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Abstract

The availability of labeled image datasets has been shown critical for high-

level image understanding, which continuously drives the progress of feature

designing and models developing. However, the process of manual labeling

is both time-consuming and labor-intensive. To reduce the cost of manual

annotation, there has been increased research interest in automatically con-

structing image datasets by exploiting web images. Datasets constructed by

existing methods tend to suffer from the disadvantage of low accuracy and

low diversity. These datasets tend to have a weak domain adaptation ability,

which is known as the “dataset bias problem”.

This research aims at automatically collect accurate and diverse images

for given queries from the Web, and construct a domain robust image dataset.

Thus, within this thesis, various methods are developed and presented to ad-

dress the following research challenges. The first is the retrieved web images

are usually noisy, how to remove noise and construct a relatively high accu-

racy dataset. The second is the collected web images are often associated

with low diversity, how to address the dataset bias problem and construct a

domain robust dataset.

In Chapter 3, a framework is presented to address the problem of poly-

semy in the process of constructing a high accuracy dataset. Visual poly-

semy means that a word has several semantic (text) senses that are visually

(image) distinct. Solving polysemy can help to choose appropriate visual

senses for sense-specific images collection, thereby improving the accuracy of

the collected images. Unlike previous methods which leveraged the human-

xvii



ABSTRACT

developed knowledge such as Wikipedia or dictionaries to handle polysemy,

we propose to automate the process of discovering and distinguishing multi-

ple visual senses from untagged corpora to solve the problem of polysemy.

In Chapter 4, a domain robust framework is presented for image dataset

construction. To address the dataset bias problem, our framework mainly

consists of three stages. Specifically, we first obtain the candidate query ex-

pansions by searching in the Google Books Ngram Corpus. Then, by treating

word-word (semantic) and visual-visual distance (visual) as features from two

different views, we formulate noisy query expansions pruning as a multi-view

learning problem. Finally, by treating each selected query expansion as a

“bag” and the images therein as “instances”, we formulate image selection

and noise removal as a multi-instance learning problem. In this way, images

from different distributions can be kept while noise is filtered out.

Chapter 5 details a method for noisy images removing and accurate im-

ages selecting. The accuracy of selected images is limited by two issues:

the noisy query expansions which are not filtered out and the error index

of image search engine. To deal with the noisy query expansions, we divide

them into two types and propose to remove noise from visual consistency

and relevancy respectively. To handle noise induced by error index, we clas-

sify the noisy images into three categories and filter out noise by different

mechanisms separately.

Chapter 6 proposes an approach for enhancing classifier learning by using

the collected web images. Different from previous works, our approach, while

improving the accuracy and robustness of the classifier, greatly reduces the

time and labor dependence. Specifically, we proposed a new instance-level

MIL model to select a subset of training images from each selected privileged

information and simultaneously learn the optimal classifiers based on the

selected images.

Chapter 7 concludes the thesis and outlines the scope of future work.

xviii



Chapter 1

Introduction

1.1 Background

In the past few years, labeled image datasets have played a critical role

in high-level image understanding. For example, ImageNet (Deng, Dong,

Socher, Li, Li & Fei-Fei 2009) has acted as one of the most important fac-

tors in the recent advance of developing and deploying visual representation

learning models (e.g., deep CNN (Krizhevsky, Sutskever & Hinton 2012)).

However, as the computer vision community considers more visual categories

and greater intra-class variations, it is clear that larger and more exhaustive

datasets are needed. Due to the process of constructing such datasets is time-

consuming and labor-intensive. It is unlikely that the manual annotation can

keep pace with the growing need for annotated datasets.

To reduce the time and labor costs of manual annotation, some works

focused on active learning. For example, a method in (Collins, Deng, Li &

Fei-Fei 2008) proposed to label some seed images to train the initial classi-

fiers. Then these classifiers were used to do image categorization on other

unlabeled images, to find low confidence images for manual labeling. The

process is iterated until sufficient classification accuracy is achieved. In

(Vijayanarasimhan 2014), a system for online learning of object detectors

was proposed. This system refines its models by actively requesting annota-

1



CHAPTER 1. INTRODUCTION

tions on images. Active learning methods require pre-existing annotations,

which is one of the most significant limitations to overcome the scalability.

With the development of the Internet, we have entered the era of big

data. It is consequently a natural idea to leverage the large scale yet noisy

data on the web for image dataset construction. Methods of exploiting web

images for automatic image dataset construction have recently become a hot

topic (Hua & Li 2015, Schroff, Criminisi & Zisserman 2011, Yao, Zhang,

Shen, Hua, Xu & Tang 2016, Li & Fei-Fei 2010) in the field of multimedia

processing. Compared to manually labeled datasets, web images are a richer

and larger resource. For arbitrary categories, the possible training data can

be easily obtained from an image search engine. Unfortunately, due to the

error index of image search engine, retrieved images are limited by the poor

precision and restrictions on the total numbers. For example, Schroff et al.

in (Schroff et al. 2011) reported the average precision of Google Image Search

engine on 18 categories is only 32%, and downloads are restricted to 1000

images for each query.

One of the most important reasons for the noisy results is the inherent am-

biguity in the user query. In addition, the retrieved images from image search

engine usually have the overlapping problem which results in a reduced di-

versity. In general, there are three main challenges: visual polysemy, limited

diversity, and low accuracy.

Some existing unsupervised approaches attempt to reduce the influence of

visual polysemy by filtering out irrelevant images (Fergus, Fei-Fei, Perona &

Zisserman 2005, Berg & Forsyth 2006, Li & Fei-Fei 2010, Schroff et al. 2011,

Hua & Li 2015). For example, one approach in (Li & Fei-Fei 2010) utilized

the few top-ranked images returned from an image search engine to learn the

initial classifier. The classifier refines its model through incremental learning

strategy. With the increase in the number of positive images accepted by

the classifier, the learned classifier will reach a robust level. The method in

(Hua & Li 2015) leveraged the clustering based strategy to remove “group”

noisy images and propagation based strategy to filter individual noisy images.

2



CHAPTER 1. INTRODUCTION

Since the semantic and visual senses of a given query are highly related,

recent works also concentrated on jointly leveraging text and images (Loeff,

Alm & Forsyth 2006, Wan, Tan, Lim, Chia & Roy 2009, Saenko & Trevor

2009). Most of these methods assume that there exists a one-to-one mapping

between semantic and visual sense towards to the given query. However, this

assumption is not always true in practice (Chen, Ritter, Gupta & Mitchell

2015). To deal with the multiple visual senses, Chen et al. in (Chen et al.

2015) adopt a one-to-many mapping between semantic and visual spaces.

This approach can help us to find multiple visual senses from the web but

overly depends on the collected web pages. If we can not collect web pages

that contain multiple semantic and visual senses for the given query, the

effect of this method will be greatly reduced.

To ensure the diversity of the collected images, methods (Vijayanarasimhan

& Grauman 2008, Duan, Li, Tsang & Xu 2011) partitioned candidate images

into a set of clusters, treated each cluster as a “bag” and the images therein as

“instances”, and proposed MIL based methods to prune noisy images. How-

ever, the yield for both of two methods mentioned above is limited by the

poor diversity of the initial candidate images which were obtained through

one single query. To obtain lots of candidate images in a richer diversity,

Divvala et al. (Divvala, Farhadi & Guestrin 2014) proposed to use multiple

query expansions instead of one single query to collect images. However, the

yield for (Divvala et al. 2014) is restricted by the iterative mechanism in the

process of noises removing and images selection.

To improve the overall accuracy, some authors proposed to re-rank the

images returned from the image search engine (Lin, Jin & Hauptmann 2003,

Fergus, Perona & Zisserman 2004, Fergus et al. 2005, Vijayanarasimhan &

Grauman 2008, Li & Fei-Fei 2010). Fergus et al. in (Fergus et al. 2004)

and (Fergus et al. 2005) proposed to use visual clustering of the images

over a visual vocabulary while method (Vijayanarasimhan & Grauman 2008)

adopted multiple instances learning to learn the visual classifiers for images

re-ranking. Li et al. in (Li & Fei-Fei 2010) leveraged the first few images

3
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Figure 1.1: Visual polysemy. For example, the query “mouse” returns multi-

ple visual senses on the first page of results. The retrieved web images suffer

from the low precision of any particular visual sense.

returned from an image search engine to train the image classifier, classifying

images as positive or negative. When the image is classified as a positive

sample, the classifier uses incremental learning strategy to refine its model

and collect more positive images.

The goal of our thesis is how to quickly build a diverse and accurate

dataset. We expect that our method will not only be applicable in the process

of large-scale data collection but also hope to apply it in building small-scale

datasets. Deep learning methods have been applied to many problems and

have achieved good results. But deep models are computationally intensive

and require a large number of data. There are some limitations in building

small-scale datasets with deep models. However, our proposed approach can

efficiently solve this problem.

1.2 Research Issues

Although automatically construct image dataset technology has recently gar-

nered more attention from many scholars, there are still some unsolved and

partially solved problems that can be further explored and discussed:

• Visual polysemy. Visual polysemy means that a word has several se-

4
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Figure 1.2: Most discriminative images for “airplane” from four different

datasets. Each dataset has their preference for image selection.

mantic senses that are visually distinct. One of the most important rea-

sons for the noisy results is the inherent ambiguity in the user query.

