Translating Arabic as Low
Resource Language using
Distribution Representation and

Neural Machine Translation
Models

by
Ebtesam Almansor

A dissertation submitted in fulfilment of the requirements for the degree

Master of Science (Research) in Computing Sciences

ZUTS

School of Biomedical Engineering
Faculty of Engineering and Information Technology

University of Technology Sydney

August 2018



Acknowledgements

The research in this thesis would not have been possible without the encouragement
and support of special people. Firstly, special thanks to my God for helping throughout
this research journey. I would like also, to express my sincerest appreciation to my
supervisor, Dr. Ahmed Al-Ani who has motivated and supported me generously
through this research project. Also I appreciate his patient, kindness and insightful
discussion and creative suggestions.

Additionally, special thanks to my beloved father (Hussain) and my much-loved
mother (Thagebah), loving husband (Hadi), our new born baby (Hamad), brothers,
sisters and friends (Hayat, Alaa, Fatima, Asma, Shima, Wafagah, Nora, Alaa and
Aliah) for their support, inspiration, unfaltering belief in my work and confidence in
me, and their patience during my time of intense work where without this, this Master

degree would never have been completed.



Certificate of Original Authorship

I certify that the work in this thesis has not been previously submitted for a degree
nor has it been submitted as a part of the requirements for other degree except as fully
acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received
in my research work and the preparation of the thesis itself has been acknowledged. In
addition, I certify that all information sources and literature used are indicated in the

thesis.

Production Note:
Signature removed prior to publication.

Ebtesa‘rAnu%HISr%a%os%)%



Abstract

Rapid growth in social media platforms makes the communication between users easier.
According to that, the communication increased the importance of translating human
languages. Machine translation technology has been widely used for translating several
languages using different approaches such as rule based, statistical machine translation
and more recently neural machine translation. The quality of machine translation
depends on the availability of parallel datasets. Languages that lack sufficient datasets
have posed many challenges related to their processing and analysis. These languages
are referred to as low resource languages.

In this research, we mainly focused on low resource languages, particularly Arabic
and its dialects. Dialectal Arabic can be treated as non-standard text that is used in
Arab social media and need to be translated to their standard forms. In this context,
the importance and the focus of machine translation have been increased recently.
Unlike English and other languages, translation of Arabic and its dialects have not
been thoroughly investigated, where existing attempts were mostly developed based on
statistic and rule-based approaches, while neural network approaches have hardly been
considered. Therefore, a distribution representation model (embedding model) has
been proposed to translate dialectal Arabic to Modern Standard Arabic. As Arabic is
a rich morphology language that has different forms of the same words the proposed
model can help to capture more linguistic features such as semantic and syntax features

without any rules. Another benefit of the proposed model is that it has the capability



to be trained on monolingual datasets instead of parallel datasets. This model was
used to translate Egyptian dialect text to Modern Standard Arabic. We also, built a
monolingual datasets from available resources and a small parallel dictionary. Different
datasets were used to evaluate the performance of the proposed method. This research
provides new insight into dialectal Arabic translation.

Recently, there has been increased interest in Neural Machine Translation (NMT).
NMT is a deep learning based model that is trained using large parallel datasets with
the aim of mapping text from the source language to the target language. While
it shows a promising result for high resource translation languages, such as English,
low resource languages face challenges using NMT. Therefore, a number of NMT
based models have been developed to translate low resource languages, for instance
pre-trained models that utilize monolingual datasets. While these models were used
on word level and using recurrent neural networks, which have some limitations, we
proposed a hybrid model that combines recurrent and convolutional neural networks

on character level to translate low resource languages.
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