
Nonconvex and Nonsmooth
Optimization for Robust Control

and Power Systems

Ye Shi

Faculty of Engineering and Information Technology
University of Technology Sydney

This dissertation is submitted for the degree of
Doctor of Philosophy

September 2018





Production Note:

Signature removed prior to publication.





Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Tuan D.
Hoang for his guidance, motivation and continuous support throughout my Ph.D study
and related research. Prof. Tuan has brought me into the topics of optimization in
smart grid and robust control system. His brilliant insights and guidance have helped
me in all the time of research and writing of this thesis. I feel extremely fortunate to
have a supervisor who helps me so lot in both Ph.D study and my life.

I am deeply appreciative of my co-supervisor Prof. Steven W. Su for his constant
and patient help for my research and life. He has kindly offered help to resolve
confusions in research and difficulties I meet in life. His insightful and generous advises
inspire me to always keep positive and enthusiastic when I encounter the difficulties.

I would also like to thank Prof. Pierre Apkarian (the French Aerospace Lab,
France), Prof. Andrey V. Savkin (University of New South Wales, Australia), Prof. H.
Vincent Poor (Princeton University, USA), Prof. Trung Q. Duong (Queen’s University
Belfast, UK), and Professor Li Li (University of Technology Sydney, Australia) for
their precious instruction for my research.

I owe my sincere gratitude my colleagues in FEIT of UTS, in particular, Enlong
Che, Zhichao Sheng, Tao Zhang, Lin Ye and Wentian Zhang for their selfless support
and help. I also enjoy the precious memory with my friends, particularly, Yi Xu and
Tianqi Lu who gave me their help and time in listening to me and helping me work
out my problems during the Ph.D studies.

Last my thanks would go to my beloved parents Biguang Shi and Caixia Zhang and
my entire family for their loving considerations and great confidence in me through
these years.





Abstract

There is considerable interest in structured H∞ control in linear parameter varying
(LPV) systems and Tagaki-Sugeno (T-S) fuzzy systems. The optimal power flow (OPF)
problem, Electrical vehicles (EVs) charging problem and optimal placement of phasor
measurement unit (PMU) have emerged as promising areas in power systems. This
dissertation focuses on noncovex and nonsmooth optimization for the structured H∞

control problem in LPV systems and T-S fuzzy systems and the OPF problem, the EV
charging problem and the PMU placement problem in power systems.

We first consider reduced order LPV-LFT (linear parameter varying-linear fractional
transformational) control synthesis. The reduced order control synthesis can be
reformulated as a linear matrix inequality (LMI) optimization subject to a rank
constraint on a matrix-valued affine function of the Lyapunov matrix variables. Finding
a good reduced-order stabilizing controller is not an easy task because its computation
is a NP-hard problem. A novel approach proposed in this thesis is to equivalently
express the rank constraints on a positive semi-definite matrix-valued affine function
by spectral nonlinear functions. We then show a simple but effective nonsmooth
optimization technique leading to a path-following optimization procedure for these
problems. An intensive simulation shows the clear advantage of the proposed method
over the state-of-the-art nonlinear matrix inequality solvers.

In the second part of the dissertation, we investigate the H∞ Proportional-integral-
derivative (PID) control design in fuzzy systems. To gain the practicability and
tractability of fuzzy systems, this thesis develops a parameterized bilinear matrix
inequality characterization for the H∞ fuzzy PID control design, which is then relaxed
into a bilinear matrix inequality optimization problem of nonconvex optimization.
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Several computational procedures are then developed for its solution. The merit of the
developed algorithms is shown through the benchmark examples.

Thirdly, we consider the optimal power flow (OPF) problem over transmission
networks. The OPF problem is to locate a steady state operating point such that
the cost of electric power generation is minimized subject to operating constraints
and meeting demand. Due to the highly nonlinear operation constraints, the OPF
problem has been known as an NP-hard problem. The existing nonlinear solvers may
fail in yielding a feasible point. Semi-definite relaxation (SDR) could provide the global
solution only when the matrix solution of the relaxed semidefinite program (SDP) is
of rank-one, which does not hold in general. We develop a nonsmooth optimization
approach to address this difficult OPF problem, which is an iterative process to generate
a sequence of improved points. We also develop an efficient decomposition for the large-
scale OPF problem, which involves reduced numbers of the rank-one constraints on
matrices of moderate size for expressing the network nonlinear constraints. Simulations
for OPF problems and large-scale OPF problems demonstrate the efficiency of our
approaches.

In the fourth section of this dissertation, we study the charging scheduling of plug-in
electric vehicles (PEVs) and power control in smart grid. PEV charging scheduling
aims at minimizing the potential impact of the massive integration of PEVs into smart
grid to save service costs to customers while power control aims at minimizing the
cost of power generation subject to operating constraints and meeting demand. A
model predictive control (MPC)-based approach is proposed to address the joint PEV
charging scheduling and power control to minimize both PEV charging cost and energy
generation cost in meeting both residence and PEV power demands. Unlike in related
works, no assumptions are made about the probability distribution of PEVs’ arrivals,
the known PEVs’ future demand, or the unlimited charging capacity of PEVs. The
proposed approach is shown to achieve a globally optimal solution. Numerical results
for IEEE benchmark power grids serving Tesla Model S PEVs show the merit of this
approach.

Finally, we consider the PMU placement problem for power grid state estimation
under different degrees of observability. Observability degree is the depth of the buses’
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reachability by the placed PMUs and thus constitutes an important characteristic
for PMU placement. However, the sole observability as addressed in many works
still does not guarantee a good estimate for the grid state. Some existing works also
considered the PMU placement for minimizing the mean squared error or maximizing
the mutual information between the measurement output and grid state. However,
they ignore the obsvervability requirements for computational tractibility and thus
potentially lead to artificial results such as acceptance of the estimate for an unobserved
state component as its unconditional mean. In this dissertation, the PMU placement
optimization problem is considered by minimizing the mean squared error or maximizing
the mutual information between the measurement output and grid state, under grid
observability constraints. The provided solution is free from the mentioned fundamental
drawbacks in the existing PMU placement designs. The problems are posed as binary
nonlinear optimization problems, for which this paper develops efficient algorithms for
computational solutions. The performance of the proposed algorithms is analyzed in
detail through numerical examples on large scale IEEE power networks.
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Chapter 1

Introduction

This chapter starts with the motivation and scope of this thesis, then introduces some
related research topics, and finally presents outlines of this thesis.

1.1 Motivation and Scope

Robust control is an approach of controller design to cope with system uncertainty
[8]. Robust control method aims at achieving robust performance and stability with
given modeling errors[9]. The theory of robust control started in the late 1970s and
soon a few techniques handling system uncertainty were proposed[8]. One of the
most important applications of a robust control technique is H∞ control, which was
originally developed by George Zames [10]. H∞ control method is to minimize the
sensitivity of a system, such that the closed-loop system is internally stable. Although
the H∞ control has been studied for a long time, there still have been considerable
interest in the structured H∞ control, such as reduced order controller design [11] and
proportional-integral-derivative (PID) controller design[12–14] in the last few years.
It is well known that the structured H∞ control problem can be reformulated as an
optimization problem with bilinear matrix inequality (BMI)[11, 15, 16]. Within the
past few years, it has been realized that all BMI solvers [3, 4], which address the control
synthesis for linear time varying (LTI) systems in state space using Lyapunov functions,
could hardly compete with the nonsmooth optimization solver developed earlier in [17],
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which addresses the problems directly in the frequency domain to bypass the Lyapunov
variables of high dimension. Nowadays, the Matlab systune command [18], which is
based on [17], is the most powerful tool for control synthesis of LTI systems and is
widely used in industry. This means that structured H∞ control problem should seek
applications outside uncertain LTI systems such as linear parameter varying (LPV)
systems [19] and Tagaki-Sugeno (T-S) fuzzy systems [20], where the Lyapunov function
is irreplaceable.

The application of optimization techniques to power systems has been a promising
area in recent years. The optimal power flow (OPF) is the key problem of the power
system. This problem is complex economically, electrically and computationally[21].
However, we still lack a fast and robust solution for the OPF. Today’s approximate
method may result in unnecessary environmental harm and extra energy consumption.
The optimal power flow (OPF) problem is to locate a steady state operating point
in an AC power network such that the cost of electric power generation is minimized
subject to operating constraints and meeting demand. Since its introduction by [22],
OPF has received considerable interest (see e.g. [23–25] and references therein) but
its solution remains largely open. As the basic quantities in power networks can be
expressed in terms of the local bus voltages from Kirchhoff’s voltage law, OPF can be
represented by highly nonlinear optimization problems in voltage complex variables,
whose NP-hard computational complexity has been particularly shown in [26]. The
underlying difficulty of OPF lies on the multiple nonlinear constraints on the voltages
variables due to the bus interconnections, hardware operating capacity and balance
between power demand and supply. These nonlinear constraints are difficult so the
state-of-the-art nonlinear optimization solvers may converge to just stationary points
(see [27] and references therein).

1.2 Structured H∞ control in LPV system and OPF

in power system

This dissertation focuses on noncovex and nonsmooth optimization for the structured
H∞ control problem in LPV system and the OPF problem in power system.
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1.2.1 Reduced order H∞ control

The reduced order H∞ control synthesis for linear time invariant (LTI) systems can
be formulated by rank-constrained optimization involving rank constraints on matrix-
valued functions of the decision variables[11]. It is as a linear matrix inequality (LMI)
optimization subject to a rank constraint on a matrix-valued affine function of the
Lyapunov matrix variables. Many other important and difficult problems in robust
control are also reformulated in similar matrix-rank constrained optimizations [28].
The simplest approach is to relax or just to drop the rank constraints with hope
that the optimal solution of the relaxed (convex) optimization would satisfy these
matrix-rank constraints. For instance, matrix trace minimization and nuclear norm
minimization were proposed to obtain low matrix rank of positive semi-definite matrix
and rectangular matrices, respectively [29, 30]. These techniques are unable to address
the matrix-rank constraints as they are. Indeed, just a trace of a matrix or its nuclear
norm don’t give any adequate indication on the matrix rank. Another attempt is to
use a Newton-like method to find a projection of a positive semi-definite matrix to the
manifold of fixed rank matrices [31, 32], which is an equally computationally difficult
optimization due to complex geometry of this manifold [33], especially for lower fixed
rank matrices of larger size. Realizing the challenge by these matrix-rank constraints
on the Lyapunov matrix variables, most later developments in robust control preferred
to avoid them in favor of alternative bilinear matrix inequality (BMI) [34, 28, 35–
37, 3, 38, 4]. The state-of-the-art BMI solvers [3, 4] initialize from a reduced-order
stabilizing controller and then move within a convex feasibility subset containing this
initialized point. There are a few difficulties which arise from these kinds of feasibility
algorithms. Firstly, finding a good reduced-order stabilizing controller is not an easy
task because its computation is still a NP-hard problem [39]. Secondly, the feasibility
set of reduced order stabilizing controllers is highly nonconvex, which is disconnected
in general. This means moving within a convex neighborhood of such a reduced-order
stabilizing controller may be trapped by local minima. Thirdly, usually the convergence
of these kinds of algorithms are slow and dependent very much on the local geometry
around such initial point [40], which may be unpredictable. Within the past few years,
it has been realized that all BMI solvers [3, 4], which address the control synthesis for
LTI systems in state space using Lyapunov functions, could hardly compete with the
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nonsmooth optimization solver developed earlier in [17], which addresses the problems
directly in the frequency domain to bypass the Lyapunov variables of high dimension.
Nowadays, the Matlab systune command [18], which is based on [17], is the most
powerful tool for control synthesis of LTI systems and is widely used in industry. This
means that rank-constrained optimization and BMI should seek applications outside
uncertain LTI systems such as linear parameter varying (LPV) systems [19], where
Lyapunov function is irreplaceable.

1.2.2 H∞ fuzzy PID control

Tagaki-Sugeno (T-S) fuzzy model [20] has been proved as one of the most practical
tools for representing complex nonlinear systems by gain-scheduling systems, which
are easily implemented online. Treating T-S fuzzy models as gain-scheduling systems
allows the application of advanced gain-scheduling control techniques in tackling state
feedback and output feedback stabilization of nonlinear systems [41, 42]. Until now,
most of the gain-scheduling controllers are assumed structure-free and full-rank to
admit computationally tractable parameterized linear matrix inequality (PLMI) or
linear matrix inequality (LMI) formulations [43, 41, 42].

Meanwhile, a proportional-integral-derivative (PID) structured controller is the
indispensable component of industrial control so that PID control theory is still the
subject of recent research [44–49], mainly concerning linear time-invariant systems in
the frequency domain. PID controller for fuzzy systems has been considered in [13].
Reference [12] proposed an LMI based iterative algorithm for a proportional-integral
(PI) controller in T-S systems under the specific structure of both system and controller.
A recent work [14] transformed the fuzzy diagonal PID controller into a static output
feedback problem with the dimension of controller dramatically increased. That is why
all its testing examples are restricted to single input and single output systems with
two states.
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1.2.3 OPF problem in power system

The optimal power flow (OPF) problem is to locate a steady state operating point
in an AC power network such that the cost of electric power generation is minimized
subject to operating constraints and meeting demand. Since its introduction by [22],
OPF has received considerable interest (see e.g. [23–25] and references therein) but
its solution remains largely open. As the basic quantities in power networks can be
expressed in terms of the local bus voltages from Kirchhoff’s voltage law, OPF can be
represented by highly nonlinear optimization problems in voltage complex variables,
whose NP-hard computational complexity has been particularly shown in [26]. The
underlying difficulty of OPF lies on the multiple nonlinear constraints on the voltages
variables due to the bus interconnections, hardware operating capacity and balance
between power demand and supply. These nonlinear constraints are difficult so the
state-of-the-art nonlinear optimization solvers may converge to just stationary points
(see [27] and references therein).

There has been recently renewed interest in the reformulation of the nonlinear
constraints as convex constraints plus the nonconvex rank-one constraints on the
matrix of outer product of voltage vector variables for the solution of OPF [50, 26].
For instance, by modifying numerical settings of some IEEE benchmark networks,
[26] found that the matrix solution of the semi-definite relaxation (SDR) by dropping
the rank-one matrix constraint, is of rank-one and hence the global solution of the
OPF problem is found. Such SDR, dropping the rank-one matrix constraint, also
provides the rank-one matrix solution in the so-called load over-satisfaction conditions,
under which the quadratic equality constraints are essentially relaxed to loose one-sided
inequality constraints. However, the point found from SDR is not necessarily feasible
for the nonlinear equality constraints.

Indefinite quadratic programs find the most difficulty from the multiple quadratic
equality constraints, which lead to nonzero duality gap and thus rank more than one of
the matrix solution of SDR [51]. Another important contribution in SDR is provided
in [7], where SDR has been shown to provide the rank-one matrix solution in the power
distribution networks. When the networks are transmissions, [7] aims at a theoretical
low-rank matrix solution of SDR, which could not lead to a feasible point for the
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original nonconvex OPF problem. The common drawback of the SDR approaches
in [26, 7, 52] is that once a rank-one matrix solution is not found there is no way
to find even a feasible point of the original OPF problem. It should also be noted
that in many examples, SDRs might have the rank-one matrix solution among their
multiple matrix solutions. However, the SDP solvers can output a matrix solution of
rank-more-than-one. The modification in [26] adds a small resistance for the lines of
zero resistance, leading to the rank-one matrix solution of the SDR, which is implicitly
related to the features of its used software.

Meanwhile, [5] adopts the high-order SDR method of [53] to find the global solution
of the OPF problem over power transmission networks. Theoretically, such a method
is able to generate a sequence of higher-order convex approximations, which converges
to the original nonconvex problem in terms of the solution, regardless of whether the
former is unique (as required in [53]) or not [54]. However, the dimension of these
convex approximation problems grows dramatically in terms of decision variables,
size and number of semi-definite constraints, making this approach suitable only for
networks with a very small number of buses. Not surprisingly, [5] tests the performance
of this method for networks with 2, 3 and 5 buses, where there are only 2, 3 and 5
bus voltages variables with the objective function linear in generation power. Another
drawback of the high-order SDR method is that it works for real variables only so the
dimension of the complex voltage variables become double for its utilization.

Power transmission networks in modern smart grids are often devised with a few
thousand buses [55–57]. Under a such large number n of buses it is impossible to use the
single matrix W ∈ C

n×n, which involves n(n + 1)/2 ≈ O(107) complex variables. On
the other hand, the number of the flow lines for bus connection is relatively moderate
so only a small portion of the crossed nonlinear terms VkV ∗

m appears in the nonlinear
constraints. The common approach is to use the outer products of overlapped groups
of the voltage variables to cover them [58, 59, 52]. All rank-one constraints on these
outer products are then dropped for SDR. Obviously, the optimal solution of this SDR
usually is not of rank-one and thus does not have any physical meaning. There is no
technique to retrieve a feasible rank-one point from the rank-more-than-one solution of
SDR. Multiple matrix rank constrained optimization has received a great attention due
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to its potential application in robust control synthesis [31, 3] but to our best knowledge
there is no effective computation so far.

1.2.4 Joint OPF-PEV charging problem in smart grid

Electrical vehicles (EVs) have emerged as a promising solution to resolve both the
economic and environmental concerns in the transportation industry [60]. Using a
smart power grid in concurrently serving residences and charging EVs constitutes one
of the most important applications of the smart grid technology. However, the massive
integration of plug-in EVs (PEVs) into the grid causes many potential impacts such
as voltage deviation, increased load variations and power loss of the grid [61], which
requires different strategies for load shifting and energy trading and storage in the
grid [62–65]. The main difficulty in scheduling of PEV charging to manage the cost
and impact of PEV integration is that individual PEVs randomly arrive for charging
with their individual demands on charging load and deadlines, which cannot be known
beforehand. In other words, the future charging demand of PEVs cannot be known
a priori. Many existing works consider a simple smart grid with a single charging
station (CS) to exclusively serve PEVs. For instance, [66] sets no charging deadlines
for PEVs, whose arrival process follows a probability distribution, while [67] assumes
that the future load demand is perfectly known a priori. The future load demand is
also assumed to be known in [68] as all PEVs are assumed to arrive at the same time
with no charging deadline. It is assumed in [69] that only statistics of demand are
known but the PEVs can be fully charged in a single time slot [69, (30)]. It should
be realized that serving PEVs is typically considered during a 12-hour time period
(for instance from 8:00 pm to 8:00 am), where the integration of a massive number
of PEVs has a sizable effect on the power grid, and as such, the length of a time slot
is rationally set by 30 minutes or one hour. In other words, the charging scheduling
should be considered over a finite horizon of 12-24 time slots, but not over an infinite
horizon as considered in [70]. Due to their physical limitations, PEVs are rarely able
to be fully charged just during a single time slot.
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1.2.5 Optimal PMU Placement in smart grid

Phasor measurement unit (PMU) is an advanced digital meter, which is used in smart
power grids for real-time monitoring of grid operations [71]. By installing it at a buse,
the state-of-the-art PMU can measure not only the phasor of the bus voltage but
also the current phasors of incident power branches with high accuracy [72]. These
measurements are explored by the modern energy management systems (EMSs) for
critical applications such as optimal power flow, contingency analysis, and cyber
security, etc. [73–75].

As phasor measurement units (PMUs) are costly, there is a vast amount of litera-
ture on PMU placement optimization to target the minimal number of PMUs. Under
different degrees of observability, the mission is accomplished by binary linear program-
ming (BLP) [76, 77]. Here, the complete observability means that there is no bus left
unobserved by the placed PMUs, while depth-of-n unobservability means that there
are at most n connecting buses left unobserved by the placed PMUs [78], making as
many states as possible observed by restricted number of PMUs. An exhaustive binary
search was proposed in [79] to deal with this objective under the complete observability
condition and additional operating conditions such as the single branch outage and the
presence of zero power injections. A binary particle swarm optimization algorithm was
proposed in [80] to deal with it while maintaining the complete observability conditions
under the contingencies of PMU loss or branch outage. Binary quadratic programming
and BLP were respectively used in [81] and [82] to study the effect of conventional
measurements and zero bus injections to the complete observability.

Apparently, observability alone does not necessarily lead to a meaningful state
estimate or an informative PMU configuration. In fact, PMU configurations, which use
the same number of PMUs to make the grid completely observable, can result in quite
different estimation accuracies [83]. Intuitively, a better estimator can be obtained by
appropriately employing more PMUs. PMU placement optimization to minimize the
mean squared error (of grid state estimation) or to maximize the mutual information
between the measurement output and grid state under a fixed allowable number of
PMUs was considered in [2] and [84], respectively. Obviously, these placement tasks
are mathematically modelled by optimization of nonlinear objective functions of binary
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variables subject to a simple linear constraint for fixing the number of PMUs. A
convex relaxation with the binary constraint {0, 1} for binary variables relaxed to
the box constraint [0, 1] was proposed in [2], which not only fails to provide even a
local optimal solution in general but also is not scalable in the grid dimension as it
involves an additional large-size semi-definite matrix variable. A greedy algorithm
proposed in [84] does not provide a local optimal solution either. More importantly,
both [2] and [84] ignored observability constraints for computational tractability. It
was argued in [84] that its proposed mutual information criterion includes the grid
complete observability, which is obviously not right simply because as shown later in
the paper, the latter differentiates the state estimate from its unconditional mean,
which is the trivial estimate, while the former does not.

1.3 Dissertation Outline

The outline of the dissertation is as follows:
Chapter 1
This chapter presents the motivation and scope, the research topics and the outline of
the dissertation.
Chapter 2
A brief review of power system is presented in this chapter. Then an overview of a robust
control system is introduced. In the last, an overview of optimization theory including
nonsmooth optimization and d.c. (difference of two convex functions) programming
are provided.
Chapter 3
In this chapter, we consider the reduced order LPV-LFT (linear parameter varying-linear
fractional transformational) control synthesis. The reduced order control synthesis
can be reformulated as a linear matrix inequality (LMI) optimization subject to a
rank constraint on a matrix-valued affine function of the Lyapunov matrix variables.
k-order robust control synthesis for a LPV plant of order n leads to rank-(n + k)
constraint on the positive semi-definite matrix-valued affine function of size (2n) × (2n).
A novel approach proposed in this thesis is to equivalently express these rank-(n + k)
constraints on positive semi-definite matrix-valued affine function by rank-k constraint
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on the matrix-valued nonlinear function of size n, which are then exactly expressed
by spectral nonlinear functions. We then show a simple but effective nonsmooth
optimization technique leading to a path-following optimization procedure for these
problems. An intensive simulation shows the clear advantage of the proposed method
over the state-of-the-art nonlinear matrix inequality solvers.

The work in this chapter has been published in:

• Y. Shi, H. D. Tuan and P. Apkarian, "Nonconvex Spectral Optimization Algo-
rithms for Reduced-Order H∞ LPV-LFT controllers", International Journal of
Robust and Nonlinear Control, vol. 27, pp. 4421-4442, 2017.

Chapter 4
In this chapter, we consider the H∞ Proportional-integral-derivative (PID) control
design in fuzzy systems. To gain the practicability and tractability of fuzzy systems,
we develop a parameterized bilinear matrix inequality characterization for the H∞

fuzzy PID control design, which is then relaxed into a bilinear matrix inequality
optimization problem of nonconvex optimization. Several computational procedures
are then developed for its solution. The merit of the developed algorithms is shown
through the benchmark examples.

The work in this chapter has been published in or submitted to:

• Y. Shi, H. D. Tuan, "Parameterized Bilinear Matrix Inequality Techniques in
Fuzzy PID Control Design", under submission to IEEE Transactions on Fuzzy
System, 2017.

• Y. Shi, H. D. Tuan, and S. W. Su, "Nonconvex Spectral Algorithm for Solving
BMI on the Reduced Order H∞ Control", the 6th IEEE International Conference
on Control Systems, Computing and Engineering, 2016, Penang, Malaysia.

Chapter 5
In this chapter, we propose a nonsmooth optimization algorithm to obtain a near
global solution for the OPF problem, which is aiming at locating a steady state
operating point such that cost of electric power generation is minimized subject to
operating constraints and meeting demand. As existing SDR may not locate a feasible
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solution when the relaxed matrix variable is not rank-one, we propose a nonsmooth
optimization algorithm to address the matrix rank constraint, which is an iterative
process to generate a sequence of improved points that converge to a global or nearly
global solution in most cases. We also develop an efficient decomposition for the large-
scale OPF problem, which involves reduced numbers of the rank-one constraints on
matrices of moderate size for expressing the network nonlinear constraints. Simulations
for OPF problems and large-scale OPF problems demonstrate the efficiency of our
approaches.

The work in this chapter has been published in:

• Y. Shi, H. D. Tuan, H. Tuy and S. W. Su, "Global Optimization for Optimal
Power Flow over Transmission Networks", Journal of Global Optimization, vol.
69, pp. 745-760, 2017.

• Y. Shi, H. D. Tuan, A. V. Savkin, S. W. Su, "Optimal Power Flow over Large-
Scale Transmission Networks", Systems & Control Letters, vol. 118, pp. 16-21,
2018.

• Y. Shi, H. D. Tuan, S. W. Su and H. H. M. Tam, "Nonsmooth Optimization
for Optimal Power Flow over Transmission Networks", the 3rd IEEE Global
Conference on Signal and Information Processing, pp. 1141-1144, 2015, Orlando,
America.

• Y. Shi, H. D. Tuan, S. W. Su, and A. V. Savkin, "Multiple Matrix Rank
Constrained Optimization for Optimal Power Flow over Large Scale Transmission
Networks", proceedings of the 5th International Conference on Smart Cities and
Green ICT Systems, vol. 1, pp. 384-389, 2016, Rome, Italy.

• Y. Shi, H. D. Tuan, and A.V. Savkin, "Three-phase Optimal Power Flow for Smart
Grids by Iterative Nonsmooth Optimization", the 6th International Conference
on Smart Cities and Green ICT Systems, 2017, Porto, Portugal.

Chapter 6
In this chapter, we consider the charging scheduling of plug-in electric vehicles (PEVs)
and power control in smart grid. PEV charging scheduling aims at minimizing the
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potential impact of the massive integration of PEVs into smart grid to save service
costs to customers while power control aims at minimizing the cost of power generation
subject to operating constraints and meeting demand. A model predictive control
(MPC)-based approach is proposed to address the joint PEV charging scheduling
and power control to minimize both PEV charging cost and energy generation cost
in meeting both residence and PEV power demands. Unlike in related works, no
assumptions are made about the probability distribution of PEVs’ arrivals, the known
PEVs’ future demand, or the unlimited charging capacity of PEVs. The proposed
approach is shown to achieve a globally optimal solution. Numerical results for IEEE
benchmark power grids serving Tesla Model S PEVs show the merit of this approach.

The work in this chapter has been published in or submitted to:

• Y. Shi, H. D. Tuan, A. V. Savkin, T. Q. Duong and H. V. Poor, "Model
Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging
Stations", accepted by IEEE Transaction on smart grid, 2017.

• Y. Shi, H. D. Tuan, A. V. Savkin, T. Q. Duong and H. V. Poor, "On-off Charging
of Electrical Vehicles in Smart Grids", under submission to IEEE Transaction on
smart grid, 2018.

Chapter 7
In this chapter, we consider the PMU placement problem for power grid state estimation
under different degrees of observability. Observability degree is the depth of the buses’
reachability by the placed PMUs and thus constitutes an important characteristic for
PMU placement. However, the sole observability as addressed in many works still
does not guarantee a good estimate for the grid state. In this chapter, the PMU
placement optimization problem is considered by minimizing the mean squared error or
maximizing the mutual information between the measurement output and grid state,
under grid observability constraints. The provided solution is free from the mentioned
fundamental drawbacks in the existing PMU placement designs. The problems are
posed as binary nonlinear optimization problems, for which this paper develops efficient
algorithms for computational solutions. The performance of the proposed algorithms
is analyzed in detail through numerical examples on large scale IEEE power networks.
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The work in this chapter has been submitted to:

• Y. Shi, H. D. Tuan, A. A. Nasir, T. Q. Duong, and H. V. Poor, "PMU Place-
ment Optimization for Smart Grid Obvervability and State Estimation", under
submission to IEEE Transaction on smart grid, 2018.

Chapter 8
This chapter summarizes works of this dissertation and proposes future directions of
related researches.





Chapter 2

Background

In this chapter, we first briefly present the foundation of H∞ control for linear time
varying system and linear parameter varying system, respectively. As a wide variety
of system and control problems, such as optimal controller design, robust stability,
pole placement can be reformulated as an optimization problem with linear matrix
inequality (LMI) constraints and bilinear matrix inequality (BMI) [85, 15, 16]. Then
we introduce the definition and property of the LMI and the BMI. At last, we introduce
the optimization theory, including convex optimization and d.c. programming.

2.1 H∞ Control for Linear time varying system

Consider a continuous time system

ẋ = Ax + B∞w + Bu

z = C∞x + D∞w + D∞uu

y = Cx + Dy∞w

(2.1)

where x ∈ Rn
x is the system state, u ∈ Rnu is the system control, y ∈ Rny is the

measured output, w → z is the H∞ performance channel of the same dimension n∞.
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We seek a structured output feedback control

⎛⎝ẋK

u

⎞⎠ = K

⎛⎝xK

y

⎞⎠ , K ⊂ R(nK+nu)×(nK+ny) (2.2)

where nK is the controller order, K is a convex structure such that

• The closed-loop system is internally stable

• The H∞-performance Tw→z is minimized

Tw→z → min (2.3)

2.2 H∞ Control for Linear parameter varying sys-

tem

Consider a continuous LPV system in linear fractional transformation (LFT) [86–88]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
zΔ(t)
z(t)
y(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A BΔ B1 B2

CΔ DΔΔ DΔ1 DΔ2

C1 D1Δ D11 D12

C2 D2Δ D21 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
wΔ(t)
w(t)
u(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
wΔ(t) = Δ(α(t))zΔ(t)

(2.4)

where
Δ(α(t)) =

L∑
i=1

αi(t)Δi, αi(t) ≥ 0,
L∑

i=1
αi(t) = 1. (2.5)

Here, x(t) ∈ Rn, y(t) ∈ Rny , z(t) ∈ Rnz , w(t) ∈ Rnz , zΔ(t) ∈ RnΔ , wΔ(t) ∈ RnΔ .
Note that we assume without loss of generality that z(t) and w(t) (zΔ(t) and wΔ(t) ,
resp.) have the same dimension. The pair (wΔ, zΔ) is regarded as the gain-scheduling
channel. All matrices in (3.1)-(3.2) are given with appropriate size. Parameters αi(t)
are measured online and exploited by the controller.
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The standard H∞ LPV control design is to find k-order controller in LFT

⎡⎢⎢⎢⎣
ẋK(t)
u(t)

zK(t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
AK BK1 BKΔ

CK1 DK11 DK1Δ

CKΔ DKΔ1 DKΔΔ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xK(t)
y(t)

wK(t)

⎤⎥⎥⎥⎦
wK(t) = ΔK(α(t))zK(t)

(2.6)

with
ΔK(α(t)) =

L∑
i=1

αiΔKi (2.7)

such that the closed-loop system is internally stable and satisfies

∫ T

0
||z(t)||2dt ≤ γ2

∫ T

0
||w(t)||2dt ∀w(.) ∈ L2, T < +∞, (2.8)

initialized from x(0) = 0. Here xK(t) ∈ Rk, zK(t) ∈ RnΔ and wK(t) ∈ RnΔ . k is called
the control order and the pair (wK , zK) is regarded as the control’s gain-scheduling
channel.
Note that (3.1) and (3.3) are the following LPV LFTs

⎡⎢⎢⎢⎣
ẋ(t)
z(t)
y(t)

⎤⎥⎥⎥⎦ =

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

A B1 B2

C1 D11 D12

C2 D21 0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
BΔ

D1Δ

D2Δ

⎤⎥⎥⎥⎦ (I − Δ(α(t))DΔΔ)−1Δ(α(t))

×
[
CΔ DΔ1 DΔ2

]) ⎡⎢⎢⎢⎣
x(t)
w(t)
u(t)

⎤⎥⎥⎥⎦
(2.9)

and
⎡⎣ẋK(t)

u(t)

⎤⎦ =
⎛⎝⎡⎣ AK BK1

CK1 DK11

⎤⎦ +
⎡⎣ BKΔ

DK1Δ

⎤⎦ (I − ΔK(α(t))DKΔΔ)−1ΔK(α(t))

×
[
CKΔ DKΔ1

]) ⎡⎣xK(t)
y(t)

⎤⎦ ,

(2.10)

respectively.
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2.3 Linear matrix inequality and bilinear matrix

inequality

Many control applications including structure control, robust control, and optimal
design of experiments can be formulated as LMIs and BMIs[15]. In this section, a brief
introduction of LMIs and BMIs will be presented.

2.3.1 Linear matrix inequality

A linear matrix inequality (LMI) has the form:

F (x) = F0 +
m∑

i=1
xiFi > 0, (2.11)

where x ∈ Rm, Fi ∈ Rn×n, it should be noted that F (x) is a positive definite matrix
and it is also an affine function of the variable x given the fixed symmetric matrix Fi.