As shown in Fig. 1.1, when we submit the query “mouse” into the

Google Image Search engine, the returned results can refer to the an-

imal “mouse”, or the electronic product “mouse”. The retrieved web

images suffer from the low precision of any particular visual sense.

Therefore, handling polysemy is a useful and challenging problem in

the process of automatically construct image datasets.

• Diversity. Existing methods usually use an iterative mechanism in the

process of image selection. However, due to the visual feature distri-

bution of images selected in this way, these datasets tend to have the

dataset bias problem. Fig. 1.2 shows the “airplane” images from four

different image datasets. We can observe some significant differences

in these datasets: PASCAL shows “airplanes” from the flying view-

point, while SUN tends to show distant views at the airport; Caltech

has a strong preference for side views and ImageNet is rich in diversity,

but mainly contains close-range views (Torralba & Efros 2011). Clas-

sifiers learned from these datasets usually perform poorly in domain

5



CHAPTER 1. INTRODUCTION

adaptation tasks. To obtain a domain robust image dataset, further

exploration of the dataset bias problem is worthwhile.

• Accuracy. Due to the error index of image search engine, even with the

top few images, noisy images may still be included. Existing methods

tend to solve this problem by re-ranking the returned images from

image search engine. However, the performance of these methods is still

unsatisfactory. It is also essential to design an algorithm for improving

the accuracy of the collected web images.

1.3 Research Contributions

After researching the above issues, the author has developed corresponding

solutions, presented in this thesis. These study contributions follow.

• Proposed a novel approach for discovering and distinguishing multi-

ple visual senses for polysemous words without explicit supervision.

(chapter 3);

• Released one domain robust image dataset DRID-20 on website. We

hope the diversity of DRID-20 can offer unparalleled opportunities

to researchers in the multi-instance learning, transfer learning, image

dataset construction and other related fields. (chapter 4).

• Proposed a general image dataset construction framework that ensures

the scalability and accuracy of the image collections while with no need

of manual annotation. (chapter 5);

• Proposed three different filtering mechanisms for different types of noisy

images in the process of image dataset construction. (chapter 5);

• Released one dataset WSID-100 on website, we hope the scalability and

accuracy of WSID-100 can help researchers further their study in the

computer vision and other related fields. (chapter 5);

6



CHAPTER 1. INTRODUCTION

• Provided a benchmark platform for evaluating the performance of var-

ious algorithms in the task of pruning noise and selecting useful data.

(chapter 5);

• Proposed an approach for enhancing classifier learning by using the

collected web images. (chapter 6);

• Proposed a new instance-level MIL model to select a subset of training

images from each selected privileged information and simultaneously

learn the optimal classifiers based on the selected images (chapter 6).

1.4 Thesis Structure

The thesis is structured as follow:

Chapter 2 provides a literature review of image dataset construction.

Specifically, we first gave the background of image dataset construction, as

well as the existing foundation. Then we discuss the existing methods of

constructing image datasets from three aspects.

Chapter 3 presents a framework for solving the visual polysemy in the

process of image dataset construction. Unlike previous works which lever-

aged the human-developed knowledge to handle polysemy, we propose to

automate the process and leverage untagged corpora to solve the problem of

polysemy. Specifically, we first discover a list of possible semantic senses to

retrieve sense-specific images. Then we merge visual similar semantic senses

and prune noise by using the retrieved images. Finally, we train one visual

classifier for each selected semantic sense and use the learned sense-specific

classifiers to distinguish multiple visual senses. Relevant experiments are

designed to verify the effectiveness and accuracy of the method.

Chapter 4 proposes a domain-robust image dataset construction frame-

work that can be generalized well to unseen target domains. Specifically, the

given queries are first expanded by searching in the Google Books Ngrams

Corpus to obtain a rich semantic description, from which the visually non-
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salient and less relevant expansions are filtered out. By treating each se-

lected expansion as a bag and the retrieved images therein as instances, we

formulate image selection as a multi-instance learning (MIL) problem with

constrained positive bags. We propose to solve the employed problems by the

cutting-plane and concave-convex procedure (CCCP) algorithm. To verify

the effectiveness of our proposed approach, we build an image dataset with

20 categories. Extensive experiments on image classification, cross-dataset

generalization, diversity comparison and object detection demonstrate the

domain robustness of our dataset.

Chapter 5 presents a novel image dataset construction framework which

aims at collecting accurate images for given queries from the Web. Specifi-

cally, we formulate noisy textual metadata removing and noisy images filter-

ing as a multi-view and multi-instance learning problem separately. To verify

the effectiveness of our proposed approach, we construct an image dataset

with 100 categories. The experiments show significant performance gains by

using the generated data of our approach on several tasks, such as image

classification, cross-dataset generalization and object detection.

Chapter 6 presents a new approach for enhancing classifier learning by

using the collected web images. Specifically, we proposed a new instance-

level MIL model to select a subset of training images from each selected

privileged information and simultaneously learn the optimal classifiers based

on the selected images. Extensive experimental results demonstrated the

superiority of our proposed approach.

Chapter 7 concludes the thesis and outlines the scope of future work.

Figure 1.3 shows the research profile of this thesis.
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Chapter 2

Literature Review and

Foundation

Automatic image dataset construction is a hot research field in computer

vision, multimedia processing, and other fields. Image dataset construction

has also attracted much research attention in many institutions. It is a pop-

ular topic in important academic journals and conferences, such as the IEEE

Transactions on Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on Image Processing, IEEE Transactions on Multimedia, IEEE Trans-

actions on Knowledge and Data Engineering, ACM Conference on Multime-

dia. IEEE Conference on Multimedia and Expo, AAAI Conference on Ar-

tificial Intelligence, International Joint Conference on Artificial Intelligence,

and the IEEE Conference on Computer Vision and Pattern Recognition.

Although much progress has been made in automating the construction

of image datasets, the collected data by these methods still have some draw-

backs. The first is that the collected data typically contain large amounts

of polysemy noise. This is mainly because of the inherent ambiguity in the

user query. The second is that the collected data are of limited diversity.

The reason is that existing methods usually leverage a single query to collect

images and use an iterative mechanism for filtering noisy images. The third

is that the accuracy of the collected data has yet to be improved.
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Given the importance of labelled image datasets in the area of high-

level image understanding, many efforts have been directed toward image

dataset construction. In general, these efforts can be divided into three

principal categories: polysemy-based methods, diversity-based methods, and

accuracy-based methods.

2.1 Polysemy-oriented Methods

Visual polysemy means that a word has several semantic senses that are vi-

sually distinct. Automatically discovering and distinguishing multiple visual

senses for polysemous words is an extremely difficult problem.

Several authors proposed to clean the retrieved images and learn visual

classifiers, although none have specifically addressed the problem of poly-

semy (Fergus et al. 2004, Fergus et al. 2005, Berg & Forsyth 2006, Li &

Fei-Fei 2010, Schroff et al. 2011, Hua & Li 2015). Fergus et al. in (Fergus

et al. 2004) proposed the use of visual classifiers learned from Google Image

Search engine to re-rank the images based on the visual consistency. Subse-

quent methods (Fergus et al. 2005, Li & Fei-Fei 2010) have employed similar

removing mechanisms to automatically construct clean image datasets for

training visual classifiers. Berg et al. in (Berg & Forsyth 2006) discovered

topics using LDA in the text domain, and then use them to cluster the im-

ages. This approach requires manual intervention by the user to sort the

topics into positive and negative for each category. Schroff et al. in (Schroff

et al. 2011) adopted text information to rank images retrieved from a web

search and used these top-ranked images to learn visual models to re-rank

images once again. The method in (Hua & Li 2015) leveraged the cluster-

ing based strategy to remove “group” noisy images and propagation based

strategy to filter individual noisy images. These methods have the advantage

of eliminating manual intervention. However, these methods are category-

independent and do not learn which words are predictive of a specific sense.

The traditional way to handle polysemy is text-based methods (Pantel &
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Lin 2002, Chatterjee & Mohan 2008, Snow, Prakash, Jurafsky & Ng 2007).

Pantel et al. in (Pantel & Lin 2002) presented a clustering algorithm called

Clustering By Committee (CBC) that automatically discovers word senses

from text. It firstly discovers a set of tight clusters called committees that

are well scattered in the similarity space. Then proceed by assigning words

to their most similar clusters. It allows CBC to discover the less frequent

senses of a word and to avoid discovering duplicate senses. Each cluster that

a word belongs to represents one of its senses. Two subsequent methods in

(Chatterjee & Mohan 2008, Snow et al. 2007) have also employed similar

Clustering by Committee algorithm to congregate similar words.

Some works also leveraged the human-developed knowledge to handle pol-

ysemy (Veronis & Ide 1990, Yarowsky 1995, Yarowsky 1992, Mihalcea 2007).

Yarowsky in (Yarowsky 1992) proposed to disambiguate word senses in un-

restricted corpora using statistical models of the major Roget’s Thesaurus

categories. Roget’s categories serve as approximations of conceptual classes.

