation

pointis a critical point of X, 9). I therefore conclude that lim,_, ||gradfiX;, 3)||r = o and

limt_>oo HV&f(Xt, St)HZ = 0.
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Semi-Supervised Learning by Label

Aggregation

3.1 INTRODUCTION

This chapter * focuses on the two aforementioned challenges of SSL, i.e. scalability and ro-
bustness. Inspired by crowdsourcing [111, 116 ], I propose an efficient RObust Semi-Supervised

Ensemble Learning (ROSSEL) method to approximate ground-truth labels of unlabeled data

“The main results of this chapter were previously published in Yan Yan, Zhongwen Xu, Ivor W.
Tsang, Guodong Long, Yi Yang. Robust Semi-supervised Learning through Label Aggregation. In
Thirtieth Conference on Artificial Intelligence (AAAI)2016.
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through aggregating a number of pseudo-labels generated by low-cost weak annotators, such as
linear SVM classifiers. Meanwhile, based on the aggregated labels, ROSSEL learns an inductive
SSL classifier by Multiple Label Kernel Learning (MLKL) [77]. Unlike most existing SSL al-
gorithms, the proposed ROSSEL requires neither expensive graph Laplacian nor iterative label
switching. Instead, it only needs one iteration for label aggregation and can be solved by an SVM

solver very efficiently. The major contributions of this chapter are listed as follows,

* Leveraging an ensemble of low-cost supervised weak annotators, I propose ROSSEL to
efficiently obtain a weighted combination of pseudo-labels of unlabeled data to approxi-

mate ground-truth labels to assist semi-supervised learning.

* Instead of simple label aggregation strategies used in crowdsourcing (e.g.majority voting),
ROSSEL performs a weighted label aggregation using MLKL. Meanwhile it learns an
inductive SSL classifier, which only requires one iteration and linear time complexity

w.r.t. number of data and features.

* Complexity analysis of several competing SSL methods and the proposed method is

provided.

3.2 THE PROPOSED MODEL

Inspired by crowdsourcing methods [111, 116 ], I propose a new SSL algorithm that efficiently
learns a classifier by leveraging both labeled and unlabeled data. Our proposed method consists
of the two steps, namely label generation and label aggregation, illustrated in Figure 3.1. In the
first stage, a set of weak annotators are trained and applied to unlabeled data to generate a set
of pseudo-labels. In the second stage I combine the pseudo-labels to approximate the optimal
labels of unlabeled data. In the meantime, weight vectors is derived, which enables ROSSEL to

handle unseen data.
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3.2.1  LABEL GENERATION

Low-cost, less-than-expert labels are easy to obtain from weak annotators in crowdsourcing [111].
Following the crowdsourcing framework, ROSSEL firstly generates a set of pseudo-labels for
unlabeled data using ensemble learning. In this chapter I focus on bagging to generate pseudo-
labels.

Bagging is a simple and effective supervised ensemble learning algorithm, which produces
a number of bootstrap replicates using bootstrap sampling. A weak learner is trained on each
bootstrap replicate. By applying these weak learners on unlabeled data, a set of pseudo-labels
can be derived. Bagging finally aggregates all the pseudo-labels by majority voting to generate
predictions.

ROSSEL trains weak annotators using bootstrap sampling. Similar to crowdsourcing, I apply
weak annotators on unlabeled data and obtain the resultant less-than-expert labels. The label

generation procedure is illustrated in Figure 3.1.

bootstrap label generation
P sampling TESEsZ=sZZ==Z=yTTTT
Ne—— . 1 1 |
beled | (e
atla
R < :
1 ﬂ 1
1
1
unlabeled E:> ~ :
1 1
data ! BB :
~ L
) ——
C MLKL |

label aggregation

Figure 3.1: lllustration of the proposed ROSSEL.

3.2.2 LABEL AGGREGATION BY MLKL

Considering a binary supervised learning scenario, let Dy = {x;, )’i}le denotes the labeled set,

where x; € R?and y; € {—1, +1} denotes the feature vector and the label of the i-th sample,
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respectively. A general objective function is formulated as follows
min Q(w) + Cl(w), (3.1)

wherew € R is the weight vector, Q (W) is the regularization term, £(w) is a loss function
and Cis the regularization parameter. I focus on the £,-regularized hinge loss. The objective

function of hinge loss then can be specifically written as

1
LI
min ~[|w| +C) &
w2 -
1=I

(3-2)
s.t. inTxi >1—&6,6>0,i=1,..,1,
where &; is the slack variable of the i-th instance.
SSL is aimed to exploit the abundant unlabeled data. Hence let Dy = {x;}”_;,  denote the

unlabeled set and I incorporate the information of unlabeled data into the objective function,

which can be written as,

1 n
.1 5
min min —||lwlz + G Zé, + G Z &
yey i i=1 i=l+1 (3.3)

where C, and C, are the regularization parameters that control the tradeoff between model com-
plexity, the cost generated by the labeled data, and the cost generated by the unlabeled data, and
Y = {9y = [yr;yul,yv € {—1,+1}" '}, wherey, € R’ represents the ground-truth
label vector of labeled data, and yy represents any possible labels of unlabeled data. Thus there
are exponential possible values for yy, i.e. the labels of unlabeled data, which is intractable to

directly optimize.

36



By introducing dual variables &« € IR”, the Lagrangian of Equation (3.3) can be obtained by

1 n
1 2
Liw,a) = ~|lwl|: + QZ% +q El; £
= — (3-4)

+ Z ai(t—& — j’iWTXi)‘

i=1

By setting the derivatives of £ w.r.t. w and &; as o, the Lagrangian can be updated as below,

L=-2aT (X 055 )a+1a, (35)

2
wherea € Aand A = {afo < o; < G0 < a; < G, 1 < i< [ /41 <j < n}. Ican then
replace the inner minimization problem of Problem (3.3) by its dual as below,

min max ——a" ((XXT) ® S’S’T> o+ ITOC, (3.6)
yey €A 2

where X = [x,,%,,...,X,] . Itis usually difficult to optimize y due to the significant number
of possible values. Inspired by ideas from crowdsourcing, which obtain sufficiently qualified
labels on unlabeled data by exploiting a set of weak annotators, I propose to solve Problem (3.6)

by MLKL [78, 77].

Definition 1. Given a size-M label set {y.,¥,, ..., Ym}, multiple label kernel learning (MLKL)
refers to the problem as below,
. M
min max —~a" (XX7) © (3, Ini) o +1' (37)

ceu €A 2

m=I1

which aims to find a weighted combination of the label kernels > n_ W, T mY m 10 approximate
the ground-truth label kernel §*§* 7, whereU = {u| S8 _wu =1, wp_>o}, A= {alo <
0; < Co< o <G i<Li+1<j<n},andu=|u,u,, ...,/,cM]T denores the weight

vector of base label kernels.

Similar to crowdsourcing, a set of pseudo-labels of unlabeled data are generated in the first

37



Table 3.1: Comparison of complexity of the proposed method and other related SSL methods.

Mthods LapSVM | LapRLS | meanS3VM | CS4VM ASL ROSSEL

Complexity | O(n*d) | O(n*d) O(n*dT) | O(n*dT) | O(nd*T) | O(Mnd)

In this table, 7, d, M and T represent the number of data, the dimension of data, the number of
weak annotators and the number of iterations of the algorithm respectively.
step by bootstrap sampling. In the second step, I propose to obtain the SSL classifier by MLKL.
Assume that there are 44 pseudo-labels, namely Vi = {¥., ¥, ..., ¥u}, then I can complete

the primal formulation of Problem (3.7) as,

M l n
. 1 I
min fzf\lwm\liJrC}ZéﬂrCzZéi
cU, W, 2 m—r Mm i=1 i:l+1 ( 8)
M >
S.L. Zj’miw;nrxi > I_givgi > 0,0 =1,...,7,
m=1

where J,,; denotes the label for the i-th sample in y,.

By setting W = [\/L%’ ceny \/LLM]T, )A(,' = [\/‘ITIXi, \/{,leijlzixi, cery 4 /[LLlelileiX,']T, and
Y =¥, the primal problem of MLKL (3.7) becomes

1 n
S S
g{lnzlwllp+Q;5i+CZZEi

i=l+1 (3.9)

s.L. j/iWchi >1-§.6>0,i=1,...,n.

Problem (3.9) is similar to the primal of a standard SVM problem, and can be easily solved by
existing SVM packages, such as LIBLINEAR. Compared to Problem (3.3), Problem (3.9) can be
solved very efficiently.

ROSSEL is easy to extend to cope with multiclass problems by applying the one-vs-all strat-

egy. The detailed ROSSEL algorithm for a multiclass case can be found in Algorithm 4.

3.3 COMPLEXITY ANALYSIS

There are two main stages in the proposed method, namely label generation and label aggrega-

tion. In the label generation step, 44 weak annotators are trained. Weak annotators can be any
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Algorithm 4 RObust Semi-Supervised Ensemble Learning (ROSSEL)

i Initialize A, the number of weak annotators.

2: fork =1to Kdo

32 Sample M bootstrap replicates {(X0, ), (X, Vi) ooy (X, Fear) } from the
labeled set D; .

4 form = 1to Mdo

5 Train an SVM model My,, on X,, and ¥n.

6: Derive ¥, by predicting on the unlabeled data X, using M.

7

8

9

Add yy, into the working set Vi
end for
Compute { Wy, Wi, ..., Wear} and , by solving Problem (3.8).
wo:  Calculate prediction pj = > m_ w, W x; for a test data x;.
w: end for
1: Choose the class label for x; by arg max;{pp }1—,-

cheap learner. In our experiments, I use LIBLINEAR to train linear SVMs as the weak anno-
tators. Hence, this leads to a complexity of O(Mnd) where 7 and d stand for the number and
the dimension of data respectively. In the label aggregation step, MLKL can be solved according
to Problem (3.9) by LIBLINEAR [43], and w, the coefficient of base label kernels, can be sim-
ply updated by closed-form solution, which results in the complexity of O(Mnd). Compared
with many other SSL methods that require a number iterations for label switching and model
training, the proposed ROSSEL only requires oze iteration. Therefore, the overall complexity of
ROSSEL is O(Mnd), which does not rely on 7, the number iterations.

In Table 3.1, T list the complexity of various SSL algorithms, including LapSVM [9], LapRLS [9],
meanS3VM [76], CS3VM [75] and ASL [128]. LapSVM and LapRLS have high complexity

w.r.t. the number of instances 7 due to the inverse of a dense Gram matrix. Note that meanS3VM,

Table 3.2: Data statistics.

Datasets #train | #test | #features | # classes
CNAE9 800 280 856 9
dna 2,559 627 180 3
connect4-10k | 8,000 | 2,000 26 3
protein 19,200 5,187 357 3
revi-train 12,384 3,114 47,236 38
rcvi-all 420,000 | 1IL920 | 47,236 40
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CS4VM and ASL require to update their models iteratively. Consequently, their complexity

contains 7. It can be expensive if a large number of iterations is required.

Table 3.3: Average accuracy (£=Standard Deviation(%)) over 10 runs.

