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Abstract 

Emerging contaminants pose health threats to flora and fauna even at trace level 

concentrations. Among these pollutants, estrogenic steroidal hormones such as estrone 

(E1), 17β-estradiol (E2), estriol (E3) and 17α-ethynylestradiol (EE2) are known to 

cause endocrine disruption, especially in aquatic systems. The successful treatment of 

these chemicals in water requires advanced oxidation processes (AOPs) in addition to 

the conventional treatment methods. Photocatalysis by TiO2 that utilises free radicals 

for the photodegradation of organic pollutants is an AOP that has attracted recent 

research interest.  

TiO2 photocatalysis face challenges such as its inability to degrade pollutants under 

visible light irradiation, the requirement for suitable immobilisation techniques for 

catalyst reuse and the need for appropriate methods to transmit light over long 

distances including under water. Each of the aforementioned shortcomings should be 

addressed for TiO2 to be successfully applied.  

This study focusses on addressing the challenges to effectively degrade estrogenic 

steroidal hormones using TiO2 photocatalysis. Commercial Aeroxide P25 TiO2 was 

modified with gold nanoparticles to achieve visible light photocatalytic activity. Au-

TiO2 photocatalysts were synthesised using deposition-precipitation (DP) method and 

characterised using thermogravimetric analysis (TGA), X-ray diffraction (XRD), 

Raman spectroscopy, UV-Vis spectroscopy, scanning electron microscopy (SEM), 

inductively coupled plasma mass spectrometer (ICP-MS), zeta potential and particle 

size analysis. 
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The performance of the new catalysts was compared to that of commercial P25 TiO2 

under different LED light sources: UVA, cool white and green. For the degradation of 

E1, E2, E3 and EE2, 0 – 8 wt.% gold loadings to P25 TiO2 were studied, where 4 wt.% 

Au-TiO2 was found to provide the fastest degradation rate of the pollutants. The 

catalysts’ performance decreased for the light sources in the order, UVA > cool white 

> green light. Photocatalysis of E1 (1 mg l-1) was found to follow pseudo 1st order 

kinetics. E1 degradation was significantly more efficient by using 4 wt.% Au-TiO2 

than P25 TiO2 under UVA (k = 0.28 ± 0.01 min-1 vs. 0.01 min-1) and cool white light 

(k = 2.44 ± 0.36 h-1 vs. 0.06 ± 0.01 h-1). The photocatalytic activity under visible light 

decreased in the order: 4 wt.% Au-TiO2 > 8 wt.% Au-TiO2 > 2 wt.% Au-TiO2 > 1 wt.% 

Au-TiO2 > P25 TiO2. The enhanced activity of the Au-TiO2 catalysts was attributed 

to the gold nanoparticles acting as electron sinks to minimise electron-hole 

recombination under UVA and due to increased absorption of light in the 500-600 nm 

wavelength as a result of localised surface plasmon resonance (LSPR). 

The stability of the catalysts for reuse is an important factor for consideration in 

photocatalysis. This was studied by reusing the catalysts over three cycles, for the 

photodegradation of E1. After three cycles of photocatalysis, the activity did not 

diminish by any significant amount (< 3%), showing the reusability of the 

photocatalysts. The detection and identification of photodegradation by products is 

important to understand the degradation mechanism of the pollutants. The 

photodegradation by-products of E1 were identified using QTOF-LC-MS and a 

possible degradation pathway was proposed. Four E1 by-products were identified, of 

which one was lumiestrone and the other three were hydroxylated forms of E1. In 

addition, the photoproducts were also degraded with further photocatalysis.  
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The constituents of water influence the rate of photodegradation of pollutants. The 

photocatalytic rate of E1 were studied using three different water matrices – ultrapure 

water (UPW), synthetic waste water (SWW) and wastewater effluent from membrane 

bio-reactor (WW). The photodegradation rate of E1 decreased for the water matrices 

in the order, UPW > SWW ≈ WW. This may be due to the negative effects of the 

constituents present in wastewater. 

The recycling of photocatalysts is a major challenge faced by TiO2 suspended 

catalysts, since the costs of separating the catalysts from the water is not economical. 

The immobilisation of the catalysts onto different substrates is considered as an 

alternative, in the expense of lost catalyst surface area. Here, the photocatalysts were 

coated onto glass beads using a simple dip coating technique followed by drying, 

calcination and washing with water to remove any loosely bonded catalysts. The 

immobilised catalysts proved to be capable of photodegrading EE2. The catalysts were 

easily reused by removing the glass beads, washing and drying them in furnace.  

Transmitting light over long distances and underwater currently restricts the 

application of TiO2 photocatalysis to the surface layer of water. This study addresses 

this limitation with: (i) a novel modified air-clad optical fibre and (ii) a flexible 

waterproof LED strip, reactor systems. The silica core of the air-clad fibres were 

capable of transmitting UVA and white light emission whilst the higher numerical 

aperture of the air-clad fibres compared to the conventional fibres enabled higher 

transmitted powers, effectively translating into significantly lower energy 

consumption. Efficient side emission of light from the optical fibres was obtained by 

collapsing the air-holes of an air-clad optical fibre using a fusion splicer. The optical 

fibre utilised photocatalytic reactor system efficiently removed the pollutants under 
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UVA, where 4 wt.% Au-TiO2 showed enhanced activity compared to P25 TiO2. The 

rate of photodegradation for both the catalysts was found to follow pseudo 1st order 

kinetics. EE2 t1/2 under UVA were 1.26 h and 0.78 h, in the presence of P25 TiO2 and 

the gold modified catalysts, respectively. The catalysts as well as the fibres were found 

to be stable for multiple reaction cycles with small loss of activity at the end of each 

cycle (6% decrease in degradation efficiency was noted after three cycles). A white 

light waterproof LED strip reactor showed good removal efficiency for the pollutant 

E3 in the presence of Au-TiO2 photocatalysts, following pseudo 1st order kinetics with 

k = 0.13 h-1 and t1/2 = 4.62 h. No degradation of the pollutants was observed in the 

absence of the catalysts (photolysis). There was no change in the E3 concentration 

after the initial adsorption under darkness in the presence of P25 TiO2, since it is 

inactive under visible light. Thus, air-clad optical fibres and the flexible waterproof 

LED strips are promising modes of light transmittance for photocatalysis. 
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