The categories listed for a word in Roget’s index tend to correspond to

sense distinctions; thus selecting the most likely category provides a use-

ful level of sense disambiguation. The selection of categories is accomplished

by identifying and weighing words that are indicative of each category when

seen in context, using a Bayesian theoretical framework. Then Yarowsky

in (Yarowsky 1995) proposed an unsupervised word senses disambiguation

method but relied on the use of dictionary definition as an initial seed. Mi-

halcea et al. in (Mihalcea 2007) and Veronis et al. in (Veronis & Ide 1990)

proposed to use Wikipedia and dictionary for disambiguating word senses.

Since the semantic and visual senses of a given query are highly related,

recent works also concentrated on jointly leveraging text and images (Loeff

et al. 2006, Wan et al. 2009, Saenko & Trevor 2009, Chen et al. 2015). The

method in (Loeff et al. 2006) involves two major steps: (1) extracting and

weighting text features from the web pages, visual features from the retrieved

images, (2) running spectral clustering on both of the text features and visual

features to derive the multiple semantic senses. Wan et al. in (Wan et al.
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2009) and Saenko et al. in (Saenko & Trevor 2009) proposed a latent model

to learn multiple visual senses from a large collection of unlabeled web data,

but rely on Wikipedia and WordNet’s sense inventory respectively. Chen

et al. in (Chen et al. 2015) proposed a one-to-many mapping between the

text-based feature space and image-based visual space to discover multiple

semantic and visual senses of a Noun Phrase. However, clustering presents a

scalability issue for this problem. The reason is that our images are sourced

directly from the web and have no bounding boxes, every image creates

millions of data points, the majority of which are outliers. In addition, this

approach overly depends on the quality of the collected web pages, and the

effect will be greatly reduced when we can not collect web pages that contain

enough useful semantic and visual senses.

2.2 Diversity-oriented Methods

Most of the existing methods (Schroff et al. 2011, Li & Fei-Fei 2010, Hua

& Li 2015) leverage one single query to collect images. However, due to

the limitation of one single query, the diversity of the collected images has

been greatly reduced. WordNet (Miller 1995) and ConceptNet (Speer &

Havasi 2013) are often used to obtain synonyms to improve the diversity as

well as to overcome the download restriction of image search engines. The

advantage of WordNet (Miller 1995) and ConceptNet (Speer & Havasi 2013)

is that synonyms are usually relevant to the given query and almost do

not need to be purified. The disadvantage of WordNet (Miller 1995) and

ConceptNet (Speer & Havasi 2013) is that both of them are usually not

comprehensive enough for query expanding. Worse, the images returned from

image search engine using synonyms tend to experience the homogeneous

problem, which results in poor performance on dataset diversity.

Recent works (Yao, Zhang, Shen, Hua, Xu & Tang 2016) and (Divvala

et al. 2014) proposed the use of Google Books Ngram Corpus (GBNC) (Lin,

Michel & Petrov 2012) instead of WordNet and ConceptNet to obtain query
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expansions for candidate images collection, then using an iterative mechanism

to filter noisy images. The Google Books Ngrams Corpus covers almost

all related queries at the text level. It is much more general and richer

than WordNet and ConceptNet. The disadvantage of using GBNC for query

expanding is that it may also bring noisy query expansions. Recently, word

embedding (Cilibrasi & Vitanyi 2007) provides a learning-based method for

computing the word-word similarity distance which can be used to filter noisy

query expansions.

Due to the iterative mechanism used in the process of images selection,

the diversity of the collected images is still of limited. To efficiently ease

the dataset diversity problem, several authors have developed domain-robust

approaches (MIL) for various vision tasks. MIL is in the sense that we

partition the training samples into clusters and use the bag to denote each

cluster. A set of MIL approaches were developed in (Li, Duan, Xu & Tsang

2011, Andrews, Tsochantaridis & Hofmann 2003, Li, Kwok, Tsang & Zhou

2009). In multi-instance (mi-SVM) (Andrews et al. 2003), the support vector

machine (SVM) classifier is trained at each iteration based on the inferred

instance labels from the previous iteration. In key-instance (KI-SVM) (Li,

Kwok, Tsang & Zhou 2009), the key instances inside each bag are used as

the representatives of the bag. Nevertheless, these methods were proposed

without taking the data distribution mismatch between two domains into

consideration, so that the learned classifiers may not generalize well to the

arbitrary target domain.

Duan et al. in (Duan et al. 2011) clustered relevant images using both

textual and visual features. By treating each cluster as a “bag” and the

images in the bag as “instances”, the authors formulated this problem as a

multi-instance learning problem (MIL) which learns a target decision func-

tion for image re-ranking. Xu et al. in (Xu, Li, Niu & Xu 2014) exploited

the low-rank structure of source latent domains based on exemplar classifiers.

When we have target domain data in the training process, domain adapta-

tion approaches can be used to reduce the domain distribution mismatch.
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The recently developed domain adaptation approaches can be classified into

classifier-based methods (Duan, Xu & Tsang 2012, Duan et al. 2012, Bruz-

zone & Marconcini 2010), instance-reweighting methods (Huang, Gretton,

Borgwardt, Schölkopf & Smola 2007), and feature-based methods (Gopalan,

Li & Chellappa 2011, Kulis, Saenko & Darrell 2011, Gong, Shi, Sha &

Grauman 2012, Baktashmotlagh, Harandi, Lovell & Salzmann 2013, Fer-

nando, Habrard, Sebban & Tuytelaars 2013). Some works (Ding, Shao &

Fu 2014, Jhuo, Liu, Lee & Chang 2012, Shao, Kit & Fu 2014, Ding, Shao

& Fu 2015) applied low-rank techniques for domain adaptation. In partic-

ular, the transformed source domain samples are expected to be linearly

constructed by the target domain samples in (Jhuo et al. 2012). In (Shao

et al. 2014), both the source and target domain data are projected to the com-

mon subspace, where each target domain sample can be linearly constructed

by the source domain samples. Ding et al. in (Ding et al. 2015) proposed an

iterative approach, in which the transformed source domain is treated as the

dictionary to reconstruct the transformed data from both domains at each

iteration. Ding et al. in (Ding et al. 2014) proposed to recover the missing

modality in the target domain under a transfer learning framework.

2.3 Accuracy-oriented Methods

According to the process of image collection, the accuracy-based methods can

be divided into three types: manual annotation, active learning methods, and

automatic methods.

2.3.1 Manual Annotation Methods

In the early years, manual annotation was the most important way to con-

struct diverse image datasets (e.g., STL-10 (Coates, Ng & Lee 2011), CIFAR-

10 (Krizhevsky & Hinton 2009), PASCAL VOC (Everingham, Van Gool,

Williams, Winn & Zisserman 2010), ImageNet (Deng et al. 2009), LabelMe

(Russell, Torralba, Murphy & Freeman 2008), SUN (Xiao, Hays, Ehinger,
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Oliva & Torralba 2010), and Caltech-101 (Griffin, Holub & Perona 2007)).

Most of these datasets are built by sending category names to image search

engines and aggregating returned images as candidate images, then cleaning

candidate images by human judgement. Here, we briefly discuss these works

along the steps involved in image dataset construction:

Generating Category List. The generation of category list depends on

specific tasks. For example, SUN (Xiao et al. 2010) targets on scene recogni-

tion task by defining 899 scene categories. Borth et al. in (Borth, Ji, Chen,

Breuel & Chang 2013) proposed to detect visual sentiment by constructing a

dataset around a category list with strong sentiment. Datasets such as Tiny-

Image (Torralba, Fergus & Freeman 2008) and ImageNet (Deng et al. 2009)

directly adopt nouns of WordNet (Miller 1995) as category list, which cover

a large amount of objects but are still far from complete.

Query formation. Since most image search engines restrict the number of

images returned for each query (in the order of hundreds to one thousand)

and only top-ranked images are with acceptable precision. To overcome the

restriction, synonyms are often used to expand a category into a query set.

Moreover, methods such as appending category with popular adjectives and

words from its parent category, even translating category to different lan-

guages are further used to enrich the query set. All expanded queries will

submit to several popular image search engines to collect candidate images

from the Internet. The method only works for categories defined from exist-

ing ontology such as WordNet (Miller 1995), and cannot generalize to cat-

egories that have not been compiled into existing ontology. Recently, word

embedding (Collobert & Weston 2008, Pennington, Socher & Manning 2014)

provides a learning-based method to compute the similarity between words

and can be used to bypass the manual compilation of ontology.

Noisy image removal. The candidate images contain lots noisy images

with average accuracy around 10% (Deng et al. 2009). Human efforts are

involved to remove noisy images by checking candidate images one by one.

As this step is quite time-consuming and labor-intensive, NUS-WIDE only
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partially labelled the whole dataset (Chua, Tang, Hong, Li, Luo & Zheng

2009), while TinyImage (Torralba et al. 2008) and visual sentiment dataset

(Borth et al. 2013) keep all raw candidate images without manual labelling.

Manual labeling has high accuracy but is limited in scalability and diversity.

2.3.2 Active Learning Methods

To reduce the cost of manual annotation, a large number of works have fo-

cused on active learning (a special case of the semi-supervised method). Li et

al. in (Collins et al. 2008) randomly labelled some seed images to learn visual

classifiers. The learned visual classifiers were then implemented to conduct

image classification on unlabelled images, to find low confidence images for

manual labelling. Here low confidence images are those whose probability is

classified into positive and negative close to 0.5. The process is iterated until

sufficient classification accuracy is achieved. Siddiquie et al. in (Siddiquie &

Gupta 2010) presented an active learning framework to simultaneously learn

contextual models for scene understanding tasks (multi-class classification).