Methods CNAEg9 dna connect4-10k protein rcvi-train revi-all
LIBLINEAR | 82.86(12.56) | 84.78(1s2) | 64.40(£173) | 60.54(£0.64) | 74.45(F1.89) | 87.56(F-0.09)
LIBSVM 83.04(12.94) | 85.96(F1.42) | 63.43(+2.43) | 6184(F131) | 74.93(F1.88) | 87.57(d0.12)
ensemble-10SVM | 79.75(4-2.41) | 83.32(F1.38) | 65.26(2.54) | 60.78(£1.40) | 72.39(F153) |87.46(F0.09)
ensemble-s0SVM | 81.56(+2.42) | 84.63(F1.84) | 65.70(F1.99) | 60.91(F0.85) | 73.17(d1.90) |87.60(F0.08)
LapSVM 85.33(+3.13) | 85.63(F1.28) | 64.39(+1.82) | 60.46(+0.85) | 74.91(F1.90) *
LapRLS 85.47(+2.72) | 85.84(F1.23) | 63.41(£1.63) | 60.72(F0.61) | 74.55(E£1.92) *
meanS3VM 83.12(£3.57) | 8s.04(F11y) - - - -
CS4VM 84.93(42.98) | 88.04(E112) | 62.04(E214) - - -
ASL 82.61(F2.15) | 90.03(+0.98)| 60.83(F1.41) | $58.94(F119) * *
ROSSELIO 8s.1(+2.42) | 88.50(Fr9o1) | 67.89(+116) | 61.88(F134) |79.22(£2.00) | 89.20(F0.15)
ROSSELjs0 85.04(13.14) | 88.52(F154) | 68.20(40.98) | 62.33(0.90) | 78.77(F2.25) | 89.18(F0.11)

I report the results of ensemble-SVM and ROSSEL with both 10 and so weak annotators. Semi-
supervised methods with maximum accuracy are in bold. Some of the compared algorithms

either require much memory (indicated by
tion (e.g.more than a day, indicated by

« »

€x

not be applied to the large datasets such as the revi-all dataset.

Table 3.4: Average training time (in seconds) over 10 runs.

in the above table) or very expensive in computa-
in the above table). Therefore, these algorithms can

Methods CNAE9| dna |connect4-1ok| protein |revi-train| revi-all
LIBLINEAR | 0.0008 | 0.0009 0.0909 0.0126 | 0.3405 1.6855
LIBSVM 0.0052 | 0.0383 0.1408 0.2387 1.3338 | 672.4409
ensemble-10SVM | 0.0060 | 0.0136 0.0487 0.2329 2.1081 33.2070
ensemble-s0SVM | 0.0224 | 0.0405 0.3919 0.8019 | 14.5482 | 119.0243
LapSVM 0.1596 | 7.0668 14.3528 152.9257 | 494.4695 *
LapRLS 0.I715 | 7.0214 13.0248 152.8537 | 420.5253 *
meanS3VM 2.8588 | 13.8941 - - - -
CS4VM 1.3219 | 9.5178 539.8876 - - -
ASL 3.4355 |16.3261| 115.6894 [1748.2612 * *
ROSSELi10 0.2123 | 0.2271 0.7955 3.4457 | 45.5584 | 815.0660
ROSSELso 0.5481 | 1.4133 3.2811 16.5558 | 336.4487 | 6024.5965

I report the results of ensemble-SVM and ROSSEL with both 10 and 5o weak annotators. Semi-

supervised methods with minimum training time are in bold. Some of the compared algorithms
either require much memory (indicated by

tion (e.g.more than a day, indicated by

@ »

Wk

not be applied to the large datasets such as the rcvi-all dataset.
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Figure 3.2: Average accuracy on the CNAE9 and dna datasts over 10 runs when label noise is present.

3.4 EXPERIMENTS

In this section, I demonstrate the robustness and performance of the proposed algorithm by
comparing with eight baselines. These baselines include three supervised learning methods,
namely LIBLINEAR [43], LIBSVM [24], ensemble LIBSVM, and five SSL algorithms, namely
LapSVM [9], LapRLS [9], meanS3VM [76], CS4VM [75] and ASL [128]. In total six datasets
are used, namely CNAE9, dna, connect4, protein and revi-train and revi-all. Three experiments
are performed, which respectively investigate the resistance to label noise, performance on var-
ious scale datasets and the impact of different numbers of weak annotators in ROSSEL. All
experiments are conducted on a workstation with an Intel(R) CPU (Xeon(R) Es-2687W v2 @

3.40GHz) and 32 GB memory.

3.4.1 DATASETS

Five UCI datasets including CNAE9, dna, connect4, protein and rcvr are used in the experi-
ments. Among them, CNAE9 and dna are two small scale datasets that every competing method
is able to handle. Protein, connect4 and revr are large scale datasets which are used to investigate
both the accuracy and scalability of competing methods. The size of connect4 and revi, which
contain 67,557 and 534,135 samples respectively, is very large for SSL algorithms. Consequently,
for the convenience of comparison on connect4, I generate a new dataset called connect4-10k by

sampling 10,000 instances from connect4 at random. I report results of the revr dataset on both
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the standard training set and the full set.

In all experiments, to simulate the SSL scenario, I randomly sample three disjointed subsets
from each dataset as the labeled set (5% samples), unlabeled set (75% samples) and test set (20%).
More information about the six datasets is listed in Table 3.2. I report accuracy as the evaluation

metric for comparison in all tables and figures.

3.4.2 RESISTANCE TO LABEL NOISE

In this experiment, I investigate the resistance of SSL algorithms to label noise on the CNAE9
and dna datasets. I randomly select 2%, 4%, ..., 10% labels from the labeled set and switch them
to wrong labels as label noise. The resultant accuracy reported in Figure 3.2 demonstrates that

our algorithm can be more resistant to label noise than other baselines used in the experiment.
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Figure 3.3: Average accuracy over 10 runs on various datasets with different number of weak annotators.

3.4.3 COMPARISON OF ACCURACY AND SCALABILITY

In this experiment, I investigate the accuracy and scalability of SSL algorithms. I compare the
proposed algorithm with eight other methods, including three supervised learning algorithms

and five SSL methods. The three supervised learning baselines are listed as below:
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* LIBLINEAR [43] is a supervised linear SVM baseline, efficient for large scale data. In
the experiment, I tune two types of SVM including L2-regularized L2-loss and La-
regularized Li-loss and report the best results. I apply the one-vs-all strategy for all ex-

periments.

* LIBSVM [24] is a supervised non-linear SVM baseline, which is usually slower than LIB-
LINEAR when kernels are present. In the experiment, I tune various kernels, including
the linear kernel, polynomial kernel, Gaussian kernel and sigmoid kernel. I apply the

one-vs-all strategy for all experiments.

* Ensemble-SVM is an ensemble supervised learning baseline, by which I demonstrate
the effectiveness of the proposed SSL method. Each of the base classifier is trained by
LIBLINEAR on a bootstrap replicate. The predicted label on a test instance is computed

by plurality voting of all base classifier.
The five SSL competing methods are listed as follows:

* LapSVM [9] is a graph-based SSL algorithm. The objective function of SVMs is regular-

ized by graph Laplacian.

* LapRLS [9], similar to LapSVM, is regularized by graph Laplacian. The objective func-

tion is based on the least squared loss.

* meanS3VM [76], instead of estimating the label of each unlabeled data, exploits the label

means of unlabeled data, and maximizes the margin between the label means.

* CS4VM [75] is a cost-sensitive semi-supervised SVM algorithm, which treats various

misclassification errors with different costs.

* ASL [128] is a recently proposed SSL method that avoids expensive graph construction

and adaptively adjusts the weights of data, which can be robust to boundary points.
[[i—x;|[*

In this experiment, I use Gaussian kernel K(x;,%;) = exp(—-——3) to compute the

kernel matrix. The kernel parameter ¢ is fixed as 1, and all feature matrices are normalized before
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the experiment. I select from the range of {10 75,1073, 107", 10°, 10', 10%, 105 } for the parame-
ters to be tuned in all methods. I empirically set the parameter £-nearest neighbour as s for the
graph-based methods, LapSVM and LapRLS.

Ensemble-SVM and ROSSEL are two ensemble based methods. In this experiment, I report
the results of these two methods with both 10 and 5o weak annotators. When sampling, I boot-
strap 50% labeled data into a bootstrap replicate.

For comparison, I perform the experiment 1o times on various splits of the labeled, unlabeled
and test sets. Average accuracy on the test set and average training time of all competing meth-
ods over 10 runs are reported in Table 3.3 and Table 3.4 respectively. Results in the two tables
demonstrate that the proposed method is very competitive in terms of accuracy and scalability.
SSL algorithms usually suffer from poor scalability. As can be seen from the results, even on
the full revr dataset that contains more than 400,000 training examples with 47,236 features,

ROSSEL provides promising accuracy within much less training time.

3.4.4 IMPACT OF NUMBER OF WEAK ANNOTATORS

In this experiment, I study the effect of various numbers of weak annotators used in the two
ensemble based methods, ROSSEL and ensemble-SVM. I perform this experiment on all the six
datasets.To investigate the influence of different numbers of weak annotators, s, 10, 20, 30, 40,
so weak annotators are used in these two methods. I run the experiment over 1o different splits
of labeled, unlabeled and the test sets. The accuracy on test data of different numbers of weak
annotators of the two algorithms is reported in Figure 3.3.

As observed, ensemble-SVM usually performs better with more weak annotators. However,
our method with different numbers of weak annotators gives very close performance. This ob-
servation demonstrates that our algorithm is stable and will provide competitive performance

even when there are a small number of weak annotators involved.
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3.5 CONCLUSIONS

SSL is proposed to improve the performance by exploiting both labeled data and unlabeled
data. It plays an increasingly crucial role in practical applications due to the rapid boosting

of the volume of data. However, conventional SSL algorithms usually suffer from the poor
efficiency and may degenerate remarkably when label noise is present. To address these two
challenges, I propose ROSSEL to approximate ground-truth labels for unlabeled data though
the weighted aggregation of pseudo-labels generated by low-cost weak annotators. Meanwhile
ROSSEL trains an inductive SSL model. I formulate the label aggregation problem as a multiple
label kernel learning (MLKL) problem which can be solved very efficiently. The complexity of
ROSSEL is much lower than related SSL methods. Extensive experiments are performed on five

benchmark datasets to investigate the robustness, accuracy and efficiency of SSL methods.
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Active Learning for Image Classification

by Privileged Information

4.1 INTRODUCTION

This chapter * focuses on active learning for image classification by privileged information. Ac-
tive learning aims to enable the interaction between the algorithms and users, by which the hu-

man labor for labeling unlabeled data can be significantly reduced. To ensure the unlabeled

“The main results of this chapter were previously published in Yan Yan, Feiping Nie, Wen Li, Chen-
qiang Gao, Yi Yang, Dong Xu. “Image Classification by Cross-Media Active Learning with Privileged
Information.” IEEE Transactions on Multimedia18, no. 12 (2016): 2494-2502.
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samples selected by the active learning algorithm to be representative, I exploit the diversity
measurement, such that the selected samples are less similar to each other. I formulate a ratio
objective function to maximize cross-media uncertainty and minimize the similarity of selected
data. Then I propose to measure uncertainty and diversity for training sample selection [152]. A
new optimization method is proposed to solve the proposed model, which automatically learns
the optimal ratio of uncertainty to similarity. In this way, I avoid introducing the trade-oft pa-
rameter between the two types of measurements. I summarize the main contributions of this

chapter as follows:

* By exploiting privileged information, I propose a new notion of cross-media uncertainty
measurement, which measures the uncertainty of unlabeled images by jointly consider-
ing visual features as the main information and text features as the privileged informa-

tion.

* I propose a new method to optimize the objective without using the trade-off parameter

between diversity and uncertainty.