A set D is said to be convex if ∀ x, y ∈ D and θ ∈ [0, 1], it is true that θx+(1−θ)y ∈
D. To see the convexity of LMIs, let x and y be two vectors such that F (x) > 0 and
F (y) > 0, and let θ ∈ [0, 1]. Then,

F (θx + (1 − θ)y) = F0 +
m∑

i=1
(θxi + (1 − θ)yi)Fi

= θF0 + θ
m∑

i=1
xiFi + (1 − θ)F0 + (1 − θ)

m∑
i=1

yiFi

= θF (x) + (1 − θ)F (y)

> 0. (2.12)

Thus, LMIs have the good property of convexity. Another important property is that
multiple LMIs can be expressed as a single LMI. Consider a set of s LMIs:

F 1(x) > 0, F 2(x) > 0, · · · , F s(x) > 0, (2.13)
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Then an equivalent single LMI is:

F (x) = F0 +
m∑

i=1
xiFi = diag{F 1(x), · · · , F s(x)}, (2.14)

where diag{F 1(x), · · · , F s(x)} is a block diagonal matrix with blocks F 1(x), · · · , F s(x).

2.3.2 Bilinear matrix inequality

A bilinear matrix inequality (BMI) is as follow [15]:

F (x, y) = F0 +
m∑

i=1
xiFi +

n∑
j=1

yiGi +
m∑

i=1

n∑
j=1

xiyjHij > 0, (2.15)

where Fi, Gj and Hij are symmetric matrices of dimension Rk×k, and y ∈ Rn. BMIs
are not necessarily convex and thus they can describe much more constraints than
LMIs. And BMIs can be applied to more types of optimization and control problems.
But they are much more difficult to handle comparing with LMIs.

2.4 Optimization Theory

In this section, we first review convex optimization and then describe sequential convex
programming.

2.4.1 Convex Optimization

Fundamental definitions in convex optimization [89] are given as follows,

Definition 2.1 A set D is said to be convex if ∀ x, y ∈ D and θ ∈ [0, 1], it is true that
θx + (1 − θ)y ∈ D.

Definition 2.2 A function f(x) is convex, if for all x, y ∈ D and 0 ≤ θ ≤ 1, it is true
that

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (2.16)
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Definition 2.3 To the problem min{f(x)|x ∈ D}, a point x∗ ∈ D such that

f(x∗) ≤ f(x), ∀x ∈ D, (2.17)

is called a global minimizer. If there exists a neighborhood N of x′ satisfying

f(x′) ≤ f(x), ∀x ∈ D ∩ N , (2.18)

x′ ∈ N is called a local minimizer.

A convex optimization problem is represented as

min f(x)
s.t. gi(x) ≤ 0, i = 1, . . . , m,

(2.19)

where f(x)andgi(·), i = 1, . . . , m are convex functions. The most important character-
istics of a convex optimization problem are

• Any local minimizer of (2.19) is also its global minimizer;

• (2.19) is computationally tractable and can be solved efficiently by off-the-shelf
software within polynomial time.

2.4.2 D.C. optimization

Convexity is a nice property of functions but in the most cases of control system
and power system, this property can not be preserved. To address the non-convexity
challenge of those optimization problems, we may exploit the d.c. (difference of
convex functions) structure, which is the common underlying structure of virtually all
non-convex optimization problem [89].

Definition 2.4 [89] Let B be a convex set in Rn. We say that a function is d.c.
on B if it can be expressed as the difference of two convex functions on B, i.e. if
f(x) = f1(x) − f2(x), where f1, f2 are convex function on B.
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Definition 2.5 [89] An optimization problem is called a d.c. programming problem if
it has the form

min
x

f(x), s.t. x ∈ B, (2.20)

where f is a d.c. function and B is a d.c. set.

It should be noted that, d.c. programming problems consists of a wide class of non-
convex programming problems. Some of the d.c. programming problems are extremely
hard to solve, we are interested in the following d.c. programming, which minimize a
d.c. function over a convex set.

min
x

F (x), s.t. x ∈ D, (2.21)

where f is a d.c. function and D is a convex set.

Construct a convex functions Fu(x) such that Fu(x) is a upper bound of F (x), i.e.
F (x) ≤ Fμ(x) ∀x ∈ D. Initialized by a feasible point x(0), at the κ-th iteration, solve
the following convex optimization,

min
x

F (κ)
u (x), s.t. x ∈ D, (2.22)

and generate the next feasible point x(κ+1).

Note that any feasible point for the convex optimization problem (2.22) is also feasi-
ble for the nonconvex optimization problem (2.19). As x(κ) and x(κ+1) are respectively
feasible point and the optimal solution of (2.22), it is true that

F (κ)
u (x(κ+1)) < F (κ)

u (x(κ)). (2.23)

Then the point x(κ+1) is better feasible point for the d.c. programming problem (2.22)
than x(κ). Thus, {x(κ)} is a sequence of improved feasible points of the d.c. programming
(2.22), which converges to a point satisfying first-order necessary optimality conditions.





Chapter 3

Nonconvex Spectral Optimization
Algorithms for Reduced-Order H∞
LPV-LFT controllers

3.1 Introduction

Rank-constrained optimization is referred to optimization problems involving rank
constraints on matrix-valued functions of the decision variables. Initialized by the
pioneering work [11], which reformulates the reduced order H∞ control synthesis for
linear time invariant (LTI) systems as linear matrix inequality (LMI) optimization
subject to a rank constraint on a matrix-valued affine function of the Lyapunov matrix
variables, many other important and difficult problems in robust control are also
reformulated in similar matrix-rank constrained optimizations [28]. The simplest
approach is to relax or just to drop that rank constraints with hope that the optimal
solution of the relaxed (convex) optimization would satisfy these matrix-rank constraints.
For instance, matrix trace minimization and nuclear norm minimization were proposed
to obtain low matrix rank of positive semi-definite matrix and rectangular matrices,
respectively [29, 30]. These techniques are unable to address the matrix-rank constraints
as they are. Indeed, just a trace of a matrix or its nuclear norm don’t give any adequate
indication on the matrix rank. Another attempt is to use a Newton-like method
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to find a projection of a positive semi-definite matrix to the manifold of fixed rank
matrices [28, 32], which is equally computationally difficult optimization due to complex
geometry of this manifold [33], especially for lower fixed rank matrices of larger size.
Realizing the challenge by these matrix-rank constraints on the Lyapunov matrix
variables, most later developments in robust control preferred to avoid them in favor
of alternative bilinear matrix inequality (BMI) [34, 28, 35–37, 3, 38, 4]. The state-
of-the-art BMI solvers [3, 4] initialize from a reduced-order stabilizing controller and
then move within a convex feasibility subset containing this initialized point. There
are a few difficulties arisen with this kind of feasibility algorithms. Firstly, finding a
good reduced-order stabilizing controller is not an easy task because its computation is
still a NP-hard problem [39]. Secondly, the feasibility set of reduced order stabilizing
controllers is highly nonconvex, which is disconnected in general. This means moving
within a convex neighborhood of such reduced-order stabilizing controller may be
trapped by local minima. Thirdly, usually the convergence of this kind of algorithms
is slow and is dependent very much on the local geometry around such initial point
[40], which may be unpredictable. Within the past few years, it has been realized
that all BMI solvers [3, 4], which address the control synthesis for LTI systems in
state space using Lyapunov functions, could hardly compete with the nonsmooth
optimization solver developed earlier in [17], which addresses the problems directly in
the frequency domain to bypass the Lyapunov variables of high dimension. Nowadays,
the Matlab systune command [18], which is based on [17], is the most powerful tool
for control synthesis of LTI systems and is widely used in industry. This means that
rank-constrained optimization and BMI should seek applications outside uncertain
LTI systems such as linear parameter varying (LPV) systems [19], where Lyapunov
function is irreplaceable.

Meanwhile, for solution of indefinite quadratic optimization in signal processing
applications, [90–92] developed an approach for optimization on the rank-one con-
strained positive semi-definite outer product of decision vector variable. Intensive
simulations even for large scale indefinite quadratic optimization [92] show that the
rank-one matrices can be quickly located, which are turned out to be global optimal
solutions of the considered indefinite quadratic problems in most cases. Reduced order
robust LPV controller synthesis is more difficult than indefinite quadratic programming
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and has not been appropriately considered in literature. The matrix-rank constraints
in the former are much more challenging than the rank-one constraint in the latter.
Indeed, they are lower fixed rank constraints on matrix-valued affine functions of larger
size with very complex geometry. For instance, k-order robust control synthesis for
a LPV plant of order n leads to rank-(n + k) constraint on the positive semi-definite
matrix-valued affine function of size (2n) × (2n) [86, 88]. A novel approach proposed
in the present chapter is to equivalently express these rank-(n + k) constraints on
the positive semi-definite matrix-valued affine function by rank-k constraint on the
matrix-valued nonlinear function of size n, which are then exactly expressed by spectral
nonlinear functions. We then show a simple but effective optimization technique leading
to a path-following optimization procedure for these problems. To the author’s best
knowledge, spectral nonlinear function optimization was not quite considered in the
literature.

This chapter is organized as follows. After the Introduction, section 3.2 is devoted
to algorithmic solutions for reduced-order LPV H∞ controllers while section 3.3 is
devoted to static output feedback LPV controllers. An intensive simulation is provided
in Section 3.4 to support the algorithmic development of the previous sections. Section
3.5 concludes the chapter.

Notation. Notation used in this chapter is standard. Particularly, X � 0, X � 0,
X 
 0 and X ≺ 0 mean that a symmetric matrix X is positive semi-definite, positive
definite, negative semi-definite and negative definite, respectively, while 〈X, Y 〉 is the
dot product of the matrices X and Y . For simplicity, we also denote tr(X) as the trace
of X. I is the identity matrix but when needed we also use In to emphasize the size
n × n of I. In symmetric block matrices or long matrix expressions, we use ∗ as an
ellipsis for terms that are induced by symmetry, e.g.,

K

⎡⎣S + ST MT

M Q

⎤⎦ KT = K

⎡⎣S + (∗) ∗
M Q

⎤⎦ ∗

The matrix variables are typed boldfaced in the chapter.
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3.2 Dynamic reduced order H∞ LPV control syn-

thesis

Consider a continuous LPV system in linear fractional transformation (LFT) [86–88]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
zΔ(t)
z(t)
y(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A BΔ B1 B2

CΔ DΔΔ DΔ1 DΔ2

C1 D1Δ D11 D12

C2 D2Δ D21 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
wΔ(t)
w(t)
u(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
wΔ(t) = Δ(α(t))zΔ(t)

(3.1)

where
Δ(α(t)) =

L∑
i=1

αi(t)Δi, αi(t) ≥ 0,
L∑

i=1
αi(t) = 1. (3.2)

Here, x(t) ∈ Rn, y(t) ∈ Rny , z(t) ∈ Rnz , w(t) ∈ Rnz , zΔ(t) ∈ RnΔ , wΔ(t) ∈ RnΔ .
Note that we assume without loss of generality that z(t) and w(t) (zΔ(t) and wΔ(t) ,
resp.) have the same dimension. The pair (wΔ, zΔ) is regarded as the gain-scheduling
channel. All matrices in (3.1)-(3.2) are given with appropriate size. Parameters αi(t)
are measured online and exploited by the controller.
The standard H∞ LPV control design is to find k-order controller in LFT

⎡⎢⎢⎢⎣
ẋK(t)
u(t)

zK(t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
AK BK1 BKΔ

CK1 DK11 DK1Δ

CKΔ DKΔ1 DKΔΔ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xK(t)
y(t)

wK(t)

⎤⎥⎥⎥⎦
wK(t) = ΔK(α(t))zK(t)

(3.3)

with
ΔK(α(t)) =

L∑
i=1

αiΔKi (3.4)

such that the closed-loop system is internally stable and satisfies

∫ T

0
||z(t)||2dt ≤ γ2

∫ T

0
||w(t)||2dt ∀w(.) ∈ L2, T < +∞, (3.5)
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initialized from x(0) = 0. Here xK(t) ∈ Rk, zK(t) ∈ RnΔ and wK(t) ∈ RnΔ . k is called
the control order and the pair (wK , zK) is regarded as the control’s gain-scheduling
channel.
Note that (3.1) and (3.3) are the following LPV LFTs

⎡⎢⎢⎢⎣
ẋ(t)
z(t)
y(t)

⎤⎥⎥⎥⎦ =

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

A B1 B2

C1 D11 D12

C2 D21 0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
BΔ

D1Δ

D2Δ

⎤⎥⎥⎥⎦ (I − Δ(α(t))DΔΔ)−1Δ(α(t))

×
[
CΔ DΔ1 DΔ2

]) ⎡⎢⎢⎢⎣
x(t)
w(t)
u(t)

⎤⎥⎥⎥⎦
(3.6)

and
⎡⎣ẋK(t)

u(t)

⎤⎦ =
⎛⎝⎡⎣ AK BK1

CK1 DK11

⎤⎦ +
⎡⎣ BKΔ

DK1Δ

⎤⎦ (I − ΔK(α(t))DKΔΔ)−1ΔK(α(t))

×
[
CKΔ DKΔ1

]) ⎡⎣xK(t)
y(t)

⎤⎦ ,

(3.7)

respectively. Figure 3.1 provides a block-diagram for a such system.

1w 1z

2z2w
w z

zw

u y

Kw Kz

P

K

K

Fig. 3.1 Closed-loop LPV-LFT system
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Let’s state the following result adapted from [88]: the feasibility of the following
matrix inequality in X ∈ Rn×n, Y ∈ Rn×n, R, H, Q, E, ΔKi and

K̂ :=

⎡⎢⎢⎢⎣
AK BK1 BKΔ

CK1 DK11 DK1Δ

CKΔ DKΔ1 DKΔΔ

⎤⎥⎥⎥⎦ (3.8)

is sufficient for the existence of such controller
⎡⎣LMI1 ∗
LMI2 LMI3

⎤⎦ ≺ 0,⎡⎢⎢⎢⎢⎢⎢⎢⎣

R I ΔT
i Q ΔT

i

I H ΔKi
T HΔT

i

QΔi ΔKi −Q −I

Δi ΔiH −I −E

⎤⎥⎥⎥⎥⎥⎥⎥⎦ � 0, i = 1, 2, · · · , L.

(3.9)

⎛⎝ X In

In Y

⎞⎠ � 0, (3.10)

rank(X − Y−1) ≤ k, (3.11)

where

LMI1 :=

⎡⎢⎢⎢⎢⎣
XA + BK1C2 + (∗) ∗ ∗ ∗

AK
T + A + B2DK11C2 (AY + B2CK1) + (∗) ∗ ∗

BT
ΔX + DT

2ΔBK1
T BT

ΔDT
2ΔDK11

T BT
2 Q ∗

BT
KΔ EBT

Δ + DK1Δ
T BT

2 −I E

⎤⎥⎥⎥⎥⎦

LMI2 :=

⎡⎢⎢⎢⎢⎣
BT

1 X + DT
21BK1

T BT
1 + DT

21DK11
T BT

2 0 0
RCΔ + DKΔ1C2 CKΔ RDΔΔ + DKΔ1D2Δ DKΔΔ

CΔ + DΔ2DK11C2 CΔY + DΔ2CK1 DΔΔ + DΔ2DK11D2Δ DΔΔE + DΔ2DK1Δ

C1 + D12DK11C2 C1Y + D12CK1 D1Δ + D12DK11D2Δ D1ΔE + D12DK1Δ

⎤⎥⎥⎥⎥⎦

LMI3 :=

⎡⎢⎢⎢⎢⎣
−γI ∗ ∗ ∗

RDΔ1 + DKΔ1D21 −R ∗ ∗
DΔ1 + DΔ2DK11D21 −I −H ∗
D11 + D12DK11D21 0 0 −γI

⎤⎥⎥⎥⎥⎦ .

(3.12)

Note that (3.10)-(3.11) implies that

rank(In − XY) ≤ k.
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Without loss of generality, assume rank(In − XY) = k. Then factorize

In − XY = MNT

with full-rank M ∈ Rn×k and N ∈ Rn×k. Their left-inverse matrices are

M+ = (MT M)−1MT , N+ = (NT N)−1NT .

Also factorize
I − RH = R12HT

12 and I − QE = Q12ET
12

with invertible matrices R12, H12, Q12 and E12. Accordingly, the controller (3.3) can
be recovered as follows [86]:

DK11 = DK11 (3.13)

BK1 = M+(BK1 − XB2DK11) (3.14)

CK1 = (CK1 − DK11C2Y)(N+)T , (3.15)

AK = M+[AK − (XAY + MBK1C2Y + XB2CK1NT + XB2DK11C2Y)](N+)T (3.16)

Dk1Δ = (DK1Δ − DK11D2ΔE)(E−1
12 )T (3.17)

DKΔ1 = R−1
12 (DKΔ1 − RDΔ2DK11) (3.18)

BKΔ = M+[BKΔ − (XBΔE + MBk1D2ΔE + XB2DK11D2ΔE
+XB2DK1ΔET

12)](E−1
12 )T

(3.19)

CKΔ = R−1
12 [CKΔ − (RCΔY + RDΔ2DK11C2Y + R12DKΔ1C2Y

+RDΔ2CK1NT )](N−1)T
(3.20)

DKΔΔ = R−1
12 [DKΔΔ − (RDΔΔE + RDΔ2DK11D2ΔE + R12DKΔ1D2ΔE

+RDΔ2DK1ΔET
12)](E−1

12 )T .
(3.21)

It should be noted that (3.10)-(3.11) are equivalent to (3.10) and

rank
⎛⎝⎛⎝ X In

In Y

⎞⎠⎞⎠ ≤ n + k (3.22)
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which is a lower fixed rank constraint on a matrix-valued affine function of (X, Y).
Although our below developed algorithms still work for this constraint (3.22), we will
see that in fact the rank constraint (3.11) on a nonlinear function of (X, Y) can be more
efficiently handled. The difficulty degree of formulations in [93, 3, 4] is proportional to
the dimension of the control variable (AK , BK , CK , DK) in (3.3), i.e. it is proportional
to the control order k. In contrast, by exploring the rank constraint (3.11), the difficulty
degree in our formulation is proportional to min{k, n − k}, i.e. the computational
difficulty with k-order and (n − k)-order controllers is the same.

We formulate the k-order LPV-LFT H∞ control as

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ s.t. (3.9), (3.10), (3.11), (3.23)

where all the nonconvexity of the problem is concentrated in the rank constraint
(3.11), which is automatically satisfied for the (full) n-order control. For k < n, as
expected (3.11) is a highly nonconvex and discontinuous constraint. Consequently, the
feasibility set (3.9)-(3.11) is disconnected in general, for which locating a feasible point
is already not an easy task. As an aside note, the above formulation (3.23) is based
on parameter-independent Lyapunov function and static multipliers R, H, Q and E,
which may potentially be more conservative than that with either parameter-dependent
Lyapunov functions (see e.g. [94]) or dynamic multipliers (see e.g. [95]). However,
efficient formulations for k−order LPV-LFT H∞ control by using parameter dependent
Lyapunov functions and dynamic multipliers are still very much open for study. The
interested reader is also referred to [96] and the references therein for convex relation
based results for fixed-order LPV controllers for LPV systems.

The function rank(X − Y−1) in (3.11) seems to be very complicated. However,
we will see shortly that it can be efficiently handled from the following observation.
Suppose f[k](X − Y−1) is the sum of the k largest eigenvalues of X − Y−1, which is
positive-definite (X−Y−1 � 0) thanks to LMI (3.10). Then the matrix rank constraint
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(3.11) holds true if and only if

tr(X − Y−1) = f[k](X − Y−1)

because it implies that X − Y−1 has at least (n − k) zero eigenvalues. Under the
LMI (3.10), the quantity tr(X − Y−1) − f[k](X − Y−1) is always nonnegative and can
therefore be used to measure the degree of satisfaction of the matrix rank constraint
(3.11). Instead of handling nonconvex constraint (3.11) we incorporate it into the
objective, resulting in the following alternative formulation to (3.23):

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

Fμ(X, Y, γ) := γ+μ(tr(X−Y−1)−f[k](X−Y−1)) s.t. (3.9)−(3.10),

(3.24)
where μ > 0 is a penalty parameter. Without squaring on the factor of μ, the above
penalization is exact, meaning that the constraint (3.11) can be satisfied by a minimizer
of (3.24) with a finite value of μ (see e.g. [97, Chapter 16]). This is generally considered
as a sufficiently nice property to make such exact penalization attractive. On the
other hand, any feasible (X, Y, γ) to (3.23) is also feasible to (3.24), implying that the
optimal value of (3.24) for any μ > 0 is upper bounded by the optimal value of (3.23).

Suppose (X(κ), Y (κ), γ(κ)) is a feasible point to the convex feasibility set (3.9)-(3.10).
Using the following variational principle [98, p. 191]

f[k](X − Y−1) = max
orthonormal x1,...,xk

k∑
i=1

xH
i (X − Y−1)xi

it follows that
f[k](X − Y−1) ≥

k∑
i=1

(x(κ)
i )H(X − Y−1)x(κ)

i , (3.25)

where x
(κ)
i , i = 1, ..., k are the orthonormal eigenvectors corresponding to k largest

eigenvalues of X(κ) − (Y (κ))−1. On the other hand, as tr(Y−1) is convex in Y � 0, it is
true that

tr(Y−1) ≥ tr((Y (κ))−1) − tr((Y (κ))−1(Y − Y (κ))(Y (κ))−1)

= 2tr((Y (κ))−1) − tr((Y (κ))−1Y(Y (κ))−1). (3.26)
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The following convex optimization is majorant minimization for (3.24)

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

F (κ)
μ (X, Y, γ) := γ + μ(tr(X − 2(Y (κ))−1)

+tr((Y (κ))−1Y(Y (κ))−1) −
k∑

i=1
(x(κ)

i )H(X − Y−1)x(κ)
i ) s.t. (3.9) − (3.10).

(3.27)
because by (3.25) and (3.26), function F (κ)

μ obeys the two following crucial properties

F (κ)
μ (X, Y, γ) ≥ Fμ(X, Y, γ) ∀ (X, Y, γ) on (3.9) − (3.10)

and
F (κ)

μ (X(κ), Y (κ), γ(κ)) = Fμ(X(κ), Y (κ), γ(κ)).

Therefore, for the optimal solution (X(κ+1), Y (κ+1), γ(κ+1)) of the convex program (3.27),
it is true that

Fμ(X(κ+1), Y (κ+1), γ(κ+1)) ≤ F (κ)
μ (X(κ+1), Y (κ+1), γ(κ+1))

≤ F (κ)
μ (X(κ), Y (κ), γ(κ))

= Fμ(X(κ), Y (κ), γ(κ)),

implying that (X(κ+1), Y (κ+1), γ(κ+1)) is better than (X(κ), Y (κ), γ(κ)) toward optimizing
the objective in (3.24). By using [99], we can prove the following result of global
convergence.

Proposition 1 Initialized by any feasible point (X(0), Y (0), γ(0)) of SDP (3.9)-(3.10),
{(X(κ), Y (κ), γ(κ))} is a sequence of improved feasible points of the nonconvex program
(3.24), which converges to a point satisfying first-order necessary optimality conditions.

Proof: The sequence {(X(κ), Y (κ), γ(κ))} terminates (whenever Fμ(X(κ+1), Y (κ+1), γ(κ+1)) =
F (κ)

μ (X(κ+1), Y (κ+1), γ(κ+1))) or convergence to {(X̄, Ȳ , γ̄}, which is the optimal solution
of the convex program

min
X,Y,γ,R,H,Q,E,ΔKi

F̄μ(X, Y, γ) := γ + μ(tr(X − 2Ȳ −1) + tr(Ȳ −1YȲ −1)

−
k∑

i=1
(x̄H

i (X − Y−1)x̄i) s.t. (3.9) − (3.10).
(3.28)
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Algorithm 1 Nonconvex Spectral Optimization Algorithm for optimized k-order H∞
controllers

1: Initialize κ := 0 and solve SDP (3.32) to find its optimal solution (X(κ), Y (κ), γ(κ)).
For k normalized eigenvectors corresponding to k largest eigenvalues of X(κ) −
(Y (κ))−1 stop the algorithm if

tr(X(κ) − (Y (κ))−1) −
k∑

i=1
(x(κ)

i )H(X(κ) − (Y (κ))−1)x(κ)
i ) ≤ ε2

and accept (X(0), Y (0), γ(0)) as the optimal solution of the nonconvex program
(3.23). Otherwise set μ = 0.5.

2: repeat
3: if

tr(X(κ) − (Y (κ))−1) −
k∑

i=1
(x(κ)

i )H(X(κ) − (Y (κ))−1)x(κ)
i ) ≥ ε2 (3.29)

for k normalized eigenvectors corresponding to k largest eigenvalues of X(κ) −
(Y (κ))−1 then reset μ → 2μ and solve SDP (3.27) to find the optimal solution
(X(κ+1), Y (κ+1), γ(κ+1)).

4: else Solve SDP (3.27) with additional convex constraint

tr(X−2(Y (κ))−1)+ tr((Y (κ))−1Y(Y (κ))−1)−
k∑

i=1
(x(κ)

i )H(X−Y−1)x(κ)
i ) ≤ ε2 (3.30)

5: end if
6: Set κ := κ + 1.
7: until γ(κ) − γ(κ−1) ≤ ε1
8: Accept (X(κ), Y (κ), γ(κ)) as a found solution of (3.23) if tr(X(κ) − (Y (κ))−1) −

f[k](X(κ) − (Y (κ))−1) ≤ ε2.

where x̄i, i = 1, ..., k are the orthonormal eigenvectors corresponding to k largest
eigenvalues of X̄ − Ȳ −1. Therefore (X̄, Ȳ , γ̄) satisfies Kuh-Tucker condition for the
convex program (3.28), which is also the first-order necessary optimality condition for
the nonconvex program (3.24) [99]. �

Algorithm 1 is pseudo-code for implementing the above described procedure.

Alternatively, we can also use the following formulation instead of (3.24)

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ + μ[tr(Y − X−1) − f[k](Y − X−1)] s.t. (3.9) − (3.10), (3.31)
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for which the Algorithm 1 can be easily adjusted for solution. Usually, the initial point
(X(0), Y (0), γ(0)) is taken as the optimal solution of the full-order controller program

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ s.t. (3.9), (3.10). (3.32)

and the preference of using (3.24) or (3.31) goes to whichever smaller among tr(X(0) −
Y (0)) − f[k](X(0) − Y (0)) and tr(Y (0) − X(0)) − f[k](Y (0) − X(0)).

On the other hand, we can seek a k-order control to satisfy the H∞-gain condition
(3.5) for given γ by solving the following nonconvex program

min
X,Y,R,H,Q,E,ΔKi,K̂

F (X, Y) := tr(X − Y−1) − f[k](X − Y−1) s.t. (3.9) − (3.10),

(3.33)
where the penalty parameter μ is not needed. The pseudo-code for solving (3.33) is
provided by Algorithm 2, which is terminated when the zero value (with some tolerance)
of the objective in (3.33) is found so the rank condition (3.11) is fulfilled leading to the
construction of k-order control.
Again, an alternative formulation to (3.33)

min
X,Y,R,H,Q,E,ΔKi,K̂

F (X, Y) := tr(Y − X−1) − f[k](Y − X−1) s.t. (3.9) − (3.10),

(3.34)
is preferred if tr(Y (0) − X(0)) − f[k](Y (0) − X(0)) is smaller than tr(X(0) − Y (0)) −
f[k](X(0) − Y (0)), where (X(0), Y (0)) is the optimal solution of the following full-order
controller program

min
X,Y,R,H,Q,E,ΔKi,K̂

tr(X + Y) s.t. (3.9), (3.10). (3.35)

Remarks on less reduced order controllers. The computational difficulty
degree in the formulation in [3, 4] (for LTI systems) is proportional to the control
order k. Particularly, less reduced order controllers may pose more computational
challenges than highly reduced order ones. In contrast, we now show that using the
rank constraints (3.11) helps us solve them at the same computational efficiency.
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Algorithm 2 Nonconvex Spectral Optimization Algorithm for feasible k-order H∞
controllers

1: Initialize κ := 0 and solve SDP (3.35) to find its optimal solution (X(κ), Y (κ)). Stop
the algorithm if

tr(X(κ) − (Y (κ))−1) −
k∑

i=1
(x(κ)

i )H(X − Y −1)x(κ)
i ) ≤ ε2

and accept (X(0), Y (0)) as the solution of the nonconvex program (3.33).
2: repeat
3: Solve SDP

min
X,Y

tr(X − 2(Y (κ))−1) + tr((Y (κ))−1Y(Y (κ))−1)

− ∑k
i=1(x

(κ)
i )H(X − Y−1)x(κ)

i ) s.t. (3.9), (3.10)
(3.36)

to find its optimal solution (X(κ+1), Y (κ+1))
4: Set κ := κ + 1.
5: until tr(X(κ) − (Y (κ))−1) − ∑k

i=1(x
(κ)
i )H(X(κ) − (Y (κ))−1)x(κ)

i ) ≤ ε2 or
F (X(κ−1), Y (κ−1)) − F (X(κ), Y (κ)) ≤ ε1

6: Accept (X(κ), Y (κ)) as a found feasible solution of (3.23) under fixed γ if tr(X(κ) −
(Y (κ))−1) − f[k](X(κ) − (Y (κ))−1) ≤ ε2.

Indeed, less order reduction means that n − k is small. Suppose λ[n−k](X − Y−1) is the
sum of the n − k smallest eigenvalues of X − Y−1. Then (3.11) holds true if and only
if λ[n−k](X − Y−1) = 0. Therefore, we propose the following alternative formulation
for (3.23):

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ + μλ[n−k](X − Y−1) s.t. (3.9) − (3.10). (3.37)

Using the following variational principle

λ[n−k](X − Y −1) = min
orthornomal x1,...,xn−k

n−k∑
i=1

xH
i (X − Y−1)xi

the following optimization is majorant optimization for (3.37)

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ + μ
n−k∑
i=1

(x(κ)
i )H(X − Y−1)x(κ)

i s.t. (3.9) − (3.10), (3.38)
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where x
(κ)
i , i = 1, ..., n − k are the orthonormal eigenvectors corresponding to (n − k)

smallest eigenvectors of X(κ) − (Y (κ))−1. Since each (x(κ)
i )HY −1x

(κ)
i is convex in Y > 0,

the following convex optimization is majorant minimization for (3.38) and (3.37)

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ + μ
n−k∑
i=1

(x(κ)
i )H(X − 2(Y (κ))−1 + (Y (κ))−1Y(Y (κ))−1)x(κ)

i

s.t. (3.9) − (3.10),
(3.39)

which provides an alternative to κ-th iteration (3.27). This iteration is more efficient
than (3.27) for larger n − k, i.e. for lower order k of the controllers.

3.3 Static output feedback LPV-LFT H∞ controller

The static output feedback LPV-LFT controller corresponds to k = 0, i.e. the control
in (3.7) is in the form

u(t) = (DK11 + DK1Δ(I − ΔK(α(t))DKΔΔ)−1ΔK(α(t))DKΔ1)y(t) (3.40)

leading to the following optimization formulation for its synthesis

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ s.t. (3.9) − (3.10), (3.41)

X = Y−1, (3.42)

for

K̂ :=
⎡⎣ DK11 DK1Δ

DKΔ1 DKΔΔ

⎤⎦
and setting AK = 0, BK1 = 0, BKΔ = 0, CK1 = 0, CKΔ = in (3.12). The controller
(3.40) is recovered by (3.13), (3.17), (3.18) and (3.21). To the author’s best knowledge
such simple structured controller (3.40) has not been considered in literature so far.

The first attractive reformulation of nonlinear constraint (3.42) is given back in
[100]

(3.10), Trace(XY) ≤ n (3.43)
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where the nonconvexity is concentrated at the last indefinite quadratic constraint in
(Y, X). Alternating optimization between X and Y is applied in handling (3.43).
Later, [4] also addressed the static output feedback controller problem for LTI systems
by developing the so called convex-concave inequality approach for a solution of the
corresponding BMI reformulation. All these results must start from a feasible point of
a nonconvex feasible set, which is not easily located.
Note that X � Y−1 by LMI (3.10), which yields X − Y−1 � 0. Hence, the nonlinear
equality (3.42) holds if and only if

tr(X) − tr(Y−1) = 0.

In other words, the nonnegative quantity tr(X) − tr(Y−1) can be used to measure the
degree of satisfaction of the nonlinear equality (3.42). Instead of the formulation (3.24)
we consider a simpler nonconvex program

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ + μ(tr(X) − tr(Y−1)) s.t. (3.9) − (3.10). (3.44)

Using (3.26), at (X(κ), Y (κ)) feasible to LMIs (3.9)-(3.10), the following convex program
is a majorant minimization for the nonconvex program (3.44)

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ+μ(tr(X)−2tr(Y (κ))+tr((Y (κ))−1Y(Y (κ))−1)) s.t. (3.9)−(3.10),

(3.45)
The pseudo-code using (3.45) in κth iteration is given by Algorithm 3.

Alternatively, Y � X−1 by LMI (3.10), so whenever

tr(Y (0)) − tr((X(0))−1) < tr(X(0)) − tr((Y (0))−1) (3.46)

for the initial point (X(0), Y (0)) we use

min
X,Y,γ,R,H,Q,E,ΔKi,K̂

γ + μ(tr(Y) − tr(X−1)) s.t. (3.9) − (3.10) (3.47)

instead of the formulation (3.44), for which Algorithm 3 can be easily adjusted for
solution.
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Algorithm 3 Nonconvex Spectral Optimization Algorithm for static LPV-LFT H∞
controllers

1: Initialize κ := 0 and solve SDP (3.41) to find its optimal solution (X(κ), Y (κ), γ(κ)).
Stop the algorithm if

tr(X(κ) − (Y (κ))−1) ≤ ε2 (3.48)
and accept (X(0), Y (0), γ(0)) as the optimal solution of the nonconvex program
(3.23). Otherwise set μ = 0.5.