Grauman et al. in (Vijayanarasimhan 2014) presented an approach for on-

line learning of object detectors, in which the system automatically refines its

models by actively requesting crowd-sourced annotations on images crawled

from the web. However, active learning requires pre-existing annotations,

which often results in one of the most significant limitations to construct a

large-scale image dataset.

2.3.3 Automatic Methods

To further reduce the cost of manual annotation, automatic methods have

attracted more and more people’s attention. Schroff et al. in (Schroff et al.

2011) adopted text information to rank images retrieved from a web search

and used these top-ranked images to learn visual models to re-rank images

once again. Li et al. in (Li & Fei-Fei 2010) leveraged the first few images

returned from an image search engine to train the image classifier, classifying
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Table 2.1: The publicly available automatic datasets.

Ours WSID-100 DRID-20 AutoImgSet-10

Others Webvision MIT-ISD CMU-Poly-30

images as positive or negative. When the image is classified as a positive

sample, the classifier uses incremental learning to refine its model. With

the increase in the number of positive images accepted by the classifier, the

trained classifier will reach a robust level for this query. Hua et al. in (Hua

& Li 2015) proposed to use a clustering-based method to filter “group” noisy

images and propagation based method to filter individual noisy images. We

summaries the publicly available automatic datasets in Table 2.1:

2.4 Privileged Information

Data-driven approaches become very brittle and prone to over-fitting when

the training data is inadequate either in quantity or quality. Unfortunately,

this is often the case in many real-world applications. A natural solution

to alleviate this limitation is incorporating additional privileged information

(Wang & Ji 2015, Li, Niu & Xu 2014, Niu, Li, Xu & Cai 2017, Divvala et al.

2014). For example, in object recognition, in addition to the image features

and labels (e.g., , “horse”), the learner may also leverage object attributes

(e.g., , “walking” and “jumping”) in the training process. In human action

recognition, besides the RGB features and human action labels, human joint

positions can be incorporated into the classifier training. In practice, the

privileged information can be tags, properties, attributes, positions or the

context of the web images.

However, learning classifier with privileged information is a challenging

problem. The difficulty lies in three aspects. Firstly, the process of man-

ually labeling privileged information is very expensive. Secondly, it is only

available during training and unseen during testing. We cannot combine

the privileged information with input features to predict the category la-
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bel. Thirdly, learning classifiers with PI overly depends on the quality of the

collected PI.

Li et al. in (Li et al. 2014) proposed an image categorization method by

incorporating the textual features (extracted from the surrounding textual

descriptions) and simultaneously coping with noise in the loose labels of

training images. Similarly, method (Wang & Ji 2015) and (Niu et al. 2017)

adopt different types of PI to improve the classifier learning. All of the

methods in (Li et al. 2014, Wang & Ji 2015) and (Niu et al. 2017) encode

privileged information into the parameters of the classifier during training.

The disadvantage is that these methods overly depend on the quality of the

collected privileged information. Due to the complexity of the Internet, it is

difficult to select useful privileged information from the surrounding textual

descriptions which contain a large amount of noise. The performance of the

learned classifier will be largely reduced when we failed to filter out the noisy

privileged information during training.
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Polysemy

3.1 Introduction

Web images are a rich and free resource. For arbitrary categories, the po-

tential training data can be easily obtained from the image search engines

like Google or Bing. Unfortunately, due to the error index of image search

engine, the precision of returned images from image search engine is still un-

satisfactory. For example, Schroff et al. in (Schroff et al. 2011) reported that

the average precision of the top 1000 images for 18 categories from Google

Image Search engine is only 32%. One of the most important reasons for the

noisy results is the inherent ambiguity in the user query.

Visual polysemy means that a word has several semantic senses that

are visually distinct. Some existing unsupervised approaches attempt to

reduce the influence of visual polysemy by filtering out irrelevant images.

For example, one approach in (Li & Fei-Fei 2010) utilized the few top-ranked

images returned from an image search engine to learn the initial classifier.

The classifier refines its model through incremental learning strategy. With

the increase in the number of positive images accepted by the classifier, the

learned classifier will reach a robust level. The method in (Hua & Li 2015)

leveraged the clustering based strategy to remove “group” noisy images and

propagation based strategy to filter individual noisy images. These methods
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have the advantage of eliminating manual intervention. However, all of these

methods do not directly address the problem of polysemy.

The traditional way to handle polysemy is text-based methods (Pantel

& Lin 2002, Chatterjee & Mohan 2008). However, all of these methods

have no information about the visual senses and still need manual annota-

tion to bridge the semantic and visual senses. Some works also leveraged the

human-developed knowledge such as Wikipedia (Mihalcea 2007) or dictionar-

ies (Veronis & Ide 1990, Yarowsky 1995) to handle polysemy. However, this

human-developed knowledge still suffers from the problem of missing infor-

mation. For example, the machine-readable dictionary has a large coverage

of NOUN category, but it contains very few entities (e.g., organizations, loca-

tions). Wikipedia can help to bridge this gap, but a great deal of information

is still missing (Chen et al. 2015).

Since the semantic and visual senses of a given query are highly related,

recent works also concentrated on jointly leveraging text and images (Loeff

et al. 2006, Wan et al. 2009, Saenko & Trevor 2009). Most of these methods

assume that there exists a one-to-one mapping between semantic and visual

sense towards to the given query. This assumption is not always true in

practice. To deal with the multiple visual senses, method (Chen et al. 2015)

adopt a one-to-many mapping between semantic and visual spaces. This

approach can help us to find multiple visual senses from the web but overly

depends on the collected web pages (Torralba & Efros 2011). If we can not

collect web pages that contain multiple semantic and visual senses for the

given query, the effect of this method will be greatly reduced (Yao, Zhang,

Shen, Hua, Xu & Tang 2017).

Inspired by the situation described above, we seek to automate the pro-

cess of discovering and distinguishing multiple visual senses for polysemous

words. We propose an unsupervised method that resolves visual polysemy

by allowing sense-specific diversity in search results. We take a three-step

approach. Firstly, we discover a list of possible semantic senses to retrieve

sense-specific images. Secondly, we merge visual similar semantic senses and
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Polysemous word: 
mouse

Discovered possible 
semantic senses:

Wired mouse
Figure mouse

Computer mouse
Wireless mouse
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Cartoon mouse

Jerry mouse
Little mouse
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Yes

Selected 
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Computer mouse
Cartoon mouse
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...Visual similar merging 
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Visual 
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Visual non-consistency 
pruning model

No
Yes

Figure 3.1: Illustration of the process for obtaining selected semantic senses.

prune noise by using the retrieved sense-specific images. Thirdly, we learn

one visual classifier for each selected semantic sense and use the learned

sense-specific classifiers to group and re-rank the polysemous images into its

specific senses. To verify the effectiveness of our approach, we conducted

experiments on the tasks of classifying images into sense-specific categories

and re-ranking search results. The experimental results demonstrate the

superiority of our proposed approach.

3.2 Framework and Methods

The inspiration for our work stems from the fact that web images indexed

by a polysemous word are often rich in diversity. Our main idea of solving

the problem of polysemy is allowing sense specific diversity in search results.

Specifically, our proposed framework consists of three major steps: 1) dis-

covering a list of possible semantic senses, to retrieve sense-specific images,

2) merging and pruning semantic senses, 3) distinguishing multiple visual

senses for polysemous words.

3.2.1 Discovering Possible Semantic Senses

Inventories of manually compiled dictionaries (e.g., WordNet (Miller 1995),

ConceptNet (Speer & Havasi 2013)) usually serve as a source for word senses.

However, they often include many rare senses while missing corpus/domain-
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specific senses. In addition, the process of constructing manually compiled

dictionaries is time-consuming and labor-intensive. To ease the limitations of

missing information, as well as to reduce the dependence on manually labeled

data, method (Pantel & Lin 2002) and (Chatterjee & Mohan 2008) proposed

to discover semantic senses from text via clustering. The disadvantage is

that these methods overly depend on the quality of the collected text. The

performance of these methods will be greatly reduced when we failed to

collect enough useful text.

Inspired by recent works (Divvala et al. 2014, Michel, Shen et al. 2011),

we can use untagged Google Books Ngram Corpus to discover an exhaustive

vocabulary explaining all the appearance variations for the given query. Com-

pared to manually labeled WordNet (Miller 1995) and ConceptNet (Speer &

Havasi 2013), it is not only much richer but also more general and exhaustive.

Following (Lin et al. 2012) (see section 4.3), we specifically use the depen-

dency gram data with parts-of-speech (POS) for possible semantic senses

discovering. For example, given a word (e.g., “mouse”) and its correspond-

ing POS tag (e.g., ‘mighty, ADJ’), we find all its occurrences annotated with

POS tag within the dependency gram data. Of all the ngram dependencies

retrieved for the given word, we choose those whose modifiers are tagged

as NOUN, VERB, ADJECTIVE, and ADVERB as the possible semantic

senses. Our motivation is to find all the possible semantic senses the human

race has ever written down in books. We use these discovered semantic senses

to retrieve sense-specific web images from the image search engine.