4.2 THE PROPOSED MODEL

In our task, the training data consists of an active seed set containing a few labeled samples, and
a pool set containing unlabeled samples. I aim to select the most useful unlabeled samples, and
query the Oracle to label them. Thus, I have a new training set for training.

Let us denote

{(X17 il? yI)’ (XZ7 }22.7 yl)’ A (an7 in:? yn;)}

as the seed set and

{ (Xm0 Xn41) s (Kngtas Xnta) s oo (an+np7 in;+np)}

as the pool set, where 7, and 7, represent the numbers of data in the active seed set and pool set

respectively. For the i-th instance, I denote x; € R? as the main feature and X; € R¥ as the
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privileged feature, and also denote y; € {—1, +1}" as the label, where 7 is the number of tasks or
classes.

A typical active learning procedure consists of two main phases. The first step is to train an
initial model (e.g., a classifier or a regression predictor) based on the labeled data, which can
be used to measure the importance of the unlabeled data. In the second step, I generate the
ranking scores for all unlabeled samples based on the importance measure. Given the ranking
scores, the unlabeled samples that would be incorporated to the training set can thus be simply
determined. I follow this process, and propose a new active learning algorithm with privileged
information.

Besides the uncertainty, the proposed model additionally consider the diversity of the queried
unlabeled data. While uncertain samples would benefit the performance, the underlying distri-
bution of unlabeled data could not always be presented correctly by a few labeled data. I would
miss some important information if the attention is only paid to the most uncertain samples.
Therefore, I propose to find the samples that best explain the distribution of the data at the
same time with considering the most uncertain ones. This can be intuitively achieved by making
the unlabeled query samples as dissimilar as possible. In the second phase, I propose to consider
the diversity based on the similarity matrix of the unlabeled data when computing the rank-
ing scores. The similarity measurement can be obtained from the kernel matrix. I propose an
efficient optimization method to solve the objective function with uncertainty and similarity

jointly.

4.2.1  UNCERTAINTY MEASUREMENT WITH PRIVILEGED INFORMATION
PRIVILEGED INFORMATION AND UNCERTAINTY

In the real world data, particularly Web images, auxiliary information such as text information is
often approachable. LUPI is proposed in [126] as a new learning paradigm. LUPI assumes that
additional features, namely privileged information, are contained in the training phase, but not
in the test data. It is similar to the teacher in a class who offers extra explanations to students.

On the Internet, people also tend to write some additional texts to facilitate the management of

48



their multimedia repository, which usually includes images and videos. The text could provide
more detailed descriptions for understanding the visual content in their repository. Several com-
puter vision tasks like image classification can be benefited from the surrounding texts of web
images. In this work, I show the learned model can benefit from the additional text information
associated with web images during the learning procedure.

However, the auxiliary text data usually cannot be applied in the image training procedure di-
rectly since it is in another feature space. To involve such privileged information when learning,
in [126], the authors introduce slack functions into the formulation of a non-separable support

vector machine (SVM) as follow

min_ L (lwl| +5I1l) + €Y% p(x) + 5)

W,w,0, i=1

S.L. yi(WT¢(Xi) + b) 2 I—= (V~VT¢(}~(1) + z)v l: I,..., g, (41)

where ¢(x;) is the feature mapping function for main information, and ¢(X;) is the feature

mapping function for privileged information. Cis the trade-off parameter between data loss
and model regularization, and 7 is the trade-off parameter between the influence of main in-
formation and privileged information. w and W are the weight vectors for main features and
privileged features respectively. The above problem is rather similar to a non-separable SVM

problem, which can be formulated as

N
min = - [|w[[+ €Y &
w,b 2 —

sto y(wlzi+b) >1-&, i=1,..n

&>o0, i=1,..,n.

The difference between LUPI and the conventional SVM comes with the slack variable &;. In
SVM, the slack variables can be optimized by the quadratic solver. In LUPI, the slack variables

are replaced by the slack function él- = (Wlo(x:) + b). This slack function is defined for the
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correcting (text) feature instead of the main (visual) feature.

LUPI aims to determine the value of the slack function by leveraging the privileged informa-
tion, rather than directly learning slack variables for the main feature. Although privileged infor-
mation is not in the same space with the principal feature, it can still assist to obtain slack vari-
ables. If the learned slack function yields a larger value for the sample x;, then x; is allowed to
maintain a larger distance to the decision boundary. In other words, this implies that it would
be more difficult for the learner to classify this sample correctly. Hence it is natural to measure
the uncertainty of instances by the learned slack function. For example, suppose there are two
samples 72, and m, and él and éz are their corresponding values returned by the learned slack

function. If§, > &, then m, is likely more uncertain to classify correctly.

CRrROSS-MEDIA UNCERTAINTY MEASUREMENT

Our method measures cross-media uncertainty by simultaneously learning from images and

their surrounding texts. Next, I detail the strategies of cross-media uncertainty measurement.
It is natural to obtain two simple ways to measure the uncertainty. The first one is based on

the prediction confidence associated with the predictor according to the visual feature, which is

a traditional measurement, while the other one exploits the correcting function of text features.

* Prediction confidence uncertainty measurement is based on the predictions of the visual
feature, which is commonly used in many active sample selection algorithms. In a multi-
class scenario, as mentioned, several strategies can be applied to generate the uncertainty.
I'focus on the margin sampling, which is a simple and effective sampling approach, and

can be written as

pi =1/ Di, — Jik, +¢), (43)

~ T ) . . . )
where y; , = Wy o(xi) + by, is the prediction of the i-th unlabeled sample, p; presents
the corresponding uncertainty measurement, y; p, > ik, = ... = Yik, are the predicted
values of the pool data x; for K classes which are sorted in descending order, k; presents

the sorted index of classes, and1 < 7 < np. gisa small constant that avoids division
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by zero. There are also other uncertainty sampling approaches. For instance, least confi-
dence [107] strategy simply samples the data with least prediction confidence. However,
this approach only considers the least confident class and ignores other classes. To exploit
the remaining label distribution, margin sampling method considers more information

about other class labels.

Correcting function uncertainty measurement is based on the optimized slack function
of text features. As mentioned, the value of the slack function implies how difficult a
sample may be correctly classified by the model. Hence, after training the LUPI model, U
simply use the correcting function p; = éi = (VVTcﬁfci + é) to measure the uncertainty

of unlabeled data X; in the privileged feature.

Suppose Pyred € R™ and peyr € R™ denote the prediction confidence uncertainty mea-

surement and correcting function uncertainty measurement on pool data. Based on these two

simple uncertainty measurements I present five strategies to combine them together, which are

listed as follows.

LUPI-sum: element-wise sum of two measurements. I use the sum of them as the uncer-

tainty measurement: Psym = Peorr T Ppred-

LUPI-max: element-wise maximum of two measurements. I use the max of them as the

uncertainty measurement: Ppmax = MaxX(Peorrs Ppred)-

LUPI-min: element-wise minimum of two measurements. I use the min of them as the

uncertainty measurement: Ppmin = Min(Peorr, Ppred)-

LUPI-pro: Hadamard product of two measurements. I use the Hadamard product of
them as the uncertainty measurement: Ppad = Peorr © Ppred, Where © denotes the

Hadamard product.

LUPI-dis: element-wise distance of two measurements. I use the distance of them as the
uncertainty measurement, namely Py = |Peorr — Pprea|, Where | - | computes the

element-wise absolute values.
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In this chapter, I study all of the above five strategies.

4.2.2 AcCTIVE SAMPLING WITH UNCERTAINTY AND SIMILARITY MEASUREMENT

Typically, active sample selection aims to sample the most uncertain instances from the active
pool set which most confuse the trained classifiers. In this way, the decision boundary can be
refined and hopefully closer to optimal. However, as the number of initial labeled data only
accounts for a small proportion of the entire data, there could be sample bias when selecting un-
labeled samples from active pool set for labeling [62]. Thus, to achieve promising performance,
researchers propose to combine more strategies together. For example, in [62], the authors con-
sider both uncertainty and representativeness. In [138], multiple criteria are taken into consider-
ation.

Similar to previous works, to obtain better performance, I consider to combine the uncer-
tainty component and diversity component together in this chapter. A very simple and straight-
forward way is to optimize an objective function that combines various components by trade-
off parameters, which is similar to other works [62, 138, 152]. This objective function may be
written as

min Uncert + N\ Similar,

where Uncert and Similar denote some measurement of uncertainty and similarity respectively.
However, in the real world, it is not practical to tune the trade-off parameter A, very well for all
datasets. Therefore, in this chapter, I propose a ratio objective function which computes rank-
ing scores for all unlabeled data that maximizes the uncertainty, and meanwhile minimizes the

similarity. This hence avoids tuning the trade-oft parameter. Our proposed objective function is

as follow
I‘T
max
r rlAr
p (4-4)

s.t. E i =1,7; > 0,

i=1
wherer € R™ is the ranking score vector for samples in active pool set, p € R™ is the uncer-
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tainty measurement computed by one of the strategies in 4.2.1and A € R™*™ is the kernel

matrix of the samples in active pool set, which represents the similarity among the unlabeled

samples. Let A = rlt:

A= denotes the ratio of the uncertainty component to the similarity com-
ponent. Here I use the radial basis function kernel. By this objective function, a higher ranking
score tends to be assigned to a sample with higher uncertainty and less similarity with other
data. In the next section, I propose an optimization scheme to solve the objective function effi-
ciently.

When solving this objective function, it is not necessary to consider the entire pool set. In
other words, after obtaining the uncertainty vector p, I can find a specific portion of unlabeled
data and input them into Problem 4.4. For instance, there are 1,000 unlabeled data in the pool
set, while the target number of queries is 100. I may only use the most uncertain 200 instances
from the pool set, instead of using the full uncertainty vector p and the entire kernel matrix A.

Since the size of the pool set is often huge in real world, this method is natural to speed up the

optimization.

4.2.3 A BRIEF OVERVIEW OF AUGMENTED LAGRANGIAN METHOD

I present an efficient optimization method based on Augmented Lagrangian method (ALM) [12]

in the next subsection. ALM is to solve the following problem:

min - g(7)
s.t. h(T) = o, (45)

whereg : R" — R, b : R — R’and T € R’ is the optimization variable. To solve the above

constrained problem, one can construct an augmented Lagrangian function as

L(T,Z.p) = g(1) +{Zh(1)) + S b(D] (+6)
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where Z is the Lagrangian coefficient and w is a scalar. The general approach to update 7, Z and

w is briefed in Algorithm s.

Algorithm 5 An overview of ALM algorithm [12]

Initialize ¢ > 1, = 0, Z, = o,and , > o.
. Ty, = argminrz, .

2.2 =2 + M,b(TH-I)-

3 MH—I = gfur

4:t=t+1

5: Go to step 1 until convergence.

4.2.4 OPTIMIZATION OF PROBLEM (4.4)

The objective function is the ratio of the uncertainty to the similarity and it is not feasible to
directly maximize the ratio. In this section, I propose an optimization approach to update this
ratio, M, iteratively, which is summarized in Algorithm 6. By this optimization approach, I can
obtain ranking scores of unlabeled data that maximizes the uncertainty and minimizes the simi-
larity meantime.