2: repeat
3: if tr(X(κ) − (Y (κ))−1) ≥ ε2 then reset μ → 2μ and solve SDP (3.45) to find

the optimal solution (X(κ+1), Y (κ+1), γ(κ+1)).
4: else Solve SDP (3.45) with additional convex constraint

tr(X − 2(Y (κ))−1) + tr((Y (κ))−1Y(Y (κ))−1) ≤ ε2 (3.49)

to find the optimal solution (X(κ+1), Y (κ+1), γ(κ+1))
5: end if
6: Set κ := κ + 1.
7: until γ(κ) − γ(κ−1) ≤ ε1
8: Accept (X(κ), Y (κ), γ(κ)) as a found suboptimal solution of (3.41)-(3.42) if (3.48) is

fulfilled.

Similarly to (3.33), we address the design of a static output feedback H∞ controller
to satisfy the H∞-gain condition (3.5) for given γ by solving the following nonconvex
program

min
X,Y

tr(X) − tr(Y−1) s.t. (3.9) − (3.10). (3.50)

Its κth iteration is

min
X,Y

tr(X) − 2tr(Y (κ)) + tr((Y (κ))−1Y(Y (κ))−1) s.t. (3.9) − (3.10), (3.51)

and Algorithm 4 is the pseudo-code for the implementation.
Alternatively, whenever (3.46), we use

min
X,Y

tr(Y) − tr(X−1) s.t. (3.9) − (3.10) (3.52)

instead of (3.50), for which Algorithm 4 can be easily adjusted for computation.
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Algorithm 4 Nonconvex Spectral Optimization Algorithm for feasible static output
feedback LPV-LFT H∞ controllers

1: Initialize κ := 0 and solve SDP (3.41) (for fixed γ = γ̄ to find its optimal solution
(X(κ), Y (κ)). Stop the algorithm if

tr(X(κ) − (Y (κ))−1) ≤ ε2 (3.53)

and accept (X(0), Y (0)) as the optimal solution of the nonconvex program (3.23).
2: repeat
3: Solve SDP (3.51) to find the optimal solution (X(κ+1), Y (κ+1)).
4: Set κ := κ + 1.
5: until tr(X(κ) − (Y (κ))−1) ≤ ε2 or tr(X(κ−1) − Y (κ−1)) − tr(X(κ) − Y (κ)) ≤ ε1
6: Accept (X(κ), Y (κ)) as a found feasible solution of (3.41)-(3.42) under fixed γ if

(3.53) is fulfilled.

3.4 Simulation results

The hardware and software facilities for our computational implementation are:

• Processor: Intel(R) Core(TM) i5-3470 CPU @3.20GHz;

• Software: Matlab version R2015b;

• Matlab toolbox: Yalmip[101] with SeDumi 1.3 [102] solver for SDP;

• Data: The data in subsection 4.1 are from [88], while the state-space data in
subsections 4.2, 4.3 and 4.4 are from [103];

• Criterion: The stop and rank check criterion ε1 and ε2 are set as 10−4.

3.4.1 RTAC control

Consider the nonlinear benchmark model [104] of rotational-translational actuator
(RTAC). The regulated output is the tracking performance of the translational and
angular positions and control

z = (0.1x1, 0.1x3, u)T
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The system can be represented by LPV-LFT (3.1)-(3.2) [88, Appendix] with the
numerical values of the matrices in (3.1)-(3.2) recalled in Appendix A.
By solving SDP (3.32) for Step 1 of Algorithm 1, we found γ(0) = 8.1909 with
X0 −(Y 0)−1 of rank-four, which lead to full-order control (3.3)-(3.4) [88]. Implementing
Algorithm 1 with μ = 1 for the first-order controller, γ = 9.3785 was found and the
following numerical data for control (3.3)-(3.4) are obtained

AK = −4.2617, BK1 =
[
0.4767 −2.0207

]
, CK1 = −0.1327, DK11 =

[
−0.0670 0.0284

]
,

BKΔ =
[
0 −0.0030 −0.0132

]
, DK1Δ =

[
0 0 0.0013

]
, DKΔΔ =

⎡⎢⎢⎣
−0.0002 −0.3509 −1.4991

0 −0.0003 −0.0015
0 0.0002 0.0008

⎤⎥⎥⎦ ,

CKΔ =

⎡⎢⎢⎣
−30.6379

4.2867
−1.6715

⎤⎥⎥⎦ , DKΔ1 =

⎡⎢⎢⎣
−11.5584 −2.5580

0.1977 0.0127
0.0034 −0.0107

⎤⎥⎥⎦ ,

ΔK1 =

⎡⎢⎢⎣
−0.3118 4.8064 −25.2717
0.3425 4.8514 64.0377

−0.0932 −27.9300 −84.1243

⎤⎥⎥⎦ , ΔK2 =

⎡⎢⎢⎣
−0.3125 3.5657 51.1251
0.3434 6.5093 −39.3112

−0.0934 −28.3084 −59.9568

⎤⎥⎥⎦ ,

ΔK3 =

⎡⎢⎢⎣
0.3118 −4.8064 25.2717

−0.3425 −4.8514 −64.0377
0.0932 27.9300 84.1243

⎤⎥⎥⎦ , ΔK4 =

⎡⎢⎢⎣
0.3125 −3.5657 −51.1251

−0.3434 −6.5093 39.3112
0.0934 28.3084 59.9568

⎤⎥⎥⎦ ,

Under the condition x(0) = (0.5, 0, 0, 0)T , the simulation given by Figs. 3.2-3.4 clearly
shows that our first-order LPV-LFT stabilizes the system well.
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Fig. 3.2 Tracking performance of the first-order LPV-LFT controller in the absence of
disturbance
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Fig. 3.3 Tracking performance of the first-order LPV-LFT controller with the distur-
bance w = 0.1 sin(5πt)
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Fig. 3.4 The behaviour of the first-order LPV-LFT controller in the absence of distur-
bance (dot) and with disturbance w = 0.1 sin(5πt)(solid).

3.4.2 Reduced order LPV-LFT controllers

We modify the LTI examples in [3, Sec. 10] by adding the gain-scheduling channel
(wΔ, zΔ) to have LPV-LFT system (3.1). The randomly generated matrix sets for the
gain-scheduling channel are provided in Appendix B.

The computational results by implementing Algorithm 1 are provided by Table 3.1.
The full order of LPV-LFT control, which is equal to the system state dimension is
given in the second row with the initial γ obtained by solving (3.32) (for full-order
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Table 3.1 Computational results for reduced-order LPV-LFT controllers by Algorithm
1

Full-order Lower bound by (3.32) μ γ order k
VTOL helicopter 4 0.0871 0.05 0.2958 1
Chemical reactor 4 0.8653 0.05 0.8653 1

Transport airplane 10 1.7042 10 2.5302 1

Table 3.2 Computational results for static LPV-LFT controllers by Algorithm 3

Full order Lower bound by (3.32) μ γ
AC1 5 2.76E-08 0.1 6.68E-07
AC2 5 0.117675 1 2.113598
AC3 5 3.095253 1 4.891439
AC6 7 3.683339 5 4.948768
AC8 9 8.727383 20 9.57084
AC9 10 1.000091 5 1.002586
AC15 4 16.30176 5 18.91505
AC17 4 6.686188 5 6.688397
HE4 8 28.81522 5 37.26205

LPV-LFT control) given in the third row. The fourth column indicates the value of
initial μ used. The fifth column is the found value of γ for the controller of order
indicated in the sixth column.

3.4.3 Static output feedback LPV-LFT controller

We modify the LTI examples in [4, Tab. III] by adding the matrices relating to the
gain-scheduling channel (wΔ, zΔ) as provided in Appendix C. The computational results
by implementing Algorithm 3 are provided in Table 3.2, which is formatted similarly
to Table 3.1. Table 3.1 and Table 3.2 reveal that very low-order (first-order or static)
controllers, which lead to very efficient online control realization, work well in these
examples.
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3.4.4 LTI systems

In LTI systems there are no gain-scheduling channel (wΔ, zΔ) in system (3.1) and no
gain-scheduling channel (wK , zK) in controller (3.3). Accordingly,

K̂ :=
⎡⎣ AK BK1

CK1 DK11

⎤⎦
in (4.48) and LMI (3.9) becomes

⎡⎢⎢⎢⎢⎢⎢⎢⎣

XA + BK1C2 + (∗) ∗ ∗ ∗
AK

T + A + B2DK11C2 (AY + B2CK1) + (∗) ∗ ∗
BT

1 X + DT
21BK1

T BT
1 + DT

21DK11
T BT

2 −γI ∗
C1 + D12DK11C2 C1Y + D12CK1 D11 + D12DK11D21 −γI

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≺ 0

(3.54)
with control recovered by (3.13)-(3.16) [105].
As mentioned in the Introduction, the Matlab command systune [18] is the most efficient
tool for LTI systems. Our purpose in this subsection is not to show any advantage
of the Lyapunov matrix rank constrained approach over the frequency approach by
using the Matlab command systune [18]. We consider numerical examples from [3, Sec.
10] and [4, Tab. III] for LTI systems to only show the efficiency of our approach in
handling the rank-reduced constraints.

Dynamic and static output feedback controllers in [3]

All cases in [3, Section 10] were tested. The computational results are summarized in
Table 3.3, where the first column is the case name, the second column is the initial
γ obtained by solving (3.32), i.e. it is the optimal H∞ by the full-order controller,
the third column is the objective function, which is either (3.24) or (3.31) for k-order
controller and either (3.44) or (3.47) for static output feedback controller. The fourth
column is the value of initial μ. The fifth column is the found value of γ. The
sixth column provides the controller order. The seventh column is the iterations by
our method; the last two column are the found γ and corresponding order in [3],
respectively.
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Compared with [3], it can be seen that, our optimal γ are better than [3] in all cases
provided. For the Transport aircraft example, [3] failed to obtain 2-order controller,
though it was found by our Algorithm after 6 iterations. The Piezoelectric actuator
example poses the most difficulty for [3] but it is easily solved by our algorithm with 3
iterations for both order-2 controllers and statistic output feedback controller.

Table 3.3 Numerical results by Algorithms 1 and 3 compared with [3]

Cases Lower bound Obj μ γ order # iter γ in [3] order in [3]
VTOL helicopter 0.0737 (3.24) 1 0.118713 2 1 0.133 2
VTOL helicopter 0.0737 (3.44) 0.7 0.1539 0 20 0.1542 0
Chemical reactor 0.8617 (3.24) 1 0.8617 2 1 1.142 2
Chemical reactor 0.8617 (3.44) 1 0.8937 0 28 1.183 0
Transport aircraft 0.0417 (3.31) 10 0.349 1 42 2.86 1
Transport aircraft 0.0417 (3.31) 1 0.2167 2 6 failed 2

Piezoelectric actuator 3.11E-05 (3.31) 5 0.0048 2 3 0.03 2
Piezoelectric actuator 3.11E-05 (3.47) 100 0.0213 0 3 0.0578 0
Coupled springs model 0.01996 (3.24) 1 0.01997 2 4 0.0235 4

The last example in [3] for static output feedback for a plant with state dimension
82. The computational results by implementing Algorithm 2 are summarized in Table
3.4, whose format is similar to Table 3.3 but the second column is the fixed value of γ,
which is better than the value provided by [3] in the 7-th column. The sixth column is
the value of trace(X − Y −1) at the last iteration.

Table 3.4 Distillation tower case with γ fixed by Algorithm 4 compared with [3]

Cases Fixed γ Obj order # iter trace(X − Y −1) γ in [3] order in [3]
Distillation tower 0.8000 (3.44) 0 64 2.24E-05 1.0722 0

Static output feedback controllers in [4]

There are 45 cases in [4, Table III]. The computational results are summarized in Table
3.5 and Table 3.6 by Algorithm 3 and Algorithm 4, respectively, whose format is in
similar style to Table 3.3. Any way, the best γ obtained from systune [18], which is
referred to what is achievable, is also provided in the ninth column. In AC9, EB1, EB2
and EB3, the results by [4] are obviously incorrect as its provided values of γ in the
seventh column is even smaller than their lower bound in the second column. It should
be mentioned that, the value of μ is increased to regulate the convergence speed, but a



3.5 Conclusions 45

larger μ results in larger γ as well. According to [4], the iteration threshold to stop
its solver is 300. The solver [4] is trapped by local minima in AC4 and AC12 as its
found values are much bigger than that found by our Algorithm 3. The former is also
heading to a wrong minima in the case AC12 as the value found after 300 iterations is
still very far from that found by the latter. In AC1, AC2, AC8, AC11, AC16, AC17,
HE1, HE2, REA2, DIS3, DIS4, WEC2, WEC3, IH, PSM, and NN1, the later clearly
outperforms the former in both computational performance and convergence. Note
that the result for HE3, DIS1, TG1, NN4, NN11 and NN16 in Table 3.6 was obtained
by using Algorithm 4. Our simulation results are better than or consistent with [4].
It should be realized that the results in these Tables also depend on the setting of
stopping parameters in the algorithms, i.e. the presented results are not necessarily
the local minima when the algorithms stop due to slow convergence.

3.5 Conclusions

We have proposed new algorithms for solving matrix-rank constrained optimization
arising in reduced-order H∞ LPV-LFT controller design. Unlike the previous devel-
opments, we formulate the problem as minimization of nonconvex objective function
over a convex feasibility set. The global convergence of the proposed Algorithms to
a local minima follows immediately from their path-following nature, while there is
no difficulty for initial solutions, which are found from a semi-definite program for
full-order controller synthesis. The numerical results reported for the benchmark
collections have shown their merit. Their application to solutions of reduced-order
generalized H2 LPV-LFT controllers is obvious. Their extensions to multi-objective
and structured controller design are currently under development.

Appendix A: LPV-LFT data of RTAC System

A =

⎡⎢⎢⎢⎢⎣
0 1 0 0

−1.0365 0 0 0
0 0 0 1

0.1946 0 0 0

⎤⎥⎥⎥⎥⎦ , BΔ =

⎡⎢⎢⎢⎢⎣
0 0 0

−0.5 0.5 1.0365
0 0 0

0.5 0.5 −0.1946

⎤⎥⎥⎥⎥⎦ , B1 =

⎡⎢⎢⎢⎢⎣
0

1.0365
0

−0.1946

⎤⎥⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎢⎣
0

−0.1946
0

1.03654

⎤⎥⎥⎥⎥⎦
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CΔ =

⎡⎢⎢⎣
1.5157 0 0 0
0.7088 0 0 0

0 0 0 1

⎤⎥⎥⎦ , DΔΔ =

⎡⎢⎢⎣
1.2311 0 −1.5157

0 −0.8419 −0.7088
0 0 0

⎤⎥⎥⎦ , DΔ1 =

⎡⎢⎢⎣
−1.5157
−0.7088

0

⎤⎥⎥⎦ , DΔ2 =

⎡⎢⎢⎣
1.5157

−0.7088
0

⎤⎥⎥⎦

C1 =

⎡⎢⎢⎣
0.31622 0 0 0

0 0 0.3162 0
0 0 0 0

⎤⎥⎥⎦ , C2 =

[
1 0 0 0
0 0 1 0

]
, D12 =

⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦

Δ1 =

⎡⎢⎢⎣
0.01224 0 0

0 0.01224 0
0 0 0.04794

⎤⎥⎥⎦ , Δ2 =

⎡⎢⎢⎣
0.01224 0 0

0 0.01224 0
0 0 −0.04794

⎤⎥⎥⎦
Δ3 =

⎡⎢⎢⎣
−0.01224 0 0

0 −0.01224 0
0 0 −0.04794

⎤⎥⎥⎦ , Δ4 =

⎡⎢⎢⎣
−0.01224 0 0

0 −0.01224 0
0 0 0.04794

⎤⎥⎥⎦ .

α1(t) = 1
4a2a5

(a2 − δ1(t))(a5 − δ2(t)), α2(t) = 1
4a2a5

(a2 − δ1(t))(a5 + δ2(t))
α3(t) = 1

4a2a5
(a2 + δ1(t))(a5 + δ2(t)), α4(t) = 1

4a2a5
(a2 + δ1(t))(a5 − δ2(t))

where
a1 = ε cos 0.5+1

2 a2 = ε 1−cos 0.5
2 , a3 = 1 − a1, a4 = 1 + a1, a5 = ε0.5 sin 0.5

δ1 = ε cos x3 − a1, −a2 ≤ δ1 ≤ a2, δ2 = εx4 sin x3, −a5 ≤ δ2 ≤ a5, ε = 0.2.

Appendix B

Modified VTOL helicopter system

BΔ =

⎡⎢⎢⎢⎢⎣
0.5243 0.4413
0.3440 0.1393
0.1109 0.5365
0.2478 0.1764

⎤⎥⎥⎥⎥⎦ , CΔ =

[
0.3031 0.5501 0.5605 0.0255
0.3292 0.2303 0.3367 0.1256

]
,

Δ1 =

[
0.0740 0.0618
0.0217 0.0152

]
, Δ2 =

[
0.0305 0.0611
0.0097 0.0724

]
, Δ3 =

[
0.0477 0.0562
0.0371 0.0565

]
, Δ4 =

[
0.0506 0.0704
0.0474 0.0156

]
.
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Modified chemical reactor system

BΔ =

⎡⎢⎢⎢⎢⎣
0.3992 0.2357 0.1968 0.2560
0.3125 0.0069 0.3433 0.0130
0.2363 0.0491 0.0851 0.2498
0.3772 0.3506 0.2244 0.1473

⎤⎥⎥⎥⎥⎦ , CΔ =

⎡⎢⎢⎢⎢⎣
0.1869 0.3511 0.2284 0.2440
0.3123 0.2240 0.0962 0.2576
0.0888 0.3294 0.2597 0.2844
0.1941 0.2879 0.0325 0.3472

⎤⎥⎥⎥⎥⎦ ,

Δ1 =

⎡⎢⎢⎢⎢⎣
0.0032 0.0133 0.0410 0.0322
0.0316 0.0095 0.0182 0.0346
0.0124 0.0122 0.0348 0.0287
0.0079 0.0028 0.0449 0.0080

⎤⎥⎥⎥⎥⎦ , Δ2 =

⎡⎢⎢⎢⎢⎣
0.0232 0.0099 0.0097 0.0067
0.0403 0.0267 0.0448 0.0079
0.0413 0.0303 0.0039 0.0294
0.0128 0.0197 0.0050 0.0271

⎤⎥⎥⎥⎥⎦

Δ3 =

⎡⎢⎢⎢⎢⎣
0.0019 0.0024 0.0319 0.0148
0.0346 0.0320 0.0292 0.0050
0.0271 0.0347 0.0191 0.0011
0.0274 0.0366 0.0066 0.0349

⎤⎥⎥⎥⎥⎦ , Δ4 =

⎡⎢⎢⎢⎢⎣
0.0144 0.0309 0.0408 0.0085
0.0141 0.0012 0.0166 0.0316
0.0159 0.0402 0.0213 0.0158
0.0223 0.0267 0.0026 0.0429

⎤⎥⎥⎥⎥⎦ .

Modified transport airplane system

BT
Δ =

⎡⎢⎢⎢⎢⎣
0.1454 0.0308 0.2485 0.2151 0.0160 0.0712 0.1049 0.1605 0.2354 0.1063
0.1822 0.2487 0.1115 0.1627 0.2309 0.2232 0.0366 0.0514 0.1590 0.1985
0.0632 0.0946 0.0874 0.1169 0.0438 0.1910 0.0251 0.2280 0.0210 0.2002
0.2174 0.1155 0.1550 0.0908 0.1944 0.1510 0.1566 0.2160 0.1170 0.2261

⎤⎥⎥⎥⎥⎦ ,

CΔ =

⎡⎢⎢⎢⎢⎣
0.1991 0.0018 0.2215 0.2496 0.1639 0.1131 0.0108 0.0643 0.2234 0.1669
0.0184 0.2225 0.1165 0.2177 0.1031 0.0067 0.1392 0.1817 0.1950 0.2448
0.2484 0.2162 0.0930 0.0000 0.1192 0.1064 0.1530 0.1785 0.1238 0.0293
0.1942 0.1746 0.0208 0.1702 0.0972 0.0265 0.1849 0.1261 0.1906 0.2175

⎤⎥⎥⎥⎥⎦ ,

Δ1 =

⎡⎢⎢⎢⎢⎣
0.0191 0.0212 0.0033 0.0055
0.0241 0.0303 0.0386 0.0324
0.0217 0.0173 0.0281 0.0281
0.0279 0.0353 0.0216 0.0161

⎤⎥⎥⎥⎥⎦ , Δ2 =

⎡⎢⎢⎢⎢⎣
0.0136 0.0429 0.0119 0.0158
0.0156 0.0105 0.0376 0.0239
0.0289 0.0252 0.0393 0.0138
0.0342 0.0211 0.0192 0.0078

⎤⎥⎥⎥⎥⎦

Δ3 =

⎡⎢⎢⎢⎢⎣
0.0181 0.0437 0.0088 0.0238
0.0130 0.0085 0.0322 0.0011
0.0111 0.0416 0.0298 0.0010
0.0294 0.0260 0.0152 0.0365

⎤⎥⎥⎥⎥⎦ , Δ4 =

⎡⎢⎢⎢⎢⎣
0.0037 0.0241 0.0188 0.0333
0.0234 0.0321 0.0223 0.0058
0.0263 0.0101 0.0321 0.0320
0.0269 0.0338 0.0076 0.0325

⎤⎥⎥⎥⎥⎦
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Appendix C

Modified AC1 system

BΔ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.2972 0.1612
0.4326 0.0854
0.1907 0.2157
0.4383 0.2318
0.5171 0.3084

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, CΔ =

[
0.2360 0.5001 0.1001 0.5307 0.0602
0.1685 0.2330 0.4901 0.2377 0.1398

]
,

Δ1 =

[
0.1028 0.0531
0.0173 0.1622

]
, Δ2 =

[
0.0046 0.1142
0.1453 0.0764

]
, Δ3 =

[
0.0936 0.0742
0.0384 0.1558

]
, Δ4 =

[
0.1177 0.0499
0.1122 0.1052

]
.

Modified AC2 system

BΔ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.1860 0.1471 0.1931 0.1790 0.3075
0.3197 0.2706 0.0325 0.0686 0.2026
0.2126 0.2984 0.0404 0.1789 0.3360
0.0559 0.2856 0.0493 0.0534 0.2518
0.0722 0.1151 0.2453 0.0199 0.2107

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, CΔ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0063 0.2641 0.1275 0.2541 0.2679
0.1064 0.1382 0.2599 0.3052 0.2471
0.1364 0.2854 0.2427 0.1053 0.0538
0.0869 0.1257 0.1213 0.2158 0.2771
0.0633 0.2472 0.0694 0.1410 0.3182

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Δ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0464 0.0349 0.0130 0.0420 0.0356
0.0500 0.0563 0.0284 0.0334 0.0376
0.0563 0.0300 0.0513 0.0140 0.0415
0.0000 0.0273 0.0327 0.0379 0.0507
0.0493 0.0456 0.0481 0.0048 0.0559

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Δ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0630 0.0099 0.0452 0.0041 0.0120
0.0476 0.0706 0.0516 0.0401 0.0155
0.0760 0.0396 0.0026 0.0158 0.0035
0.0475 0.0692 0.0503 0.0101 0.0520
0.0014 0.0171 0.0297 0.0168 0.0231

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Δ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0396 0.0091 0.0153 0.0697 0.0457
0.0511 0.0361 0.0415 0.0060 0.0422
0.0367 0.0627 0.0471 0.0078 0.0038
0.0394 0.0643 0.0307 0.0104 0.0685
0.0327 0.0199 0.0151 0.0122 0.0536

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Δ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0496 0.0578 0.0090 0.0224 0.0376
0.0043 0.0528 0.0021 0.0314 0.0574
0.0579 0.0345 0.0632 0.0436 0.0234
0.0628 0.0119 0.0203 0.0017 0.0300
0.0662 0.0268 0.0199 0.0566 0.0036

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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Modified AC3 system

BΔ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0421 0.1351 0.2372 0.3017 0.4218
0.0606 0.0929 0.0787 0.2381 0.0728
0.0718 0.1072 0.0905 0.1338 0.1101
0.0838 0.3812 0.0330 0.0710 0.1694
0.1355 0.3002 0.3901 0.2657 0.0316

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, CΔ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.2106 0.2908 0.1364 0.0399 0.2294
0.3321 0.1855 0.3337 0.0034 0.0470
0.1710 0.1951 0.3008 0.1827 0.2729
0.1179 0.2634 0.0541 0.2831 0.0546
0.0161 0.0257 0.0562 0.3122 0.0580

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Δ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0495 0.0112 0.0254 0.0433 0.0260
0.0291 0.0276 0.0497 0.0243 0.0404
0.0712 0.0117 0.0213 0.0217 0.0538
0.0291 0.0549 0.0384 0.0328 0.0307
0.0450 0.0631 0.0603 0.0306 0.0311

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Δ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0086 0.0659 0.0523 0.0319 0.0113
0.0017 0.0644 0.0510 0.0146 0.0459
0.0200 0.0315 0.0512 0.0068 0.0616
0.0219 0.0166 0.0073 0.0567 0.0356
0.0450 0.0526 0.0469 0.0121 0.0484

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Δ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0107 0.0562 0.0380 0.0014 0.0640
0.0663 0.0520 0.0277 0.0642 0.0552
0.0376 0.0084 0.0289 0.0454 0.0401
0.0472 0.0365 0.0126 0.0648 0.0306
0.0025 0.0226 0.0178 0.0114 0.0179

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Δ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0471 0.0448 0.0199 0.0398 0.0395
0.0143 0.0402 0.0510 0.0595 0.0222
0.0040 0.0262 0.0494 0.0278 0.0624
0.0480 0.0245 0.0534 0.0038 0.0140
0.0420 0.0511 0.0317 0.0543 0.0409

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Modified AC6 system

BT
Δ =

⎡⎢⎢⎢⎢⎣
0.0327 0.0447 0.3191 0.3238 0.1948 0.0202 0.0795
0.1196 0.2781 0.0052 0.0146 0.0572 0.2198 0.2478
0.2194 0.1527 0.1853 0.1004 0.2522 0.0640 0.2326
0.0622 0.1248 0.2119 0.2642 0.0275 0.3148 0.2627

⎤⎥⎥⎥⎥⎦

CΔ =

⎡⎢⎢⎢⎢⎣
0.3139 0.3081 0.1451 0.0664 0.3260 0.1220 0.2818
0.2094 0.2247 0.0274 0.0867 0.3412 0.3250 0.1408
0.1986 0.1267 0.0866 0.1507 0.1773 0.1334 0.0873
0.0523 0.1854 0.0445 0.0179 0.1767 0.0402 0.1459

⎤⎥⎥⎥⎥⎦ ,

Δ1 =

⎡⎢⎢⎢⎢⎣
0.0394 0.0411 0.0521 0.0284
0.0352 0.0413 0.0306 0.0759
0.0361 0.0661 0.0656 0.0708
0.0248 0.0643 0.0431 0.0445

⎤⎥⎥⎥⎥⎦ , Δ2 =

⎡⎢⎢⎢⎢⎣
0.0677 0.0512 0.0246 0.0338
0.0638 0.0251 0.0186 0.1004
0.0226 0.0918 0.0248 0.0468
0.0328 0.0212 0.0474 0.0201

⎤⎥⎥⎥⎥⎦ ,

Δ3 =

⎡⎢⎢⎢⎢⎣
0.0883 0.0252 0.0588 0.0290
0.0956 0.0399 0.0694 0.0311
0.0428 0.0581 0.0216 0.0414
0.0108 0.0256 0.0115 0.0496

⎤⎥⎥⎥⎥⎦ , Δ4 =

⎡⎢⎢⎢⎢⎣
0.0075 0.0820 0.0209 0.0460
0.0232 0.0645 0.0405 0.0204
0.0707 0.0431 0.0850 0.0431
0.0026 0.0511 0.0483 0.0551

⎤⎥⎥⎥⎥⎦ .
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Modified AC8 system

BT
Δ =

[
0.0964 0.3048 0.2852 0.3392 0.3409 0.1208 0.1274 0.2153 0.1339
0.3424 0.3336 0.2293 0.1083 0.2802 0.0962 0.1879 0.1583 0.2217

]

CΔ =

[
0.4599 0.0189 0.0804 0.3147 0.1684 0.2111 0.3167 0.0977 0.1679
0.2118 0.3876 0.0747 0.1322 0.2087 0.2006 0.0867 0.0492 0.3997

]

Δ1 =

[
0.1237 0.1223
0.0942 0.0293

]
, Δ2 =

[
0.0958 0.1372
0.0093 0.1091

]
, Δ3 =

[
0.1035 0.1122
0.1193 0.0495

]
, Δ4 =

[
0.0001 0.0671
0.1746 0.0708

]

Modified AC9 system

BT
Δ =

[
0.2911 0.3110 0.1462 0.2964 0.3551 0.0966 0.0516 0.0896 0.1393 0.1143
0.3691 0.0204 0.2359 0.0648 0.3337 0.0667 0.1999 0.3977 0.1414 0.0187

]

CΔ =

[
0.1202 0.2758 0.2005 0.3071 0.3533 0.1315 0.1279 0.2939 0.0463 0.0093
0.0354 0.2762 0.1248 0.2039 0.3294 0.2016 0.2298 0.2752 0.3034 0.1529

]

Δ1 =

[
0.0704 0.1100
0.1312 0.0757

]
, Δ2 =

[
0.1194 0.1227
0.0871 0.0558

]
, Δ3 =

[
0.1365 0.0886
0.0008 0.1163

]
, Δ4 =

[
0.0315 0.1032
0.1260 0.1117

]

Modified AC15 system

BT
Δ =

⎡⎢⎢⎣
0.0637 0.3367 0.0498 0.3052
0.2307 0.3636 0.3338 0.4218
0.4159 0.1560 0.3262 0.0923

⎤⎥⎥⎦ , CΔ =

⎡⎢⎢⎣
0.3155 0.4589 0.4242 0.1216
0.1837 0.0175 0.3698 0.1558
0.1707 0.4112 0.0459 0.3157

⎤⎥⎥⎦

Δ1 =

⎡⎢⎢⎣
0.0031 0.0480 0.0618
0.0745 0.0905 0.0860
0.0500 0.0610 0.0806

⎤⎥⎥⎦ , Δ2 =

⎡⎢⎢⎣
0.0672 0.1033 0.0196
0.0213 0.0033 0.1141
0.0280 0.0571 0.0831

⎤⎥⎥⎦ ,

Δ3 =

⎡⎢⎢⎣
0.0726 0.0990 0.0757
0.0684 0.0062 0.0140
0.0087 0.0104 0.1187

⎤⎥⎥⎦ , Δ4 =

⎡⎢⎢⎣
0.0804 0.0649 0.0639
0.0711 0.0510 0.0788
0.0147 0.0957 0.0447

⎤⎥⎥⎦
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Modified AC17 system

BΔ =

⎡⎢⎢⎢⎢⎣
0.1462 0.2304 0.3153 0.0251
0.3333 0.1848 0.2733 0.1295
0.1619 0.3464 0.2865 0.0017
0.0925 0.3603 0.3468 0.3192

⎤⎥⎥⎥⎥⎦ , CΔ =

⎡⎢⎢⎢⎢⎣
0.0576 0.1217 0.3314 0.4104
0.0607 0.3968 0.1556 0.3572
0.3994 0.0267 0.1841 0.0318
0.2767 0.2101 0.2418 0.1279

⎤⎥⎥⎥⎥⎦

Δ1 =

⎡⎢⎢⎢⎢⎣
0.0563 0.0321 0.0455 0.0393
0.0406 0.0076 0.0137 0.0133
0.0252 0.0094 0.0492 0.0632
0.0594 0.0076 0.0998 0.0971

⎤⎥⎥⎥⎥⎦ , Δ2 =

⎡⎢⎢⎢⎢⎣
0.0319 0.0677 0.0523 0.0801
0.0038 0.0418 0.0575 0.0428
0.0130 0.0611 0.0803 0.0129
0.0070 0.0640 0.0606 0.0062

⎤⎥⎥⎥⎥⎦ ,

Δ3 =

⎡⎢⎢⎢⎢⎣
0.0572 0.0426 0.0399 0.0193
0.0247 0.0573 0.0750 0.0549
0.0538 0.0405 0.0312 0.0673
0.0523 0.0391 0.0094 0.0777

⎤⎥⎥⎥⎥⎦ , Δ4 =

⎡⎢⎢⎢⎢⎣
0.0192 0.0456 0.0270 0.0693
0.0679 0.0443 0.0080 0.0160
0.0522 0.0582 0.0738 0.0098
0.0360 0.0665 0.0348 0.0809

⎤⎥⎥⎥⎥⎦

Modified HE4 system

BT
Δ =

⎡⎢⎢⎢⎢⎣
0.1677 0.0014 0.0621 0.1371 0.1744 0.1203 0.2021 0.1830
0.2395 0.0546 0.1572 0.1196 0.3053 0.2925 0.2790 0.1386
0.2348 0.2842 0.1166 0.0363 0.1641 0.1066 0.2654 0.0582
0.0652 0.1657 0.0263 0.0752 0.1983 0.0347 0.1898 0.2780

⎤⎥⎥⎥⎥⎦

CΔ =

⎡⎢⎢⎢⎢⎣
0.1227 0.2765 0.1709 0.1227 0.0710 0.0542 0.0562 0.1699
0.2542 0.1658 0.2155 0.1823 0.1005 0.0276 0.1711 0.2431
0.1595 0.1418 0.1693 0.0498 0.0855 0.1956 0.2001 0.1906
0.2060 0.1499 0.2037 0.2471 0.2728 0.0271 0.2510 0.2213