3.2.2 Merging and Pruning Semantic Senses

Among the list of possible semantic senses, some of them are sharing visu-

ally similar distributions (e.g., “jerry mouse”, “Minnie mouse” and “cartoon

mouse”). To avoid training separate models for visually similar semantic

senses, and to pool valuable training data across them, we need to merge

and sample these visually similar semantic senses. In addition, not all the

discovered semantic senses are useful, some noise may also be included (e.g.,
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“figure mouse” and “flying mouse”). To avoid training meaningless visual

models and to better distinguish multiple visual senses, we need to prune

these noisy semantic senses.

Merging visual similar semantic senses

The traditional way to merge senses is calculating the semantic similarity

of texts (Snow et al. 2007, Cilibrasi & Vitanyi 2007). These methods usu-

ally calculate the semantic similarity by calculating the frequency of their

simultaneous appearance. Semantically similar senses usually have a smaller

semantic distance. However, this assumption is not always true from the per-

spective of computer vision. For example, the semantic distance (Normalized

Google Distance (Cilibrasi & Vitanyi 2007)) between “hot dog” and “dog”

is relatively smaller (0.213). But visually speaking, they are two completely

different objects that should not be merged. To this end, different from pre-

vious works which merge semantic senses from the textual semantics view,

but from a visual point of view.

For each possible semantic sense, we use the top N images from image

search engine to represent its visual distribution. We denote the visual simi-

larity space of all discovered semantic senses by a graph G = {V,W}, where
each node represents a semantic sense and each edge represents the visual

similarity between two nodes. Each node has a score Si which corresponds

to the quality of its classifier. Specifically, we assume the top N images are

positive instances, then these images were randomly split into a training set

and validation set Ii = {I ti , Ivi }. A random pool of negative images was col-

lected and split into a training set and validation set I = {I t, Iv}. We learn

the linear SVM classifier fi with I ti and I
t
using the 4096 dimensional deep

features (based on AlexNet (Krizhevsky et al. 2012)). We then use {Ivi , Iv}
as validation images to calculate the classification results. We set the score Si

equal to the classification results on its own validation set {Ivi , Iv}. The edge
weights Wi,j correspond to the visual similarity between two nodes, and is

measured by the score of the ith node classifier fi on the j th node validation
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set {Ivj , Iv}.
Then the problem of merging visually similar semantic senses can be for-

mulated as sampling a representative subset of space v ⊆ V which maximizes

the quality of the subset:

max
v

∑
i∈V

Si · φ(i, v)

s.t. |v| � k

(3.1)

where k is the number of semantic senses for the given word and φ is a

soft coverage function that implicitly ensure the diversity of representative

subset:

φ(i, v) =

{
1 i ∈ v

1−∏j∈v(1−Wi,j) i /∈ v
(3.2)

Similar to recent work (Batra, Yadollahpour, Guzman-Rivera & Shakhnarovich

2012), our formulation is to find a subset of representative space v which can

cover the space of variance within the space V . Since our objective func-

tion is sub-modular, we can get a constant approximation of the optimal

solution. We use an iterative mechanism for discovering the most represen-

tative subset. Particularly, we add one semantic sense i at each iteration by

maximizing the current space:

argmax
i

S(v ∪ i)− S(v). (3.3)

By setting the cost of adding semantic sense in v to a large value, each new

semantic sense can be merged to its closest member in v.

Pruning noisy semantic senses

After we merge the visual similar semantic senses, we get a relatively few dis-

crete senses. Among these discrete senses, some noise may also be included.

To avoid training meaningless visual models and to better distinguish multi-

ple visual senses, we prune these noisy semantic senses. As shown in Fig 3.2,

our basic idea is that noisy semantic senses have no specific visual patterns
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Figure 3.2: A snapshot of the retrieved images for visual consistency and

non-consistency semantic senses.

(e.g., “figure mouse”, “flying mouse”). Thus, we can prune noise from the

perspective of visual consistency.

We represent each discrete semantic sense as a “bag” and the retrieved

images therein as “instances”. In particular, we represent each semantic

sense GI with the compound feature δf,k of its top k positive images:

δf,k(GI) =
1

k

∑
xi∈Φ∗

f,k(GI)

xi (3.4)

with

Φ∗
f,k(GI) =

argmax
Φ⊆GI ,|Φ|=k

∑
xi∈Φ

f(xi). (3.5)

The images in Φ∗
f,k(GI) are referred to the top k positive instances of GI

according to the SVM classifier fi (obtained in previous step). The closer

of images to the center of the bag, the higher probability to be associated

with the bag. The assignment of relatively heavier weights to these images

would increase the accuracy of classifying semantic sense GI to be positive or

negative, then increase the efficiency of pruning noisy semantic senses. Fol-

lowing (Carneiro, Chan, Moreno & Vasconcelos 2007), the form of weighting

function is assumed as

ρi = [1 + exp(α log d(xi) + β)]−1. (3.6)
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d(xi) is the visual distance of image xi to the bag center, α ∈ R++ and β are

scaling and offset parameters. Then the representation of (3.4) for semantic

sense GI can be represented as a weighted compound feature:

δf,k(GI) = δ(X, h∗) =
Xh∗

ρ�h∗ (3.7)

with

h∗ = argmax
h∈H f(

Xh

ρ�h
)

s.t.
∑
i

hi = k.
(3.8)

X = [x1, x2, x3.., xi] ∈ RD×i is a matrix whose columns are the instances

of bag GI , h is a vector of latent variables and H is the hypothesis space

{0, 1}i \ {0}. h∗ ∈ H = {0, 1}i \ {0} ( ∑i hi = k) is an indicator function for

the top k positive instances of bag GI . ρ = [ρ1, ρ2, ρ3...ρi]
� ∈ Ri

++ are the

vectors of weights. Then the decision rule of semantic sense GI to be selected

or pruned is:

fw(X) = max
h∈Hw

�δ(X, h)∑
i

hi = k
(3.9)

where w ∈ RD is the vector of classifying coefficients, δ(X, h) ∈ RD is the

feature vector of (3.7). In order to solve the classifying rule of (3.9), we need

to solve the below following problem:

max
h∈H

w�Xh

ρTh

s.t.
∑
i

hi = k.
(3.10)

This is an integer linear-fractional programming problem. Since ρ ∈ Ri
++,

(3.10) is identical to the relaxed problem:

max
h∈λi

w�Xh

ρ�h

s.t.
∑
i

hi = k.
(3.11)
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Computer 
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Cartoon
mouse

Little 
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Figure 3.3: A snapshot of the retrieved images for selected semantic senses.

Due to the error index of image search engine, even we retrieve the sense-

specific images, some instance-level noise may also be included. The noisy

images are marked with red bounding boxes.

where λi = [0, 1]i is a unit box in Ri. (3.11) is a linear-fractional programming

problem. We can reduce it to be a linear programming problem with i + 1

variables and i+2 constraints (Boyd & Vandenberghe 2004). Given a training

set {GI , YI}NI=1, the learning problem is to determine the parameter vector

w in (3.9). This is a latent SVM problem:

min
w

1

2
‖w‖2 + C

N∑
I=1

max (0, 1− YIfw (XGI
)) . (3.12)

The objective of (3.12) can be rewrited as two convex functions:

min
w

[
1

2
‖w‖2 + C

∑
I∈DN

max (0, 1 + fw (XGI
))+

C
∑
I∈DP

max (fw (XGI
) , 1)

]
−
[
C
∑
I∈DP

fw (XGI
)

] (3.13)

where DP and DN are positive and negative training sets respectively. Here

we leverage the concave-convex procedure (CCCP) algorithm (Yuille & Rangarajan

2003) to address (3.13). Finally, we obtain the pruning rule as (3.9) to remove

noisy semantic senses which have no specific visual senses.

28



CHAPTER 3. POLYSEMY

3.2.3 Distinguishing Visual Senses

After pruning the noisy semantic senses, we set the rest as the final se-

lected semantic senses. As shown in Fig 3.3, due to the error index of image

search engine, even we retrieve the sense-specific images, some instance-level

noise may also be included. The last step of our approach is to prune these

instance-level noisy images and train visual classifiers for distinguishing mul-

tiple visual senses. Particularly, we train one optimal classifier for each se-

mantic sense based on the selected images.

By treating each selected semantic sense as a “bag” and the retrieved im-

ages therein as “instances”, we formulate noisy images pruning and classifiers

learning as an instance-level multi-instance learning problem. Our objective

is to select a subset of images from each bag to learn the optimal classifier

for the selected semantic sense. As the accuracy of images retrieved from

an image search engine is relatively high, we define each positive bag has a

portion of δ positive instances.

Each instance was denoted as xi with its label yi ∈ {±1}, where i =

1,...,n. The label of each bag was denoted as YI ∈ {±1}. The decision

function is assumed in the form of f(x) = w�ϕ(x) + b and it will be used to

prune instance-level noisy images. We apply the formulation of Lagrangian

SVM. Then the decision function can be learned by minimizing the following

structural risk functional:

min
y,w,b,ρ,εi

1

2

(
‖w‖2 + b2 + C

n∑
i=1

ε2i

)
− ρ

s.t. yi(w
�ϕ (xi) + b) ≥ ρ− εi, i = 1, ...n,

yi = −1 for YI = −1,∑
i:xi∈GI

yi + 1

2
≥ δ |GI | for YI = 1,

(3.14)

where ϕ is a mapping function that maps x from the original space into

a high dimensional space ϕ(x), C > 0 is a regularization parameter and

εi values are slack variables. The margin separation is defined as ρ/ ‖w‖.
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y = [y1...yn]
� means the vector of instance labels, λ = {y|yi ∈ {±1}} and y

satisfies constraint in (3.14).