As illustrated in Algorithm 6, to start with, I exploit the ratio variable X to rewrite Problem
4.4 as follow, which is a subproblem of our objective function,

minAr' Ar—r'p
r

mp (4.7)

s.t. E i =1,7; > O.

i=1

The constraints on r aims to limit the scale of the ranking scores. This objective function is now
a general form that combines the uncertainty component and the diversity component by the
variable A. Problem 4.7 is a quadratic programming problem, but for the efficiency, I propose

to use a faster optimization method based on augmented Lagrange multiplier (ALM) [12, 36],
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which is analogous to [152]. Introducing a new variable v, Problem 4.7 can be rewritten as

1 N .
min-r'Ar+r'p
"oz (4.8)
T _
st T I, =L,I=V,V>o,

where 1,, € R™ is a vector with all elements of 1, A =2)A and P=-p.

Then I can obtain the augmented Lagrangian function of Problem 4.8 as below

L(r,v,u,d,y)
=(9, I'TInP —1) + (y,r —v)

I 4 R
BT, — Bl = v+ S TAr 2T
2 2 2

2

Y

=1

MZ

T ) 2 T e (4-9)
(e 1, |[F + = (0,1 15, — 1) + —]

w w

2 2
HH—WH+;@J—V%F

SN SN

S
I r., o
2 z{u 2,[1,(.
KT
_J

I 1
r'y, —1+;3)2+§Hr—v+;y|\}

+-rTAr+r'p+

A 2 0%
+£rTAr+rTf)+ y—+ —
2 2,(1,( 2,[[,(

where v = o, d and y are the Lagrangian coefficients, and w is a scalar. According to [12], the

Lagrangian function and the original problem have the same local minimization solution. Let
A=A+ MI,,PI;; + /,cInP

and

f):fiv'i‘/*‘ln‘p_f)_alnp_'}/,
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and then the Lagrangian function can be

-

N - d
L(r7V7M? 37 7) = iI‘TAI‘ - er + ; + ;L)Z + %H - v+ 7”; (4'10)

By setting the derivative of L(r, v, i, d, ) w.r.t. T as zero, the objective function can be solved

as follow

r* = A7'p. (4.11)

After updating the ranking score vector r, I need to update the auxiliary variable v by

min Z(r, v, u«,d,y) = min||v — (r + i'y)Hz. (4.12)
v>o 1%

v>o

Specifically, I can solve this problem by
v; = max(o,7; + i'yi), 1< i< myp. (4.13)
w

Once completing the ALM subproblem and obtaining the resultant ranking scores r*, I con-

sider to update the ratio variable X as follow

* 1
A= P

- I'*TAI‘* ’

(4.14)

I repeat the process for optimizing r and updating A until convergence.
Theorem 1. _Algorithm 6 increases monotonously in each iteration until the algorithm converge.

Proof. Let rp4, be the updated r in the iteration £ + 1, ry, be the r computed in the iteration
k and A, be the A computed in the iteration . Firstly, according to the step 2 in Algorithm 6, I
have

)\kr,;rArk — r;rp = o.

Since r* is the solution of Problem (4.7), it clear that )\kr;_IAr,LI — r,L_Ip < )\;QI'ZAI',;r —
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r, p = o. Therefore, I can easily obtain

rz——i-lp >0, = er
T =M= T AP
r, +1Ark+1 r' Ar
O
Theorem 2. Ler
gA) = min Ar'Ar—r'p.
I‘TInP,I‘ZO
If ¢(X*) = o, then X* is the global solution of problem 4.4.
Proof. From g(A*) = o, I can easily obtain
min A'r'Ar—r'p=o.
I‘TInP,I'ZO
Hence, forall r,
MNrlAr—r'p>o
. (4.15)
rp *
<\
rTAr
Thus A* is the global solution. O

Theorem 3. Algorithm 6 can converge ro the global solution.

Proof. Let \* and r* are the values for A and r when Algorithm 6 converges. According to the

step 2 of Algorithm 6, I have

er*

r*Ar*’

A" =

Based on the step 1 of Algorithm 6, I have
r* =arg min A'r' Ar—r'p.

I'TInP,I‘ZO

Thereby g(A*) = o. According to Theorem 2, A* is the global solution. O
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Algorithm 6 ALM based optimization to solve the problem in (4.4).

Initialize » with random. Set A = rrTT:r. Itis obvious thato < A < A* where \* is
the optima of A.
1: Update r by solving problem 4.7
r1Set A =2AAandp = —p.
1.2Set A = A+ ‘LLI,[PI;; + ul,,.
138etP = uv + u1,, — P — 91, — .
1.4 Setr* = A7'p.
I'T
2: Update A\by A = P+,
3: Go to step 1 until convergence.

4.2.5 APPLICATION TO LARGE DATASETS

I present a simple strategy to apply our proposed method to large scale datasets. Note that our
goal is to query a small number of data from the large pool set (when 7, is large). Those unla-
beled instances with high certainty would not be useful in active selection. As a result, I propose
to only select a small portion of the unlabeled data as candidates for query. For example, if T aim
to query 7 unlabeled data, I can only consider the top 67 uncertain instances in Problem (4.4)
(6n < my). Therefore, our proposed method can be efficient enough to handle large scale

datasets.

4.3 EXPERIMENTS

4.3.1 DATASETS AND SETUPS

In this section, I study the performance of the proposed active sample selection algorithm on
the following four datasets which contains both image data and text data. I randomly sample
70% instances as the training set and use remaining 30% instances as the test set. In the training
set, I again randomly select 10% data as the seed set and 90% data as the pool set. Four public
datasets are used in experiments.

WebQueries [71] contains 71,478 images with metadata of 353 queries collected from the In-
ternet. The text data in the metadata files are captured up to 10 words before and after the cor-

responding image on the HTML web page. I remove the instances that do not contain any
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text data, select the 19 queries that contains more than 150 positive instances, and extract all the
positive instances from these 19 queries as the new dataset, namely WebQueriesrg. Eventually I
obtain a dataset with 19 classes and 3,323 instances and name it WebQueriestg. The seed set of
WebQueriestg consists of 12 instances for each categories. There are 2,099 and 996 instances in
the pool set and test set, respectively.

Wikipedia articles [99] contains 2,866 Wikipedia articles including images and texts. I ran-
domly sample 20 instances from each class into the seed set. Then I random select 1,807 in-
stances as the pool set. The rest 860 instances are in the test set.

Pascal Sentences [98] contains 1,000 images with captions for 20 classes. There are so images
for each class and 5 caption sentences for each image. I randomly select 8 images from every class
into the seed set. The pool set consists of 620 images by random sampling. The rest 300 images
are used as the test set.

MSCOCO' is a multi-label dataset and includes 82,783 samples in the training set, 40,504
samples in the validation set and 40,775 samples in the test set. Each instance contains an image
and several caption sentences. Since the labels on the test set is not available, I use the training
set and the validation set. I randomly select 15 classes that contains 3,000 to 5,000 instances from
the entire dataset, and randomly sample 3,000 data from the selected subset, which is called as
MSCOCO15. On MSCOCOirs, there are around 240 positive labels for each class on average and
the average number of labels for each instance is about 1.2. In addition, to investigate the effi-
ciency of the proposed method and the competing baselines, I construct a larger binary dataset
from MSCOCO by randomly selecting two disjoint classes, which contains 15,056 instances in
total.

For the three multiclass datasets, namely WebQueriesrg, Wikipedia Articles and Pascal Sen-
tences, accuracy is naturally used as the evaluation measurement. On the multi-label dataset,
MSCOCOirs, accuracy is not an appropriate evaluation. Hence I use average Macro F1 score and
Micro Fr score over 10 runs as the evaluation.

As for the visual features, I extract CNNs features using the VGG16 model [112] and the Caffe

Thttp://mscoco.org/dataset/
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package [64] to obtain the fc7 layer feature. As for the texts, I convert all the words into word
vector using the public dictionaryi, and then obtain the document-level features by the Bag-Of-
Words (BoW). The dictionary size of the BoW model is set to 300.

I compare the proposed algorithm with other five baseline methods below.

* pKNN [63] is a probabilistic variant of the K-Nearest-Neighbor method. T use radial

basis function kernel (RBF kernel) as its input distance measurement.

* LOD [56] is an unsupervised active sample selection method. I only compare it in Pascal

Sentences dataset due to its high computational complexity.

* Quire [62] queries the unlabeled data with combining uncertainty and representa-
tiveness. I use RBF kernel as the input for Quire. I turn it to a batch mode method by

querying according to ranking scores for a fair comparison.

* HSE [88] is a hierarchical subquery evaluation algorithm. The number of nearest neigh-

bor is 10.

* Aggressive Co-testing [93] is a Co-testing active learning algorithm which adopts an ag-

gressive strategy.

* Conservative Co-testing [93] is a Co-testing active learning algorithm which adopts a

conservative strategy.
* Random strategy selects unlabeled data randomly.
* Initial results are calculated by the model trained on the initial labeled data.

For all methods, I randomly sample the seed set, pool set and test set for 10 times and report
the average results. For each run, all methods query 10,20,...,100 instances into the training set
and linear SVMs are trained on the selected training set. The parameters in all methods are
tuned from 1075 to 1075, I select LUPI-max as the uncertainty measurement (denoted as AL-

LUPI-max).

1https://code.google.com/p/wordzvec/
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Figure 4.1: Average results on various datasets.

61

100



435
43
425
42
415

Accuracy (%
8 &
8 o & o X

38.5
38

(a)

WebQueries19

Wikipedia Articles

435

Number of queires

(b)

Pascal Sentences

Number of queries

43
425
42
—~415
IS
B 41
e
—=—AL-LUPI-sum 3405 —s—AL-LUPI-sum
—s— AL-LUPI-max < 40 —&— AL-LUPI-max
—=— AL-LUPI-min ~a—AL-LUPI-min
== AL-LUPIl-pro |4 395 == AL-LUPI-pro
—=AL-LUPIdis || | _ _ _ _ _ ___ _ __ —=— AL-LUPI-dis
—a— Correcting 39 F —a— Correcting
~—a— Prediction ~—a— Prediction
o 385 .
= =Initial
= 38 L L L n
100 20 40 60 80

100

MSCOCO15
68 i ‘ 074 : . ! ‘
67 0.73
0.72
66
°
omt
= @
865 - 07
= s
€ 5069
3 —— AL-LUPIl-sum = —#—AL-LUPI-sum
< —=— AL-LUPI-max 2068 —s— AL-LUPI-max
63 —=— AL-LUPI-min S 067 —#—AL-LUPI-min
~—a— AL-LUPI-pro z —=—AL-LUPI-pro
~#— AL-LUPI-dis ~s— AL-LUPI-dis
62 0.66 >
~—a— Correcting +Corrsvactv|ng
~—a— Prediction 0.65 —-—Pr_e_dlctlon
Bl e e e e - - = = —— - — =Initial [ = _=Initial
. . . N 0.64 n n :
20 40 60 80 100 20 40 60 80

Number of queries

(d)

Number of queries

MSCOCO15
0.73 T T T T
0.72
0.71
2 07
8
2069
I
S o.68
s === AL-LUPI-sum
8,0.67 —#—AL-LUPI-max |7
g 0.66 —=—AL-LUPI-min | |
z —a— AL-LUPI-pro
065 T —#—AL-LUPI-dis ||
. —=— Correcting
064 | —a— Prediction
____________ = =Initial -
0.63
20 40 60 80 100

Number of queries

(e)

Figure 4.2: Average results on various datasets.
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Figure 4.3: Comparison of the contribution of uncertainty and diversity.