⎤⎥⎥⎥⎥⎦

Δ1 =

⎡⎢⎢⎢⎢⎣
0.0433 0.0570 0.0391 0.0547
0.0277 0.0428 0.0431 0.0079
0.0673 0.0387 0.0760 0.0099
0.0842 0.0164 0.0632 0.0508

⎤⎥⎥⎥⎥⎦ , Δ2 =

⎡⎢⎢⎢⎢⎣
0.0472 0.0643 0.0811 0.0197
0.0557 0.0492 0.0298 0.0826
0.0039 0.0164 0.0519 0.0068
0.0592 0.0771 0.0243 0.0200

⎤⎥⎥⎥⎥⎦ ,

Δ3 =

⎡⎢⎢⎢⎢⎣
0.0838 0.0086 0.0144 0.0314
0.0495 0.0756 0.0556 0.0346
0.0502 0.0767 0.0155 0.0077
0.0817 0.0184 0.0100 0.0588

⎤⎥⎥⎥⎥⎦ , Δ4 =

⎡⎢⎢⎢⎢⎣
0.0444 0.0540 0.0086 0.0591
0.0801 0.0604 0.0718 0.0232
0.0173 0.0307 0.0362 0.0482
0.0746 0.0386 0.0543 0.0301

⎤⎥⎥⎥⎥⎦
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Table 3.5 Numerical results of static output feedback controllers by Algorithm 3
compared with [4]

Cases Lower bound Obj μ γ # iter γ in [4] # iter γ by systune [18] # iter
AC1 2.68E-06 (3.47) 0.1 3.42E-05 7 0.0177 93 6.97E-05 85
AC2 0.1115 (3.47) 0.1 0.1115 1 0.1140 99 0.1115 53
AC3 2.9675 (3.47) 0.15 3.4696 300 3.4859 210 3.4056 111
AC4 0.5573 (3.44) 0.3 1.0064 300 69.9900 2 0.9355 45
AC6 3.4275 (3.47) 0.1 4.1208 132 4.1954 167 4.114 59
AC7 0.0396 (3.47) 0.1 0.0657 150 0.0548 300 0.0651 28
AC8 1.6165 (3.47) 2 2.0508 16 3.052 247 2.005 37
AC9 1.0000 (3.47) 1 1.003 1 0.9237 (wrong) 300 1.0006 102
AC11 2.8079 (3.44) 10 2.9261 300 3.0104 68 2.818 95
AC12 0.0225 (3.44) 1 0.4706 14 2.3025 300 0.0537 300
AC15 14.8628 (3.47) 0.2 15.1730 116 15.1995 105 15.1689 54
AC16 14.8556 (3.44) 0.09 15.0012 24 14.9881 186 14.858 54
AC17 6.6124 (3.47) 1 6.6124 1 6.6373 129 6.6124 28
HE1 0.0737 (3.44) 0.7 0.1539 20 0.1807 300 0.1538 43
HE2 2.4181 (3.47) 10 4.4162 272 6.7846 177 3.8958 58
HE4 22.8382 (3.47) 3 22.8431 203 22.8713 252 22.8382 69

REA1 0.8617 (3.47) 0.2 0.8911 189 0.8815 96 0.8656 54
REA2 1.1341 (3.44) 1 1.1895 1 1.4188 300 1.149 45
REA3 74.2513 (3.47) 1 74.2513 4 74.5478 2 74.2513 24
DIS1 4.1593 (3.44) 5 4.5625 276 4.1943 93 4.1606 43
DIS3 1.0423 (3.47) 0.1 1.0933 150 1.1382 285 1.0624 117
DIS4 0.7315 (3.44) 0.1 0.7556 64 0.7498 126 0.7353 76
AGS 8.1732 (3.47) 1 8.1732 5 8.1732 24 8.1732 20

WEC2 3.5981 (3.47) 100 5.9166 128 6.6082 300 4.2483 95
WEC3 3.7685 (3.47) 100 6.2305 107 6.8402 300 4.4496 101
BDT1 0.2653 (3.47) 0.1 0.331 195 0.8562 29 0.2662 30
MFP 4.1865 (3.47) 300 31.5978 300 31.6079 171 31.5899 42
IH 1.26E-06 (3.47) 1 1.40E-05 1 1.1858 114 0.002 300

CSE1 0.02 (3.44) 1 0.02 1 0.022 3 0.02 34
PSM 0.9202 (3.44) 0.1 0.9206 15 0.9227 87 0.9202 18
EB1 3.1041 (3.44) 20 3.142 1 2.2076 (wrong) 300 3.1225 21
EB2 1.7676 (3.44) 1 2.0205 24 0.8148 (wrong) 84 2.0201 22
EB3 1.7976 (3.44) 1 2.058 26 0.8153 (wrong) 84 2.0575 22
NN1 13.1299 (3.47) 1 17.2732 4 18.4813 300 13.8474 45
NN2 1.7645 (3.44) 1 2.2217 27 2.2216 9 2.2216 20
NN8 2.3576 (3.47) 0.47 3.074 312 2.9345 180 2.8854 47
NN9 13.6461 (3.47) 40 30.0387 300 32.1222 300 28.6673 77
NN11 0.0181 (3.47) 50 0.1981 648 0.1566 9 0.0914 92
NN15 0.0977 (3.44) 1 0.0993 2 0.1194 6 0.0981 38
NN17 2.6386 (3.44) 15 11.2182 165 11.2381 117 11.2182 26
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Table 3.6 Numerical results of static output feedback controllers by Algorithm 4
compared with [4]

Cases Lower Bound Fixed γ Obj # iter γ in [4] # iter γ by systune [18] # iter
HE3 0.7990 0.9200 (3.44) 257 0.9243 105 0.8052 70
DIS1 4.1593 4.1700 (3.47) 10 4.1943 93 4.1606 43
TG1 3.4652 12.8000 (3.44) 264 12.9336 45 12.8462 36
NN4 1.2862 1.3600 (3.44) 283 1.3802 156 1.3598 79
NN11 0.0181 0.1000 (3.44) 178 0.1566 9 0.0914 92
NN16 0.9556 0.9600 (3.44) 53 0.9656 48 0.9558 65





Chapter 4

Parameterized Bilinear Matrix
Inequality Techniques in H∞ Fuzzy
PID Control Design

4.1 Introduction

Tagaki-Sugeno (T-S) fuzzy model [20] has been proved as one of the most practical
tools for representing complex nonlinear systems by gain-scheduling systems, which
are easily implemented online. Treating T-S fuzzy models as gain-scheduling systems
allows the application of advanced gain-scheduling control techniques in tackling state
feedback and output feedback stabilization of nonlinear systems [41, 42]. Until now,
most of the gain-scheduling controllers are assumed structure-free and full-rank to
admit computationally tractable parameterized linear matrix inequality (PLMI) or
linear matrix inequality (LMI) formulations [43, 41, 42].

Meanwhile, proportional-integral-derivative (PID) structured controller is the indis-
pensable component of industrial control so that PID control theory is still the subject
of recent research [44–49], mainly concerning with linear time-invariant systems in
the frequency domain. PID controller for fuzzy systems has been considered in [13].
Reference [12] proposed an LMI based iterative algorithm for a proportional-integral
(PI) controller in T-S systems under the specific structure of both system and controller.
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A recent work [14] transformed the fuzzy diagonal PID controller into a static output
feedback problem with the dimension of controller dramatically increased. That is why
all its testing examples are restricted on single input and single output systems with
two states.

This chapter is concerned with the PID parallel distribution compensation (PDC)
for T-S fuzzy models. The control design problem is formulated as a parameterized
bilinear matrix inequality (PBMI) optimization problem that is in contrast to the PLMI
formulation for the structure-free PDC design [41]. This is quite expected because the
PID controller design for linear time-invariant systems is already nonconvex, which is
equivalent to a BMI optimization problem in the state space. In our approach, PBMI
is then relaxed to a bilinear matrix inequality (BMI) for more tractable computation.
It should be noted that BMI optimization constitutes one of the most computational
challenging problems, for which there is no efficient computational methodology. The
state-of-the-art BMI solvers [3, 4] in addressing the structure-constrained stabilizing
controllers for linear time-invariant systems must initialize from a feasible controller and
then move within a convex feasibility subset containing this initialized point. Usually
their convergence is very slow [4]. Furthermore, finding a feasible structure-constrained
stabilizing controller is still a NP-hard problem [39]. The most efficient method to
find such a feasible controller is via the so-called spectral abscissa optimization [17],
which seeks a controller such that the state matrix of the closed loop system has
only eigenvalues with negative real parts. This spectral abscissa optimization-based
approach cannot be extended to gain-scheduling systems, whose stability does not quite
depend on the spectrum of the time-varying state matrix. The main contribution of
the present chapter is to develop efficient computational procedures for the BMI arisen
from the PBMI optimization, which generate a sequence of unstabilizing controllers
that rapidly converges to the optimal stabilizing controller.

The rest of this chapter is organized as follows. Section 4.2 is devoted to formulating
the H∞ fuzzy PID control in T-S system by a PLMI, which is then relaxed by a system
of BMIs. Several nonconvex optimization techniques for addressing this BMI system
are developed in Section 4.3. Simulation for benchmark systems is provided in Section
4.4 to support the solution development of the previous sections. Section 4.5 concludes
the chapter.
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Notation. Notation used in this chapter is standard. Particularly, X � 0, X � 0,
X 
 0 and X ≺ 0 mean that a symmetric matrix X is positive semi-definite, positive
definite, negative semi-definite and negative definite, respectively. Trace(X) represents
the trace of X, while ||X||2 = Trace(XXT ) is its square norm. In symmetric block
matrices or long matrix expressions, we use ∗ as an ellipsis for terms that are induced
by symmetry, e.g.,

K

⎡⎣S + (∗) ∗
M Q

⎤⎦ ∗ ≡ K

⎡⎣S + ST MT

M Q

⎤⎦ KT .

All matrix variables are boldfaced. Denote by In the identity matrix of dimension n×n

and by 0n×m the zero matrix of dimension n × m. The subscript n × m is omitted
when it is either not important or is clear in context.

4.2 H∞ fuzzy PID PDS for T-S systems

Suppose that x is the state vector with dimension nx, u is the control input with
dimension nu, y is the measurement output with dimension ny, w and z are the
disturbance and controlled output of the system with the same dimension n∞, and L

denotes the number of IF-THEN rules. In T-S fuzzy modeling, each i−th plant rule is
the form

IF z1(t) is Ni1 and . . . zp(t) is Nip

THEN

⎡⎢⎢⎢⎣
ẋ

z

y

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Ai B1i B2i

C1i D11i D12i

C2 D21 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x

w

u

⎤⎥⎥⎥⎦ .
(4.1)

Here zi are premise variables, which are assumed independent of the control u, and
Nij are fuzzy sets. Denoting by Nij(zi(t)) the grade of membership of zi(t) in Nij, the
weight wi(t) = ∏p

j=1 Nij(zi(t)) of each i−th IF-THEN rule is then normalized by

αi(t) = wi(t)∑L
j=1 wj(t)

≥ 0, i = 1, 2, . . . , L (4.2)

⇒ α(t) = (α1(t), . . . , αL(t)) ∈ Γ,
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with
Γ := {α ∈ R

L :
L∑

i=1
αi = 1, αi ≥ 0}. (4.3)

In the state space, the T-S model is thus represented by the following gain-scheduling
system ⎡⎢⎢⎢⎣

ẋ

z

y

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
A(α(t)) B1(α(t)) B2(α(t))
C1(α(t)) D11(α(t)) D12(α(t))

C2 D21 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x

w

u

⎤⎥⎥⎥⎦ (4.4)

where
⎡⎢⎢⎢⎣

A(α(t)) B1(α(t)) B2(α(t))
C1(α(t)) D11(α(t)) D12(α(t))

C2 D21 0

⎤⎥⎥⎥⎦ =

L∑
i=1

αi(t)

⎡⎢⎢⎢⎣
Ai B1i B2i

C1i D11i D12i

C2 D21 0

⎤⎥⎥⎥⎦ . (4.5)

In this chapter, we seek the output feedback controller in the class of PID PDC with
each i-th plant rule inferred by

IF z1(t) is Ni1 and . . . zp(t) is Nip

THEN
⎡⎣ ˙xK

u

⎤⎦ =

⎡⎢⎢⎢⎢⎣
0nu×nu 0nu×nu RI,i

0nu×nu −τInu RD,i

Inu Inu RP,i

⎤⎥⎥⎥⎥⎦
⎡⎣xK

y

⎤⎦ (4.6)

for a given τ > 0, where

Rx,j ∈ Rnu×ny , x ∈ {I, D, P}.

Note that the transfer function of this i-th plant rule is

Ki(s) = RP,i + RI,i

s
+ RD,i

s + τ
(4.7)

= KP,i + KI,i

s
+ KD,is

1 + εs
, (4.8)
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with KP,i := RP,i + εRD,i, KI,i := RI,i, KD,i := −ε2RD,i, and ε = 1/τ . It is clear from
(4.8) that KP,i, KI,i and KD,i respectively are the proportional, integral and derivative
gain matrices, while ε is a small tuning scalar which determines how close the last term
in (4.6) comes to a pure derivative action [106]. In other words, (4.6) is the state-space
representation of multi-input multi-output PID structured controllers.

The PID PDC with rule set by (4.6) and the membership function defined by (4.2)
is thus represented by the following gain-scheduling PID controller

⎡⎣ ˙xK

u

⎤⎦ = (
L∑

i=1
αi(t)Ki(Ri))

⎡⎣xK

y

⎤⎦ (4.9)

where

Ki(Ri) =

⎡⎢⎢⎢⎢⎣
0nu×nu 0nu×nu RI,i

0nu×nu −τInu RD,i

Inu Inu RP,i

⎤⎥⎥⎥⎥⎦ , (4.10)

i = 1, . . . , L,

for

Ri =

⎡⎢⎢⎢⎣
RI,i

RD,i

RP,i

⎤⎥⎥⎥⎦ ∈ R
(3nu)×ny , i = 1, . . . , L.

The H∞ control problem consists of finding the stabilizing controller (4.9) for (4.4) to
solve

γ → min : γ > 0, (4.11a)∫ T

0
||z(t)||2dt ≤ γ2

∫ T

0
||w(t)||2dt (4.11b)

∀w, ∀T > 0, x(0) = 0.
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Using the shorthand

A0i =
⎛⎝Ai 0

0 0

⎞⎠ ∈ R
(nx+2nu)×(nx+2nu),

B01i =
⎛⎝B1i

0

⎞⎠ ∈ R
(nx+2nu)×n∞ ,

C01i =
(
C1i 0

)
∈ R

n∞×(nx+2nu),

Bi =
⎛⎝ 0 B2i

I2nu 0

⎞⎠ ∈ R
(nx+2nu)×3nu ,

C =
⎛⎝02nu×nx I2nu

C2 0ny×2nu

⎞⎠ ∈ R
(2nu+ny)×(nx+2nu),

D12i =
(
0 D12i

)
∈ R

n∞×3nu ,

D21 =
⎛⎝ 0

D21

⎞⎠ ∈ R
(2nu+ny)×n∞ , xcl =

⎛⎝ x

xK

⎞⎠ ,

and then defining

⎡⎣ A0(α) B(α)
C01(α) D12(α)

⎤⎦ : =
L∑

i=1
αi

⎡⎣ A0i Bi

C01i D12i

⎤⎦ ,

K(α(t)) : =
L∑

i=1
αi(t)Ki(Ri),

xcl = (xT , xT
K)T

the closed-loop system (4.4), (4.9) is rewritten by

⎡⎣ẋcl

z

⎤⎦ =
⎡⎣ A0(α(t)) + B(α(t))K(α(t))C
C01(α(t)) + D12(α(t))K(α(t))C

∣∣∣∣∣∣
B01 + B(α(t))K(α(t))D21

D11(α(t)) + D12(α(t))K(α(t))D21

⎤⎦ ⎡⎣xcl

w

⎤⎦ . (4.12)
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Using the quadratic Lyapunov function V (t) := xT
cl(t)Xxcl(t), 0 ≺ X ∈ R

(nx+2nu)×(nx+2nu)

to make (4.11c) fulfilled by forcing

V̇ (t) + γ−1||z(t)||2 − γ||w(t)||2 ≤ 0,

one can easily see that (4.11c) is fulfilled by the following parameterized matrix
inequality

⎡⎢⎢⎢⎣
(A0(α) + B(α)K(α)C)X + (∗)

(B01(α) + B(α)K(α)D21)T

(C01(α) + D12(α)K(α)C)X

∣∣∣∣∣∣∣∣∣
∗ ∗

−γI ∗
D11(α) + D12(α)K(α)D21 −γI

⎤⎥⎥⎥⎦ ≺ 0, (4.13a)

X � 0, ∀α ∈ Γ, (4.13b)

Set
Wi := Ki(Ri)CX, i = 1, . . . , L. (4.14)

Then
K(α)CX =

L∑
i=1

αiWi.

For

Mij(X, Rj, Wj, γ) :=⎡⎢⎢⎢⎣
(A0iX + BiWj) + ∗

(B01i + BiKj(Rj)D21)T

C01iX + D12iWj

∣∣∣∣∣∣∣∣∣
∗ ∗

−γI ∗
D11i + D12iKj(Rj)D21 −γI

⎤⎥⎥⎥⎦ , (4.15)
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which is linear in its variables, the parameterized matrix inequality (4.13a) is written
by

L∑
i=1

L∑
j=1

αiαjMij(X, Rj, Wj, γ) ≺ 0 ∀ α ∈ Γ. (4.16)

It follows from [41, Theorem 2.2] that (4.16) is guaranteed by the following matrix
inequalities

Mii(X, Ri, Wi, γ) ≺ 0, i = 1, 2, · · · , L (4.17)
1

L − 1Mii(X, Ri, Wi, γ) + 1
2(Mij(X, Rj, Wj, γ)

+Mji(X, Ri, Wi, γ)) ≺ 0, 1 ≤ i �= j ≤ L. (4.18)

Thus the upper bound of (4.11) is provided by the following optimization problem:

min
γ,X,R,W

γ s.t. (4.13b), (4.14), (4.17), (4.18). (4.19)

which is a BMI optimization in the decision variables X, R = (R1, . . . , RL) and
W = (W1, . . . , WL) due to the bilinear constraints (4.14).

We address this optimization problem through the following bisection procedure
for a given computational tolerance 0 < η << 1.

Bisection procedure. Start from γu such that the BMI system

(4.13b), (4.14), (4.17), (4.18) (4.20)

is feasible for γ = γu. Check the feasibility of BMI (4.20) for γ = (1 − η)γu. If BMI
(4.20) is feasible, reset γu = γ. Otherwise, reset γl = γ. Stop until (γu − γl)/γu ≤ η

and accept γu as the optimal H∞ gain.

The next section is devoted to address the BMI feasibility problem (4.20). Its
outcome is also a simple method to find an initial γu to start the above bisection
procedure.
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4.3 Nonconvex spectral optimization techniques for

solving BMIs

The sparse structure of matrix C in (4.14) suggests that (4.14) is a sparse nonlinear
constraint in the sense that there are not so many nonlinear terms in its right hand
side. Indeed, by partitioning

0 ≺ X =

⎡⎢⎢⎢⎣
X11 X12 X13

∗ X22 X23

∗ ∗ X33

⎤⎥⎥⎥⎦ ,

X11 ∈ R
nx×nx , X1j ∈ R

nx×nu , j = 1, 2;
X22 ∈ R

nu×nu , X23 ∈ R
nu×nu , X33 ∈ R

nu×nu

(4.21)

with Xii symmetric, it can be checked that

Kj(Rj)CX =⎡⎢⎢⎢⎣
RI,jC2X11

−τXT
13 + RD,jC2X11

XT
12 + XT

13 + RP,jC2X11

∣∣∣∣∣∣∣∣∣
RI,jC2X12

−τXT
23 + RD,jC2X12

X22 + XT
23 + RP,jC2X12

∣∣∣∣∣∣∣∣∣
RI,jC2X13

−τX33 + RD,jC2X13

X23 + X33 + RP,jC2X13

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 0

−τXT
13 −τXT

23 −τX33

XT
12 + XT

13 X22 + XT
23 X23 + X33

⎤⎥⎥⎥⎦
+RjC2X1 (4.22)
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for
X1 =

[
X11 X12 X13

]
∈ R

nx×(nx+2nu). (4.23)

Therefore, the bilinear constraints (4.14) are expressed by the linear constraints

Wj =

⎡⎢⎢⎢⎣
0 0 0

−τXT
13 −τXT

23 −τX33

XT
12 + XT

13 X22 + XT
23 X23 + X33

⎤⎥⎥⎥⎦ + Yj, (4.24)

j = 1, . . . , L

plus the bilinear constraints

Yj = RjC2X1, j = 1, . . . .L. (4.25)

In other words, the BMI feasibility problem (4.20) in X, R and W is now equiva-
lently transformed to the following BMI feasibility problem in X, R, W and Y :=
(Y1, . . . , YL):

(4.13b), (4.17), (4.18), (4.24), (4.25), (4.26)

where (4.13b), (4.17) and (4.18) are linear matrix inequality (LMI) constraints, while
(4.24) is linear constraints. The difficulty is now concentrated at L bilinear constraints
in (4.25), in which only X1 is considered as a complicating variable that makes L

constraints in (4.25) nonlinear. Based on this observation, our strategy is to decouple
this complicating variable X1 from (4.25) for a better treatment. Let us recall an
auxiliary result.

Lemma 1 [107] For given matrix W12, W22 of sizes n × m and m × m with W22 � 0,
one has ⎛⎝ 0 W12

W T
12 W22

⎞⎠ � 0 (4.27)

if and only if W12 = 0.
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Using the above Lemma, we are now in a position to state the following result, which
is a cornerstone in handling bilinear constraints like (4.25), which share a common
complicating variable.

Theorem 1 L bilinear constraints in (4.25) are equivalently expressed by the following
L LMI constraints

⎛⎜⎜⎜⎝
W11,j Yj Rj

YT
j W22 XT

1 CT
2

RT
j C2X1 Iny

⎞⎟⎟⎟⎠ � 0, j = 1, . . . , L, (4.28)

plus the single bilinear constraint

W22 = XT
1 CT

2 C2X1. (4.29)

Proof. It can be easily seen that those Yj, Rj and X1 that are constrained by (4.25)
together with W11,j = Rj(Rj)T and W22 = C2X1(C2X1)T are feasible for (4.28) and
(4.29), showing the implication (4.25)⇒(4.28) & (4.29).

On the other hand, by Shur’s complement, it follows from (4.28) that

0 

⎛⎝ W11,j Yj

YT
j W22

⎞⎠ −
⎛⎝ Rj

XT
1 CT

2

⎞⎠ (
RT

j C2X1

)

=
⎛⎝ W11,k Yk − RkC2X1

YT
k − XT

1 CT
2 RT

k W22 − XT
1 CT

2 C2X1

⎞⎠
=

⎛⎝ W11,k Yk − RkC2X1

YT
k − XT

1 CT
2 RT

k 0

⎞⎠ , (4.30)

where we also used (4.29) in obtaining the last equality (4.30). Then applying Lemma
1 yields (4.25), showing the implication (4.28) & (4.29)⇒(4.25).

�

Now, the problem’s nonconvexity is concentrated on the single constraint (4.29)
that involves only X1.
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Theorem 2 Under LMI constraints (4.28), the bilinear constraint (4.29) is equivalent
to any from the two following constraints:
(i) The matrix rank constraint

rank(Q) = ny, (4.31)

for

Q :=
⎛⎝ W22 XT

1 CT
2

C2X1 Iny

⎞⎠ ; (4.32)

(ii) The quadratic constraint

Trace(W22) = ||C2X1||2 (4.33)

Proof. Note that (4.28) implies
Q � 0 (4.34)

which also yields
W22 � XT

1 CT
2 C2X1 (4.35)

by Shur’s complement. Also,

rank(Q) = rank(Iny) + rank(W22 − XT
1 CT

2 C2X1)
= ny + rank(W22 − XT

1 CT
2 C2X1),

so (4.31) holds true if and only if rank(W22 − XT
1 CT

2 C2X1) = 0, which is (4.29).
Next, it follows from (4.35) that (4.29) holds true if and only if

Trace(W22 − XT
1 CT

2 C2X1) = 0
⇔ Trace(W22) − ||C2X1||2 = 0
⇔ (4.33).

This completes the proof of Theorem 2.
�
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The rank constraint (4.31) is discrete and absolutely intractable in general. However,
under condition (4.34), this rank constraint is equivalent to the following continuous
matrix-spectral constraint

Trace(Q) − λ[ny ](Q) = 0, (4.36)

where λ[ny ](Q) is the summation of the ny largest eigenvalues of Q. Indeed, rank(Q) ≥
ny but (4.36) means Q has at most ny nonzero eigenvalues so its rank is ny.
On the other hand, as

Trace(Q) − λ[ny ](Q) ≥ 0,

it follows from (4.36) that
Trace(Q) − λ[ny ](Q) (4.37)

can be used to measure the degree of satisfaction of the rank constraint (4.31). Instead
of handling the nonconvex constraint (4.36) we incorporate it into the objective,
resulting in the following alternative formulation to (4.26)

min
X,W,R,Y

F (Q) := Trace(Q) − λ[ny ](Q) (4.38a)

s.t. (4.13b), (4.17), (4.18), (4.24), (4.28). (4.38b)

Suppose X
(κ)
1 and W

(κ)
22 are feasible for (4.38). Set

Q(κ) :=
⎛⎝ W

(κ)
22 (X(κ)

1 )T CT
2

C2X
(κ)
1 Iny

⎞⎠
Function λ[ny ](Q) is nonsmooth but is lower bounded by the linear function

ny∑
i=1

(w(κ)
i )T Qw

(κ)
i , (4.39)

where w
(κ)
1 , ...., w(κ)

ny
are the normalized eigenvectors corresponding to ny largest eigen-

values of Q(κ). Thus, the following convex optimization problem provides an upper
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bound for the nonconvex optimization problem (4.38),

min
X,W,R,Y

F (κ)(Q) := Trace(Q) −
ny∑
i=1

(w(κ)
i )T Qw

(κ)
i

s.t. (4.38b).
(4.40)

Suppose that (X(κ+1)
1 , W

(κ+1)
22 ) is the optimal solution of (4.40) and

Q(κ+1) :=
⎛⎝ W

(κ+1)
22 (X(κ+1)

1 )T CT
2

C2X
(κ+1)
1 Iny

⎞⎠ .

Then
F (Q(κ+1)) ≤ F (κ)(Q(κ+1))

< F (κ)(Q(κ))
= F (Q(κ)),

as far as Q(κ+1) �= Q(κ), implying that Q(κ+1) is better than Q(κ) towards optimizing
(4.40). Similarly to [108], we establish the following result.

Proposition 2 Initialized by any feasible point Q(0) for the convex constraints (4.38b),
{Q(κ)} is a sequence of improved feasible points of the nonconvex optimization prob-
lem (4.38), which converges to a point satisfying the first-order necessary optimality
conditions.

In Algorithm 10 we propose a convex programming based computational procedure
for the nonconvex optimization problem (4.38).

So far, in solving (4.38) we are based on (4.37) as the satisfaction degree of the
rank constraint (4.31) and thus of the bilinear constraint (4.29). For larger value of ny,
Algorithm 10 may converge slowly. We now use

1 − ||C2X1||2
Trace(W22)

(4.43)

as an alternative degree for satisfaction of the bilinear constraint (4.29) because
according to (4.35), (4.43) is positive and by (4.33), it is zero if and only if the bilinear
constraint (4.29) is satisfied. Accordingly, instead of (4.38) we use the following
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Algorithm 5 Nonconvex Spectral Optimization Algorithm for Solving BMI feasibility
1: Initialization. Set κ := 0 and solve the LMI (4.38b) to find a feasible point

(X(κ), W (κ), R(κ), Y (κ)). Given computational tolerance ε > 0, stop the algorithm
and accept (X(0), W (0), R(0), Y (0)) as the solution of BMI (4.20) if

F (Q(κ)) ≤ ε. (4.41)

2: repeat
3: Solve the convex optimization problem (4.40), to find the optimal solution

(X(κ+1), W (κ+1), R(κ+1), Y (κ+1))
4: Set κ := κ + 1.
5: until

F (Q(κ−1)) − F (Q(κ))
F (Q(κ−1)) ≤ ε. (4.42)

6: Accept (X(κ), W (κ), R(κ), Y (κ)) as the solution of (4.38). Accept
(X(κ), W (κ), R(κ), Y (κ)) as the solution of BMI (4.20) if F (Q(κ)) ≤ ε. Oth-
erwise declare that BMI (4.20) is infeasible.

optimization problem:

min
X,W,R,Y

− ||C2X1||2
Trace(W22)

s.t. (4.38b). (4.44)

Note that function g(X1, W22) := ||C2X1||2/Trace(W22) is convex in X1 and W22 � 0
[89], so

g(X1, W22) ≥ g(X(κ)
1 , W

(κ)
22 ) + 〈∇g(X(κ)

1 , W
(κ)
22 ),

(X1, W22) − (X(κ)
1 , W

(κ)
22 )〉

= 2Trace((X(κ)
1 )T CT

2 C2X1)
Trace(W (κ)

22 )

−||C2X
(κ)
1 ||2Trace(W22)

(Trace(W (κ)
22 ))2

.

Thus, instead of (4.40), we solve the following convex optimization problem, which
is an upper bound for the nonconvex optimization problem (4.44), to generate
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Algorithm 6 Fractional Optimization Algorithm for Solving BMI feasibility
1: Initialization. Set κ := 0 and solve the LMI (4.38b) to find a feasible point

(X(κ), W (κ), R(κ), Y (κ)). Given computational tolerance ε > 0, stop the algorithm
and accept (X(0), W (0), R(0), Y (0)) as the solution of BMI (4.20) if

1 − g(X(κ)
1 , W

(κ)
22 ) ≤ ε. (4.46)

2: repeat
3: Solve the convex optimization problem (4.45), to find the optimal solution

(X(κ+1), W (κ+1), R(κ+1), Y (κ+1))
4: Set κ := κ + 1.
5: until

g(X(κ)
1 , W

(κ)
22 ) − g(X(κ−1)

1 , W
(κ−1)
22 )

g(X(κ−1)
1 , W

(κ−1)
22 )

≤ ε. (4.47)

6: Accept (X(κ), W (κ), R(κ), Y (κ)) as the solution of (4.38). Accept
(X(κ), W (κ), R(κ), Y (κ)) as the solution of BMI (4.20) if 1 − g(X(κ)

1 , W
(κ)
22 ) ≥ ε.

Otherwise declare that BMI (4.20) is infeasible.

(X(κ+1), W (κ+1), R(κ+1), Y (κ+1)) at the κ-th iteration:

min
X,W,R,Y

−2Trace((X(κ)
1 )T CT

2 C2X1)
Trace(W (κ)

22 )

+ ||C2X
(κ)
1 ||2Trace(W22)

(Trace(W (κ)
22 ))2

s.t. (4.38b).

(4.45)

A pseudo-code for the computational procedure, which is based on computation for
(4.45) at each iteration, is described by Algorithm 11.

4.4 Simulation results

An important step is to check if there is a controller (4.6) to stabilize system (4.4).
Define the block (1, 1) in (4.15) as

M̃ij(X, Rj, Wj) := (A0iX + BiWj) + (∗).
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Then the existing of a stabilizing controller (4.6) is guaranteed by the feasibility of the
system consisting of (4.13b), (4.14) and

M̃ii(X, Ri, Wi) ≺ 0, i = 1, . . . , L, (4.48)
1

L − 1M̃ii(X, Ri, Wi) + 1
2(M̃ij(X, Rj, Wj) +

M̃ji(X, Ri, Wi)) ≺ 0, 1 ≤ i �= j ≤ L. (4.49)

Thus, we can use Algorithm 10 or Algorithm 11 to check its feasibility, which invokes
either the convex optimization problem

min
X,W,R,Y

Trace(Q) −
ny∑
i=1

(w(κ)
i )T Qw

(κ)
i

s.t. (4.13b), (4.14), (4.48), (4.49),
(4.50)

or the convex optimization problem

min
X,W,R,Y

−2Trace((X(κ)
1 )T CT

2 C2X1)
Trace(W (κ)

22 )

+ ||C2X
(κ)
1 ||2Trace(W22)

(Trace(W (κ)
22 ))2

s.t. (4.13b), (4.14), (4.48), (4.49)

(4.51)

instead of (4.40) or (4.45) at the κ-th iteration to generate the next iterative point
(X(κ+1), W (κ+1), R(κ+1), Y (κ+1)).
Whenever, a feasible point (X(κ), W (κ), R(κ), Y (κ)) of (4.13b), (4.14), (4.48) and (4.49)
is found, we solve the following convex optimization problem to determine the initial
γu for the bisection procedure:

min
γ

γ s.t. Mii(X(κ), R
(κ)
i , W

(κ)
i , γ) ≺ 0,

1
L − 1Mii(X(κ), R

(κ)
i , W

(κ)
i , γ)

+1
2(Mij(X(κ), R

(κ)
j , W

(κ)
j , γ)

+Mji(X(κ), R
(κ)
i , W

(κ)
i , γ)) ≺ 0,

1 ≤ i �= j ≤ L.
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4.4.1 Inverted pendulum control

The motion of an inverted pendulum system with a point mass of mass m = 2 kg, a
rigid rod of the length � = 0.5m and a cart of mass M = 8 kg can be described by
(4.5) [109] with L = 2 and

A1 =
⎡⎣ 0 1
17.2941 0

⎤⎦ , A2 =
⎡⎣ 0 1
12.6305 0

⎤⎦ ,

B11 = B12 =
⎡⎣ 0
0.1

⎤⎦ , B21 =
⎡⎣ 0
−0.1765

⎤⎦ ,

B22 =
⎡⎣ 0
−0.0779

⎤⎦ , C11 = C12 =
[
1 1

]
, C2 =

[
3 0

]
,

D11,i ≡ 0.1, D12,i ≡ 0, D21 = 0.