We employ the cutting-plane algorithm (Kelley 1960) to solve the opti-

mization problem (3.14). Finally, we can derive the decision function for the

selected semantic sense as:

f(x) =
∑
i:αi �=0

αiỹik̃(x, xi) (3.15)

where ỹi =
∑

t:yt∈λ uty
t
i and k̃(x, xi) = k(x, xi)+1. The decision function will

be used to prune instance-level noisy images in each selected semantic sense.

In addition, it will also be leveraged to distinguish different visual senses.

3.3 Experiments

To verify the effectiveness of our proposed approach, in this section, we first

conduct experiments on the task of classifying images into sense-specific cate-

gories. Then we compare the search results re-ranking ability of our approach

with baseline methods.

3.3.1 Classifying Sense-specific Images

Experimental setting

We follow the setting of baseline methods (Loeff et al. 2006, Wan et al.

2009) and exploit web images as the training set, human-labeled images as

the testing set. Instead of using co-clustering on web text and images, we

use general corpus information and web images to discover and distinguish

multiple visual senses for polysemous words. Particularly, we evaluate the

performance on following datasets:

• CMU-Poly-30 (Chen et al. 2015). The CMU-Poly-30 dataset consists of

30 polysemy categories. Each category contains a varying number of images.

• MIT-ISD (Saenko & Trevor 2009). The MIT-ISD dataset contains

5 categories. Each of which has three sizes. We are concerned with the
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“keyword” based size as it has the ground truth.

For each category, we first discover the possible semantic senses by search-

ing in the Google Books Ngram Corpus. Then we retrieve the top N = 100

images from the Google Image Search engine for each discovered semantic

sense. We assume the retrieved images as the positive instances (in spite of

the fact that noisy images might be included). We randomly split the re-

trieved 100 images for each semantic sense into a training set and validation

set Ii = {I ti = 50, Ivi = 50}. We gather a random pool of negative images

and split them into a training set and validation set I = {I t = 50, I
v
= 50}.

We train the SVM classifier fi and calculate the score Si using the validation

set. The edge weights Wi,j are obtained by calculating the score of the ith

node classifier fi on the j th node validation set {Ivj , Iv}. We merge the vi-

sually similar semantic senses and sample the representative subset of space

by setting the cost to be 0.3.

To prune noisy semantic senses, we retrieve the top 500 images for each

semantic sense. We then use the previously trained classifier fi to select the

most positive k = 200 images from the rest 450 images (the training data and

testing data have no duplicates). We represent the selected semantic sense

GI with the compound feature δf,k of the most positive 200 images. There are

multiple methods for learning the weighting function (e.g., cross-validation or

logistic regression), we follow (Carneiro et al. 2007) and take cross-validation

to learn the weighting function. To this end, we label DP = 500 positive bags

and DN = 500 negative bags. This labelling is only for the bag, we do not

label every image in the bag. Labelling work only needs to be done once to

learn the weighting function and the bag classification rule (3.9). The learned

classification rule (3.9) will also be used to prune noisy bags (corresponding

to noisy semantic senses) which have no specific visual senses.

After pruning the noisy semantic senses, we set the rest as the final se-

lected semantic senses. For each selected semantic sense, we collect the train-

ing data (500 images) from the image search engine. We take the MIL based

method to handle instance-level noisy images and select the positive training
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data, to train the visual classifier. The negative training data is drawn from a

“background” category, which in our case is the union of all other categories

that we are asked to classify. The visual feature in our experiment is 4096

dimensional deep features (based on AlexNet (Krizhevsky et al. 2012)).

Baselines

To quantify the performance of our proposed approach, we compare the

sense-specific image classification ability of our approach with two sets of

baseline methods. For all the baseline methods, we adopt the same parameter

configuration as described in their original works. Our baselines include:

•Knowledge-based methods. These baselines consist of Wikipedia method

Wiki-MD (Mihalcea 2007), dictionary method Dict-MD (Veronis & Ide 1990)

and corpora method Copr-MD (Yarowsky 1992). For all of these three meth-

ods, we obtain the multiple semantic senses from human-developed knowl-

edge. We directly retrieve the images from image search engine to learn the

visual classifier for each semantic sense (without noisy images removing).

• Combination of text and images based methods. This set of baselines

include ISD (Loeff et al. 2006), VSD (Wan et al. 2009), ULVSM (Saenko &

Trevor 2009), SDCIT (Chen et al. 2015) and LEAN (Divvala et al. 2014). The

ISD approach and SDCIT approach involve two major steps: (1) extracting

and weighting text features from the web pages, visual features from the

retrieved images, (2) running spectral clustering or co-clustering mechanism

on both of the text features and visual features to derive the multiple semantic

senses. The VSD approach and ULVSM approach consist of three steps: (1)

discovering multiple semantic senses and using the discovered semantic senses

to retrieve images, (2) learning probabilistic models for discovered semantic

senses, (3) using the probabilistic models to construct visual classifiers. The

LEAN approach contains three steps: (1) using Google Books Ngram Corpus

to discover multiple semantic senses, (2) using the iterative mechanism to

filter noisy semantic senses and images, (3) learning visual classifiers.
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Experimental results

Table 3.1 shows the average performance comparison of classification ac-

curacy on the CMU-Poly-30 and MIT-ISD dataset. Fig. 3.5 presents the

examples of multiple visual senses discovered by our proposed approach on

the CMU-Poly-30 dataset. Fig. 3.6 and Fig. 3.4 demonstrate the detailed

performance comparison of classification accuracy on the CMU-Poly-30 and

MIT-ISD dataset respectively.

It is interesting to note in Fig. 3.5, our proposed approach not only

discovers and distinguishes the sense of “notes” for “Note”, but also “galaxy

note”, “note tablet” and “music note”. For “Bass”, in addition to “bass

fish” and “bass guitar”, our approach also discovers and distinguishes the

sense of “Mr./Mrs. Bass”.

Compared to knowledge-based methods which discover possible semantic

senses through Wikipedia or WordNet, our proposed approach that adopts

untagged Google Books Ngram Corpus to discover possible semantic senses

is much more exhaustive and general. Method ISD (Loeff et al. 2006) and

SDCIT (Chen et al. 2015) which uses webpages can discover multiple seman-

tic senses but overly depends on the collected data. For example, method

ISD (Loeff et al. 2006) fails to collect webpages that contain enough semantic

senses and visual senses for the given query, it can be seen that in Table 3.1,

the performance of is greatly reduced.

From Fig. 3.6 and Fig. 3.4, we achieved the best results in 26 categories

on the CMU-Poly-30 dataset. In the 5 categories of dataset MIT-ISD, we

obtained the best results in all 5 categories. By observing Table 3.1, the best

average performance is achieved by our approach, which produces significant

improvements over two sets of baseline methods. The explanation is that the

automatically generated sense-specific terms by our approach could return

relatively high-precision web images. Meanwhile, the MIL based method can

handle the few noises in the training data and train a robust classifier.

From Fig. 3.6, we found that all methods showed higher accuracy in both

of the “AK47” and “Motorbike” categories. The explanation is perhaps that
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Table 3.1: The average performance comparison of classification accuracy on

the CMU-Poly-30 and MIT-ISD dataset.

Method
Dataset

CMU-Poly-30 MIT-ISD

Wiki-MD 0.498 0.487

Dict-MD 0.529 0.522

Copr-MD 0.549 0.593

ISD 0.555 0.634

VSD 0.728 0.786

ULVSM 0.772 0.803

SDCIT 0.839 0.853

LEAN 0.827 0.814

Ours 0.884 0.897

the visual patterns of polysemous words “AK47” and “Motorbike” are rela-

tively simpler than other polysemous words. That is to say, the samples are

densely distributed in the feature space, and the distribution of the training

data and testing data overlaps much more easily.

3.3.2 Re-ranking Search Results

Experimental setting

We collect the top 500 images from Google Image Search engine for seman-

tically ambiguous words: “bass” and “mouse”. We perform a cleanup step

for broken links, webpages, end up with 349 and 251 images for “bass” and

“mouse” respectively. These images were annotated with one of the several

semantic senses by one of the authors. The annotator tried to resist name in-

fluence, and make judgments based just on the image. For each query, 2 core

semantic senses were distinguished from inspecting the data. The detailed

information for these retrieved images is summarized in Table 3.2.

We now evaluate how well the two sets of baseline methods and our
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Figure 3.4: The detailed performance comparison over 5 categories on the

MIT-ISD dataset.

method can re-rank the retrieved images. For each query, the sense-specific

classifiers are trained on the sense-specific web images. Particularly, we use

the previously trained sense-specific classifiers in the previous experiment.

Retrieved images are then re-ranked by moving the negatively-classified im-

ages down to the last rank. For an image d, we compute the probability

P (Si|d) of image d belonging to the ith sense Si and rank the corresponding

images according to the probability of each sense S. P (Si|d) provides a way

to re-rank the images in the original polysemous order. Images belonging to

some sibling sense are given lower probabilities and pushed to the back of

the rank list.

