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Abstract

There is considerable interest in structured H∞ control in linear parameter varying
(LPV) systems and Tagaki-Sugeno (T-S) fuzzy systems. The optimal power flow (OPF)
problem, Electrical vehicles (EVs) charging problem and optimal placement of phasor
measurement unit (PMU) have emerged as promising areas in power systems. This
dissertation focuses on noncovex and nonsmooth optimization for the structured H∞

control problem in LPV systems and T-S fuzzy systems and the OPF problem, the EV
charging problem and the PMU placement problem in power systems.

We first consider reduced order LPV-LFT (linear parameter varying-linear fractional
transformational) control synthesis. The reduced order control synthesis can be
reformulated as a linear matrix inequality (LMI) optimization subject to a rank
constraint on a matrix-valued affine function of the Lyapunov matrix variables. Finding
a good reduced-order stabilizing controller is not an easy task because its computation
is a NP-hard problem. A novel approach proposed in this thesis is to equivalently
express the rank constraints on a positive semi-definite matrix-valued affine function
by spectral nonlinear functions. We then show a simple but effective nonsmooth
optimization technique leading to a path-following optimization procedure for these
problems. An intensive simulation shows the clear advantage of the proposed method
over the state-of-the-art nonlinear matrix inequality solvers.

In the second part of the dissertation, we investigate the H∞ Proportional-integral-
derivative (PID) control design in fuzzy systems. To gain the practicability and
tractability of fuzzy systems, this thesis develops a parameterized bilinear matrix
inequality characterization for the H∞ fuzzy PID control design, which is then relaxed
into a bilinear matrix inequality optimization problem of nonconvex optimization.
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Several computational procedures are then developed for its solution. The merit of the
developed algorithms is shown through the benchmark examples.

Thirdly, we consider the optimal power flow (OPF) problem over transmission
networks. The OPF problem is to locate a steady state operating point such that
the cost of electric power generation is minimized subject to operating constraints
and meeting demand. Due to the highly nonlinear operation constraints, the OPF
problem has been known as an NP-hard problem. The existing nonlinear solvers may
fail in yielding a feasible point. Semi-definite relaxation (SDR) could provide the global
solution only when the matrix solution of the relaxed semidefinite program (SDP) is
of rank-one, which does not hold in general. We develop a nonsmooth optimization
approach to address this difficult OPF problem, which is an iterative process to generate
a sequence of improved points. We also develop an efficient decomposition for the large-
scale OPF problem, which involves reduced numbers of the rank-one constraints on
matrices of moderate size for expressing the network nonlinear constraints. Simulations
for OPF problems and large-scale OPF problems demonstrate the efficiency of our
approaches.

In the fourth section of this dissertation, we study the charging scheduling of plug-in
electric vehicles (PEVs) and power control in smart grid. PEV charging scheduling
aims at minimizing the potential impact of the massive integration of PEVs into smart
grid to save service costs to customers while power control aims at minimizing the
cost of power generation subject to operating constraints and meeting demand. A
model predictive control (MPC)-based approach is proposed to address the joint PEV
charging scheduling and power control to minimize both PEV charging cost and energy
generation cost in meeting both residence and PEV power demands. Unlike in related
works, no assumptions are made about the probability distribution of PEVs’ arrivals,
the known PEVs’ future demand, or the unlimited charging capacity of PEVs. The
proposed approach is shown to achieve a globally optimal solution. Numerical results
for IEEE benchmark power grids serving Tesla Model S PEVs show the merit of this
approach.

Finally, we consider the PMU placement problem for power grid state estimation
under different degrees of observability. Observability degree is the depth of the buses’
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reachability by the placed PMUs and thus constitutes an important characteristic
for PMU placement. However, the sole observability as addressed in many works
still does not guarantee a good estimate for the grid state. Some existing works also
considered the PMU placement for minimizing the mean squared error or maximizing
the mutual information between the measurement output and grid state. However,
they ignore the obsvervability requirements for computational tractibility and thus
potentially lead to artificial results such as acceptance of the estimate for an unobserved
state component as its unconditional mean. In this dissertation, the PMU placement
optimization problem is considered by minimizing the mean squared error or maximizing
the mutual information between the measurement output and grid state, under grid
observability constraints. The provided solution is free from the mentioned fundamental
drawbacks in the existing PMU placement designs. The problems are posed as binary
nonlinear optimization problems, for which this paper develops efficient algorithms for
computational solutions. The performance of the proposed algorithms is analyzed in
detail through numerical examples on large scale IEEE power networks.
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