4.3.2 CoMPARISON WITH OTHER ACTIVE SAMPLING METHODS

Resulting accuracy of AL-LUPI-max and competing methods on WebQueriestg, Pascal Sen-
tences and Wikipedia Articles are illustrated in Fig. 4.1a, Fig. 4.1c and Fig. 4.1b. Resulting Macro
F1 score and Micro Fr score of of AL-LUPI-max and competing methods on MSCOCOis are
reported in Fig. 4.1d and Fig. 4.1e respectively.

On the three multiclass datasets, namely WebQueriesto, Pascal Sentences and Wikipedia
Articles, I can observe that our proposed algorithm outperforms the competing methods from
the results in Fig. 4.1. Note that pKNN, LOD, Quire and HSE are the state-of-the-art active
sampling algorithms in the single-view cases. Unlike these single-view methods, our proposed
method, aggressive Co-testing and conservative Co-testing are based on multiple features, and
often obtain better performance. This performance improvement is likely from the benefit of
additional textual features.

On the MSCOCOirs, which is a multi-label dataset, our method also obtain the best per-
formance compared to all other methods in terms of both macro-Fr score and micro Fr score.
Aggressive Co-testing performs second best in this experiment. These results further demon-
strate that it would be beneficial to exploit multiple categories of information for multimedia
tasks. Note that conservative Co-testing performs much worse than aggressive Co-testing in
MSCOCOis. This would imply that it is difficult to find a strategy that always outperforms
other competitors on all datasets, which is similar to the summary on different multi-view ac-
tive sample selection strategies in [93] However, as can be observed, AL-LUPI-max is more sta-
ble than other algorithms on the four datasets, and achieves the best performer on all the four

datasets.

4.3.3 COMPARISON OF VARIOUS UNCERTAINTY MEASUREMENTS

To investigate the performance of the proposed five strategies of the uncertainty measurement,
I compare them on the four datasets. These results can be found in Fig. 4.2. I denote other four

strategies, namely LUPI-sum, LUPI-min, LUPI-pro and LUPI-dis by AL-LUPI-sum, AL-
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LUPI-min, AL-LUPI-pro and AL-LUPI-dis. In general, I found that LUPI-max is stable on
various datasets and achieves relatively better performance.

In addition, to investigate the contribution of privileged information in the active sampling
task, I also compare two simple strategies of uncertainty measurement. The first strategy mea-
sures the uncertainty only according to the correcting function, while the other one measures
the uncertainty only by the prediction confidence. I denote these two methods by “correct-
ing” and “prediction” in Fig. 4.2. As observed, correcting function method achieves satisfactory
performance on Pascal Sentences and MSCOCO1s and sometimes is competitive compared to
LUPI-max. This demonstrates the effectiveness of privileged information in uncertainty mea-
surement. However, on WebQueries and Wikipedia Articles, I observe that correcting function
method performs much worse than LUPI-max. Therefore, it would be unstable if uncertainty
measurement is only dependent on the privileged information. As for the prediction confidence
strategy, it performs much worse than correcting function, particularly on Wikipedia Articles
and MSCOCOiss. Thus, I demonstrate that privileged information in the training procedure is

very useful for the active sample selection task.

4.3.4 CONTRIBUTION OF UNCERTAINTY AND DIVERSITY

In this section, I perform an experiment to investigate the contribution of uncertainty and di-
versity measurements. The proposed active sample selection algorithm samples unlabeled data
based on two major measurements, namely uncertainty and diversity. To show the contribu-
tion of these two components respectively, I perform two baselines. For the first one, I drop

the diversity measurement and sample unlabeled data only replying on the uncertainty mea-
surement. Since I propose five various strategies, I denote those variants as “AL-LUPI-sum-u”,
“AL-LUPI-max-u”, “AL-LUPI-min-u”, “AL-LUPI-pro-u” and “AL-LUPI-dis-u”. In addition, I
examine two simple strategies which solely exploit the visual feature or text features respectively
to measure uncertainty of unlabeled data. I denote them as “Prediction-u” and “Correction-u”
respectively. As for the second baseline, I ignore the uncertainty measurement and only pre-

serve diversity measurement. Then I sample unlabeled data directly according to the diversity
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ranking. I show these results in Fig. 4.3.

From the results, I observe that uncertainty measurement is more effective and beneficial
for improving the performance of active sample selection, compared to diversity measurement.
Even compared to AL-LUPI-max, the full version of our proposed method, uncertainty based
baseline achieves relatively competitive performance. For example, on MSCOCOis, these base-
lines outperform AL-LUPI-max slightly in some cases. However, I note that it would be unre-
liable to depend on only one type of measurement in the active sampling procedure. On other
three datasets, AL-LUPI-max outperforms all baselines significantly. Although diversity sam-
pling is less effective than uncertainty sampling, our results demonstrate that by combining
these two strategies, I achieve significant improvement. Therefore, I could conclude that the
improvement of our proposed method comes from the combination of the uncertainty infor-

mation and diversity measurements, which makes our algorithm robust and effective.

4.3.5 COMPARISON OF EFFICIENCY

I compare our method with other active learning baselines on MSCOCO2-5000 and MSCOCO:x.
I report the average accuracies of different number of actively selected samples over 10 runs in
Fig. 4.4. I did not compare our method with LOD since it cannot finish a single run in 12 hours
on both datasets. The corresponding average training time of active learning methods is listed in
Table 4.1. Note that active learning algorithm often relies on some auxiliary information, such as
kernel matrices, graph or clustering. For instance, our method and pKNN requires kernel ma-
trices on training data. Graph and cluster data are required in HSE. For the ease of comparison,
Table 4.1 only contains the time spent on generating queries, instead of the time spent on the
auxiliary information acquisition.

From Fig. 4.4, it is easy to observe that our method outperform other baselines in terms of
average accuracy, even compared to the two multi-view baselines, namely Co-Testing-agg and
Co-Testing-con. Table 4.1 shows that our algorithm is more efficient than HSE and Quire. Al-
though pKNN is faster than our method, it cannot achieve satisfactory accuracy. I demonstrate

our algorithm is efficient and can be applied to large dataset. The reasons of the low computa-
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Table 4.1: Average training time (in seconds) over 10 runs.

Dataset AL-LUPI-max HSE pKNN | Quire
MSCOCO2-5000 17.5666 54.4269 | 0.2605 | 159.7137
MSCOCO2 18.3564 278.6959 | 0.2800 *

* Quire requires expensive computational cost, and does not finish a single run
in 8 hours. Therefore, I did not include the training time in this table.
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Figure 4.4: Comparison on MSCOCO2-5000 and MSCOCO2.

tional cost may be twofold. The first reason lies on the simple strategy presented in Section 4.2.5
for large-scale datasets. Specifically, among those large number of unlabeled data, only the ones
with high uncertainty are considered as the candidates, while the rest ones are directly dropped
and are not the input of the active learning methods. The second reason may be the efficiency
of the proposed optimization algorithm, which is based on the efficient ALM method. The
convergence is analyzed but the convergent speed is not studied, but this subsection shows em-

pirical efficiency on large-scale datasets.



Online Learning for Imbalanced Data

5.1 INTRODUCTION

To deal with the issues in online learning for imbalanced data (analyzed in Section 0.3.4), in this
chapter "I present a unified framework for learning with imbalanced streaming data that is
easily adapted to different performance measures. The proposed framework simultaneously
learns multiple classifiers with various cost vectors. In particular, at each iteration, the prediction
is made by a classifier which is selected randomly according to a sampling distribution, which

is updated based on the current performance measures of classifiers, similarly to the well-know

“The main results of this chapter were previously published in Yan Yan, Tianbao Yang, Yi Yang, Jian-
hui Chen. A Framework of Online Learning with Imbalanced Streaming Data. In Thirty-First AAAI
Conference on Artificial Intelligence (AAAI)2017.
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exponential weighted average algorithm [83]. The selection of the optimal classifier is adaptive
and evolving according to the streaming data. I emphasize that the proposed approach is differ-
ent from the cross-validation approach, which replies on a separate validation set. Furthermore,
the proposed framework enjoys a rigorous theoretical justification for the F-measure maximiza-
tion. Empirical studies demonstrate that the proposed algorithm is more effective than previous
online learning algorithms for imbalanced streaming data.

Now we specifically explain why the method is memory-efhicient. It is designed for imbal-
anced data, where the evaluation metric is those imbalance measurements, e.g., F-measure, AU-
ROC and AUPRGC, rather than the error rate. However, this algorithm is also a framework for
in the online or stochastic setting, where large-scale datasets can be dealt with.

Specifically, the online/stochastic setting is to train the model iteratively. In each iteration, a
(subset of) training instance(s) is used to update the model. After that, the instance is dropped
and never used. The difficulty to apply these imbalance measurements in such online/stochastic
setting is their non-decomposability. Traditionally, one has to scan the entire dataset to com-
pute the measurement, so there are totally O(N x T) times of scan on instances, assuming
Nand T are the number of instances and iterations, respectively. The framework is designed
to deal with the online/stochastic setting and approximate the optimal solution to the non-
decomposable imbalance measurements. In contrast to the traditional methods, in each iter-
ation, the proposed framework scans the instance once only. The extra expense is required to
maintain several auxiliary variables which do not depend on how many instances the frame-
work scans. As a result, the framework requires O(7) times of scan on instances, removing
the dependence on N. What should be emphasized is that, no matter how large 7'is in the on-
line/stochastic setting, the memory cost only includes the storage for the single instance scanned

in the current iteration and the storage for the auxiliary variables, which is not dependent on N.

5.2 ONLINE MULTIPLE COST-SENSITIVE LEARNING

I first present some notations. Let X; € R4 denote the feature vector of the example received at

the rth iteration, and y; € {1, —1} denore its true class label. I denote by 4(x) : R4 — Ra
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Table 5.1: Notations (subindex ¢ refers to the #-th round in online learning.)

Notations Meaning ‘ Notations ~ Meaning

x; € R? feature vector L(yf(x)) loss

gy € {1, —1}  classlabel It I(fi > o)
£i() prediction func. | ¥ ”TH

fi = filxe) prediction ) m
I() indicator func. | p; € RX sampl. probs.
M;: performance measure basedon {j ,y , =1,...,r—1}

prediction function at the #-th iteration and by f; = f;(x;) the prediction on the #-th example.
Let I(4) denote an indicator function, where I(0) = 1if & is true and o otherwise. Commonly
used notations in this chapter are summarized in Table s.1.