The system state is x = (x1, x2)T , where x1 is the angle measured from the inverted
equilibrium position (angular position) and x2 is the angular velocity. The membership
functions in (4.2) are

α1(t) = (1 − (1 + e(−7(x1(t)−π/4)))−1)·
(1 + e(−7(x1(t)+π/4)))−1

α2(t) = 1 − α1(t), x1(t) ∈ [−π/3, π/3].
(4.52)

Based on the measured output y = x1(t) the task of the PID control is to minimize
the effect of the disturbance in stabilizing the system. Therefore, the controlled output
is set as z = x1 + x2.
In this example, τ = 6 is set for (4.6). The minimal γ = 0.12 is obtained by using
the bisection procedure. At γ = 0.12, Algorithm 10 needs 4 iterations to arrive
the following numerical values for implementing PID PDC (4.6): RP 1 = 72.3777,
RP 2 = 99.2379, RI1 = 0.1449, RI2 = 0.1028, RD1 = 5.0864 and RD2 = 8.8573. Figs.
4.1-4.2 respectively show the behavior of the system state and control with disturbance
w = 3 sin(5πt) and with no disturbance. The initial state is x(0) = (π/4, −π/4)T . The
obtained PID PDC stabilizes the inverted pendulum system well in the both scenarios.
The system state motion and control load are very smooth compared with [14, Fig. 2]
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Fig. 4.1 The state behaviour with and without disturbance

Algorithm 11 achieves worse γ = 0.13 and needs 5 iterations for convergence for
γ = 0.13. Fig.4.3 show the convergence behaviour of Algorithm 10 (for γ = 0.12) and
Algorithm 11 (for γ = 0.13).

4.4.2 Duffing forced-oscillation

By [110], the Duffing forced-oscillation equation

ẍ + 0.2ẋ + x3 − 10 cos t − u(t) = 0
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Fig. 4.2 PID PDC behaviour with and without the disturbance

with control input u(t) and measured output x can be described by (4.5) with L = 2
and

A1 =
⎡⎣0 1
0 −0.2

⎤⎦ , A2 =
⎡⎣ 0 1
−d2 −0.2

⎤⎦ ,

B11 = B12 =
⎡⎣ 0
0.1

⎤⎦ , B21 = B22 =
⎡⎣0
1

⎤⎦ ,

C11 = C12 =
[
1 1

]
, C2 =

[
1 0

]
,

D11,i ≡ 0.1, D12,i ≡ 0, D21 = 0.

The membership functions in (4.2) are

α1(t) = 1 − x2
1(t)
d2 , α2(t) = x2

1(t)
d2 , x1(t) ∈ [−d, d].

The system state is x = (x, ẋ)T but only x is measurable so y = x. The task is to
minimize the effect of the disturbance w(t) in stabilizing the system, so the controlled
output is set as z = x + ẋ. The reader is also referred to [42, IV.B] for a different form
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of fuzzy systems for this oscillation. Without the control input u(t) the system state
behaviour is chaotic as Fig. 4.4 shows. Since x1 is always in the region [−4, 4] we can
set d = 4.

We set τ = 2 for (4.6) in this example. The minimal γ = 1.1 is obtained by the
bisection procedure. For this value of γ, Algorithm 10 need 10 iterations to arrive
the following numerical values for implementing PID PDC (4.6): RP 1 = −96.8448,
RP 2 = 6.4360, RI1 = −1.4964, RI2 = −1.4984, RD1 = −0.7271 and RD2 = −0.0094.

Fig. 4.5 represents the state plane with PID PDC. The initial state condition
x(0) = (0.1, 0)T . Fig. 4.6 depicts the behavior of the state and PID PDC. Again the
PID PDC stabilizes the Duffing forced-oscillation system well.

Meanwhile Algorithm 11 achieves worse γ = 1.4 and needs 20 iterations for converge
for this value of γ. Fig.4.7 shows the convergence behaviour of Algorithm 10 (for
γ = 1.1) and Algorithm 11 (for γ = 1.4). Their convergence is dependent on initial
points. Algorithm 10 converges not rapidly until seventh iteration, while Algorithm 10
converges rapidly after the first iteration.

4.4.3 TORA

By [111] and [41], the eccentric rotational proof mass actuator (TORA) system can be
represented by T-S model (4.5) with

L = 4, α = 0.99, φ = 0.1, c = 4,

B1i ≡ 0, D11i ≡ 0, D12i ≡ 0, D21i ≡ 0,

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−1 0 ε sin(απ)/(απ) 0
0 0 0 1

−φ/(1 − φ2) 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
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A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−1 0 2φ/π 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−1 0 φ 0
0 0 0 1

φ/(1 − φ2) 0 −φ2/(1 − φ2) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

A4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−1 0 φ 0
0 0 0 1

φ/(1 − φ2) 0 −φ2(1 − c2)/(1 − φ2) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

B21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

1/(1 − φ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , B22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

B23 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

1/(1 − φ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , B24 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

1/(1 − φ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

C1i

⎡⎣1 0 0 0
0 0 1 0

⎤⎦ , C2 =

⎡⎢⎢⎢⎣
1 0 1 0
0 1 0 1
1 1 0 0

⎤⎥⎥⎥⎦ ,

The membership functions in (4.2) are

α1(t) = x2
1(t)
a2 , α2(t) = 1

2 − α1(t),
α3(t) = b sin(x3(t))−x3(t) sin(b)

x3(t)(b−sin(b)) , α4(t) = 1
2 − α3(t),

with a = 0.8, b = 0.6, and x1(t) ∈ [−a, a] and x3(t) ∈ [−b, b]. The system state is
x = (x1, x2, x3, x4), where x3 = θ and x4 = θ̇ are the angular position and angular
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velocity of the rotational proof mass, and x1 = x̄1 + ε sin x3, x2 = x̄2 + εx4 cos x3 with
x̄1 = q and x̄2 = q̇ the translational position and velocity of the cart. In this application,
only the translation position and angular position are measurable so y = (x1, x3)T . The
main task is to minimize the effect of the disturbance w in regulating the translation
and angular positions to the equilibrium so the controlled output is set as z = (x1, x3)T .

We set τ = 1 for (4.6) in this example. The minimal γ = 9.9 is obtained by the
bisection procedure. For this value of γ, Algorithm 11 needs 4 iterations to arrive the
following numerical values for implementing PID PDC (4.6):

RP 1 = [−7.1101, −16.1981, 11.42817],
RP 2 = [−5.5390, −11.9724, 8.5207],
RP 3 = [−5.7119, −12.9499, 9.0553],
RP 4 = [−5.7189, −12.9240, 9.0397],
RI1 = [−0.3471, −1.0139, 0.6820],
RI2 = [−0.3450, −1.01858, 0.6830],
RI3 = [−0.4091, −1.1184, 0.7669],
RI4 = [−0.4337, −1.1552, 0.7969],
RD1 = [0.8038, 2.0883, −1.2315],
RD2 = [0.6084, 1.3740, −0.7847],
RD3 = [0.5537, 1.4268, −0.7742],
RD4 = [0.5048, 1.4486, −0.7513].

Figs. 4.8-4.9 respectively show the behavior of system state and control with dis-
turbance w = 10sin(πt) and with no disturbance. The initial state condition is
x(0) = (0, 0, 0.5, 0)T . The TORA system is smoothly stabilized well by PID PDC.

Algorithm 10 achieves worse γ = 10.3 and needs 11 iterations for converge for this
value of γ. Fig.4.3 shows the convergence behaviour of Algorithm 10 (for γ = 10.3 and
Algorithm 11 (for γ = 9.9).
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4.5 Conclusions

This chapter has addressed the problem of designing H∞ PID PDC for T-S systems
based on a parameterized bilinear matrix inequality (PLMI), which is a system of
infinitely many bilinear matrix inequalities. Efficient computational procedures for this
PLMI have been developed. Their merit has been analysed through the benchmark
examples. In the end, the effectiveness of PID PDC in smoothly stabilizing nonlinear
systems has been confirmed.
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Fig. 4.3 Convergence performance by Algorithm 10 and Algorithm 11 for the inverted
pendulum system
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Fig. 4.7 Convergence performance by Algorithm 10 and Algorithm 11 for the Duffing
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Chapter 5

Global Optimization for Optimal
Power Flow over Transmission
Networks

5.1 Introduction

Smart grids are operated by the advanced distribution management system (DMS),
which is responsible for supervisory control and data acquisition in reactive dispatch,
voltage regulation, contingency analysis, capability maximization and other smart
operations. The optimal power flow (OPF) problem, which determines a steady state
operating point that minimizes the cost of electric power generation or the transmission
loss is the backbone of DMS (see e.g. [22–25] and references therein). Since its
introduction by[22], OPF has received considerable interest (see e.g. [23–25] and
references therein) but its solution remains largely open. As the basic quantities in power
networks can be expressed in terms of the local bus voltages from Kirchhoff’s voltage law,
OPF can be represented by highly nonlinear optimization problems in voltage complex
variables, whose NP-hard computational complexity has been particularly shown in
[26]. The underlying difficulty of OPF lies on the multiple nonlinear constraints on the
voltages variables due to the bus interconnections, hardware operating capacity and
balance between power demand and supply. These nonlinear constraints are difficult
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so the state-of-the-art nonlinear optimization solvers may converge to just stationary
points (see [27] and references therein).

There has been recently renewed interest in the reformulation of the nonlinear
constraints as convex constraints plus the nonconvex rank-one constraints on the
matrix of outer product of voltage vector variables for the solution of OPF [50, 26].
For instance, by modifying numerical settings of some IEEE benchmark networks,
[26] found that the matrix solution of the semi-definite relaxation (SDR) by dropping
the rank-one matrix constraint, is of rank-one and hence the global solution of the
OPF problem is found. Such SDR, dropping the rank-one matrix constraint, also
provides the rank-one matrix solution in the so-called load over-satisfaction conditions,
under which the quadratic equality constraints are essentially relaxed to loose one-sided
inequality constraints. However, the point found from SDR is not necessarily feasible
for the nonlinear equality constraints.

Indefinite quadratic programs find the most difficulty from the multiple quadratic
equality constraints, which lead to nonzero duality gap and thus rank more than one of
the matrix solution of SDR [51]. Another important contribution in SDR is provided
in [7], where SDR has been shown to provide the rank-one matrix solution in the power
distribution networks. When the networks are transmissions, [7] aims at a theoretical
low-rank matrix solution of SDR, which could not lead to a feasible point for the
original nonconvex OPF problem. The common drawback of the SDR approaches in
[26, 7, 52] is that once a rank-one matrix solution is not found there is no way to find
even a feasible point of the original OPF problem. It should also be noted that in many
examples, SDRs might have the rank-one matrix solution among their multiple matrix
solutions, however the SDP solvers can output a matrix solution of rank-more-than-one.
The modification in [26] adds a small resistance for the lines of zero resistance, leading
to the rank-one matrix solution of the SDR, is implicitly related to the features of its
used software.

Meanwhile, [5] adopts the high-order SDR method of [53] to find the global solution
of the OPF problem over power transmission networks. Theoretically, such method is
able to generate a sequence of higher-order convex approximations, which converges to
the original nonconvex problem in terms of the solution, regardless whether the former
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is unique (as required in [53]) or not [54]. However, the dimension of these convex
approximation problems grows dramatically in terms of decision variables, size and
number of semi-definite constraints, making this approach suitable for only networks
with a very small number of buses. Not surprisingly, [5] tests the performance of this
method for networks with 2, 3 and 5 buses, where there are only 2, 3 and 5 bus voltages
variables with the objective function linear in generation power. Another drawback of
the high-order SDR method is that it works for real variables only so the dimension of
the complex voltage variables become double for its utilization.

Power transmission networks in modern smart grids are often devised with a few
thousand buses [55–57]. Under a such large number n of buses it is impossible to use the
single matrix W ∈ C

n×n, which involves n(n + 1)/2 ≈ O(107) complex variables. On
the other hand, the number of the flow lines for bus connection is relatively moderate
so only a small portion of the crossed nonlinear terms VkV ∗

m appears in the nonlinear
constraints. The common approach is to use the outer products of overlapped groups
of the voltage variables to cover them [58, 59, 52]. All rank-one constraints on these
outer products are then dropped for SDR. Obviously, the optimal solution of this SDR
usually is not of rank-one and thus does not have any physical meaning. There is no
technique to retrieve a feasible rank-one point from the rank-more-than-one solution of
SDR. Multiple matrix rank constrained optimization has received a great attention due
to its potential application in robust control synthesis [31, 3] but to our best knowledge
there is no effective computation so far.

In this chapter, we firstly follow the approach of [108] to tackle this nonconvex
OPF problem over power transmission networks with moderate size. Namely, the
OPF problem, which is minimization of a nonlinear objective function over nonconvex
constraints, is shown to be equivalent to a problem of minimization of d.c. (difference
of convex functions) function [89] over convex constraints. Since this d.c. objective is
nonsmooth (non-differentiable) we develop an iterative process of nonsmooth optimiza-
tion to generate a sequence of improved points, which converges often to a solution of
the OPF problem. Each iteration solves a semi-definite problem, whose dimension is
moderate and unchanged during the whole process. Then to handle the large-scale
OPF problems, an effective decomposition is proposed. It involves reduced numbers
of the rank-one constraints on matrices of moderate size for expressing the network
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nonlinear constraints. Accordingly, A new iterative procedure for rank-one constrained
optimization, which is practical for computational solutions of large-scale indefinite
quadratic programming. Our simulation demonstrates the computational efficiency of
our approach.

The rest of this chapter is structured as follows. Section 5.2 is devoted to the
problem formulation and its challenges. Its computational solution for OPF problem
and large-scale OPF problem are respectively developed in Section 5.3 and Section 5.4.
Section 5.5 provides simulation to show the efficiency of our methods. The conclusions
are drawn in Section 5.6.

The notation used in this chapter is standard. More specifically, j denotes the
imaginary unit, M � 0 means that the Hermitian symmetric matrix M is positive
semi-definite, rank(M) is the rank of the matrix M ; �(·) and �(·) denote the real and
imaginary parts of a complex quantity. a ≤ b for two complex numbers a and b is
componentwise understood, i.e. �(a) ≤ �(b) and �(a) ≤ �(b). 〈., .〉 is the dot product
of matrices, while {Ai}i=1,...,n denotes the matrix with diagonal blocks Ai and zero
off-diagonal blocks.

5.2 Optimal power flow problem and challenges

Consider an AC electricity transmission network with a set of buses N := {1, 2, · · · , n}.
The buses are connected through a set of flow lines L ⊆ N ×N , i.e. bus m is connected
to bus k if and only if (m, k) ∈ L. Accordingly, N (k) := {m ∈ N : (m, k) ∈ L}. The
power demanded at bus k ∈ N is

SLk
= PLk

+ jQLk
,

where PLk
and QLk

are the real and reactive power. A subset G ⊆ N of buses is
supposed to be connected to generators. Any bus k ∈ N \ G is thus not connected to
generators. Other notations are:

• Y = [ykm](k,m)∈N ×N ∈ C
n×n is the admittance matrix [6]. Each ykm is the mutual

admittance between bus k and bus m, so ykm = ymk ∀ (k, m) ∈ L.
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• V is the complex voltage vector, V = [V1, V2, · · · , Vn]T ∈ C
n, where Vk is the

complex voltage at bus k ∈ N .

• I is the complex current vector, I = Y V = [I1, I2, · · · , In]T ∈ C
n, where Ik is the

complex current injected to bus k ∈ N .

• Ikm is the complex current in the power line (k, m) ∈ L,
∑

m∈N (k)
Ikm = Ik =∑

m∈N (k)
ykmVm.

• Skm = Pkm + jQkm is the complex power transferred from bus k to bus m, where
Pkm and Qkm represent the real and reactive transferred power.

• SGk
= PGk

+ jQGk
is the complex power injected by bus k ∈ G, where PGk

and
QGk

represent the real and reactive generated power.

For each bus k, it is obvious that

SGk
− SLk

= (PGk
− PLk

) + j(QGk
− QLk

)

= VkI∗
k

= Vk

∑
m∈N (k)

I∗
km

= Vk

∑
m∈N (k)

V ∗
my∗

km. (5.1)

Therefore, we can express the real generated power PGk
and reactive generated power

QGk
at bus k as the following nonconvex quadratic functions of the bus voltage vector

variable V := (V1, V2, ..., Vn)T ∈ C
n,

PGk
= PLk

+ �(
∑

m∈N (k)
VkV ∗

my∗
km),

QGk
= QLk

+ �(
∑

m∈N (k)
VkV ∗

my∗
km).

(5.2)

The objective of OPF is to minimize the following cost function of real active generated
power PG

f(PG) =
∑
k∈G

(ck2P 2
Gk

+ ck1PGk
+ ck0), (5.3)
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where ck2 > 0, ck1, ck0 are given, which by (5.2) is a function of the bus voltages V :

f(V ) =
∑
k∈G

[ck2(PLk
+ �(

∑
m∈N (k)

VkV ∗
my∗

km))2

+ck1(PLk
+ �(

∑
m∈N (k)

VkV ∗
my∗

km)) + ck0]. (5.4)

Accordingly, the following OPF problem is formulated

min
V ∈Cn

f(V ) s.t. (5.5a)

−PLk
− jQLk

=
∑

m∈N (k)
VkV ∗

my∗
km, k ∈ N \ G, (5.5b)

P min
Gk

≤ PLk
+ �(

∑
m∈N (k)

VkV ∗
my∗

km) ≤ P max
Gk

, k ∈ G, (5.5c)

Qmin
Gk

≤ QLk
+ �(

∑
m∈N (k)

VkV ∗
my∗

km) ≤ Qmax
Gk

, k ∈ G, (5.5d)

V min
k ≤ |Vk| ≤ V max

k , k ∈ N , (5.5e)

|Skm| = |VkV ∗
my∗

km| ≤ Smax
km , ∀(k, m) ∈ L (5.5f)

|Vk − Vm| ≤ V max
km , (k, m) ∈ L, (5.5g)

|arg(Vk) − arg(Vm)| ≤ θmax
km , (k, m) ∈ L, (5.5h)

where

• (5.5b) is the equation of the balance between the demand and supply power at
bus k ∈ N \ G;

• (5.5c)-(5.5d) are the power generation bounds, where P min
Gk

, Qmin
Gk

and P max
Gk

,
Qmax

Gk
are the lower bound and upper bound of the real power reactive power

generations, respectively;

• (5.5e) are the voltage amplitude bounds;

• (5.5f)-(5.5h) are capacity limitations, where the line currents between the con-
nected buses are constrained by (5.5f), while (5.5g)-(5.5h) guarantee the voltage
balance in terms of their magnitude and phases [6].
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It is obvious that (5.5) is minimization of nonconvex objective function over quadratic
equality constraints (5.5b) and (nonconvex) indefinite quadratic constraints (5.5c)-
(5.5h).

Define the Hermitian symmetric matrix of outer product W = V V H ∈ C
n×n, which

must satisfy W � 0 and rank(W ) = 1. By replacing Wkm = VkV ∗
m, (k, m) ∈ N × N , in

(5.4) and (5.5b)-(5.5h), we reformulate (5.5) to the following optimization in matrix
W ∈ C

n×n,

min
W ∈Cn×n

F (W ) s.t. (5.6a)

−PLk
− jQLk

=
∑

m∈N (k)
Wkmy∗

km k ∈ N \ G, (5.6b)

P min
Gk

≤ PLk
+ �(

∑
m∈N (k)

Wkmy∗
km) ≤ P max

Gk
, k ∈ G, (5.6c)

Qmin
Gk

≤ QLk
+ �(

∑
m∈N (k)

Wkmy∗
km) ≤ Qmax

Gk
, k ∈ G, (5.6d)

(V min
k )2 ≤ Wkk ≤ (V max

k )2, k ∈ N , (5.6e)

|Wkmy∗
km| ≤ Smax

km , (k, m) ∈ L, (5.6f)

Wkk + Wmm − Wkm − Wmk ≤ (V max
km )2, (k, m) ∈ L, (5.6g)

�(Wkm) ≤ �(Wkm) tan θmax
km , (k, m) ∈ L, (5.6h)

W � 0, (5.6i)

rank(W ) = 1, (5.6j)

where

F (W ) =
∑
k∈G

[ck2(PLk
+ �(

∑
m∈N (k)

Wkmy∗
km))2

+ck1(PLk
+ �(

∑
m∈N (k)

Wkmy∗
km)) + ck0],

(5.7)

which is convex quadratic in W .
There is only one nonconvex constraint (5.6j) in (5.6) because other constraints are
either linear (as (5.6b)-(5.6e), (5.6g)-(5.26b)) or convex quadratic (as (5.6f)). Also, by
(5.26b) ⎡⎣Wkk Wkm

Wmk Wmm

⎤⎦ � 0,
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which implies
Wkk + Wmm − Wkm − Wmk =⎡⎣ 1
−1

⎤⎦H ⎡⎣Wkk Wkm

Wmk Wmm

⎤⎦ ⎡⎣ 1
−1

⎤⎦ ≥ 0

so (5.26b), (5.6j) and (5.6g) are an equivalent expression to (5.5g).
SDR approach (see e.g. [26]) is to drop the only nonconvex constraint (5.6j) to have the
SDP (5.6a)-(5.26b). If the solution of this relaxed SDP is of rank-one, i.e. it satisfies
the nonconvex rank-one constraint (5.6j) then it obviously leads to the global solution
of the nonconvex optimization problem (5.6). Actually, [26] modified some numerical
setting for some IEEE benchmark networks so the corresponding relaxed SDP indeed
have the rank-one matrix solution. However, it is known that (5.6a)-(5.26b) does not
have the rank-one matrix solution in general, even for networks with a small number of
buses. By relaxing the equality constraint (5.5b) by the one-sided inequality constraint

−PLk
− jQLk

≤
∑

m∈N (k)
VkV ∗

my∗
km, k ∈ N \ G, (5.8)

which is expressed in terms of W as

−PLk
− jQLk

≤
∑

m∈N (k)
Wkmy∗

km, k ∈ N \ G, (5.9)

instead of (5.6b), [26] also found out that the SDP

min
W ∈Cn×n

F (W ) s.t. (5.9), (5.6c) − (5.26b) (5.10)

has the rank-one matrix solution, which however is not necessarily feasible for (5.6).
Furthermore, [5] employed the high-order semi-definite relaxation [53] for (5.5), which
leads to explosive growth of decision variables in the relaxed SDP. The first-order
semi-definite relaxation involves the first-order moment matrix W of dimension 2n×2n

with η(n) := n(2n + 1) entries1, which are the decision variables, while linear inequality
constraints (5.6c)-(5.26b) are replaced by semi-definite constraints in W . Each linear
equality in (5.6b) is replaced by two semi-definite constraints in W . The second-

1W is obtained by replacing wkn = V̄kV̄� for k = 0, 1, ..., 2n and � = 0, 1, ..., 2n and V̄ =
(�{V }T , �{V }T )T with setting �{Vn} = 1
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order semi-definite relaxation involves the second-order moment matrix of dimension
η(n) × η(n) with η(n)(η(n) + 1)/2 entries and so on. The number of the decision
variables and the size of semi-definite constraints on moment matrices are dramatically
grown up, making this SDR approach quickly impractical.
In the next section we will provide an efficient computational method for the optimal
solution of the nonconvex problem (5.6).

5.3 Nonsmooth optimization algorithm for OPF

Following [108], we address (5.6) as follows. It is obvious that a positive semi-definite
matrix is of rank-one if and only if it has only one nonzero positive eigenvalue. Under
the positive semi-definiteness condition (5.26b), the matrix rank-one constraint (5.6j)
is thus equivalent to the spectral constraint

Trace(W ) − λmax(W ) = 0, (5.11)

where λmax(W ) stands for the maximal eigenvalue of W . Then

W = λmax(W )wmaxwH
max,

where wmax is the normalized eigenvector corresponding to the eigenvalue λmax(W )
of W . Accordingly, V =

√
λmax(W )wmax is feasible for the nonconvex constraints

(5.5b)-(5.5h) in (5.5).
Therefore, (5.6) is equivalent to

min
W ∈Cn×n

F (W ) s.t. (5.6b) − (5.26b), (5.11). (5.12)

Under the positive semi-definiteness condition (5.26b), the quantity Trace(W ) −
λmax(W ) is always nonnegative and can therefore be used to measure the degree of
satisfaction of the matrix rank-one constraint (5.6j). Instead of handling nonconvex con-
straint (5.11) we incorporate it into the objective, resulting in the following alternative
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formulation to (5.12)

min
W ∈Cn×n

Fμ(W ) := F (W ) + μ(Trace(W ) − λmax(W )) s.t. (5.6b) − (5.26b), (5.13)

where μ > 0 is a penalty parameter. Without squaring Trace(W ) − λmax(W ), the
above penalization is exact, meaning that the constraint Trace(W ) = λmax(W ) can
be satisfied by a minimizer of (5.13) with a finite value of μ (see e.g. [97, Chapter
16]). This is generally considered as a sufficiently nice property to make such exact
penalization attractive. On the other hand, any feasible W for (5.12) is also feasible
for (5.13), for which Fμ(W ) = F (W ), implying that the optimal value Fμ of (5.13) for
any μ > 0 is upper bounded by the optimal value Fopt of (5.12).

The objective function Fμ in (5.13) is the difference of two convex functions
g(W ) := F (W ) + μTrace(W ) and h(W ) = μλmax(W ), so (5.13) belongs to the class of
d.c. (difference of convex functions) optimization [89]. Following [99, 112–114] we now
adapt the d.c. iterations (DCI) for the solution of (5.13).
Function λmax(W ) is nonsmooth, which is lower bounded by

λmax(W ) = max
||w||=1

wHWw ≥ (w(κ)
max)HWw(κ)

max, (5.14)

where w(κ)
max is the normalized eigenvector corresponding to the eigenvalue λmax(W (κ)),

i.e. λmax(W (κ)) = (w(κ)
max)HW (κ)w(κ)

max.
Therefore, for any W (κ) feasible in the convex constraints (5.6b)-(5.26b), the following
convex optimization problem provides an upper bound for the nonconvex optimization
problem (5.13)

min
W ∈Cn×n

F (κ)(W ) := F (W ) + μ[Trace(W ) − (w(κ)
max)HWw(κ)

max] s.t. (5.6b) − (5.26b)
(5.15)

because F (κ)(W ) ≥ Fμ(W ) ∀ W � 0 according to (5.29).
Suppose that W (κ+1) is the optimal solution of SDP (5.15). Since W (κ) is also feasible
to (5.15) with Fμ(W (κ)) = F (κ)(W (κ)), it is true that

Fμ(W (κ)) = F (κ)(W (κ)) ≥ F (κ)(W (κ+1)) ≥ Fμ(W (κ+1)), (5.16)
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so W (κ+1) is a better feasible point for (5.13) than W (κ). Similarly to [112, 108, 113],
the following result holds.

Proposition 3 Initialized by any feasible point W (0) for SDP (5.6a)-(5.26b), {W (κ)}
is a sequence of improved feasible points of the nonconvex optimization problem (5.13),
which converges to a point satisfying first-order necessary optimality conditions.

Proof: It follows from (5.6e) that the sequence {W (κ)} is bounded. By Cauchy theorem
there is a subsequence {W (κν)}, which converges to a point W̄ .
For every κ there is ν such that κν ≤ κ and κ + 1 ≤ κν+1. By (5.16)

0 = lim
ν→∞

[Fμ(W (κν)) − Fμ(W̄ )]
≤ lim

κ→∞
[Fμ(W (κ)) − Fμ(W̄ )]

≤ lim
ν→∞

[Fμ(W (κν+1)) − Fμ(W̄ )]
= 0,

yielding lim
κ→∞

Fμ(W (κ)) = Fμ(W̄ ), i.e the sequence {Fμ(W (κ))} monotonically converges
to the unique value Fμ(W̄ ). Furthermore, W̄ is a solution of the optimization problem

min
W ∈Cn×n

F (W ) + μ[Trace(W ) − w̄H
maxWw̄max] s.t. (5.6b) − (5.26b), (5.17)

where w̄max is the normalized eigenvector corresponding to the eigenvalue λmax(W̄ ) of
W̄ . Therefore,

F (W ) − F (W̄ ) + μ[Trace(W − W̄ ) − w̄H
max(W − W̄ )w̄max] ≥ 0,

or equivalently,
g(W ) − g(W̄ ) − 〈μw̄maxw̄H

max, W − W̄ 〉 ≥ 0

for all feasible points W in (5.6b)-(5.26b). This means W̄ is the optimal solution of
the following convex program

min
W ∈Cn×n

g(W ) − 〈μw̄maxw̄H
max, W 〉 s.t. (5.6b) − (5.26b).
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Therefore,
〈∇g(W̄ ) − μw̄maxw̄H

max, W − W̄ 〉 ≥ 0

for all feasible points W for (5.6b)-(5.26b), which is also the first order necessary
optimality condition for (5.13) because μw̄maxw̄H

max is a subgradient of h at W̄ by
(5.29).2

�

The nonsmooth optimization algorithm for the nonconvex optimization problem
(5.6) is as follows.

Nonsmooth Optimization Algorithm (NOA).

Initialization. Solve SDP (5.6a)-(5.26b) to find its solution W (0). If rank(W (0)) = 1
stop: W (0) is the global solution of the nonconvex optimization problem (5.6a)-(5.6j).
Otherwise determine μ such that F (W (0)) and μ(Trace(W (0)) − λmax(W (0))) are of
similar magnitude and go to the next step.

Step 1. For κ = 0, 1, · · · , solve (5.15) to find its solution W (κ+1). Stop if

Trace(W (κ+1)) − λmax(W (κ+1)) ≤ ε (5.18)

for given tolerance ε.

The reader is also referred to [108] for the practical convergence of the above
algorithm to the solution of nonconvex optimization problem (5.6).

Remark 1. Considering NOA as an infeasible point algorithm for solving (5.6), it
is observed in our simulation that a feasible point of found by NOA is almost optimal
solution of (5.6). That’s why the termination criterion (5.18) is set.

2the interested reader is also referred e.g. to [115, VI.5.1] for the full characterization for the set
∂λmax(W̄ ) of all subgradients of λmax(.) at W̄
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The above initialization also checks if SDR (5.6a)-(5.26b) admits the rank-one
matrix solution. If it is not the case, one may initialize W (0) as the solution of SDP

min
W ∈Cn×n

F (W ) + μTrace(W ) s.t. (5.6b) − (5.26b), (5.19)

instead of that by SDP (5.6a)-(5.26b).
On the other hand, we can stabilize the NOA by replacing the equality constraint
(5.5b) by its computationally tolerant inequality

|SLk
+

∑
m∈N (k)

VkV ∗
my∗

km|2 ≤ ε̃, ∀ k ∈ N \ G (5.20)

for some given ε̃ = 10−4 or 10−6 for instance. Accordingly, the linear equality constraint
(5.6b) is replaced by the convex quadratic constraint

|SLk
+

∑
m∈N (k)

Wkmy∗
km|2 ≤ ε̃, ∀ k ∈ N \ G. (5.21)

By doing this, we directly regulate the linear equality constraints to have stability
feature of the applied SDP solvers as well. Accordingly, initialized from W (0) as the
solution of SDP

min
W ∈Cn×n

F (W ) s.t. (5.6c) − (5.26b), (5.21) (5.22)

or SDP
min

W ∈Cn×n
F (W ) + μTrace(W ) s.t. (5.6c) − (5.26b), (5.21) (5.23)

step 1 of NOA is to solve the following SDP instead of (5.15) to generate W (κ+1) for
κ = 0, 1, · · · ,

min
W ∈Cn×n

F (W )+μ[Trace(W )−(w(κ)
max)HWw(κ)

max] s.t. (5.6c)−(5.26b), (5.21). (5.24)
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5.4 Decomposed nonsmooth optimization for large-

scale OPF

The first issue is to decompose large-size matrix W in (5.6) into matrices of smaller
size to make the problem tractable even with limited computational power. This is
also prompted by the fact that there is only a small portion of the crossed terms VkV ∗

m

appearing in the nonlinear constraints (5.5b)-(5.5h) so the large-size matrix variable
W ∈ C

n×n contains many redundant terms VkV ∗
m. The main result of [58, 59, 52] is to

decompose the set N := {1, 2, ..., n} of buses into I overlapped subsets Ni = {i1, ..., iNi
}

of buses, called bags, such that i� ∈ N (i�+1), � = 1, ..., Ni − 1 and iNi
∈ N (i1), for

each i = 1, 2, ..., I, i.e. the buses in the same bag are serially connected. The set of
bags can be reset to make bags of relatively same size. Define the Hermitian symmetric
matrix variables

W i = [Wikim ]k,m=1,..,Ni
∈ C

Ni×Ni , i = 1, 2, ..., I. (5.25)

By replacing Wkm = VkV ∗
m in (5.6) we have the following equivalent reformulation for

(5.6)

min
W =diag{W i}

F (W ) s.t. (5.6b) − (5.6h), (5.26a)

W i � 0, i = 1, ..., I, (5.26b)

rank(W i) = 1, i = 1, ..., I. (5.26c)

Reference [58, 59] just dropped all rank-one constraints in (5.26c) for SDR without any
justification. Reference [52] also dropped all rank-constraints in (5.26c) but then used
a penalized SDR for locating low-rank semi-definite matrices W i in (5.25). Based on
these low-rank matrices, [52, Sec. IV] also proposed to find rank-one matrices, which
however are not necessarily feasible to (5.26).
The variable number in (5.26) is ∑I

i=1 Ni(Ni + 1)/2. To keep this number reasonably
moderate, it is desired that both I and Ni are sufficiently moderate. However, one can
see that the above described decomposition [58, 59, 52] leads to a large number I of
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bags as well as few large size Ni that result in many rank-one constraints in (5.26c),
which are much less probably satisfied by solving SDR.