Baselines

We compare the search results re-ranking ability of our approach with two

sets of baseline methods which include knowledge-based methods and the

combination of text and images based methods. The knowledge-based meth-

ods consist of Wiki-MD (Mihalcea 2007), Dict-MD (Veronis & Ide 1990)

and Copr-MD (Yarowsky 1992). The combination of text and images based

methods contain ISD (Loeff et al. 2006), VSD (Wan et al. 2009), ULVSM

(Saenko & Trevor 2009), LEAN (Divvala et al. 2014), and SDCIT (Chen

et al. 2015).
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Experimental results

Following (Wan et al. 2009), we evaluate the re-ranking performance by com-

puting the Area Under Curve (AUC) of all senses for “bass” and “mouse”.

The results are shown in Table 3.3.

From Table 3.2, we observe that there are only 4.6% and 7.5% true noise

in the retrieved images for “bass” and “mouse” respectively. Most of the

retrieved images are different forms of visual senses for the given query. This

indicates that we should first discover the multiple visual senses for the given

query. So that we can choose appropriate visual senses as needed to carry

out sense-specific images collection. By doing this, we can greatly improve

the efficiency of collecting web images, thereby improving the efficiency of

learning from the web images.

We observe that the combination of text and images based methods ISD

(Loeff et al. 2006), VSD (Wan et al. 2009), ULVSM (Saenko & Trevor 2009),

SDCIT (Chen et al. 2015), LEAN (Divvala et al. 2014) and our method are

generally better than knowledge-based methods Wiki-MD (Mihalcea 2007),

Dict-MD (Veronis & Ide 1990) and Copr-MD (Yarowsky 1992) in Table 3.3.

In specific, methods SDCIT (Chen et al. 2015), LEAN (Divvala et al. 2014)

and our method achieve better results than other methods. The explanation

is that it is necessary to remove noisy images from the training set during

the process of classifier learning. Learning directly from the web images

without noise removing may affect the performance of the classifier due to

the presence of noisy images.

By observing Table 3.3, we achieve the best average performance which

consistent with the results of sense-specific image classification. The reason

can be explained by the generated sense-specific terms and filtered images of

our approach. Compared to knowledge-based methods Wiki-MD (Mihalcea

2007), Dict-MD (Veronis & Ide 1990) and Copr-MD (Yarowsky 1992), our

approach does not directly use web images for classifier learning. Instead, we

filter the retrieved images to select useful data and then use the selected im-

ages to learn classifiers. By doing this, our approach can effectively overcome
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the impact of noise on the classifiers due to the error index of image search

engine. Compared to the combination of text and images based methods ISD

(Loeff et al. 2006), VSD (Wan et al. 2009), ULVSM (Saenko & Trevor 2009),

LEAN (Divvala et al. 2014) and SDCIT (Chen et al. 2015), the sense-specific

terms generated by our approach are more accurate and exhaustive, using our

sense-specific terms to retrieve images can return high precision web images,

thereby can help us to train sense-specific classifiers to re-rank the search

results.

3.4 Conclusions

In this chapter, we focused on one important yet often ignored problem:

we argue that the current poor performance of existing methods for image

dataset construction is due to the visual polysemy. We solved the problem

by allowing sense-specific diversity in search results. Specifically, we pre-

sented a new framework for discovering and distinguishing multiple visual

senses for polysemous words. Compared to existing methods, our proposed

method can not only figure out the right sense but also generates the right

mapping between semantic and visual senses. We verified the effectiveness

of our approach on the tasks of sense-specific image classification and search

results re-ranking. The experimental results demonstrated the superiority

of our proposed approach over existing weakly supervised state-of-the-art

approaches.
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Figure 3.5: Examples of multiple visual senses discovered by our proposed approach. For example, our approach

automatically discovers and distinguishes four senses for “Note”: notes, galaxy note, note tablet and music note.

For “Bass”, it discovers multiple visual senses of: bass fish, bass guitar and Mr./Mrs. Bass etc.
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Figure 3.6: The detailed performance comparison over 30 categories on the CMU-Poly-30 dataset.
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Table 3.2: Web images for polysemy terms were annotated manually. For each term, the number of annotated

images, the semantic senses, the visual senses and their distributions are provided, with core semantic senses marked

in boldface.

Query (#Annot. images) Semantic senses Visual senses Numbers of images Coverage

Bass

(349)

1. bass fish fish 159 45.6%

2. bass guitar musical instrument 154 44.1%

3. Mr./ Mrs. Bass people 20 5.7%

Noise unrelated 16 4.6%

Mouse

(251)

1. computer mouse electronic product 125 49.8%

2. little mouse animal 81 32.3%

3. carton mouse cartoon role 26 10.4%

Noise unrelated 19 7.5%
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Table 3.3: Area Under Curve (AUC) of all senses for “bass” and “mouse”.

Method
Semantic senses

Average
bass fish bass guitar M. Bass Computer mouse little mouse carton mouse

Wiki-MD 0.364 0.429 0.132 0.536 0.623 0.114 0.366

Dict-MD 0.443 0.635 0.205 0.464 0.573 0.186 0.418

Copr-MD 0.504 0.486 0.305 0.624 0.675 0.263 0.476

ISD 0.453 0.526 0.243 0.614 0.536 0.218 0.432

VSD 0.547 0.538 0.239 0.684 0.652 0.226 0.481

ULVSM 0.526 0.615 0.326 0.732 0.735 0.314 0.541

LEAN 0.623 0.658 0.413 0.753 0.785 0.336 0.595

SDCIT 0.658 0.773 0.386 0.815 0.845 0.337 0.636

Ours 0.713 0.736 0.572 0.835 0.873 0.436 0.694
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Chapter 4

Diversity

4.1 Introduction

Existing methods (Hua & Li 2015, Schroff et al. 2011, Li & Fei-Fei 2010) usu-

ally use an iterative mechanism in the process of image selection. However,

due to the visual feature distribution of images selected in this way, these

datasets tend to have the dataset bias problem (Niu, Li & Xu 2015, Torralba

& Efros 2011, Yao, Hua, Shen, Zhang & Tang 2016).

To address the dataset bias problem, a large number of domain-robust

approaches have been proposed (Vijayanarasimhan & Grauman 2008, Duan

et al. 2011). The images in these methods are partitioned into a set of

clusters; each cluster is treated as a “bag” and the images in each bag as

“instances”. As a result, these tasks can be formulated as multi-instance

learning (MIL) problem. Different MIL methods have been proposed in

(Vijayanarasimhan & Grauman 2008, Duan et al. 2011). However, the yield

for all of these methods is limited by the diversity of training data which was

collected with a single query.

To obtain highly diverse candidate images, as well as to overcome the

download restrictions of the image search engine, (Divvala et al. 2014) and

(Yao, Hua, Shen, Zhang & Tang 2016) proposed the use of multiple query

expansions instead of a single query to collect candidate images from the
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image search engine. The issue remains that these methods still use iterative

mechanisms in the process of image selection, which leads to the dataset bias

problem (Niu et al. 2015, Torralba & Efros 2011, Yao, Hua, Shen, Zhang &

Tang 2016).

Motivated by the situation described above, we target the construction

of an image dataset in a scalable way while ensuring the diversity and ro-

bustness. The basic idea is to leverage multiple query expansions for initial

candidate images collection and to use MIL methods for selecting images

from different distributions. We first expand each query to a set of query ex-

pansions, from which the visually non-salient and less relevant expansions are

filtered out. Then we set the rest as selected query expansions and construct

the raw image dataset with these selected query expansions. By treating each

selected query expansion as a “bag” and the images therein as “instances”,

we formulate image selection and noise removal as a multi-instance learning

problem. In this way, images from different distributions will be kept while

noise is filtered out.

To verify the effectiveness of our proposed approach, we build an image

dataset with 20 categories, which we refer to as DRID-20. We compare the

image classification ability, cross-dataset generalization ability and diversity

of our dataset with three manually labelled datasets and three automated

datasets, to demonstrate the domain robustness of our dataset. We also

report the results of object detection on PASCAL VOC 2007, and then com-

pare the object detection ability of our method with weakly supervised and

web-supervised methods.

4.2 Domain robust dataset construction

We seek to construct a domain-robust image dataset that can generalize to

unseen target domains. As shown in Fig. 4.1, we propose our web-supervised

image dataset construction framework by three major steps: query expand-

ing, noisy query expansions filtering and noisy images filtering. We expand
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Figure 4.1: Domain robust image dataset construction framework. The input

is text query that we would like to build a image dataset for. The outputs

are a set of selected images corresponding to the given query.

the query to a set of semantically rich expansions by searching Google Books

Ngram Corpus, from which the visually non-salient and less relevant expan-

sions are filtered out. After obtaining the candidate images by retrieving

the selected expansions with an image search engine, we treat each selected

expansion as a “bag” and the images in each bag as “instances”. We then

formulate image selection and noisy images filtration as a MIL problem with

constrained positive bags. In partifcular, the learned classifiers are used to

filter individual noisy images (corresponding to the top-ranked images for

selected expansions) and group noisy images (corresponding to the positive

bags). Using this approach, images from different distributions will be kept

while noisy images are filtered out, and a domain-robust image dataset will

be constructed.