In traditional online learning, the performance of f;(+) on the example x; is usually measured
by aloss function £(y,f;(x;)), e.¢., hinge loss £(z) = max(o,1 — 2) and logistic loss £(z) =
log(1 + exp(—z)), which are considered to be a surrogate loss of o-1 error I(sign(f;(x;)) # ).
Previous studies cast the problem into learning a sequence of classifiers £;(-), . . . , fr(+) such that
the regret defined below is minimized, Rr = >~ £(yfi(x:)) — minfz;; £(y,f(x;)). Many
online learning algorithms have been proposed to minimize the regret such as online gradient
descent [161]). However, a critique over the standard surrogate loss functions is that they ig-
nore the cost asymmetry between the majority class and the minority one. To resolve this issue,
cost-sensitive loss functions have been proposed, which give different costs to different classes:
L(fx),y) = ¢+ Xy = )l(Ax)) + c—I(y = —1)l(—f(x)), wherec = (¢4, c_) is the cost
vector that controls the balance between the two loss terms. How to decide the value of ¢, and
¢_ remains an issue. Previous works use ad-hoc approaches to set up these parameters [129].
However, there is no guarantee that these ad-hoc approaches use appropriate values for ¢4 and
¢—. Inaddition, if ¢y and ¢_ are changing during the training, it is difficult to analyze the per-
formance of the learned classifier. Another commonly used practice in batch learning is by a
cross-validation approach that tunes the values of ¢ and ¢_ based on the offline performance
on a separate validation set. Nevertheless, in online learning a separate validation set is usually
not available and even if it is available there is no guarantee that the distribution of the examples

in the validation set is the same as the received examples in online learning.
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To address these issues, I propose an online learning framework of multiple cost-sensitive
learning. The motivation is that if multiple classifiers with a number of ¢ are learned simul-
taneously, there must exist one setting that is most appropriate to the data. Without loss of
generality, [assume ¢ + ¢~ = 1and asa result one parameter ¢ € (o, 1) is needed to be set.
To construct the pool of multiple values of ¢, I discretize (0, 1) into K evenly distributed values
Stk le, 9 = j/(K+1). With the value of ¢ = 1—3;/2, the corresponding cost sensitive
loss is denoted by

E(flx),9) =(1 = 3/2)10 = DE(A1x))
(/210 = —)U(—Ax)

The reason that I divide 9]- by 2 will be clear when I present the theoretical justification. Then

(5-1)

Ilearn K sequences of classifiers fi(+), £ (+), . . . , /X (+) simultaneously in online learning, with
each sequence of ﬂ(), r=1,..., Tto minimize the associated regret R]} =T fﬁ(}‘i(xt), Ye)—
ming > d(ﬂxt) 1)

A remaining issue is how to choose a classifier from K candidates to predict X; at the ~th
iteration. Based on our motivation, a greedy approach is to track the “performance” of K clas-
sifiers and select the best performer on historical examples. However, it may lead to overfitting
problems. I thus propose a theoretically sound randomized method that selects a classifier for
prediction according to a distribution p; = (p}, ..., pX) T such that > i ])/t =1andp; > o. To

compute the sampling probabilities, I use the following formula

exp(y/M,)

J=t K (52)
wherey > oisalearning rate hyper-parameter, and M, is some favorite performance mea-
sure (the higher the better, e.¢., F-measure, AUROC, AUPRC, erc.) on historical examples

(x ,y ),7 =1,...,t — 1using the predictionsf:, e ,f;ﬂ of the j-th sequence of classi-
fiers. From the Equation (s.2), classifier with higher performance will have a higher probability
to be selected for making the prediction. Note that when y — o0, the above approach reduces

to the greedy approach. I would like to emphasize that the sampling probabilities defined above
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Algorithm 7 A Framework of Online Multiple Cost-sensitive Learning

r: Input: the number of classifiers K

2: Initialize p, = (I/K,...,I/K),ff(x) =o0,j=1,...,K
3: forr=1,...,Tdo

4: Receive an example X,

s:  Samplinga classifier £, by choosing j; according to Pr () = p}
6:  Compute a predicted label y; = sign(f] (x:))

7: Receive the true label y,

8: forj=1,...,Kdo

9: Update the classifier /;, ,(-) = AP, %e, 1)
10: Update the performance M, = M (ypr, fi.r)

m: end for

z:  Update the sampling probabilities p, according to (5.2)
13: end for

are similar to that in exponentially weighted average algorithm [83] for selecting the best expert
advice but with a key difference. In the learning with expert advice problem, the sampling prob-
abilities are computed based on the cumulative loss 'L ¢ of different experts indexed by /,
while our sampling probabilities are computed based on interesting performance measure that
is suited for imbalanced data.

Now I can summarize our online multiple cost-sensitive learning in Algorithm 7. In the re-
mainder of this section, I discuss how to update the classifier in step 9 and present a theoretical
analysis of the proposed framework of online multiple cost-sensitive learning (OMCSL). In the
next two sections, I discuss the step 10 that updates the performance for different measures.

For updating the classifier, I can use any online learning algorithms as long as they are de-
signed to minimize the regret, such as online gradient descent (OGD) [161], online dual av-
eraging [140], follow the regularized leader [67], and some specialized algorithms for online
classification including online passive aggressive learning [31], perceptron [109], ec.. Due to the
popularity and simplicity of OGD, I present the online gradient descent update. For the easy
presentation, I here consider f;() as a linear function, namely f;(x) = x"w/. I thus update wl
by:

W£+1 = W/, — ytvwﬂé(x:“r{,y,),j =1...,K (53)

where 7, is a step size hyper-parameter, which can be set to a small value or to be decreasing
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depending on the property of the loss function [161]. It is worth noting that (i) the loss function
could include a regularizer on w, e.g., — ||w||3; (ii) a bias term can be incorporated by adding

an extra constant feature to X. The proposition below provides the regret guarantee for the j-th
sequence of classifiers. For ease of presentation, I specialize to the linear function. One can easily

generalize it to a non-linear function from a RKHS.

Proposition 2. (Theorem 3.1 [54]) Let the linear prediction function ﬂ(x) = x"wl be updated
based on (5.3) and W, be the optimal prediction function that minimizes the cumulative cost-

sensitive loss S EJ;(WTX,,yt). Assume that vad(yx—rw)

< Gand Hw]*

< D. By

setting 5, = GL\ﬂ" then I have

T T
R]T = Zéjc(ﬁ(xt)ayt) - Zejf(x;rwj%yf) < 3GDﬁ?

. . . . R/T 3GD
which implies that the averaged regret converges ro zero at a rate of 1 / VT, ie, + < N

Next, I analyze the updating rule of sampling probabilities in (5.2). I first present a proposi-

tion below and then provide an explanation of it.

Proposition 3. Let M; = (M., ..., M)" and p, updated according to (5.2). Then there
existsay > o such thatp;[MT > maxxgngM} — (V1 4+ VVrlogK), where Vi =

23T M, — M, || oo i the scaled sum of consecutive variation of the performance measure.

From the proposition above, I can see that when the variation of the performance measure
is small, the expected performance of the selected classifier (the L.H.S of the inequality) is close
to the best performance measure (the R.H.S). T emphasize that the lower bound of pJ- M in
Proposition 3 is by no means tight. It only explains to some degree why the employed sampling
probabilities make sense. Bounding the online performance of an non-decomposable measure
(e.g., F-measure, AUROC and AUPRC) is still very challenging. In next section, I provide a

theoretical analysis of the proposed framework for the F-measure optimization.

73



5.3 OMCSL rFOR F-MEASURE

In this section, I first present how to update the online F-measure, and then show that OM-
CSL has a solid theoretical foundation for F-measure maximization, in which the best classifier
among the K classifiers will eventually yield a close-to-optimal F-measure provided that K'is
sufficiently large.

Given a sequence of labels y,, . . ., : and a sequence of predictions fi, . . . , f;, I can calculate

the F-measure by /4y, = S 2:% i%’ll}? wherey, = (yr +1)/2 € {1,0}andy, =
I(f; > o). However, directly calculating the online F-measure by going through all examples
is expensive, which requires to store all predictions f;(x;) and y;. Indeed, the online F-measure
can be calculated incrementally. To thisend, Iletz, = >' _ 5 3 ande = > _ 5 +

Zr _. 9 . ThenIcan calculate F;y, = ZC—‘? and update 4; and ¢; incrementally by

ay + I, if)/t+1 = Iandﬁdrl > o,

At =
4y, otherwise;
¢+ 2, if yrpy = 1and fry, > o,
Cr1 = o+, ifyt+1 =10rfr4; > O, (5-4)

¢, if yp4n = —1and fry, < o.

5.31 A THEORETICAL JUSTIFICATION

I show that when Kis sufficiently large, there exists a sequence of classifiers among the K se-
quences that will eventually converge to a classifier that has a close-to-optimal F-measure. To
this end, I assume the data is i.i.d. The analysis is built on several previous works on the F-
measure maximization [97] and the theory of consistency for cost-sensitive surrogate loss min-
imization [105]. To present the results, I first give some notations. Let h(x) € H : R4 —
{1, —1} denote a classifier and e(h) = (&,(h), e.(h)) " denote the false negative (FN) error and

false positive (FP) error of h(x), respectively, i.e., e,(h) = Pr(y = 1,h(x) = —1), ¢e(h) =
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Pr(y = —1,h(x) = 1) where Pr(-) denotes the probability over (x, ). When it is clear from
the context, I write € = e(b) for short. Let P, denote the marginal probability of the positive
class, i.e., P, = Pr(y = 1). Then the F-measure of 4(-) on the population level can be computed
by [o7] F(b) £ He) = 2% Lete(r) = (1 — 5, ). The following proposition

exhibits that maximizing F-measure is equivalent to minimizing a cost-sensitive error.

T

Proposition 4. (Proposition 4 in [97]) Let F, = maxe F(€). Then I have e, = arg mine c(Fy)'e &

Fle,) = F,.
The above proposition indicates that one can optimize the following cost-sensitive error

c(F)Te = < - F) ot e, (5:5)
2 2
to obtain an optimal classifier #*(x), which will give the optimal F-measure, i.e., F(b*) =
F,. However, the cost-sensitive error in (5.5) requires knowing the exact value of the optimal
F-measure. To address this issue, I discretize (o, 1) to have a set of evenly distributed values
{9, ..., 9} such that &, — 9 = ¢,/2, which serve as the candidate values of F;. Then I

can solve for a series of K classifiers to minimize the cost-senstive error
N7 N7
* . ) ] _ T :__
bj—arggé%r{lc—z el—l——zez—c(Sj) ej=1...,K (5.6)

This explains our choice of 9;/2 in (5.1). The following proposition shows that there exists one
classifier among {47, - - - , bj} that can achieve a close-to-optimal F-measure as long as ¢, is

small enough.

Propositions. Let {3y, ..., 9k} be a set of values evenly distributed in (o, 1) such that 3y, —

S = ¢o/2. Then there exists by € {b}, -, b} such that F(b;) > F, — * PI"B, where

B = maxe ||€]|,.

Remark: The above proposition also implies an interesting result that the smaller P, (i.e.,
more imbalanced of the data), the larger gap between F(/o}k) and F (i.e., more difficult to opti-

mize the F-measure).
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Proposition 5 only provides the guarantee on the optimal classifiers {7, - - -, bk }. In prac-
tice, one cannot obtain these optimal classifiers because the distribution of the data is unknown.
The following proposition shows that as long as the obtained classifiers achieve a cost-sensitive

error close to the optimal classifiers, a similar guarantee to that in Proposition s holds.

Proposition 6. Let {$, ..., 3k} be a set of values evenly distributed in (o,1) such thar 3;1, —
Sj = ¢o/2. Let {by, ... by} be aset of classifiers that minimize the cost-sensitive errors in (5.6)
10 a certain degree such that C(Sj)Te(/;j) < C(Sj)Te(bf) + &. Then there exists l;j such that

F(éj*) 2 F* _ W, w19€7'€B - ma‘Xe HeH?-

Remark: The result in Proposition s is a special case of Proposition 6 when ¢, = o. Proposi-
tion 6 is a corollary of Proposition s in [97].
Finally, I are ready to present the theoretical guarantee on the presented OMCSL algorithm

for the F-measure maximization.