Our first step toward to computation of (5.5) is to develop a new decomposition
with many fewer bags involved. Recalling that N (k) is the set of the buses that are
connected to bus k, the cardinality |N (k)| is small in large-scale networks. We resort
N = {1, 2..., n} as N = {N1, ...,

Nn} such that the cardinality |N (Nk)| is in decreased order:

|N (N1)| ≥ |N (N2)| ≥ ... ≥ |N (Nn)|.

Accordingly, the first bag of buses is defined as N1 = N (N1). The second bag is defined
as

N2 = {i ∈ N (N2) : {i, N2} �⊂ N1}.

Note that the crossed term ViV
∗

N2 is already treated in the previous bag N1 whenever
{i, N2} ⊂ N1 so we exclude such bus i in defining bag N2.
Similarly, for � ≥ 3 the �-th bag is defined as

N� = {i ∈ N (N�) : {i, N�} �⊂ N�′ ∀1 ≤ �′ ≤ � − 1}

to exclude those buses i, whose crossed term ViV
∗

N�
already is treated in a previous bag.

As each |Ni| is obviously small, such decomposition is very efficient, leading to a
substantial reduction of involved bags in comparison with that used in [58, 59, 52].

Our next step is to tackle the numerous difficult rank-one constraints in (5.26c),
not dropping them for SDR as in all the previous works.
Firstly we express I rank-one constraints in (5.26c) by the following single spectral
constraint

I∑
i=1

(Trace(W i) − λmax(W i)) = 0, (5.27)

where λmax(W i) stands for the maximal eigenvalue of W (i). Indeed, (5.26b) implies
Trace(W i) − λmax(W i) ≥ 0 ∀ i, so (5.27) means that Trace(W i) = λmax(W i), i.e.
W i has only one nonzero eigenvalue so it is of rank-one. The nonnegative quan-
tity ∑I

i=1(Trace(W i) − λmax(W i)) can therefore be used to measure the degree of
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satisfaction of the rank-one constraints (5.27). Without squaring, the penalization∑I
i=1(Trace(W i) − λmax(W i)) is exact, meaning that (5.27) can be satisfied by a

minimizer of the problem

min
W =diag{W i}

Fμ(W ) := F (W ) + μ
I∑

i=1
(Trace(W i)

−λmax(W i)) s.t. (5.6b) − (5.6h), (5.26b), (5.28)

with a finite value of μ > 0 (see e.g. [97, Chapter 16]). This is generally considered as
a sufficiently nice property to make such exact penalization attractive.
For any W i,(κ) feasible for the convex constraints (5.6b)-(5.6h), (5.26b), function
λmax(W i) is nonsmooth and is lower bounded by

λmax(W i) = max
||w||=1

wHW iw ≥ (wi,(κ)
max )HW iwi,(κ)

max , (5.29)

where wi,(κ)
max is the normalized eigenvector corresponding to the eigenvalue λmax(W i,(κ)),

i.e.
λmax(W i,(κ)) = (wi,(κ)

max )HW i,(κ)wi,(κ)
max . (5.30)

Accordingly, μλmax(W i) − μλmax(W i,(κ)) ≥ μ((wi,(κ)
max )HW i

.wi,(κ)
max − (wi,(κ)

max )HW i,(κ)wi,(κ)
max ) = μ〈wi,(κ)

max (wi,(κ)
max )H , W i − W i,(κ)〉, so μwi,(κ)

max (wi,(κ)
max )H is

a subgradient of the function μλmax(W i) at W i,(κ). Then μdiag{wi,(κ)
max (wi,(κ)

max )H} is a
subgradient of the function μ

∑I
i=1 λmax(W i) at diag{W i,(κ)}.

The following SDP provides an upper bound for the nonconvex optimization
problem(5.13)

min
W =diag{W i}

F (κ)(W ) := F (W ) + μ
I∑

i=1
(Trace(W i)

−(wi,(κ)
max )HW iwi,(κ)

max ) s.t. (5.6b) − (5.6h), (5.26b) (5.31)

because F (κ)(diag{W i}) ≥ Fμ(diag{W i}) ∀ W i � 0 according to (5.29). Suppose
that W (κ+1) = diag{W i,(κ+1)} is the optimal solution of SDP (5.15). Since W (κ) =
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diag{W i,(κ)} is also feasible to (5.15) with Fμ(W (κ)) = F (κ)(W (κ)), it is true that

Fμ(W (κ+1)) ≤ F (κ)(W (κ+1)) ≤ F (κ)(W (κ)) = Fμ(W (κ)),

so W (κ+1) is a better feasible point of (5.13) than W (κ). Initialized by any feasible
point W (0) = diag{W i,(0)} of SDP constraint (5.26a)-(5.26b), the sequence {W (κ)} =
{diag{W i,(κ)}} with W (κ+1) = diag{W i,(κ+1)} iteratively generated as the optimal
solution of SDP (5.15) is a sequence of improved feasible points of the nonconvex
optimization problem (5.13). Since W (κ) are uniformly bounded, the sequence {W (κ)}
has a limit point W̄ = diag{W̄ i}, which is the optimal solution of the optimization
problem

min
W =diag{W i}

F (W ) + μ
I∑

i=1
(Trace(W i)

−(w̄i
max)HW iw̄i

max) s.t. (5.6b) − (5.6h), (5.26b), (5.32)

where w̄i
max is the normalized eigenvector corresponding to the eigenvalue λmax(W̄ i) of

W̄ i. Particularly,

F (W ) + μ
I∑

i=1
(Trace(W i) − (w̄i

max)HW iw̄i
max) ≥

F (W ) + μ
I∑

i=1
(Trace(W̄ i) − (w̄i

max)HW̄ iw̄i
max),

or equivalently, under the definition g(W ) = F (W ) + μ
I∑

i=1
Trace(W i),

g(W ) − g(W̄ ) − 〈μdiag{w̄i
max(w̄i

max)H}, W − W̄ 〉 ≥ 0

for all feasible points W = diag{W i} in (5.6b)-(5.6h), (5.26b). As a result, W̄ is the
optimal solution of the convex optimization problem

min
W =diag{W i}

g(W ) − 〈μdiag{w̄i
max(w̄i

max)H}, W − W̄ 〉

s.t. (5.6b) − (5.6h), (5.26b),
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so it must satisfy the optimality condition

〈∇g(W̄ ) − μdiag{w̄i
max(w̄i

max)H}, W − W̄ 〉 ≥ 0

for all feasible points diag{W i} in (5.6b)-(5.6h), (5.26b). The latter is also the first order
necessary optimality condition for (5.13) because μdiag{w̄i

max(w̄i
max)H} is a subgradient

of the function μ
∑I

i=1 λmax(W i) at W̄ . As our simulations will show, W̄ is indeed the
global optimal solution of (5.13) and (5.26).

However, unlike [92] with only a single rank-one constrained matrix, although
quantity

I∑
i=1

(Trace(W i,(κ)) − λmax(W i,(κ))) (5.33)

in (5.13) is iteratively decreased, not all individual quantities

Trace(W i,(κ)) − λmax(W i,(κ)) (5.34)

are iteratively decreased so the rank of each matrix W i,(κ) is no longer iteratively
reduced to one as expected. Worse, W i,(κ) is rank-one but the rank of W i,(κ+1) in the
next iteration may turn to be more than one with

Trace(W i,(κ+1)) − λmax(W i,(κ+1)) >

Trace(W i,(κ)) − λmax(W i,(κ)).

Consequently, it is very difficult to achieve rank-one for all W i,(κ) as desired. It is also
impossible to add a "weight" to each term under the sum in the objective in (5.15) to
handle the individual convergence of Trace(W i) − λmax(W i).
We now develop a systematic way to resolve this issue as follows. For κ = 0, 1, ..., and
W (κ) = diag{W (i,(κ))} define

L(κ) = {i ∈ {1, ..., I} : rank(W i,(κ)) = 1} (5.35)



5.4 Decomposed nonsmooth optimization for large-scale OPF 105

and generate W (κ+1) = diag{W i,(κ+1)} as the optimal solution of the following SDP
instead of SDP (5.15)

min
W =diag{W i}

F (W ) + μ
I∑

i=1
[Trace(W i)

−(wi,(κ)
max )HW iwi,(κ)

max ] s.t. (5.6b) − (5.6h), (5.26b), (5.36a)

Trace(W i) − (wi,(κ)
max )HW iwi,(κ)

max ≤ εtol, i ∈ L(κ). (5.36b)

Note that Trace(W i) ≥ wHWw for all ||w|| = 1 and it is obvious that rank(W i) = 1 if
and only if Trace(W i) − wH

maxW iwmax = 0 for some normalized wmax. Therefore, the
constraint (5.36b) for some tolerance εtol is introduced to warrant the rank-one of all
W i,(κ+1), i ∈ L(κ). As a result L(κ) ⊂ L(κ+1) and L(κ) → {1, ..., I} is expected to have
all W i,(κ) of rank-one. Unlike (5.15), the iterations (5.36) leads to achieving rank-one
of all W i while the objective function Fμ is still decreased.

In summary, we propose the following Large-Scale Non-smooth Optimization Algo-
rithm (Large-scale NOA) for the multiple rank-one constrained optimization problem
(5.13).

Initialization. Solve SDP

min
W =diag{W i}

F (W ) s.t. (5.6b) − (5.6h), (5.26b) (5.37)

to generate W (0) := diag{W i,(0)}. If rank(W i,(0)) ≡ 1 stop: W (0) is the global solution
of the nonconvex optimization problem (5.26). Otherwise set κ = 0 and define L(κ) by
(5.35).

κ-th iteration. For κ = 0, 1, .., solve (5.36) to generate W (κ+1) := diag{W i,(κ+1)}.
Reset κ = κ + 1 and define L(κ) by (5.35). Stop whenever L(κ) = {1, ..., I}. Otherwise
go to the next iteration.
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5.5 Simulation results

5.5.1 Simulation results for OPF problem

The hardware and software facilities for our computational implementation are:

• Processor: Intel(R) Core(TM) i5-3470 CPU @3.20GHz;

• Software: Matlab version R2013b;

• Matlab toolbox: Matpower version 5.1[6] to compute the admittance matrix Y

from the power system data; Yalmip[101] with SeDumi 1.3 [102] solver for SDP
(5.15).

The tolerance ε = 10−5 is set for the stop criterion (5.18) of NOA, which is applied
to solutions of all cases, except the IEEE300 case, for which the above description
adaptation of NOA is used. We also provide the value of μ used in each simulation so
the reader can easily reproduce our numerical result.3

WB2mod Network [1]

WB2mod is a power network with constraints modified from WB2, in which there are
n = 2 buses with 1 generator, 1 load bus and 1 transmission line, which lead to only
one nonlinear equality constraint in (5.5b). The size of the Hermitian symmetric matrix
variable W is 2 × 2. The SDP (5.6a)-(5.26b) of SDR does not admit the rank-one
solution with V max

2 in (5.6d) exceeding 0.976 [5].
The computational results are summarized in Table 5.1, where the first column
is the different values of V max

2 (unit p.u.), the second column is the corresponding
optimal value (unit $/h) of SDP (5.6a)-(5.6h), which provides a lower bound (LB)
for (5.6a)-(5.26b). The solution of SDP (5.6a)-(5.6h) is not of rank-one as the third
column lists all its nonzero eigenvalues. The fourth column indicates the value of the
penalty parameter μ in (5.13), while the fifth column provides the iteration number
of NOA for solution of (5.13). The sixth column is the optimal value (unit $/h) of

3The code for each simulation is provided upon request to the corresponding author H.D. Tuan



5.5 Simulation results 107

Table 5.1 WB2mod [5]

V max
2 SDR LB SDR’s nonzero eig. μ # Iter. NOA λmax

0.983 903.12 0.0008,1.8680 104 2 905.73 1.8552
0.989 900.84 0.0012,1.8794 104 2 905.73 1.8552
0.996 898.17 0.0016,1.8929 104 2 905.73 1.8552
1.002 895.86 0.0018,1.9047 3 × 104 2 905.73 1.8552
1.009 893.16 0.0018,1.9188 2 × 102 1 905.73 1.8552
1.015 890.82 0.0016,1.9311 2 × 102 1 905.73 1.8552
1.022 888.08 0.0012,1.9458 2 × 102 1 905.73 1.8552
1.028 885.71 0.0007,1.9586 2 × 102 1 905.73 1.8552

(5.6a)-(5.26b), which is consistent with that in [5, Table 1]. The last column represents
the only nonzero eigenvalue of the matrix solution of (5.6a)-(5.26b) found by NOA.
The second-order and third-order SDR used in [5] for obtaining these optimal values
involve 55 and 1540 decision variables, while (5.15) used for our iterations involves
only 3 decision variables.
For V max

2 = 1.009, 1.015, 1.022 and 1.028, NOA is initialized by the solution W (0) of
(5.19).

WB5 and WB5mod Network [1]

WB5 is a power network with 5 buses, 2 generators and 6 transmission lines, which
lead to 3 nonlinear equality constraints in (5.5b). The size of the Hermitian symmetric
matrix variable W is 5 × 5. The second row in Table 5.2, whose format is similar to
that of Table 5.1, reveals that the optimal value found by NOA is almost the same as
its lower bound by SDR, so the global optimality of the former is obvious. This result
is also consistent with that in [1].
WB5mod [5, Subsection IV.C] is modified from WB5 by changing the values of Qmin

5 ,
for which the computational results in Table 5.2 are also consistent with [5, Table III].
NOA involving the matrix variable W of dimension 5 × 5 is initialized by the solution
W (0) of (5.19). The second-order SDR used in [5] involves 1540 decision variables.

Case39mod1 and Case118mod Network [1]

Case39mod1 Network is a modification of New-England test network with 39 buses, 10
generators and 46 transmission lines, which lead to 29 nonlinear equality constraints in
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Table 5.2 WB5 [1] and WB5mod [5]

Qmin
5 SDR LB SDR’s nonzero eig. μ # Iter. NOA λmax

-30.00 946.53 0.0005,4.9823 103 2 946.58 4.9842
-20.51 954.82 0.0065,4.9647 2 × 103 22 1146.48 4.9720
-10.22 963.83 0.0129,4.9457 2 × 103 27 1209.11 4.9732
0.07 972.85 0.0192,4.9267 2 × 103 31 1267.79 4.9748
10.36 981.89 0.0255,4.9078 2 × 103 34 1323.86 4.9767
20.65 990.95 0.0318,4.8889 2 × 103 36 1377.97 4.9787
30.94 1005.13 0.0460,4.8546 2 × 103 39 1430.54 4.9809
41.23 1033.07 0.0711,4.8152 2 × 103 41 1481.81 4.9832
51.52 1070.39 0.1033,4.7748 2 × 103 43 1531.97 4.9856

(5.5b). On the other hand, Case118mod network is a modification of IEEE 118 bus
network, with 118 buses, 54 generators and 46 transmission lines, which lead to 64
nonlinear equality constraints in (5.5b). The computational results are summarized in
Table 5.3 while the convergence speed of NOA for Case39mod1 is plotted by Figure
5.1.

Table 5.3 Case39mod1 and Case118mod [1]

Network Case39mod1 Case118mod
SDR LB 10804.08 129682.50

SDR’s nonzero eig. 0.0295, 0.0358, 0.0431, 0.0705, 41.1777 0.0121,126.4189
μ 4.5 × 106 2 × 106

# Iter. 11 2
NOA 11216.50 129686.03
λmax 39.5586 126.3758

With such large n, the higher-order SDR used by [5] is not applicable as the
second-order SDR already involves such number of decision variables that cannot be
handled by the present PCs. The second row of Table 5.3 reveals that the matrix
solution of SDR for Case39mod1 is of rank-five. The optimal value 11216.50 found by
NOA is better than the value 11219.00 provided by [1]. For Case118mod, the third row
in Table 5.3 shows that the matrix solution of SDR is rank-two. The optimal value
129686.03 found by NOA is almost same with the value 129625.03 provided by [1].

Case9, 14, 30, 57 Network [6]

Data of Case9, 14, 30 and 57 networks are modified from the Matpower test data
files [6] by setting all voltage bounds V min

k = 0.95 and V max
k = 1.05, ∀k ∈ N . In
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Fig. 5.1 Case39mod1 [1]

Case9 network, there are 9 buses with 3 generators and 9 transmission lines, which
lead to 6 nonlinear equality constraints in (5.5b). In Case14 network, there are 14
buses with 5 generators and 20 transmission lines, which lead to 9 nonlinear equality
constraints in (5.5b). In Case30 network, there are 30 buses with 6 generators and 41
transmission lines, which lead to 24 nonlinear equality constraints in (5.5b). In Case57
network, there are 57 buses with 7 generators and 80 transmission lines, which lead to
50 nonlinear equality constraints in (5.5b).
The computational results summarized in Table 5.4 reveal that the matrix solution of

Table 5.4 Case9, 14, 30, 57 [6]

Network SDR LB SDR’s nonzero eig. μ # Iter. NOA λmax
Case9 5305.56 0.0115,9.7464 103 2 5305.68 9.7328
Case14 8088.71 14.8299 - - - -
Case30 574.87 31.5534 - - - -
Case57 41213.99 0.0077,56.7939 104 47 41313.72 56.7778
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SDR in Case14 and Case30 is of rank-one, while it is of rank-two in Case9 and Case57.
For Case57, constraint (5.5b) was replaced by constraint (5.21) to regulate NOA for
ε̃ = 6 × 10−6. For Case57, the matrix solution of SDR looks like nearly rank-one as its
second largest eigenvalue is only 0.0077. However, it is not the case because it leads
to an infeasible solution of (5.5), where a number of equality constraints in (5.5b) is
violated at unacceptable margin.
Table 5.5 provides the difference between the left hand side and the right side of (5.5b)
for some buses. [26, 7] also consider these cases but their data seem to be slightly

Table 5.5 SDR feasibility check for Case57

Bus # Difference between LHS and RHS of (5.5b)
13 0.0017 + 0.0139i
14 0.0525 + 0.3223i
46 0.0261 + 0.1747i
47 0.0055 + 0.0093i

different from [6] with the charging capacitance bc not incorporated. Also, the objective
functions (5.3) in [26, 7] are linear in PGk

, i.e. ck2 = 0 in (5.3) so they also lead to
different ranks of the matrix solution of SDR (5.6a)-(5.26b). Particularly, [7] found
that the matrix solution of SDR (5.6a)-(5.26b) are of rank-two for Case14, Case30
and Case57. Then [7] proposes to find a rank-one matrix point of (5.6) by solving the
so-called penalized SDR

min
W ∈Cn×n

F (W ) + ε1
∑
k∈G

(QLk
+ �(

∑
m∈N (k)

Wkmy∗
km)) s.t. (5.6b) − (5.26b) (5.38)

with ε1 increased till (5.38) has an rank-one matrix solution. We also verified this
simulation and found some computational inconsistencies between [7] and ours. The
numerical results are summarized in Table 5.6. According to the third row of Table
5.6 for Case30mod, the matrix solution of SDR is of rank-one but not of rank-two as
in [7]. With the same ε1 = 1.5 in (5.38) as [7, Table II(c)] the solution of (5.38) for
Case57mod is found to have rank-two with two nonzero eigenvalues 0.0604 and 58.1802
shown in the fourth row of Table 5.6 but not rank one with the nonzero eigenvalue
56.887 as in [7, Table II(c)]. Our NOA with using (5.21) with ε̃ = 6 × 10−6 outputs
the rank-one matrix solution with the eigenvalue 56.67404 shown in the same row of
the Table.
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Table 5.6 Case14, 30, 57mod [7]

Network Case14mod Case30mod Case57mod
SDR (LB) 316.46 388.98 366.06

SDR’s nonzero eig. 0.0090,14.8784 31.6008 0.0608, 58.1756
P-SDR [7] 316.49 - 366.8731 (infeas.)

P-SDR’s nonzero eig. 14.8590 - 0.0604, 58.1802
μ 103 - 104

# Iter 2 - 41
NOA 316.49 - 479.59
λmax 14.8610 - 56.6740

Results compared with Matpower6.0[6]

In the section, we make a comparison between the results obtained by Matpower6.0
and NOA for the cases tested in the previous section. The voltage bounds are all set
as V min

k = 0.95 and V max
k = 1.05, ∀k ∈ N . The computational results are summarized

in Table 5.7, where the first column is the network name, the second and third column
respectively provides the lower bound and optimum of SDP (5.6a)-(5.26b), while the
last column is the optimum obtained by Matpower6.0 [6].

Table 5.7 Results compared with Matpower6.0 [6]

Network SDR LB NOA Matpower
WB2mod 877.78 877.78 Failed

WB5 946.53 946.58 1082.33
Case9 5305.56 5305.68 5305.56
Case14 8088.71 8088.71 8088.71
Case30 574.87 574.87 577.69

Case39mod1 10804.08 11216.50 11221.00
Case57 41213.99 41313.72 44669.53

Case118mod 1.2968 × 105 1.2968 × 105 1.2968 × 105

IEEE300 7.1971 × 105 7.1974 × 105 7.4325 × 105

From Table 5.7, we can see that our optimum are better than or at least consistent
with Matpower6.0’s. For WB2mod, Matpower6.0 can not locate a feasible point; for
WB5, Case30, Case39mod1, Case57 and IEEE300, our optimum are much better than
Matpower6.0’s; for other cases, our results are consistent with Matpower6.0’s.
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5.5.2 Simulation results for large-scale OPF problem

We set the tolerances ε = εtol = 10−5 and the penalty parameter μ = 106 which makes
the penalty term μ

∑I
i=1(Trace(W (i,(0))) − λmax(W i,(0))) at similar magnitude with the

objective F (W (0)). The data source for all examples is Matpower version 5.1 [6]. All
examples were considered in [58, 59, 52] by SDR only. We recall that T is the number
of matrix variables W i in the OPF problem (5.26) and L(κ) is defined by (5.35) is the
set of rank-one matrices W i found after κ-th iteration. The capability of our large-scale
NOA in locating the global optimal solution of the OPF problems is demonstrated by
showing that the global optimality tolerance (GOT) of its found solution defined as

the found value- lower bound
lower bound

is almost zero.

The numerical examples are presented as follows.

Polish-2383wp system

There are n = 2383 buses, 327 generators and 2896 transmission lines, leading to 2056
nonlinear constraints in (5.5b).
Initialization. A lower bound 1.8490 × 106 of (5.26) is found by solving SDP (5.37).
|L(0)| = 1210 and there are 32 matrices W i,(0) of rank-more-than-one. Their largest
size (smallest size, resp.) is 10 × 10 (2 × 2, resp.).
Stage 1. |L(10)| = 1234 is achieved. There are 8 matrices W i,(10) of rank-more-than-one.
Their largest size (smallest size, resp.) is 10 × 10 and (3 × 3, resp.).
Stage 2. |L(19)| = 1237 is achieved. There are 5 matrices W i,(20) of rank-more-than-one.
Their largest size (smallest size, resp.) is 9 × 9 (3 × 3, resp.).
Stage 3. |L(25)| = I = 1242 is achieved. The found value of the objective is 1.8408×106

with GOT 4.3267e − 04.
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Table 5.8 Comparison of bags number I, largest bag size Mi and number of variables
System I I by [52] Max. Ni Max. Ni by [52] Var. # in (5.6) Var. # in (5.26) Var. # in (5.26) by [52] Found value Found by [52]

Polish-2383wp 1242 2383 10 23 2,840,536 23,199 89,893 1.8408 × 106 1.8742 × 106

Polish-2736sp 1538 2736 10 23 3,744,216 27,298 104,388 1.3042 × 106 1.3082 × 106

Polish-2737sop 1538 2737 10 23 3,746,953 27,034 103,720 7.7572 × 105 7.7766 × 105

Polish-2746wop 1546 2746 10 23 3,771,631 29,024 108,950 1.2040 × 106 1.2085 × 106

Polish-2746wp 1547 2746 10 24 3,771,631 28,257 107,148 1.6266 × 106 1.6324 × 106

Polish-3012wp 1689 3012 10 24 4,537,578 30,996 116,799 2.5727 × 106 2.6089 × 106

Polish-3120sp 1757 3120 10 24 4,868,760 32,637 121,869 2.1391 × 106 2.1608 × 106

Table 5.9 Performance comparison

System Found value Found by [52] Found by [6]
Polish-2383wp 1.8408 × 106 1.8742 × 106 1.8685 × 106

Polish-2736sp 1.3042 × 106 1.3082 × 106 1.3078 × 106

Polish-2737sop 7.7572 × 105 7.7766 × 105 7.7763 × 105

Polish-2746wop 1.2040 × 106 1.2085 × 106 1.2083 × 105

Polish-2746wp 1.6266 × 106 1.6324 × 106 1.6317 × 106

Polish-3012wp 2.5727 × 106 2.6089 × 106 2.5917 × 106

Polish-3120sp 2.1391 × 106 2.1608 × 106 2.1427 × 106

Polish-2736sp system

There are n = 2736 buses, 420 generators and 3504 transmission lines, which lead to
2316 nonlinear constraints in (5.5b).
Initialization. A lower bound 1.3041 × 106 of (5.26) is obtained by solving SDP (5.37).
|L(0)| = 1534 and there are 4 matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 6 × 6 (4 × 4, resp.).
Stage 1. |L(9)| = I = 1538 is achieved. The found value of the objective is 1.3042 × 106

with GOT 7.6681e − 05.

Polish-2737sop system

There are n = 2737 buses, 399 generators and 3506 transmission lines, which lead to
2338 nonlinear constraints in (5.5b).
Initialization. A lower bound 7.7571 × 105 of (5.26) is obtained by solving SDP (5.37).
|L(0)| = 1532 and there are 6 matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 6 × 6 (3 × 3, resp.).
Stage 1. |L(2)| = I = 1538 is achieved. The found value of the objective is 7.7572 × 105

with GOT 1.2891e − 05.



114 Global Optimization for Optimal Power Flow over Transmission Networks

Polish-2746wop system

There are n = 2746 buses, 514 generators and 3514 transmission lines, which lead to
2232 nonlinear constraints in (5.5b).
Initialization. A lower bound 1.2039 × 106 of (5.26) is obtained by solving SDP (5.37).
|L(0)| = 1538 and there are 8 matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 6 × 6 (3 × 3, resp.).
Stage 1. |L(2)| = I = 1546 is achieved. The found value of the objective is 1.2040 × 106

with GOT 8.3063e − 05.

Polish-2746wp system

There are n = 2746 buses, 520 generators and 3514 transmission lines, which lead to
2226 nonlinear constraints in (5.5b).
Initialization. A lower bound 1.626590 × 106 of (5.26) is obtained by solving SDP
(5.37). |L(0)| = 1545 and there are 2 matrices W i,(0) of rank-more-than-one. Their size
is 4 × 4.
Stage 1. |L(1)| = I = 1547 is achieved. The found value of the objective is 1.626591×106

with GOT 6.1478e − 07.

Polish-3012wp system

There are n = 3012 buses, 502 generators and 3572 transmission lines, which lead to
2510 nonlinear constraints in (5.5b).
Initialization. A lower bound 2.5717 × 106 of (5.26) is obtained by solving SDP (5.37).
|L(0)| = 1682 and there are 7 matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 7 × 7 (2 × 2, resp.).
Stage 1. |L(4)| = I = 1689 is achieved. The found value of the objective is 2.5727 × 106

with GOT 3.8885e − 04.
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Polish-3120sp system

There are n = 3120 buses, 505 generators and 3693 transmission lines, which lead to
2615 nonlinear constraints in (5.5b).
Initialization. A lower bound 2.1314 × 106 of (5.26) is obtained by solving SDP (5.37).
|L(0)| = 1749 and there are 8 matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 8 × 8 (2 × 2, resp.).
Stage 1. |L(9)| = I = 1757 is achieved. The found value of the objective is 2.1391 × 106

with GOT 0.0036.

Numerical summary

One can observe that GOT of the solutions computed by the large-scale NOA is very
small, proving its capability to provide the global solution of (5.26). Table 5.8 and
Table 5.9 summarize the main points in our simulation. The second and third columns
of Table 5.8 are the number I of bags in (5.25) by our decomposition and by that in
[52], while the fourth and fifth columns give the maximum size Ni in (5.25). One can
see that both I and the maximum Ni by our decomposition are substantially smaller
than their counterparts by [52]. This leads to far smaller numbers of variables in
(5.26), which are provided in the seventh and eighth columns. The number n(n + 1)/2
of complex variables in (5.6) is also provided in the sixth column to contrast to
the number of complex variables in (5.26) in the seventh column. Furthermore, the
second column of Table 5.9 provides the best values of (5.5) found by our large-scale
NOA, which are far smaller than ones in the third and fourth columns found by
[52] and Matpower6.0 [6] (using an interior point method), respectively. In short,
our computation approach to the OPF problem (5.26) outperforms other existing
approaches in terms of computational efficiency and performance.

5.6 Conclusions

OPF over power transmission networks is a difficult nonconvex optimization problem
with multiple nonlinear equality and inequality constraints. We have shown that
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the proposed nonsmooth optimization algorithm (NOA) is able to overcome the
shortcomings of the existing methods to compute its optimal solution efficiently and
even for networks with reasonably large numbers of buses.



Chapter 6

Model Predictive Control for
Smart Grids with Multiple
Electric-Vehicle Charging Stations

6.1 Introduction

Electrical vehicles (EVs) have emerged as a promising solution to resolve both the
economic and environmental concerns in the transportation industry [60]. Using a
smart power grid in concurrently serving residences and charging EVs constitutes one
of the most important applications of the smart grid technology. However, the massive
integration of plug-in EVs (PEVs) into the grid causes many potential impacts such
as voltage deviation, increased load variations and power loss of the grid [61], which
requires different strategies for load shifting and energy trading and storage in the
grid [62–65]. The main difficulty in scheduling of PEV charging to manage the cost
and impact of PEV integration is that individual PEVs randomly arrive for charging
with their individual demands on charging load and deadlines, which cannot be known
before hand. In other words, the future charging demand of PEVs cannot be known
a priori. Many existing works consider a simple smart grid with a single charging
station (CS) to exclusively serve PEVs. For instance, [66] sets no charging deadlines
for PEVs, whose arrival process follows a probability distribution, while [67] assumes
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that the future load demand is perfectly known a priori. The future load demand is
also assumed to be known in [68] as all PEVs are assumed to arrive at the same time
with no charging deadline. It is assumed in [69] that only statistics of demand are
known but the PEVs can be fully charged in a single time slot [69, (30)]. It should
be realized that serving PEVs is typically considered during a 12-hour time period
(for instance from 8:00 pm to 8:00 am), where the integration of a massive number
of PEVs has a sizable effect on the power grid, and as such, the length of a time slot
is rationally set by 30 minutes or one hour. In other words, the charging scheduling
should be considered over a finite horizon of 12-24 time slots, but not over an infinite
horizon as considered in [70]. Due to their physical limitations, PEVs are rarely able
to be fully charged just during a single time slot.

In this chapter, we consider joint PEV charging scheduling and power control to
save service costs for PEVs and the power generation costs in meeting both residential
and PEV power demands. Such a problem was considered in [116] but only a small
number of PEVs and with each CS serving only one PEV, whose power demand is very
small compared with the inelastic demand, so that the integration of PEVs into the
grid has almost no effect on the grid. Note that the optimal power flow problems posed
in [116] cannot be solved exactly by semi-definite programming relaxation (SDR) [117].
Therefore, it is not known if the objective in PEVs charging scheduling is convex and
as such, it is not known if its proposed valley-filling solution is optimal. Larger PEVs’
penetration in a few CSs was considered in [118, 119] under the assumption of known
arrival and departure times of PEVs. In the present chapter, we are interested in more
practical scenarios of a massive number of PEVs arriving randomly at different CSs. No
assumption on the probability distribution of their arrival is made, so the conventional
model predictive control (MPC) [120, 121] is not applicable. Our contribution is to
develop a novel MPC-based approach to address this problem.

The rest of this chapter is structured as follows. Section 6.2 is devoted to the
system modeling for this problem and analyzing its computational challenges. An
online computational solution using the proposed MPC-based approach is developed
in Section 6.3. An off-line computational solution is considered in Section 6.4, which
is then compared with the online computational solution in Section 6.5 to show the
optimality of the later. Section 6.6 concludes this chapter.
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Notation. The notation used in this chapter is standard. Particularly, j is the
imaginary unit, XH is Hermitian transpose of a vector/matrix X, M � 0 for a
Hermitian symmetric matrix M means that it is positive semi-definite, rank(M) and
Trace(M) are the rank and trace of a matrix M , respectively. �(·) and �(·) are the real
and imaginary parts of a complex quantity, and a ≤ b for two complex numbers a and
b is componentwise understood, i.e. �(a) ≤ �(b) and �(a) ≤ �(b). The cardinality of
a set C is denoted by |C|.

6.2 Problem statement and computational challenges

Consider an electricity grid with a set of buses N := {1, 2, ..., N} connected through a
set of flow lines L ⊆ N × N , i.e. bus k is connected to bus m if and only if (k, m) ∈ L.
Accordingly, N (k) is the set of other buses connected to bus k. There is a subset
G ⊆ N , whose elements are connected to distributed generators (DGs). Any bus k /∈ G
is thus not connected to DGs. Any bus k ∈ G also has a function to serve PEVs and in
what follow is also referred to CS k. By defining M = |G|, there are M CSs in the grid.
Denote by Hk the set of those PEVs that arrive at CS k. Accordingly, kn is the n-th
PEV that arrives at CS k. Figure 6.1 provides a general structure of PEV charging in
a smart grid system.

The serving time period of the grid is divided into T time slots of length δt, which
usually varies from 30 minutes to an hour. Under the definition T := {1, 2, . . . , T},
PEV kn arrives at ta,kn ∈ T and needs to depart at tkn,d ∈ T . The constraint

tkn,d − tkn,a ≤ Tkn , (6.1)

expresses the PEV kn’s time demand. Suppose that Ckn and s0
kn

are the battery
capacity and initial state of charge (SOC) of PEV kn. It must be fully charged by the
departure time tkn,d, i.e.

tkn,d∑
t′=tkn,a

uhPkn(t′) = Ckn(1 − s0
kn

), (6.2)
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Fig. 6.1 System architecture of PEV charging in smart grid

where uh is the charging efficiency of the battery and Pkn(t′) is a decision variable
representing the power charging rate of PEV kn ∈ Hk at time t′.

Due to the limited capacity of the hardware, the following constraint must be
imposed:

0 ≤ Pkn(t′) ≤ P kn , tkn,a ≤ t′ ≤ tkn,d, (6.3)

for a given P k,n. For ease of presentation, we set

Pkn(t′) = 0, t′ /∈ [tkn,a, tkn,b]. (6.4)

Let ykm ∈ C be the admittance of line (k, m). The current Ik(t′) at node k ∈ N is,

Ik(t′) =
∑

m∈N (k)
Ikm(t′)

=
∑

m∈N (k)
ykm(Vk(t′) − Vm(t′)),
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where Vk(t′) is the complex voltage at bus k during the time slot t′. For k ∈ G, the
total supply and demand energy is balanced as,

Vk(t′)(Ik(t′))∗ = (Pgk
(t′) − Plk(t′) −

∑
n∈Hk

Pkn(t′))

+j(Qgk
(t′) − Qlk(t′)),

where Pgk
(t′) and Qgk

(t′) are the real and reactive powers generated by DG k, and
Plk(t′) and Qlk(t′) are respectively known real and reactive price-inelastic demands at
bus k to express the residential power demand. By using the last two equations, we
obtain

Vk(t′)(
∑

m∈N (k)
ykm(Vk(t′) − Vm(t′)))∗ = (Pgk

(t′)

−Plk(t′) −
∑

n∈Hk

Pkn(t′)) + j(Qgk(t′) − Qlk(t′)), k ∈ G. (6.5)

Similarly,

Vk(t′)(
∑

m∈N (k)
ykm(Vk(t′) − Vm(t′)))∗ =

−Plk(t′) − jQlk(t′), k /∈ G. (6.6)

The next constraints relate to the acceptable range of generated power by the DGs:

P gk
≤ Pgk

(t′) ≤ P gk
& Q

gk
≤ Qgk

(t′) ≤ Qgk
, k ∈ G, (6.7)

where P gk
, Q

gk
and P gk

, Qgk
are the the lower limit and upper limit of the real

generated and reactive generated powers, respectively.

The constraints of voltage are

V k ≤ |Vk(t′)| ≤ V k, k ∈ N , (6.8)

|arg(Vk(t′)) − arg(Vm(t′))| ≤ θmax
km , (k, m) ∈ L, t′ ∈ T , (6.9)

where V k and V k are the lower limit and upper limit of the voltage amplitude, while
θmax

k,m are given to express the voltage phase balance.
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The constraints of line capacity are

|Vk(t′)(Vk(t′)∗ − Vm(t′)∗)y∗
km| ≤ Skm, (6.10)

(k, m) ∈ L, t′ ∈ T ,

where Skm is the upper limit of capacity for line (k, m).

The problem of interest is to minimize both the energy cost to DGs and charging
cost for PEVs. Thus, by defining

V (t′) = (V1(t′), . . . , VN(t′)), V = {V (t′)}t′∈T ,

Pg(t′) = (Pg1(t′), . . . , PgM
(t′)),

Qg(t′) = (Qg1(t′), . . . , QgM
(t′)),

R(t′) = {Pg(t′), Qg(t′)}, R = {R(t′)}t′∈T ,

PP EV = {P P EV (t′)}t′∈T ,

P P EV (t′) = {Pkn(t′)}kn∈Hk,k=1,...,M ,

the objective function is given by

F (R, PP EV ) =
∑
t′∈T

∑
k∈G

f(Pgk
(t′))

+
∑
t′∈T

∑
k∈N

∑
n∈Hk

βtPkn(t′),

where f(Pgk
(t′)) is the cost function of real power generation by DGs, which is linear or

quadratic in Pgk
(t′), and βt is the known PEV charging price during the time interval

(t′, t′ + 1].

The joint PEV charging scheduling and power control is then mathematically
formulated as

min
V,R,PP EV

F (R, PP EV ) s.t. (6.2) − (6.10). (6.11)

The above problem (6.11) is very computationally challenging because the quadratic
equality constraints (6.5) and (6.6) and nonlinear inequality constraints (6.8) and (6.9)
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constitute nonconvex constraints. Moreover, the arrival time tkn,a of each individual
PEV kn, its charging demand and its departure time tkn,d are unknown.

6.3 Model predictive control (MPC)-based compu-

tational solution

Considering (R(t′), P P EV (t′)) and V (t′) as the plant state and control, respectively,
equations (6.5), (6.6), and (6.7) provide state behavioral equations [122] with the end
constraint (6.2) while equations (6.8) and (6.9) provide control constraints. On the
surface, (6.11) appears to be a control problem over the finite horizon [1, T ]. However,
all equations in (6.11) are unpredictable beforehand, preventing the application of
conventional model predictive control (MPC) [120, 121]. We now follow the idea of
[123] to address (6.11).

The conventional MPC relies on the two key steps at time t: predicting future
events and minimizing a reference-based cost function by considering the plant over a
short receding horizon [t, t + T ]. Both these steps cannot be implemented for problem
(6.11) because the PEVs’ arrivals cannot be anticipated while there is no reference
for PEV charging. Our proposed method, which does not need prediction for PEVs’
arrivals or reference for PEV charging is described as follow. At each time t denote by
C(t) the set of PEVs that need to be charged. For each kn ∈ C(t), let Pkn(t) be its
remaining demand for charging by the departure time tkn,d. Define

Ψ(t) = max
kn∈C(t)

tkn,d. (6.12)

At time t we solve the following optimal power flow (OPF) problem over the prediction
horizon [t, Ψ(t)] but then take only V (t), Pkn(t), R(t) for online updating solution of
(6.11):

min
V (t′),R(t′),Pkn (t′),t′∈[t,Ψ(t)],kn∈C(t)

F[t,Ψ(t)] (6.13a)

s.t. network balance and bound constraints in [t, Ψ(t)], (6.13b)
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Vk(t′)(
∑

m∈N (k)
ykm(Vk(t′) − Vm(t′)))∗ = (Pgk

(t′) −

Plk(t′) −
∑

kn∈C(t)
Pkn(t′)) + j(Qgk

(t′) − Qlk(t′)), (6.13c)

tkn,d∑
t′=t

uhPkn(t′) = Pkn(t), (6.13d)

with

F[t,Ψ(t)] :=
Ψ(t)∑
t′=t

∑
k∈G

f(Pgk
(t′)) +

Ψ(t)∑
t′=t

∑
kn∈C(t)

βtPkn(t′).

One can notice that (6.13) includes only what is known at the present time t. Of
course, (6.13) is a still difficult nonconvex optimization and in the end we need only
its solution at t, so we propose the following approach in tackling its solution at t.

Define the Hermitian symmetric matrix W (t′) = V (t′)V H(t′) ∈ C
N×N , which

must satisfy W (t′) � 0 and rank(W (t′)) = 1. By replacing Wkm(t′) = Vk(t′)V ∗
m(t′),

(k, m) ∈ N × N , in (6.13c)-(6.13b), we reformulate (6.13) to the following optimization
problem in matrices W (t′) ∈ C

N×N , t′ ∈ [t, Ψ(t)]:

min
W (t′),R(t′),Pkn (t′),t′∈[t,Ψ(t)],kn∈C(t)

F[t,Ψ(t)] (6.14a)

s.t. network balance and bound constraints in [t, Ψ(t)], (6.14b)∑
m∈N (k)

(Wkk(t′) − Wkm(t′))y∗
km = (Pgk

(t′) − Plk(t′)

−
∑

kn∈C(t)
Pkn(t′)) + j(Qgk

(t′) − Qlk(t′)), k ∈ G, (6.14c)
∑

m∈N (k)
(Wkk(t′) − Wkm(t′))y∗

km =

−Plk(t′) − jQlk(t′), k /∈ G, (6.14d)

V 2
k ≤ Wkk(t′) ≤ V

2
k, k ∈ N , (6.14e)

�(Wkm(t′)) ≤ �(Wkm(t′)) tan(θmax
km ), (k, m) ∈ L, (6.14f)

|(Wkk(t′) − Wkm(t′))y∗
km| ≤ Skm, (6.14g)

W (t′) � 0, (6.14h)

rank(W (t′)) = 1. (6.14i)
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Instead of (6.14), which is difficult due to multiple nonconvex matrix rank-one con-
straints in (6.14h), we solve its semi-definite relaxation (SDR)

min
W (t′),R(t′),Pkn (t′)

F[t,Ψ(t)] s.t. (6.14b) − (6.14h). (6.15)

Suppose that Ŵ (t′) and (R̂(t′), P̂kn(t′)), t′ ∈ [t, Ψ(t)] are the optimal solution of (6.15).
If rank(Ŵ (t′)) ≡ 1, t′ ∈ [t, Ψ(t)], then V̂ (t′) such that Ŵ (t′) = V̂ (t′)V̂ H(t′) together
with R̂(t′) and P̂kn(t′) constitute the optimal solution of the nonconvex optimization
problem (6.13). Otherwise, we consider the following problem:

min
W (t),R(t)

F (Pg(t))) :=
∑
k∈G

f(Pgk
(t)) (6.16a)

s.t. (6.3) − (6.4), (6.7), (6.14d) − (6.14h) for t′ = t, (6.16b)∑
m∈N (k)

(Wkk(t) − Wkm(t))y∗
km = (Pgk

(t) − Plk(t)

−
∑

kn∈C(t)
P̂kn(t)) + j(Qgk

(t) − Qlk(t)), k ∈ G, (6.16c)

rank(W (t)) = 1. (6.16d)

Note that in contrast to (6.14) involving Ψ(t) − t matrix variables W (t′), t′ ∈ [t, Ψ(t)]
and also variables Pkn(t′), kn ∈ C(t) and t′ ∈ [t, Ψ(t)], there is only single matrix
variable W (t) in (6.16). The power generation variable R(t) in (6.16) is latent as it is
inferred from W (t) in equation (6.16c).

Following our previous works [124, 92, 125, 117, 126], a nonsmooth optimization
algorithm (NOA) is proposed to deal with the discontinuous matrix rank-one constraint
(6.16d) in the optimization problem (6.16). Under condition (6.14h) in (6.16b),

Trace(W (t)) − λmax(W (t)) ≥ 0,

where λmax(W (t)) stands for the maximal eigenvalue of W (t). The discontinuous
matrix rank-one constraint (6.16d) is then equivalently expressed by the following
continuous spectral constraint:

Trace(W (t)) − λmax(W (t)) = 0, (6.17)
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because it means that W (t) has only one nonzero eigenvalue. Thus the quantity
Trace(W (t)) − λmax(W (t)) expresses the degree of the matrix rank-one constraint
satisfaction (6.17), which is incorporated into the objective (6.16a), leading to the
following penalized optimization problem:

min
W (t),R(t)

Fμ(W (t), Pg(t)) := F (Pg(t))

+μ(Trace(W (t)) − λmax(W (t)))

s.t. (6.16b) − (6.16c), (6.18)

where μ > 0 is a penalty parameter. The above penalized optimization is exact because
the constraint (6.16b) can be satisfied by a minimizer of (6.18) with a finite value of μ.
On the other hand, any W (t) feasible for (6.18) is also feasible for (6.16), implying
that the optimal value of (6.18) for any μ > 0 is upper bounded by the optimal value
of (6.16).

For any W (κ)(t) feasible for the convex constraints (6.16c)-(6.16b), let w(κ)
max(t) be

the normalized eigenvector corresponding to the eigenvalue λmax(W (κ)(t)). Then

λmax(W (t)) = max
||w||2=1

wHW (t)w

≥ (w(κ)
max(t))HW (t)w(κ)

max(t), (6.19)

i.e. the function λmax(W (t)) is lower bounded by the linear function (w(κ)
max(t))HW (t)w(κ)

max(t).
Accordingly, the following semi-definite program (SDP) provides an upper bound for
the nonconvex optimization problem (6.18):

min
W (t),R(t)

F (κ)
μ (W (t), R(t)) := F (Pg(t))

+μ(Trace(W (t)) − (w(κ)
max(t))HW (t)w(κ)

max(t))

s.t. (6.16b) − (6.16c), (6.20)

because
F (κ)

μ (W (t), R(t)) ≥ Fμ(W (t), R(t))

according to (6.19).
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Algorithm 7 NOA 10 for solving (6.16)

1: Set κ = 0 and (W (0)(t), R(0)(t)) = (Ŵ (t), R̂(t)).
2: Until Trace(W (κ)(t)) − (w(κ)

max(t))HW (κ)(t)w(κ)
max(t) ≤ ε, solve (6.20), to find the

optimal solution (W (κ+1)(t), R(κ+1)(t)) and reset κ + 1 → κ.
3: Accept (W (κ)(t), R(κ)(t)) as the optimal solution of the nonconvex optimization

problem (6.16).

Suppose that (W (κ+1)(t), R(κ+1)(t)) is the optimal solution of SDP (6.20). Since
(W (κ)(t), R(κ)(t)) is also feasible for (6.20), it is true that

Fμ(W (κ)(t), R(κ)(t))

= F (κ)
μ (W (κ)(t), R(κ)(t))

≥ F (κ)
μ (W (κ+1)(t), R(κ)+1(t))

≥ Fμ(W (κ+1)(t), R(κ+1)(t)),

so W (κ+1)(t) is a better feasible point of (6.18) than W (κ)(t).

In Nonsmooth Optimization Algorithm (NOA) 10 we propose an iterative procedure,
which is initialized by the solution Ŵ (t) of SDR (6.15) and generates a feasible point
W (κ+1)(t) at the κ-th iteration for κ = 0, 1, . . . , as the optimal solution of SDP (6.18).
As proved in [117], this algorithm converges at least to a local minimizer of (6.18).
Note that the procedure terminates at

0 ≤ Trace(W (κ)(t)) − λmax(W (κ)(t))

≤ Trace(W (κ)(t)) − (w(κ)
max(t))HW (κ)(t)w(κ)

max(t)

≤ ε,

so the spectral constraint (6.17) for the matrix rank-one is satisfied with the computa-
tional tolerance ε. In summary, our proposed MPC-based computation for (6.11) is
based on solving SDP (6.15) for online coordinating PEV charge P̂kn(t) and solving
(6.18) by NOA 10 for online updating the generated voltage V̂ (t) for the generated
power R̂(t) by

V̂ (t) =
√

λmax(W (κ))w(κ)
max(t), (6.21)
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whenever the solution Ŵ (t) of SDR (6.15) is not of rank-one. If rank(Ŵ (t)) = 1, it
is obvious that V̂ (t) =

√
λmax(Ŵ (t))ŵmax(t) with the normalized eigenvector ŵmax(t)

corresponding to λmax(Ŵ (t)) is the optimal solution of (6.13), which is what we need.

6.4 Lower bound by off-line optimization

To investigate the optimality of the MPC-based online computation proposed in the
previous section, in this section we address an off-line computation for (6.11), which
provides a lower bound for the optimal value of its online computation. Under the
additional definition W = {W (t′)}t′∈T , we reformulate (6.11) as

min
W,R,PP EV

F (R, RP EV ) s.t. (6.22a)

(6.2) − (6.4), (6.7), (6.14d) − (6.14h) for t′ ∈ T , (6.22b)∑
m∈N (k)

(Wkk(t′) − Wkm(t′))y∗
km = (Pgk

(t′) − Plk(t′)

−
∑

n∈Hk

Pkn(t′)) + j(Qgk
(t′) − Qlk(t′)), k ∈ G, (6.22c)

rank(W (t′)) = 1, t′ ∈ T . (6.22d)

First, we solve its SDR by dropping the matrix rank-one constraints in (6.22d):

min
W,R,PP EV

F (R, RP EV ) s.t. (6.22b) − (6.22c). (6.23)

Suppose that Ŵ and P̂P EV are the optimal solution of SDP (6.23). If rank(Ŵ (t)) ≡ 1,
t ∈ T then a global solution of the original problem (6.11) is found as P̂P EV , R̂ and
V̂ and with V̂ (t)V̂ H(t) = Ŵ (t), t ∈ T . However, such a matrix rank-one condition
is rarely achieved. In what follows we propose two methods to address the matrix
rank-one constraints in (6.22d).

Again, under condition (6.14h) for t′ ∈ T in (6.22b), the rank-one constraints in
(6.22d) are equivalently expressed by the single spectral constraint ∑

t∈T (Trace(W (t))−
λmax(W (t))) = 0, which is incorporated into the objective function in (6.22a) for the
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Algorithm 8 NOA 11 for solving (6.22)

1: Set κ = 0 and W (0) = Ŵ .
2: Until

∑
t∈T

(Trace(W (κ)(t))−(w(κ)
max(t))HW (κ)(t)w(κ)

max(t)) ≤ ε solve (6.25) to generate

W(κ+1), R and PP EV and reset κ + 1 → κ.
3: Accept W(κ), R and PP EV as the optimal solution of the nonconvex optimization

problem (6.11).

following penalized function optimization:

min
W,R,PP EV

F (R, RP EV ) + μ
∑
t∈T

(Trace(W (t)) −

λmax(W (t))) s.t. (6.22b) − (6.22c), (6.24)

with a penalty parameter μ > 0. Initialized by W(0) = Ŵ , the following SDP is solved
at κ-th iteration to generate W(κ+1) and PP EV :

min
W,R,PP EV

F (R, RP EV ) + μ
∑
t∈T

(Trace(W (t)) −

(w(κ)
max(t))HW (t)w(κ)

max(t)) s.t. (6.22b) − (6.22c). (6.25)

This computational procedure is summarized in NOA 11.

Alternatively, we propose the following scalable algorithm for computing (6.22). By
replacing Pkn(t) by P̂kn(t), which was found by solving from (6.23), in (6.22) at every
t ∈ T , we obtain the following optimization problem in W (t) and R(t) only:

min
W (t),R(t)

∑
k∈G

f(Pgk
) s.t. (6.22b) − (6.22c) for t′ = t, (6.26a)

rank(W (t)) = 1, (6.26b)

which is computed by the distributed NOA Algorithm (DNOA) 9.
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Algorithm 9 DNOA 9 for solving (6.26)

1: Set κ = 0 and W (0)(t) = Ŵ (t), where Ŵ (t) is found by solving (6.23).
2: Until Trace(W (κ)(t)) − (w(κ)

max(t))HW (t)w(κ)
max(t) ≤ ε solve { min

W (t),R(t)

∑
k∈G

f(Pgk
)δt +

μ(Trace(W (t))−(w(κ)
max(t))HW (t)w(κ)

max(t)) s.t. (6.22b)-(6.22c)} to generate W (κ+1)(t)
and R(t), and reset κ + 1 → κ.

3: Accept W (κ)(t) and R(t) as a found solution of (6.26).

6.5 Simulation results

6.5.1 Simulation setup

The energy sources of the charging stations come from the transmission stations or from
self-generated sources such as photovoltaics. Without loss of generality, the charging
stations are set at generator buses, which however are not necessarily far from the
residential neighborhood. The proposed method still works whenever the charging
stations are set at other buses in the grid.

Roughly speaking, distribution system operators (DSOs) are divided into three
segments in terms of customer care [127]: DSOs connected to the transmission system,
regional DSO and local DSO. Like [116], DSOs in our set-up thus belongs to the first
segment, where CSs and PEVs serve as distribution systems connected to transmission
networks. Each CS broadcasts the charging commands and communicates the charging
demands with connected PEVs. Thus, the proposed method should be conducted by
DSOs.

The SDPs (6.15), (6.20), (6.23) and (6.25) are computed using Sedumi[128] inter-
faced by CVX [129] on a Core i5-3470 processor. Four power networks from Matpower
[6] are chosen. The tolerance ε = 10−4 is set for the stop criterions.

Generally, PEVs are charged after their owners’ working hours. We focus on the
charging period from 6:00 pm to 6:00 am of the next day, which is then uniformly
divided into 24 time slots of 30 minute length [130]. Accordingly, the charging time
horizon is T = {1, 2, . . . , 24}. It is also reasonable to assume that the PEVs arrive
during the time period from 6:00 pm to midnight. The PEVs must be fully charged
after being plugged into the grid. During this time period, PEV charging demands
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usually have one peak [131, Fig. 3], [132, Fig. 2] and [133, Fig. 3], so the arrival times
of PEVs are assumed to be independent and can be generated by a truncated normal
distribution (20, 1.52), which is depicted by Fig. 6.2.
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Fig. 6.2 The probability density of PEVs’ arrivals

We assume that the PEVs are Tesla Model S’s, which have a battery capacity of
100 KWh [134]. The SOC of all PEVs is set as 20%. The structure and physical limits
of the considered grids are given in the Matpower library [6] together with the specific
cost functions f(Pgk

(t)).

The price-inelastic load Plk(t) is calculated as

Plk(t) = l(t) × P̄lk × T∑24
t=1 l(t) , t ∈ T , (6.27)

where P̄lk is the load demand specified by [6] and l(t) is the residential load demand
taken from [135]. Four profiles are taken from different days in 2017 [135]. Profile 1
is the residential load and energy price from 6:00 pm on February 5th to 6:00 am on
February 6th, Profile 2 is from 6:00 pm on March 5th to 6:00 am on March 6th, Profile
3 is from 6:00 pm on April 5th to 6:00 am on April 6th, and Profile 4 is from 6:00 pm
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on May 5th to 6:00 am on May 6th. Fig. 6.3 and Fig. 6.4 provide the residential load
demand and energy price for these profiles.
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Fig. 6.3 Residential load demands of four profiles

6.5.2 MPC-based online computational results

Four network simulation

We test MPC-based online computation for Case9, Case14, Case30 and Case118mod
from [6] and profile 2 of the residential data. The information on these networks is
given in Table. 7.1, where the first column is the name of network, the second column
indicates the numbers of buses, generators and branches. The dimension of W (t) is
given in the third column, while the total number of PEVs is shown in the last column.
The computational results are summarized in Table 6.2. Again, the first column is the
network name. The second column presents the initial rank of the optimal solution
Ŵ (t) of SDR (6.15). It is observed that the rank of Ŵ (t) is the same for all t ∈ T .
The value of the penalty parameter μ in (6.18) is given in the third column. As the
initial rank of Case14 and Case30 are all rank-one, SDR (6.15) already outputs the
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Fig. 6.4 Energy prices for four profiles

Table 6.1 Information on four networks

Buses/Generators/Branches Dim. of W (t) PEVs
Case9 9/3/9 C

9×9 291
Case14 14/5/20 C

14×14 485
Case30 30/6/24 C

30×30 582
Case118mod 118/54/186 C

118×118 5238

optimal solution for (6.13). Comparing the lower bound (LB) in the fourth column
by solving SDR (6.23) at each time and the value found by the proposed MPC-based
computation with using NOA 10 in computing (6.11) in each time reveals the capability
of the MPC-based computation for (6.11). These values are either the same (for Case14
and Case30) or almost the same (for Case9 and Case118mod), so indeed the proposed
MPC-based computation could exactly locate a globally optimal solution. The average
running time for solving (6.13) to implement the proposed MPC-based computation is
provided in the sixth column, which is very short compared with the 30 minute time
slot and thus is practical for this particular online application.
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Table 6.2 MPC results

Rank μ LB Comp.value Time(s)
Case9 9 10 27991.4 27992.3 7.4
Case14 1 - 40824.1 40824.1 8.5
Case30 1 - 4935.6 4935.6 8.7

Case118mod 2 100 644245.9 644278.5 432.1

The voltage profile for the four networks during the charging period are shown in
Fig. 6.5. For all cases, the voltage bound constraints (6.8) are satisfied. The voltage
behavior is stable and smooth.

Four residential profile simulation

We consider Case30 together with four different residential profiles. The computational
results are provided in Table 6.3, whose format is similar to Table 6.2. It can be seen

Table 6.3 MPC results for Case30 with four different residential profiles

Rank μ LB Comp. value Time(s)
Profile 1 2 10 31961.2 31963.5 10.9
Profile 2 1 - 4963.3 4963.3 8.7
Profile 3 2 10 10771.3 10774.7 8.7
Profile 4 1 - 8139.3 8139.3 8.1

that, even for the same network, the rank of the optimal solution Ŵ (t) of SDR (6.15)
may be different depending on the residential profiles. For profile 2 and profile 4, the
initial rank is one and SDR (6.15) has located a globally optimal solution. However,
for profile 1 and profile 3, NOA 10 is needed for obtaining the rank-one solution.
The convergence speed is fast, and the optimum values are all equal or close to the
lower bound, which clearly shows the global efficiency of the proposed MPC-based
computation.

The aggregated active powers generated at each time are shown in Fig. 6.6, from
which the trends of generated power are seen to be similar to the residential load
demand in Fig. 6.3.

The stable and smooth voltage profile for these 4 residential profiles during the
charging period are shown in Fig. 6.7.
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Fig. 6.5 Voltage profile for four networks during the charging period

Fig.6.8 plots the SoC of four PEVs randomly taken from case30 under profile 2,
which arrive at different times.

6.5.3 Off-line computation and comparison with MPC-based

online computation

Firstly, Case9, Case14, Case30 and Case118mod are tested with the residential data
of profile 2 to analyze the efficiency of off-line computation by using Algorithm 11
and Algorithm 9. The computational results are summarized in Table 6.4. The initial
rank in the second column is the rank of the optimal solution Ŵ (t) of SDR (6.23),
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Fig. 6.6 Aggregated active power of online charging for Case30 under four residential
profiles

Table 6.4 Offline results of optimal PEV charging for four networks

Rank μ Lower bound Computed value Opt. degree Iterations NOA time(s) DNOA time(s)
Case9 9 1 27978.1 27978.1 100% 2 11.2 23.2
Case14 1 - 40800.7 40800.7 100% 1 8.9 8.9
Case30 1 - 4935.6 4935.6 100% 1 24.5 36.3

Case118mod 2 50 644225.3 644233.9 99.999% 3 1094.8 363.5

which is the same for all t ∈ T . The value of penalty parameter μ in (6.25) is in
the third column. The fourth column provides the lower bound by computing SDR
(6.23). The values found by solving (6.24) and (6.26) by Algorithm 11 and Algorithm
9 are in the fifth column as they are the same and are either exactly same as their
lower bounds in the fourth column (Case9, Case14 and Case30) or almost the same
(Case118mod). According to the seventh column both Algorithm 11 and Algorithm
9 converge in two and three iterations for Case9 and Case188mod, while for Case9
and Case30, SDR (6.23) already outputs the optimal rank-one solution. The running
times of Algorithm 11 and Algorithm 9 are provided in the eighth and ninth column,
respectively. Algorithm 11 requires less running time for small-scale networks such as
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Fig. 6.7 Voltage profile of online charging for Case30 under four residential profiles

Case9, Case14 and Case118mod. However, its running time increases dramatically for
large-scale networks such as Case118mod, for which the scalable Algorithm 9 is clearly
advantageous.

A performance comparison between MPC-based computation and off-line compu-
tation for Case9 and Case30 with the four mentioned residential profiles is provided
in Table 6.5, which clearly shows the global optimality of the proposed MPC-based
computation as it attains objective values very close to the lower bounds provided by
the off-line computation.

Fig. 6.9 plots online and offline power generations in Case30 with four residential
profiles, while Fig. 6.10 plots the corresponding PEV charging scheduling. The charging
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Fig. 6.8 The SOC of PEVs during the charging period

Table 6.5 Performance comparison under MPC-based and off-line computations

Rank MPC Offline Offline/MPC MPC times(s) Offline times(s)

Case9

Profile 1 9 31963.5 31963.1 99.99% 161.1 15.2
Profile 2 9 27992.3 27978.1 99.94% 177.4 15.1
Profile 3 9 31102.9 30885.1 99.29% 173.7 14.8
Profile 4 9 29896.2 29870.9 99.91% 178.4 15.0

Case30

Profile 1 2 31963.5 31963.1 99.99% 262.4 37.4
Profile 2 1 4963.3 4935.6 99.43% 209.8 12.6
Profile 3 2 10774.7 10330.8 95.70% 208.2 24.5
Profile 4 1 8139.3 8087.2 99.35% 194.9 12.9

load drops dramatically after 0 : 00 am, by which all PEVs have been integrated into
the grid but some of them have already been fully charged. Obviously, the charging
load is sensitive to the energy price. For example in profile 3, the increase of the energy
price at 11 : 30 pm and 0 : 00 am leads to a significant drop of the charging load. It
should be noted that, energy price is not the only impact factor for the aggregating
charging rate in Fig. 6.10. The power balance and residential demands also have
significant effects on the aggregating charging rate. From 6:00 pm to 9:00 pm PEVs
are continuingly connected to the grid, so the aggregating charging rate during that
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time is increased. The charging load under MPC-based and off-line simulation are the
same after 0 : 00 am because there are no new PEVs arriving after that time.
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Fig. 6.9 Power generation under MPC-based (online) and offline computation for
Case30 with four residential profiles

Fig.6.11 presents the SoC of four PEVs randomly taken from Case30 with profile 2.
It can be seen that, though the objective values shown in Table. 6.5 look similar, the
SoC are different by online and offline algorithms.
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Fig. 6.10 PEVs charging load under MPC-based and offline computation for Case30
with four residential profiles

6.6 Conclusions

Joint PEV charging scheduling and power control for power grids to serve both PEVs
at a competitive cost and residential power demands at a competitive operating cost
is very difficult due to the random nature of PEVs’ arrivals and demands. We have
proposed a novel and easily-implemented MPC-based computational algorithm that
can achieve a globally optimal solution.
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Fig. 6.11 SOC of PEVs randomly taken from Case30 with profile 2





Chapter 7

PMU Placement Optimization for
Smart Grid Obvervability and
State Estimation

7.1 Introduction

Phasor measurement unit (PMU) is an advanced digital meter, which is used in smart
power grids for real-time monitoring of grid operations [71]. By installing it at a buse,
the state-of-the-art PMU can measure not only the phasor of the bus voltage but
also the current phasors of incident power branches with high accuracy [72]. These
measurements are explored by the modern energy management systems (EMSs) for
critical applications such as optimal power flow, contingency analysis, and cyber
security, etc. [73–75].

As phasor measurement units (PMUs) are costly, there is a vast amount of litera-
ture on PMU placement optimization to target the minimal number of PMUs. Under
different degrees of observability, the mission is accomplished by binary linear program-
ming (BLP) [76, 77]. Here, the complete observability means that there is no bus left
unobserved by the placed PMUs, while depth-of-n unobservability means that there
are at most n connecting buses left unobserved by the placed PMUs [78], making as
many states as possible observed by restricted number of PMUs. An exhaustive binary
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search was proposed in [79] to deal with this objective under the complete observability
condition and additional operating conditions such as the single branch outage and the
presence of zero power injections. A binary particle swarm optimization algorithm was
proposed in [80] to deal with it while maintaining the complete observability conditions
under the contingencies of PMU loss or branch outage. Binary quadratic programming
and BLP were respectively used in [81] and [82] to study the effect of conventional
measurements and zero bus injections to the complete observability.

Apparently, observability alone does not necessarily lead to a meaningful state
estimate or an informative PMU configuration. In fact, PMU configurations, which use
the same number of PMUs to make the grid completely observable, can result in quite
different estimation accuracies [83]. Intuitively, a better estimator can be obtained by
appropriately employing more PMUs. PMU placement optimization to minimize the
mean squared error (of grid state estimation) or to maximize the mutual information
between the measurement output and grid state under a fixed allowable number of
PMUs was considered in [2] and [84], respectively. Obviously, these placement tasks
are mathematically modelled by optimization of nonlinear objective functions of binary
variables subject to a simple linear constraint for fixing the number of PMUs. A
convex relaxation with the binary constraint {0, 1} for binary variables relaxed to
the box constraint [0, 1] was proposed in [2], which not only fails to provide even a
local optimal solution in general but also is not scalable in the grid dimension as it
involves an additional large-size semi-definite matrix variable. A greedy algorithm
proposed in [84] does not provide a local optimal solution either. More importantly,
both [2] and [84] ignored observability constraints for computational tractability. It
was argued in [84] that its proposed mutual information criterion includes the grid
complete observability, which is obviously not right simply because as shown later in
the chapter, the latter differentiates the state estimate from its unconditional mean,
which is the trivial estimate, while the former does not.