Theorem 1. Let {$,, ..., 9} be a set of values evenly distributed in (o, 1) such that 3, — % =
¢o/2 Wit =1,..., T be a sequence updated according to (5.3) based on the j-th cost-sensitive loss
in (s.1) such that |Wh||, < D, and W = N\T wl/T. Assume (x0,9:),t = 1, ..., T are i.i.d,
samples such that ||x.||, < R and the loss function {(z) = max(o,1 — ) is the hinge loss. There
exists aj € {1,..., K} with a probability x — 9 such that

2608+ 3RD(1 + In(2/9)) /T

F(}.) > F, — »

where Z/T(X) = Sl;gi’l(XTV/\\/jT).

Remark: The theorem implies that when 7" — 00, there exists a classifier /. = sign(x ' W)
achieves a close-to-optimal F-measure as long as ¢, is small enough. The proof is presented in the

supplement.
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Figure 5.1: Online performance.
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5.4 OMCSL ror AUROC anp AUPRC

In this section, I briefly present how to update AUROC and AUPRC in an online fashion.
The challenge of updating AUROC and AUPRC in the online setting lies at that I need to
compare the present example to historically received examples in terms of predictions. A naive
way to achieve this is to store the labels and predictions of all classifiers for historically received
examples. However, this would increase the memory requirements, which is usually not al-
lowed in online learning. To avoid storing the labels and predictions of all examples, I intro-
duce two hash tables Z; and " with a fixed length of 7 that partitions (o, 1) into 7 ranges
(o,1/m), (1/m,2/m), ..., ((m —1)/m,1). Fori € {1,...,m}, L} [i] stores the number of pos-
itive examples before the #-th iteration (including the #th iteration) whose predictions fare such
that o(f) € [(i —1)/m, i/m) T, and L; [4] stores the number of negative examples before the #-th
iteration (including #th iteration) whose predictions fare such that o(f) € [(i —1)/m, i/m).
Given L; and L, , 1 can show that AUROC,, can be updated approximately using the two

hash tables. In particular, if y;,, = 1, T have

Zﬁ— . i
AUROC;y, = ——AUROC + ———— [ > L[]+ L i+ ,
a 2“‘1’ +1 ' ( t +I>2 Qt j=1 ! []] ! [Z I]/Z

where 7 is the largest index such that i/m < ¢(f;4.), and if y;4, = —1, [ update it by

Ny —
AUROCs, = ~=—AUROC, + m S LA+ L) |
t t t

Jj=i+1

where i is the smallest index such that i/m > o(fi1).

Similarly, by using Z;” and Z;, I derive the online update of AUPRC; as below: AUPRC,,

EYRE) — RO+ ))(P() + PG+ 1)), whereR() = 2 anapy =

S Ll
S L S L ]
is O(m). Detailed development of the online update of AUROC and AUPRC can be found in

. The overall time complexity of computing AUROC,, and AUPRC,,

To(f) is the sigmoid function defined in Table s.1.
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Table 5.2: Data statistics.

Datasets | #Examples | #Features | #Pos:#Neg
covtypervs 211,840 54 1:22.3
w8a 64,700 300 1:32.5
aloi-1 108,000 2.8 1:999

Table 5.3: Average prediction performance on the testing set over 25 trials.

Methods covtypervs w8a aloi-1
Fmeasure | AUROC | AUPRC | Fmeasure | AUROC | AUPRC | Fmeasure | AUROC | AUPRC
OPAUC - 0.9813 - - 0.9602 - - 0.9993 -
OFO-h 0.7071 - - 0.6616 - - 0.2596 - -
OCS;-h 0.5204 0.§000 | 0.4999 0.4948 0.4761 0.4726 0.3148 0.428§ 0.3148
0OCS,-h 0.503§ 0.503§ 0.4820 0.4478 0.4478 | 0.4478 0.1062 0.1204 0.0311
i00B-h o.1180 - - 0.0837 - - 0.0021 - -
iUOB-h 0.1174 - - 0.0839 - - 0.0021I - -
OMCSL-h | 0.6449 0.9809 | 0.7042 0.7147 0.9598 0.7087 0.4560 0.9996 0.7732
OFO-1 0.6600 - - 0.6325 - - 0.1407 - -
0OCS;-1 0.5230 0.5627 0.5230 0.5156 0.5156 0.6381 0.4473 0.4966 | 0.6176
0CS,-1 0.5044 0.5044 | 0.5044 | ©0.4405 0.4$11 0.6241 0.1429 0.0237 | 0.4760
i0OOB-1 0.1356 - - 0.0907 - - 0.0038 - -
iUOB-1 0.1256 - - 0.0903 - - 0.0026 - -
OMCSL-1 0.6597 0.9823 0.7187 0.6891 0.9551 0.7086 0.5197 0.9998 0.8208

T Suffixes “-h” and “-1” stand for the algorithms with hinge loss and logistic loss respectively. The top
results are in bold.
" For OFO and OPAUC which directly optimize a specific measure, I omit their results in other measures

indicated by “~”. iOOB and iUOB are resampling based ensemble algorithms which predict a new in-
stance by voting, rather than decision values. Therefore, AUROC and AUPRC are unavailable, indicated
by (‘_’,.

Appendix C.

5.5 EXPERIMENTS

In this section, I evaluate OMCSL for optimizing three measures, F-measure, AUROC and
AUPRC, and compare with competing online learning algorithms on three public imbalanced
datasets. Table .2 lists the statistics of used three datasets. To construct imbalanced data from
multiclass datasets covtype, I sample instances of the fifth class as positive and instances of the
first class as negative, denoted by covtype1v5. Similarly, for aloi, I sample instances of the first
class as positive, and the rest as negative, denoted by aloi-1. For each dataset, I randomly sam-
ple 4/5 instances as the training set and the rest 1/5 as the testing set. I repeat the experiment on
25 various random splits and report the average results.

I compare the proposed OMCSL method with several state of the art online learning algo-

rithms, namely OCS,, OCS, [129], OFO [19], OPAUC [47], and iOOB, iUOB [131]. Among
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Table 5.4: Average absolute error between ¢ predicted by OMCSL and ci.

covtypervs w8a aloi-1
Fmeasure | AUROC | AUPRC | Fmeasure | AUROC | AUPRC | Fmeasure | AUROC | AUPRC
OMCSL-h 0.010 0.004 0.052 0.059 0.052 0.137 0.084 0.016 0.154
OMCSL-1 0.005 o o 0.078 0.023 0.127 0.144 0.003 0.165

Methods

them, OFO and OPAUC directly optimize the target measures (i.e., F-measure and AUROC,
respectively), OCS, and OCS, are both cost-sensitive online methods, iOOB and iUOB are re-
sampling based ensemble methods (oversampling and undersampling). Since the latter two
algorithms apply voting to predict a new instance, rather than decision values, I only compute
F-measure for them. To examine the performance of using different loss functions, I investigate
both the hinge loss and the logistic loss in the experiment and denote these two loss functions
by suffixing “-h” and “-1” to the corresponding methods respectively. Note that OPAUC is de-
signed only for square loss, thus I only report one result for OPAUC. The details of hyperpa-

rameters of these methods can be found in Appendix D.

5.5.1 RESULTS

I evaluate and compare both online performance on training data and testing performance on
testing data. Note that the testing performance is to evaluate the returned models on the testing
data in batch, which demonstrates the generalization ability of different online learning algo-
rithms. Table 5.3 lists the prediction performance on testing data of various algorithms. Fig. s.1a,
Fig. s.1b and Fig. s.1c demonstrate the averaged online performance (i.e., F-measure, AUROC
and AUPRC) of various algorithms on three datasets over 25 trials. As can be observed from
both online performance and testing performance, OMCSL achieves better performance than
cost-sensitive online algorithms and resampling based online algorithms. The three figures also
exhibit a clear trend that when the ratio of positive examples to the negative examples increases,
the advantage of OMCSL becomes more striking. Compared to the methods that directly opti-
mize target measure, i.e., OFO and OPAUC, OMCSL achieves competitive if not better perfor-
mance.

An important reason that OMCSL achieves satisfactory performance is the capability to se-
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lect a close-to-optimal cost vector [c4, ¢ ], which is also exhibited by our theoretical analysis for
F-measure optimization. To investigate this property, I perform online cost-sensitive learning
with the same costs used in OMCSL, i.e., ¢ = {o.55,0.60, 0.65, ..., 0.95 }, respectively to find
the best cost according to the overall online performance, which I denote by ¢, . To compare the
selected best cost (corresponding to the largest selection probability) by the proposed OMCSL,
I average cy selected by OMCSL in the last 5,000 iterations as an estimate of the best cost, which
I denote by ¢;. Then I compute the absolute error between ¢ and ¢, i.e., err = |} — ¢4, and
report the average error over 25 trials in Table 5.4. Our observation is that ¢ predicted by OM-
CSL is often close to ¢, given that the step length for search of ¢ is set to 0.05. This property is
particularly crucial in the online scenario due to the requirement of going through the training

data only once. The proposed OMCSL provides an accurate estimation of the optimal cost.

5.6 CONCLUSION

This work presents a unified online learning framework for imbalanced data. The proposed al-
gorithm simultaneously trains multiple classifiers with various costs, and predicts by randomly
selecting a classifier based on a distribution determined by online performance of individual
learners. A rigorous theoretical justification for the F-measure maximization is provided. Em-
pirical studies show the superior performance of OMCSL and its capability to select satisfactory

Costs.

5.7 APPENDIX A: PROOF OF PROPOSITION 3

Letr; = M, — M,_,and M, = o. Then M, = Zt _, T+. Then by induction, I can show that

o= ﬂ}_léxp(ﬂ) |
i P exp(y7t)

As a result, the update of p; can be considered as the mirror descent update for the linear loss
:(p) = —p ' r; using the negative entropy function w(p) = _, p; In p; as the potential func-

tion. In particular, let V(p, q) = a(p) — w(q) — Ve(q)' (p — q) = 32 p; ln% denote the
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Bregman distance induced by w(p), and A = {p € RX;p > 0,3°% p; = 1}. Then the update

of p; is equivalent to

vw(‘]t) = vw(pt—l) + o1
pr= mln V(p,ar)

The following lemma establishes the regret bound the above update.

Lemmat. [54/ Let py be updated according to (5.7). Then for any p € A I have

T
—zwzp < TEP) LTS e,

Since p, = (1/K, ..., 1/K) 7, then

Vip,pr) = Zp,ln Kp;) <InK

i=1

Thus,

T T MK &
- ijrt + ZPTI} < 7 + S Z M — M,[5%
=1 =1 t=1

Then

T T T
- Zplrt + Z(pr —p) e+ Z p'r

In K
= 7""}/2 ‘Mt M;-, H

By noting that Z;‘T:I r; = Myandr, = M; — M,_,, I have,

prMr > p Mr+ Z(PT —pr)" - M)+

t=1

InK r
== IS M - M
?/ 2 =1
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By the definition of V7 = 231 |M, — M,_,||%.. Lety = 21/In K/ V7, then

In K
Ky

T
» ZZHMt—MHIIQOS Vrln K

t=1

Z(Pt _PT)T(Mt - M;,)

T
< Z H(Pt _PT)HIHMt -~ Ml

t=1
T

< ZZHMt - MtﬂHoo =Vr

t=1

As aresult

PIMT ZPTMT — VT — 1/ VTth

Since the above inequality holds for any p € A, then

p—erT > Il’laAX])TMT — (VT—|— vV VThlI()
pe

= maXMIT — (VT+ vV VTIHIC)

1</<K

5.8 APPENDIX B: PROOF OF THEOREM I

From Proposition 1, I have

I e I 3DR
- J (e T xrd _r (o T < 2
72 O wlon) = Db o) <

Lemma2. Let th', t =1,..., T beasequence updated according to (5.3) based on the j-th cost-
sensitive loss in (5.1) such that HWJt”z < D, and VAVJT =3I Wj,/T Assume (X¢, y;),t =

1,..., Tareiid. samples such that ||x||, < R and the loss function {(z) = max(o,1 — z) is the
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hinge loss. With a bigh probability 1 — 9, I have

T
Exy 6 W) < 2.3 4] why) + DRy [ ZIn (5

=1

The above lemma is a result of the Corollary 2 in [22] by noting that é (X;ijt" ) € [0, DR]

due to the non-negativity and the Lipschitz continuity of £(wTx,y)and |x; Wi < DR.