To fill the gap due to disconnected considerations for the grid state observability and
state estimation in the existing approaches, this chapter considers PMU placement to
optimize the estimation performance under different degrees of observability and with
a fixed number of PMUs. These problems are posed as binary nonlinear optimization
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problems, which are computationally much challenging. To the authors’ best knowledge,
such optimization problems are still quite open for research.

The rest of the chapter is structured as follows. Section II is devoted to the problem
statement, which also particularly shows the importance of imposing observability
constraints in optimization formulations. Section III develops two scalable algorithms
for PMU placement optimization to minimize the mean squared error (of grid state
estimation) or maximize the mutual information between the measurement outputs
and phasor states under a fixed number of PMUs and different degrees of observ-
ability. Section IV presents tailored path-following discrete optimization algorithms
for the problems without observability constraint. Simulations are provided in Sec-
tion V, which demonstrates the efficiency of our algorithms. Section VI concludes
the chapter. The fundamental inequalities used in Section III are given in the Appendix.

Notation. The notation used in this chapter is standard. Particularly, A � 0
(A � 0, resp.) for a Hermitian symmetric matrix A means that it is positive definite
(semi-definite, resp.). Trace(.) and |.| are the trace and determinant operator. 1N

is an N -dimensional vector of ones. IN is the identity matrix of size N . a ≤ b for
two real vectors a = (a1, . . . , an)T and b = (b1, . . . , bn)T is componentwise understood,
i.e. ai ≤ bi, i = 1, . . . , n. The cardinality of a set C is denoted by |C|. E(.) denotes
expectation, so the mean ū of a random variable (RV) u is ū = E(u). For two random
variables u and v, their cross-covariance matrix Ruv is E((u − ū)(v − v̄)T ). Accordingly,
the autocovariance Ru of u is E((u − ū)(u − ū)T ). u ∼ N (ū, Ru) means u is a Gaussian
random variable with means ū and autocovariance Ru, which represent the first moment
of u. The entropy of u is H(u) = 1

2 log2 |Ru| = 1
2 ln 2 ln |Ru|. Finally, denote by u|v a

RV u conditioned on the RV v.

7.2 Problem statement

Consider a power grid with a set of buses indexed by N := {1, 2, · · · , N}, where buses
are connected through a set of transmission lines L ⊆ N ×N , i.e. bus k is connected to
bus m if and only if (k, m) ∈ L. Accordingly, N (k) is the set of other buses connected
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to bus k. In a DC power model, the power injection at bus k is approximated by

Pk = Bkkθk +
∑

m∈N (k)
Bkmθm, (7.1)

where Pk is the power injection at bus k and θm is the voltage phasor angle at bus m,
while Bkm is the imaginary part of the (k, m)-entry of the grid’s admitance matrix Y .
Let P := (P1, . . . , PN)T ∈ R

N be the power injection vector and θ := (θ1, . . . , θN)T ∈
R

N be the voltage phasor vector. Then (7.1) can be re-written as P = Bθ, where
B ∈ R

N×N is the so called susceptance matrix with the entries B(k, k) = Bkk and
B(k, m) = Bkm, if m ∈ N (k), while B(k, m) = 0, otherwise. The susceptance matrix
B is invertible under the assumption that the grid is fully connected [136]. Since P can
be assumed to be N (up, ΣP ) [137], it is obvious that θ ∼ N (B−1up, B−1Σp(B−1)T ).

On the other hand, the measurement equation of a PMU installed at bus k in the
linear DC power flow model [138] is [72, 139, 84],

ζk = θk + ϑk,

ζkm = θk − θm + ϑkm, k ∈ N , m ∈ N (k),
(7.2)

with noises ϑk ∼ N (0, rk) and ϑkm ∼ N (0, ρk). The number of incident lines
of bus k is the cardinality |N (k)|. Accordingly, the measurement vector zk :=
(ζk, ζk1, . . . , ζk|N (k)|)T is of dimension Mk = |N (k)| + 1. For simplicity, (7.2) is rewritten
in regression form as:

zk = Hkθ + wk, (7.3)

where Hk ∈ R
Mk×N is the associated regression matrix, wk := (ϑk, ϑk1, . . . , ϑk|N (k)|)T ∼

N (0, Rwk
) with diagonal covariance Rwk

.

To describe the presence or absence of PMU at bus k, we introduce a selection
vector x = (x1, · · · , xN)T ∈ {0, 1}N , where xk = 1 if a PMU is installed at bus k, and
xk = 0 otherwise. Let us assume that we have S PMUs in total for installation, so

∑
k∈N

xk = S. (7.4)
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Define
DS := {x ∈ {0, 1}N :

∑
k∈N

xk = S} (7.5)

and X = diag[xkIk]k=1,...,N , Rw = diag[Rwk
]k∈N , where Ik is the identity matrix of size

Mk × Mk.

For every x ∈ DS, let kj ∈ N , j = 1, . . . , S for which xkj
= 1. Define accordingly,

Rw(x) = diag[Rwkj
]j=1,...,S, and

z(x) =

⎡⎢⎢⎢⎣
zk1

· · ·
zkS

⎤⎥⎥⎥⎦ , w(x) =

⎡⎢⎢⎢⎣
wk1

· · ·
wkS

⎤⎥⎥⎥⎦ , H̄(x) =

⎡⎢⎢⎢⎣
Hk1

· · ·
HkS

⎤⎥⎥⎥⎦ .

The multi-input-multi-output PMU measurement equation is

z(x) = H̄(x)θ + w(x).

It is obvious that Rz(x)θ = H̄(x)Rθ while Rz(x) = H̄(x)RθH̄(x)T + Rw(x). Let θ|z(x)
be the RV θ conditioned on the RV z(x). By [140]

θ|z(x) ∼ N (θ̂, Re(x)), (7.6)

where
θ̂ = θ̄ + RT

z(x)θR−1
z(x)(z(x) − z(x))

= θ̄ + RθH̄(x)T (H̄(x)RθH̄(x)T + Rw(x))−1

×(z(x) − H̄(x)θ̄),

which is the minimum mean squared error (MMSE) estimate of θ based on PMU
output z(x), and

Re(x) = Rθ − RT
z(x)θR−1

z(x)Rz(x)θ

= Rθ − RθH̄(x)T
(
H̄(x)RθH̄(x)T + Rw(x)

)−1

×H̄(x)Rθ

=
(
R−1

θ + H̄(x)T R−1
w(x)H̄(x)T

)−1



148PMU Placement Optimization for Smart Grid Obvervability and State Estimation

=
⎛⎝R−1

θ +
S∑

j=1
HT

kj
R−1

wkj
Hkj

⎞⎠−1

(7.7)

=
⎛⎝BT Σ−1

P B +
∑
k∈N

xkHT
k R−1

wk
Hk

⎞⎠−1

. (7.8)

The mean squared error (MSE) E(||θ − θ̂||2) is

fe(x) := Trace(Re(x)),

which obviously is an analytical function of the PMU selection vector x.

Further, the mutual information (MI) I(θ; z(x)) between RVs θ and z(x) is [141,
formula (6)]

I(θ; z(x)) = H(θ) − H(θ|z(x))

= 1
2 ln 2(ln |Rθ| − ln |Re(x)|).

Maximizing the MI I(θ; z(x)) is thus equivalent to maximizing fMI(x) for

fMI(x) := − ln |Re(x)| = ln |BT Σ−1
P B +

∑
k∈N

xkHT
k R−1

wk
Hk|.

It should be realized that either the MSE fe(x) or MI fMI(x) does not indicate the
depth of the placed PMUs in reaching the measurement for the whole phasor state.
One needs either the constraint

Ax ≥ 1N , (7.9)

of the complete observability to assure that the phasor state θ is completely observable
[139, 142, 143], where A is the bus-to-bus incidence matrix defined by Akm = 1 if
k = m or bus k is adjacent to bus m, and Akm = 0 otherwise, or the constraint

BAx ≥ 1NB
, (7.10)

of the depth-of-one unobservability to assure that there are no two connecting buses
that are unobservable [78]. Here and after B is the branch-to-bus incident matrix and
NB is the total number of branches. The general case of dept-of-n unobservability with
an arbitrary n is treated similarly though its practicability is unknown.
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Let us analyse the constraints (7.9) and (7.10) from the information-theoretic view
point. The constraint (7.9) guarantees that all state components θm are observable,
i.e. each θm appears at least once in the measurement equations (7.2), which implies
θm|z(x) �= θm, making the measurement equations (7.2) meaningful for estimating
θm. When some θm is not observable, i.e. it does not appear in the measurement
equations (7.2), it follows that θm|z(x) = θm so the measurement equations in (7.2) are
useless for estimating θm. In this case, the estimate for θm is its unconditional mean
θ̄m with E((θm − θ̄m)2) = Rθ(m, m) and I(θm; z(x)) = H(θ) − H(θ|z(x)) = 0. In other
words, the optimization problem for maximizing I(θ; z(x)) does not reveal a nontrivial
estimate for θm that is a contradiction to [84, statement 1), page 448, 2nd column]
which states that the mutual information metric includes the complete observability
condition (7.9) as a special case. Of course, the number of PMUs, S, needs to be
sufficient enough to make the constraint (7.9) fulfilled. When S is not allowed to be
sufficient, one may go for more relaxed constraint (7.10), which forces all neighboring
buses of any unobservable bus to be observable and thus essentially makes as many
states as possible be observable by the PMUs.

Thus, we can state the problem of PMU placement optimization to minimize the
MMSE or to maximize the MI between the measurement output and phasor state
under a fixed number of PMUs and observability/depth-of-one unobservability as the
following binary nonlinear optimization problem

min
x

f(x) s.t. x ∈ DS, (7.9)/(7.10), (7.11)

where f(x) ∈ {fe(x), −fMI(x)}, which is a convex function.

7.3 Scalable Penalty algorithms for optimal PMU

selection

It is obvious that the main issue is regarding how to handle the discrete constraint
x ∈ DS in (7.11). The following result establishes the equivalence of this discrete
constraint and a continuous constraint.
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Lemma 2 For a polytope Poly(DS) = {x ∈ [0, 1]N : ∑
k∈N xk = S}, the discrete

constraint x ∈ DS in (7.11) is equivalent to the continuous constraint

x ∈ Poly(DS), g(x) ≥ S, (7.12)

for g(x) := ∑
k∈N xL

k with L > 1.

Proof: Note that xL
k ≤ xk ∀ xk ∈ [0, 1], so g(x) ≤ ∑

k∈N xk = S ∀x ∈ Poly(DS).
Therefore constraint (7.12) forces g(x) = S, which is possible if and only if xL

k = xk,
k ∈ N , i.e xk ∈ {0, 1}, k ∈ N , implying x ∈ DS. �

Since g(x) is convex in x, the constraint g(x) ≥ S in (7.12) is a reverse convex
constraint [89]. As such DS = Poly(DS) \ {x : g(x) < S}, i.e. DS is difference of
two convex sets Poly(DS) and {x : g(x) < S}. Also as L decreases, g(x) tends to
approach a linear function ∑

k∈N xk and thus, the constraint g(x) ≥ S approaches the
linear constraint ∑

k∈N xk ≥ S. However, it does not mean that choosing L closer to 1
is effective because the function g(x) − S also approaches zero very quickly, making
the constraint g(x) ≥ S highly artificial. In our previous works [144, 145], L = 2 was
chosen. However, as we will see shortly, L = 1.5 is a much better choice, accelerating
the convergence of the iterative computational processes. The following result is a
direct consequence of Lemma 2.

Proposition 4 The function

g̃(x) = 1/g(x) − 1/S

can be used to measure the degree of satisfaction of the discrete constraint x ∈ DS in
the sense that g̃(x) ≥ 0 ∀ x ∈ Poly(DS) and g̃(x) = 0 if and only if x ∈ DS. �

Following our previous developments in [144] and [145], instead of handling con-
straint (7.12), we incorporate the degree of its satisfaction into the objective in (7.11),
leading to the following penalized optimization problem:

min
x

Fμ(x) := f(x) + μ(1/g(x) − 1/S)
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s.t. x ∈ Poly(DS), (7.9)/(7.10), (7.13)

where μ > 0 is a penalty parameter. This penalized optimization problem is exact
with a sufficiently large μ. Note that (7.13) is a minimization of a nonconvex function
over a convex set. We now develop a path-following computational procedure for its
solution. For this purpose, we firstly develop an upper bounding approximation for
(7.13), at some feasible point x(κ) (at κ-th iteration). As the function g(x) is convex, it
is true that [89],

g(x) ≥ g(κ)(x)
:= g(x(κ)) + 〈∇g(x(κ)), x − x(κ)〉
= −(L − 1)

∑
k∈N

(x(κ)
k )L + L

∑
k∈N

(x(κ)
k )L−1xk.

Therefore, an upper bounding approximation at x(κ) for 1/g(x) can be easily obtained
as 1/g(x) ≤ 1/g(κ)(x) over the trust region

g(κ)(x) > 0. (7.14)

At the κ-th iteration we are supposed to solve the following convex optimization
problem to generate the next iterative point x(κ+1):

min
x

f(x) + μ(1/g(κ)(x) − 1/S)

s.t. x ∈ Poly(DS), (7.9)/(7.10), (7.14). (7.15)

Although function f(x) is convex, it is not easy to optimize it. For instance, when
f = fe, usually (7.15) is solved via the following semi-definite optimization problem
with the introduction of slack symmetric N × N matrix variable T:

minx,R Trace(R) + μ(1/g(κ)(x) − 1/S)

s.t. x ∈ Poly(DS), (7.9)/(7.10), (7.14),
⎡⎣R−1

e (x) IN

IN R

⎤⎦ � 0,
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which is not scalable to x. For f = −fMI , (7.15) is

maxx∈[0,1]N ln |R−1
e (x)| − μ(1/g(κ)(x) − 1/S)

s.t. x ∈ Poly(DS), (7.14),

with no known convex solver of polynomial complexity.

In the following, we propose a different approach to provide scalable iterations for
(7.11). Obviously, there is ε > 0 such that

Aε := BT Σ−1
P B − ε

∑
k∈N

HT
k R−1

wk
Hk � 0.

For f = fe, applying inequality (7.23) in the Appendix for

A0 → Aε, xk → xk + ε, x̄k → x
(κ)
k + ε, (7.16)

yields fe(x) ≥ f (κ)
e (x) := a

(κ)
0 +

∑
k∈N

a
(κ)
k

xk + ε
for 0 < a

(κ)
0 := Trace((Re(x(κ)))2Aε) and

0 < a
(κ)
k := (x(κ)

k + ε)2Trace((Re(x(κ)))2HT
k R−1

wk
Hk),

k ∈ N .

Accordingly, initialized by a feasible point x(0) for (7.13), at the κ-th iteration for
κ = 0, 1, . . . , we solve the following convex optimization problem to generate the next
iterative point x(κ+1), instead of (7.15):

min
x

F (κ)
μ (x) := f (κ)

e (x) + μ(1/g(κ)(x)1 − 1/S)

s.t. x ∈ Poly(DS), (7.9)/(7.10), (7.14). (7.17)

Note that Fμ(x) ≤ F (κ)
μ (x) ∀ x, and Fμ(x(κ)) = F (κ)

μ (x(κ)), and F (κ)
μ (x(κ+1)) <

F (κ)
μ (x(κ)) (because x(κ+1) and x(κ) are the optimal solution and a feasible point

for (7.17)). Therefore,

Fμ(x(κ+1)) ≤ F (κ)
μ (x(κ+1)) < F (κ)

μ (x(κ)) = Fμ(x(κ)),
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i.e. x(κ+1) is a better feasible point than x(κ) for (7.13). For a sufficient large μ > 0,
g̃(x(κ)) → 0 as well, yielding an optimal solution of the binary nonlinear optimization
problem (7.11) for the case f = fe. Algorithm 10 provides a pseudo-code for the
proposed computational procedure.

Algorithm 10 Scalable Penalized MMSE Algorithm
1: Initialization. Set κ = 0. Take any feasible point x(0) ∈ (0, 1)N for (7.13). Choose

μ such that fe(x(0)) and (1/S − 1/g(x(0))) achieve similar magnitude.
2: Repeat
3: Solve the convex optimization problem (7.17) to generate the next feasible point x(κ+1).
4: Set κ := κ + 1.
5: Until convergence.

Analogously, based on inequality (7.24) in the Appendix, for A0, xk, and x̄k from
(7.16), at the κ-th iteration we solve the following convex optimization problem to
generate the next iterative point x(κ+1), instead of (7.15), when f = −fMI :

max
x

⎡⎣α
(κ)
0 −

∑
k∈N

α
(κ)
k

xk + ε
− μ( 1

g(κ)(x) − 1
S

)
⎤⎦

s.t. x ∈ Poly(DS), (7.9)/(7.10), (7.14), (7.18)

for
α

(κ)
0 := − ln |Re(x(κ))|

+Trace(Re(x(κ))(∑
k∈N (ε + x

(κ)
k )HT

k R−1
wk

Hk)),
α

(κ)
k := (x(κ)

k + ε)2Trace(Re(x(κ))HT
k R−1

wk
Hk),

k ∈ N .

Algorithm 11 is a pseudo-code for solution of the binary nonlinear optimization problem
(7.11) for the case f = −fMI .
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Algorithm 11 Scalable Penalized MI Algorithm
1: Initialization. Set κ = 0. Take any feasible point x(0) ∈ (0, 1)N for (7.13). Choose

μ such that fMI(x(0)) and (1/S − 1/g(x(0))) achieve similar magnitude.
2: Repeat
3: Solve the convex optimization problem (7.18) to generate the next feasible point x(κ+1).
4: Set κ := κ + 1.
5: Until convergence.

7.4 Tailored path-following discrete optimization

algorithms

In this section, we address problem (7.11) without the observability constraint (7.9)/(7.10):

min
x

f(x) s.t. x ∈ DS. (7.19)

which was considered in [146, 2] for f = fe with the help of semi-definite relaxation
(SDR). The reader is referred to [147] for capacity of SDR to address discrete optimiza-
tion problems such as (7.19). We now develop a simple but very efficient path-following
discrete optimization algorithm that explores a simple structure of the discrete con-
straint x ∈ DS to address (7.19).

Lemma 3 DS is the set of vertices of Poly(DS).

Proof: For x ∈ DS define

J(x) = {k1 < k2 < .... < kS|xkj
= 1, j = 1, 2, ..., S}. (7.20)

Suppose x̄ ∈ DS. It suffices to show that if x̄ = μa + (1 − μ)b for a, b ∈ Poly(DS) and
0 < μ < 1 then a = b = x̄. Indeed, for i ∈ J(x̄) we have x̄i = 1 = μai + (1 − μ)bi

and since ai ∈ [0, 1] and bi ∈ [0, 1] it follows that ai = bi = 1. For i /∈ J(x̄) we have
x̄i = 0 = μai + (1 − μ)bi and since ai ∈ [0, 1], and bi ∈ [0, 1] it follows that ai = bi = 0.

Hence a = b = x̄ as asserted. �
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Recall that point x is a vertex neighbouring the vertex x̄ if and only if there exists
a pair i and j with i ∈ {S + 1, . . . , N} and j ∈ {1, . . . , S} such that xi = 1, xj = 0 and
xk = x̄k = 1 for all k ∈ N \ {j} and xk = x̄k = 0 for all k ∈ {N + 1, . . . , M} \ {i}.

A x̄ ∈ DS is a minimizer of f over Poly(DS) if and only if f(x̄) ≤ f(v) for every
v ∈ DS neighbouring x̄.

Algorithm 12 Path-following discrete optimization algorithm
Initialization. Start from a x(0) ∈ DS. Set κ = 0.
κ-th iteration. If there is a x̄ ∈ DS neighbouring x(κ) such that f(x̄) < f(x(κ)) then
reset κ+1 → κ and x(κ) → x̄. Otherwise, if f(x) ≥ f(x(κ)) for all x ∈ DS neighbouring
x(κ) then stop: x(κ) is a local optimal solution of (7.11).

The proposed Algorithm 12 looks like the Dantzig simplex method for linear
programming, which is of the 20th century’s top ten algorithms [148] although its
polynomial complexity cannot be proved (in contrast to the polynomial complexity of
the interior points methods for linear programming).1 Based on this powerful algorithm,
we propose Algorithm 13 for the following problem of choosing the minimum number
of PMUs to satisfy MMSE or MI constraint:

min
x

∑
k∈N

xk : x ∈ {0, 1}N , f(x) ≤ ε. (7.21)

Algorithm 13 Iterative Procedure
Initialization. Start from 1 < S0 < N and use Algorithm 12 to find the optimal solution
x(0) of (7.19) for S = S0.
κ-th iteration. Reset S → S − 1 if f(xopt) < ε and S → S + 1 if f(xopt) > ε.
Set κ := κ + 1.
Until f(x(κ)) ≤ ε but f(x(κ−1)) > ε.

7.5 Simulation results

In the simulation, the real power injections P are normally distributed and independent
across different buses [137]. Similarly to the simulation setup in [84], the mean vector

1Conceptually, Dantzig simplex method is very simple: starting from any vertex of a simplex it
moves to a better neighbouring vertex until there is no better neighbouring vertex found
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of real power injection up = (up(1), . . . , up(N))T is obtained by properly scaling the
power profiles in [6], while the diagonal entries of power injection covariance matrix
are assumed to be 10% of the mean values, i.e. ΣP is a diagonal matrix with diagonal
entries ΣP (k, k) = 0.1up(k). The deviation of measurement noise for bus voltage and
current branch are set as rk = 0.01 and ρk = 0.02, respectively. All algorithms are
solved by Matlab on a Core i7-7600U processor. Sedumi[128] interfaced by CVX is
used to solve the convex optimization problems (7.17) and (7.18). The commonly
used benchmark power networks IEEE 30-bus, IEEE 39-bus, IEEE 57-bus and IEEE
118-bus with their structure and susceptance matrix obtained from Matpower [6] are
tested.

It is observed in [77] that the minimum number of PMUs for the network complete
observability (CO) or depth-of-one unobservability (DoOU) can be found by solving
the following binary linear program

min
x

∑
k∈N

xk : x ∈ {0, 1}N , (7.9)/(7.10). (7.22)

Table 7.1 provides the minimum number of PMUs needed for the network’s CO and
DoOU (obtained by solving (7.22 by CPLEX [149]) given in the third and fourth
columns.

Table 7.1 The minimum number of PMUs needed for two observability conditions

IEEE # Branch # PMUs for CO # PMUs for DoOU
30-bus 41 10 4
39-bus 46 13 7
57-bus 80 17 11
118-bus 186 32 18

Fig.7.1 depicts the MMSE obtained by different methods versus the number of
placed PMUs. The curve "Algorithm 10" is the theoretical MMSE by solving problem
(7.17) under the constraint (7.9) of the complete observability, while the curve "Monte-
Carlo" is obtained through Monte-Carlo simulation. The MMSEs by Algorithm 10
and Monte-Carlo simulation are seen consistent with the increase in the number of
placed PMUs leading to a better MMSE. The curve "Observable" is the MMSE at
feasible points for (7.17) that is found by CPLEX [149]. Algorithm 10 is seen to achieve
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much better MMSE. The last curve "Algorithm 3" is the MMSE by solving (7.19) by
Algorithm 12. Obviously, the Algorithm 12 achieves better MMSE due to the absence
of constraints (7.9) and (7.10). The curves in Fig. 7.2 provide normalized MI results
in a similar format to Fig.7.1. The capability and efficiency of Algorithm 11 and
Algorithm 12 to obtain informative PMU placements are quite clear.
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Fig. 7.1 MMSE by different methods

Table 7.2 provides numerical details of Algorithm 10, Algorithm 11 and Algorithm
12. The value of the penalized parameter μ in implementing Algorithm 10 and
Algorithm 11 is given by the second and fourth column, while the average CPU time is
given by the third and fifth column. The last two columns provide average CPU time
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Fig. 7.2 MI by different methods

by Algorithm 12 in solving MMSE and MI. Algorithm 12 needs much less time for
small-scale networks but its computational cost increases dramatically with the growth
of network size. On the other hand, the CPU time of Algorithm 10 and Algorithm 11
increases moderately when the size of networks grows, demonstrating their scalability
and superiority in addressing large-scale networks.

For problem (7.19), Kekatos et al [2] relaxed the integer constraint x ∈ {0, 1}N to
the box constraint x ∈ [0, 1]N to formulate a convex problem and then round the S

largest values of the solution of this convex program to 1. Obviously, their solution is
hardly optimal in any sense. Fig. 7.3 compares the MMSE values of problem (7.19)
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Table 7.2 Numerical details of Algorithm 10, Algorithm 11 and Algorithm 12

IEEE Alg. 10 Alg. 11 CPU (s) of Alg. 12
μ Avg. T. (s) μ CPU (s) MMSE MI

30-bus 0.1 65.78 1 62.94 4.01 3.17
39-bus 0.1 79.73 1 77.25 11.58 7.98
57-bus 1 80.47 10 81.14 49.09 46.03
118-bus 1 216.31 10 193.24 1222.11 2142.08

founded by Algorithm 12 and by Kekatos et al [2]. The former clearly outperforms the
latter, especially for large scale networks.

Due to space limitation, only IEEE 30-bus and IEEE-39 networks are selected for
MMSE results solved by Algorithm 10 under the constraint (7.10) of depth-of-one
unobservability. Fig. 7.4 provides MMSE performance obtained via Algorithm 10
(under the constraint (7.10)) and Algorithm 12 (without any observability constraints),
while Fig. 7.5 provides the number of bus left unobservable (for IEEE 30-bus). As
expected, Algorithm 12 achieves a better MMSE but leaves more buses unobservable
because it sacrifices buses to achieve the averaged performance.

For IEEE 57-bus network and IEEE 118-bus network, Fig.7.6 presents the number
of iterations needed for the convergence of Algorithm 3 for MMSE and MI, respectively.

Given different tolerances ε, the required minimum number of PMUs can be obtained
by Algorithm 13. For the case of f = Fe, the results are presented in Fig.7.7.

7.6 Conclusions

In this chapter, we have considered PMU placement optimization to minimize the mean
squared error or maximize the mutual information between the measurement outputs
and phasor states under a fixed number of PMUs and different observability conditions.
These binary optimization problems are very computationally challenging due to high
nonlinearity of the objective functions. Nevertheless, we have developed the scalable
algorithms for their computational solution, which result at least in local optimal
solutions. We also developed extremely efficient algorithms of very low computational
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Fig. 7.3 MMSE found by Algorithm 3 and by [2]

complexity for cases of absent observability. The viability of our proposed algorithms
has been confirmed through simulations with benchmark IEEE grids. The algorithmic
developments for PMU placement optimization involving other practical constraints
such as branch outages are under way.
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Fig. 7.4 MMSE found by Algorithm 10 under depth-of-one unobservability condition
and Algorithm 12 without any observability constraints

Appendix: Fundamental Inequalities

Let R
N
+ := {x ∈ R

N : xk ≥ 0, k ∈ N } and int(RN
+ ) := {x ∈ R

N : xk > 0, k ∈ N }.
For A0 � 0 and Ak � 0, k ∈ N let Φ(x) := (A0 +

∑
k∈N

1
xk

Ak)−1, and Ψ(x) :=

(A0 +
N∑

k=1
xkAk)−1. Recall the following result [150, Th.1]:

Theorem 3 Function ϕ(x) = Trace(Φ(x)) is concave in the domain int(RN
+ ), so for

all x ∈ int(RN
+ ) and x̄ ∈ int(RN

+ ) one has

ϕ(x) ≤ ϕ(x̄) + 〈∇ϕ(x̄), x − x̄〉
= Trace (Φ2(x̄)A0) +

∑
k∈N

xk

x̄2
k

Trace
(
Φ2(x̄)Ak

)
.

Therefore,

Trace(Ψ(x)) ≤ Trace
(
(Ψ(x̄))2A0

)
+

∑
k∈N

x̄2
k

xk

Trace
(
(Ψ(x̄))2Ak

)
. (7.23)
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Fig. 7.5 Number of buses left unobserved by Algorithm 10 under depth-of-one unob-
servability condition and Algorithm 12 without any observability constraints for IEEE
30-bus network

Next,

Theorem 4 For A � 0 function ln |A + HX−1HH | is convex in X � 0.

Proof: Since (A + HX−1HH)−1 = A−1 − A−1(HHA−1H + X)−1A−1, by [151,
Appendix B], function

f(X) := A−1 − A−1(HHA−1H + X)−1A−1
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Fig. 7.6 Number of iterations required for the convergence of Algorithm 3

is concave, i.e. f(αX+βY) � αf(X)+βf(Y) ∀ X � 0, Y � 0, and α ≥ 0, β ≥ 0, α+
β = 1. Therefore ln |f(αX + βY)| ≥ ln |αf(X) + βf(Y)| ≥ α ln |f(X)| + β ln |f(Y)|,
showing that ln |A + HX−1HH |−1 = − ln |A + HX−1HH | is concave in X. �

The following Theorem is a direct consequence of Theorem 4.

Theorem 5 Function φ(x) = − ln |Φ(x)| is convex in the domain int(RN
+ ), so for all

x ∈ int(RN
+ ) and x̄ ∈ int(RN

+ ) one has

φ(x) ≥ φ(x̄) + 〈∇φ(x̄), x − x̄〉

= − ln |Φ(x̄)| + Trace
⎛⎝(Φ(x̄))−1(

∑
k∈N

1
x̄k

Ak)
⎞⎠

−
∑
k∈N

xk

x̄2
k

Trace
(
(Φ(x̄))−1Ak

)
.

Therefore,

− ln |Ψ(x)| ≥ − ln |Ψ(x̄)| + Trace
⎛⎝Ψ(x̄)(

∑
k∈N

x̄kAk)
⎞⎠

−
∑
k∈N

x̄2
k

xk

Trace (Ψ(x̄)Ak) . (7.24)
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In Chapter 3, we proposed new algorithms for solving matrix-rank constrained opti-
mization arising in reduced-order H∞ LPV-LFT controller design. Unlike the previous
developments, we formulated the problem as minimization of nonconvex objective
function over a convex feasibility set. The global convergence of the proposed Algo-
rithms to a local minima follows immediately from their path-following nature, while
there is no difficulty for initial solutions, which are found from a semi-definite program
for full-order controller synthesis. The numerical results reported for the benchmark
collections have shown their merit. Their application to solutions of reduced-order
generalized H2 LPV-LFT controllers is obvious. Their extensions to multi-objective
and structured controller design are currently under development.

In Chapter 4, we have addressed the problem of designing H∞ PID PDC for
T-S systems based on a parameterized bilinear matrix inequality (PLMI). Efficient
computational procedures for this PLMI have been developed. Their merit has been
analysed through the benchmark examples. In the end, the effectiveness of PID PDC
in smoothly stabilizing nonlinear systems has been confirmed.

In Chapter 5, we considered the nonconvex OPF problem over power transmission
networks. We have shown that the proposed nonsmooth optimization algorithm (NOA)
is able to overcome the shortcomings of the existing methods to compute its optimal



166 Conclusions and Future Work

solution efficiently and practically even for networks with reasonably large numbers of
buses.

In Chapter 6, we considered the joint PEV charging scheduling and power control for
smart grids. This problem is to serve both PEVs at a competitive cost and residential
power demands at a competitive operating cost, which is very difficult due to the
random nature of PEVs’ arrivals and demands. We have proposed a novel and easily-
implemented MPC-based computational algorithm that can achieve a globally optimal
solution.

In Chapter 7, we considered PMU placement optimization to minimize the mean
squared error or maximize the mutual information between the measurement outputs
and phasor states under a fixed number of PMUs and different observability conditions.
These binary optimization problems are very computationally challenging due to high
nonlinearity of the objective functions. Nevertheless, we have developed the scalable
algorithms for their computational solution, which result at least in local optimal
solutions. We also developed extremely efficient algorithms of very low computational
complexity for cases of absent observability. The viability of our proposed algorithms
has been confirmed through simulations with benchmark IEEE grids. The algorithmic
developments for PMU placement optimization involving other practical constraints
such as branch outages are under way.

8.2 Future work

Interesting directions for future work are presented in the following.

• In Chapter 3 and Chapter 4, we considered the reduced-order H∞ LPV-LFT
controller design and H∞ PID PDC design, respectively. It is interesting to
consider reduced-order H2 LPV-LFT controller design and H2 PID PDC design
in the future

• In Chapter 5, we considered the balanced single phase OPF problem over power
transmission networks. The interesting future work can be carried out on unbal-
anced three-phase power network.
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• In Chapter 6, we considered joint PEV charging scheduling and power control for
smart grids. The control variable of PEV charging rate is setting continuously
random. However, it is easy and efficient for online implementation with bang-
bang charging strategy, under which PEVs either charge the maximal power rate
or do not charge at all at each time slot. In future, the interesting PEV charging
scheduling under the bang-bang charging strategy can be considered.

• In Chapter 7, we considered PMU placement optimization to minimize the mean
squared error or maximize the mutual information between the measurement
outputs and phasor states under a fixed number of PMUs and different observ-
ability conditions. But the contingency of PMU and line outage has not been
addressed. The effect of PMU and line outage on the PMU placement problem
will be investigated in the future.
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