Lemma3. Assume (X¢,y:),t = 1,..., T are ii.d. samples such that ||x:||, < R and the loss
function {(z) = max(o,1 — z) is the hinge loss. For any W such that ||w.|, < D. With a high

probability 1 — 9, I have
I — 1 1
T T
thlgjf(xt W 31) < By [le(x wh,y)] + DR —rn (5)

The above lemma is a result of Hoeffding bound [16] by noting that £(w, x;, y;) € [o, DR].

Combining the above two lemmas and Proposition 1, I have with a probability 1 — 24

- 3DR N 3DRy/In(1/9)
T

B,y [le(x" w},2)] = By [Ux" W p)] < JT VT

This proves the first inequality in Theorem 1. To prove the second inequality, I leverage the
calibrated result in [105]. In particular, since iz, y) = (1 = 9/2)l(2) + $/20(—2) is 9j/2
classification calibrated, therefore the excess risk for the surrogate loss indicates the excess risk for

the cost-sensitive error. Let W, be the solution to min||w,<p E(x,y) [&(x"w,y)]. By using the

consistency result for the weighted hinge loss, I have

c(%) Te(Hy) — (%) Te(H.)

< Exy[lh(x"wh,y)] — Eq ) [E(x W, )]

which then implies the second inequality. The the third inequality is proved by leveraging the

result in Proposition s.
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5.9 APPENDIX C: DETAILED DEVELOPMENT OF ONLINE AUROC anp AUPRC

AUROC is defined as the area under the receiver operating characteristic (ROC) curve (i.e., true
positive rate versus false positive rate), and AUPRC is defined as the area under the precision-
recall curve. A traditional approach to calculate both measures is based on empirical curve using
trapezoidal estimation. However, this approach needs to go through all examples at every itera-
tion and needs to store the labels and predictions of all examples, which is expensive for big data.
Below, I develop online updates for approximating the two measures. The key to our develop-
ment is to use an efficient data structure.

For AUROC, I use the following analytical definition [156]:

AUROC; =AUROC(y,., fi:r)

YN Ik > Ax) .
- NN, ’ >

where {x;", ..., x;'v' f} are positive examples and {x,", .. ., va}} are negative examples. Now,
I present an online update for computing AUROC,, based on AUROC; with a new example
X¢4+, whose true label is y,, and prediction is given by f{Xy,). I consider two scenarios, 4, =
rand yp4, = —1L

Ifyryy = L N, = N +1and N;,, = N; . Then

AUROC,,

X SR LA > AX) + S W fxen) > Ax)))
B (N + )Ny

N:

N : )
=N AUROC (g & M) > 1657) 59
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Ifyrys = —1, N;'H = N; and N, = N; +1Then

AUROC,,,
SNSN TAx) > Ax) + SV LA > fxen)
_ L=t L= i j
NS (N7 +1)
I il
= , IAUROCt + m ;I(f(xj’) > AXtt1))- (5.10)

From above I can see that given AUROC,, the additional computation of AUROC,, is to
count how many negative examples before # + 1 have smaller prediction than x,, if it has a
positive label or count how many positive examples before ¢ + 1 have larger predictions than
X+, if it has a negative label. To avoid storing the labels and predictions of all examples, I in-
troduce two hash tables ;7 and L' with a length of  that partitions (o, 1) into 7 ranges
(o,1/m), (1/m,2/m),...,((m — 1)/m,1). Fori € {1,...,m}, L;[{] stores the number of
positive examples before the zth iteration (including #th iteration) whose predictions fare such
that o(f) € [(i —1)/m, i/m)*, and L; [4] stores the number of negative examples before the #-th
iteration (including #th iteration) whose predictions fare such that o(f) € [(i — 1)/m, i/m).
Given a new example X; 4, if y+, = 11first find the largest i such thati/m < o(fi4,) then
estimate the number of negative examples whose predictions are less than f;, by ZLI L[]+
L; [i + 1]/2;if yp4, = —11first find the smallest 7 such thati/m > o(f;1,) then estimate the
number of positive examples that are larger than f;;, by Z - L[/l + L [i] /2. Here, the half
terms L; [i + 1) /2 and ;" [#] /2 are added assuming that the predictions in (i/m, (i + 1) /m] are

uniformly distributed. To summarize, if y;1, = 1 the AUROC,, is updated by

AUROCG;, = AUROC;

t
N +1

W ZL Jl+ L [i+1/2], (s.11)

*7(f) is the sigmoid function defined in Table s.1.
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where i is the largest index such that i/m < ¢(f;4,) and if y,4, — 1it will be updated by

AUROC,,, =

AUROC;

;I

+ m Z L+[] —|— L+ } 5 (5.12)

Jj=it+1

where 7 is the smallest index such that i/m > ¢(f;+,). After this, I need to update Z;" or Z;”
accordingly. The overall time complexity for updating AUROC,, is O(m) independent of the
size of data.

Next, I consider how to update AUPRC incrementally. Our method is based on a number
m of recall and precision values of predictions. In particular, at the #th iteration given y,, . . ., 3
and predictions f;, . . . , /3, I let R(7) and P(7) denote the recall and precision, respectively, when

the threshold of sigmoid prediction is given by 7 /m,ie.,

rg = Z =l )2 dmny =)
_Zt _ o‘(f >i/mNy =1
= ST _1(e(f ) > ijm) : (5.13)

Then AUPRC,4, can be estimated by

m—1

AUPRC,y, = > (R(i) = R(i+1))(P(i) + P(i + 1)) /2. (5.14)

Using the two hash tables Z;" and Z;, I can compute R(7) and P(:) by

ZJ i+1 L+[]] Z] i+1 L+[]]

RO == P(i)zzj’ii+lLr[zJ+Zf:i+1L7 i)

(5.15)
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Conclusion

In this dissertation, I investigate the solutions of machine learning algorithms to handle the
large-scale data. I mainly focus on two aspects of the scalability of machine learning algorithms,
i.e., the computational cost and the memory cost, and the thesis investigates three potential
approaches to deal with the large-scale problem, i.e., improving the computational efficiency
of the algorithms (Section 2), reducing the scale of the used training data (Section 3 and 4) and
reducing the memory cost (Section 5). By these sections, such three angles provide some insights
and techniques that can be used in the future large-scale problems.

Particularly, I analyze four realistic machine learning tasks, i.e., matrix completion by maxi-

mum margin matrix factorization, semi-supervised learning by label aggregation, active learning
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for image classification by privileged information and online learning for imbalanced data. I in-
vestigate the computational cost in the first three tasks, and focus on the memory cost in the last
task. The contributions of this dissertation are summarized in the subsequent paragraphs.

In Chapter 2 [147], I present a new maximum margin matrix factorization algorithm for
matrix completion. To cope with the scalability issue and the latent factor detection issue of
existing methods for maximum margin matrix factorization, I propose an active Riemannian

subspace search for M?F (ARSS-M?F). The main contributions of this chapter are as follows:

* Leveraging the nonlinear Riemannian conjugate gradient, I propose an efficient block-
wise nonlinear Riemannian conjugate gradient (BNRCG) algorithm, which reconstructs
X and learns multiple thresholds 3 in M?F in a joint framework. Compared to existing

M3F algorithms, the proposed algorithm is much more efficient.

* Based on BNRCG, I proposed the ARSS-M?F method which applies a simple and ef-
ficient pursuit scheme to automatically compute the number of latent factors, which

avoids expensive model selections.

* Extensive experiments on both synthetic data sets and real-world data sets demonstrate

the superior efficiency and effectiveness of the proposed methods.

In Chapter 3 [148], I present a semi-supervised learning algorithm which significantly de-
creases the computational complexity compared with those requiring matrix Laplacian. This
chapter focuses on the two challenges of semi-supervised learning, i.e. scalability and robustness.
Inspired by crowdsourcing [111, 116 ], I propose an efficient RObust Semi-Supervised Ensemble
Learning (ROSSEL) method to approximate ground-truth labels of unlabeled data through ag-
gregating a number of pseudo-labels generated by low-cost weak annotators, such as linear SVM
classifiers. Meanwhile, based on the aggregated labels, ROSSEL learns an inductive SSL classi-
fier by Multiple Label Kernel Learning (MLKL) [77]. Unlike most existing SSL algorithms, the
proposed ROSSEL requires neither expensive graph Laplacian nor iterative label switching. In-
stead, it only needs one iteration for label aggregation and can be solved by an SVM solver very

efficiently. The major contributions are listed as follows,
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* Leveraging an ensemble of low-cost supervised weak annotators, I propose ROSSEL to
efficiently obtain a weighted combination of pseudo-labels of unlabeled data to approxi-

mate ground-truth labels to assist semi-supervised learning.

* Instead of simple label aggregation strategies used in crowdsourcing (e.g.majority voting),
ROSSEL performs a weighted label aggregation using MLKL. Meanwhile it learns an
inductive SSL classifier, which only requires one iteration and linear time complexity

w.r.t. number of data and features.

* Complexity analysis of several competing SSL methods and the proposed method is

provided.

In Chapter 4 [146], I present an active learning algorithm for image classification by privi-
leged information. To ensure the samples selected by the active learning algorithm to be repre-
sentative, I exploit the diversity measurement, such that the selected samples are less similar to
each other. I formulate a ratio objective function to maximize cross-media uncertainty and min-
imize the similarity of selected data. Then I propose to measure uncertainty and diversity for
training sample selection [152]. A new optimization method is proposed to solve the proposed
model, which automatically learns the optimal ratio of uncertainty to similarity. In this way, I
avoid introducing the trade-oft parameter between the two types of measurements. Compared
to the general SDP solver, the proposed optimization algorithm can be computationally afford-

able for large-scale data. The main contributions of this chapter are summarized as follows:

* By exploiting privileged information, I propose a new notion of cross-media uncertainty
measurement, which measures the uncertainty of unlabeled images by jointly consider-
ing visual features as the main information and text features as the privileged informa-

tion.

* I propose a new method to optimize the objective without using the trade-off parameter

between diversity and uncertainty.
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In Chapter s [149], I present an online learning for imbalanced data. In this chapter, I present
a unified framework for learning with imbalanced streaming data that is easily adapted to difter-
ent performance measures. The proposed framework simultaneously learns multiple classifiers
with various cost vectors. In particular, at each iteration, the prediction is made by a classifier
which is selected randomly according to a sampling distribution, which is updated based on the
current performance measures of classifiers, similarly to the well-know exponential weighted av-
erage algorithm [83]. The selection of the optimal classifier is adaptive and evolving according to
the streaming data. I would like to emphasize that the proposed approach is different from the
cross-validation approach, which replies on a separate validation set. Furthermore, the proposed
framework enjoys a rigorous theoretical justification for the F-measure maximization. Empirical
studies demonstrate that the proposed algorithm is more effective than previous online learning

algorithms for imbalanced streaming data.
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