4.2.1 Query Expanding

Image datasets constructed by existing methods tend to be highly accurate

but usually have weak domain adaptation ability (Niu et al. 2015, Torralba

& Efros 2011, Yao, Hua, Shen, Zhang & Tang 2016). To construct a domain-
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robust image dataset, we expand given query (e.g., “horse”) to a set of query

expansions (e.g., “jumping horse, walking horse, roaring horse”) and then

use these different query expansions (corresponding images) to reflect the

different “visual distributions” of the query.

4.2.2 Noisy Expansions Filtering

Through query expanding, we obtain a comprehensive semantic description

for the given query. However, query expanding not only provides all the

useful query expansions, but also some noise. These noisy query expansions

can be roughly divided into two types: (1) visually non-salient (e.g., “betting

horse”) and (2) less relevant (e.g., “sea horse”). Using these noisy query

expansions to retrieve images will have a negative effect on dataset accuracy

and robustness.

Visual non-salient expansions filtering

From the visual perspective, we aim to identify visually salient and eliminate

non-salient query expansions in this step. The intuition is that visually salient

expansions should exhibit predictable visual patterns. Hence, we can use

the image classifier-based filtering method. For each query expansion, we

directly download the top N images from the Google image search engine as

positive images ( based on the fact that the top few images returned from

image search engine tend to be positive), then randomly split these images

into a training set and validation set Ii = {I ti , Ivi }. We gather a random

pool of negative images and split them into a training set and validation set

I = {I t, Iv}. We train a linear support vector machine (SVM) classifier Ci

with I ti and I
t
using dense histogram of oriented gradients (HOG) features

(Dalal & Triggs 2005). We then use {Ivi , Iv} as validation images to calculate

the classification results. We declare a query expansion i to be visually salient

if the classification results Si give a relatively high score.
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Less relevant expansions filtering

From the relevance perspective, we want to identify both semantically and

visually relevant expansions for the given query. The intuition is that rel-

evant expansions should have a relatively small semantic and visual dis-

tance; therefore, we use a combined word-word and visual-visual similarity

distance-based filtering method. Words and phrases acquire meaning from

the way they are used in society. For computers, the equivalent of “society”

is “database”, and the equivalent of “use” is “a way to search the database”

(Cilibrasi & Vitanyi 2007). Normalized Google Distance (NGD) constructs

a method to extract semantic similarity distance from the World Wide Web

(WWW) using Google page counts. For a search term x and search term y,

NGD is defined by:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

logN −min{log f(x), log f(y)} (4.1)

where f(x) denotes the number of pages containing x, f(x, y) denotes the

number of pages containing both x and y and N is the total number of web

pages searched by Google.

We denote the semantic distance of all query expansions by a graph

Gsemantic = {N,D} in which each node represents a query expansion and

its edge represents the NGD between two nodes. We set the target query as

center y and other expansions have a score Dxy which corresponds the NGD

to the target query. Similarly, we represent the visual distance of query and

expansions by a graph Gvisual = {C,E} in which each node represents a

query expansion and each edge represents the visual distance between the

query and the expansions. We denote the visual distribution of each query

expansion by the compound feature φk =
1
k

∑k
i=1 xi of its first k images from

the image search engine. We set the target query as center y and other query

expansions have a score Exy which corresponds to the Euclidean distance to

the target query.

The semantic distance Dxy and visual distance Exy will be used to con-

struct a new two-dimensional feature V = [Dxy;Exy]. The problem is to
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calculate the importance weight w and bias penalty b in decision function

f(x) = wTx+b to determine whether or not the expansion is relevant. There

are many methods of obtaining these coefficients w and b. Here we take the

linear SVM to work around this problem. Although the linear SVM is not

the prevailing state-of-the-art method for classification, we find our method

to be effective in pruning irrelevant query expansions.

We set the remainder which is not filtered out as the selected expansions

and construct raw image dataset by retrieving the top N images from image

search engine with these selected query expansions. Regardless of the fact

that our method is not able to remove noisy expansions thoroughly in most

cases, the raw image dataset constructed by our method still achieves much

higher accuracy than directly using the Google image data. Besides, the raw

image dataset constructed through the selected query expansions has much

richer visual distributions.

4.2.3 Noisy Images Filtering

Although the Google image search engine has ranked the returned images,

some noisy images may still be included. In addition, a few noisy expansions

which are not filtered out will also bring noisy images to the raw image

dataset. In general, these noisy images can be divided into two types: group

noisy images (caused by noisy query expansions) and individual noisy images

(as a result of the error index of the image search engine). To filter these

group and individual noisy images while retaining the images from different

distributions, we use MIL methods instead of iterative methods in the process

of image selection and noise removal.

By treating each selected expansion as a “bag” and the images corre-

sponding to the expansion as “instances”, we formulate a multi-instance

learning problem by selecting a subset of bags and a subset of images from

each bag to construct the domain-robust image dataset. Since the precision

of images returned from image search engine tends to be relatively high, we

define each positive bag as at least having a portion of δ positive instances
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which effectively filter group noisy images caused by noisy query expansions.

We denote each instance as xi with its label yi ∈ {0, 1}, where i =1,...,n.

We also denote the label of each bag BI as YI ∈ {0, 1}. The transpose of a

vector or matrix is represented by superscript ′ and the element-wise product

between two matrices is represented by �. We define the identity matrix as

I and 0, 1 ∈ �n denote the column vectors of all zeros and ones, respectively.

The inequality u = [u1, u2...un]
′ ≥ 0 means that ui ≥ 0 for i =1,...,n.

Filtering individual noisy images

The decision function for filtering individual noisy images is assumed in the

form of f(x) = w′ϕ(x)+ b and has to be learned from the raw image dataset.

We employ the formulation of Lagrangian SVM, in which the square bias

penalty b2 and the square hinge loss for each instance are used in the objective

function. The decision function can be learned by minimizing the following

structural risk function:

min
y,w,b,ρ,εi

1

2

(
‖w‖2 + b2 + C

n∑
i=1

ε2i

)
− ρ (4.2)

s.t. yi(w
′ϕ (xi) + b) ≥ ρ− εi, i = 1, ...n. (4.3)

∑
i:xi∈BI

yi + 1

2
≥ δ |BI | for YI = 1,

yi = 0 for YI = 0

(4.4)

where ϕ is a mapping function that maps x from the original space into a high

dimensional space ϕ(x), C > 0 is a regularization parameter and εi values

are slack variables. The margin separation is defined as ρ/ ‖w‖. y = [y1...yn]
′

means the vector of instance labels, λ = {y|yi ∈ {0, 1}} and y satisfies

constraint (4.4). By introducing a dual variable αi for inequality constraint

(4.3) and kernel trick kij = ϕ(xi)
′ϕ(xj), we arrive at the optimization problem

below:

min
y∈λ

max
α
−1

2
(

n∑
i,j=1

αiαjyiyjkij +
n∑

i,j=1

αiαjyiyj +
1

C
) (4.5)
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where αi ≥ 0,
∑n

i=1 αi = 1 and α = [α1, α2...αn]
′. By defining K = [kij]

as a n × n kernel matrix, ν = {α|α ≥ 0, α′1 = 1} and K̃ = K + 11′ as a

n× n transformed kernel matrix for the augmented feature mapping ϕ̃(x) =

[ϕ(x)′. 1]′ of kernel k̃ij = ϕ̃(xi)
′ϕ̃(xj). (4.5) can be rewritten as follows:

min
y∈λ

max
α∈ν

−1

2
α′(K̃� yy′ +

1

C
I)α. (4.6)

(4.6) is a mixed integer programming problem with respect to the in-

stance labels yi ∈ {0, 1}. We take the Label-Generating MMC (LG-MMC)

algorithm proposed in (Li, Tsang, Kwok & Zhou 2009) to solve this mixed

integer programming problem. We first consider interchanging the order of

maxα∈υ and miny∈λ in (4.6) and obtain:

max
α∈ν

min
y∈λ

−1

2
α′(K̃� yy′ +

1

C
I)α. (4.7)

According to the minmax theorem (Kim & Boyd 2008), the optimal objective

of (4.6) is an upper bound of (4.7). We rewrite (4.7) as:

max
α∈ν

{
max

θ
−θ|θ ≥ 1

2
α′(K̃� ytyt

′
+

1

C
I)α, ∀yt ∈ λ

}
(4.8)

yt is any feasible solution in λ. For the inner optimization sub-problem, let

ut ≥ 0 be the dual variable for inequality constraint. Its Lagrangian can be

obtained as:

−θ +
∑
t:yt∈λ

ut(θ − 1

2
α′(K̃� ytyt

′
+

1

C
I)α). (4.9)

Setting the derivative of (4.9) with respect to θ to zero, we have
∑

ut = 1.

M = {u|∑ut = 1, ut ≥ 0} is denoted as the domain of u, where u is the

vector of ut. The inner optimization sub-problem is replaced by its dual and

(4.8) can be rewritten as:

max
α∈ν

min
u∈M

−1

2
α′(
∑
t:yt∈λ

utK̃� yy′ +
1

C
I)α

or

min
u∈M

max
α∈ν

−1

2
α′(
∑
t:yt∈λ

utK̃� yy′ +
1

C
I)α. (4.10)
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Here, we can interchange the order of maxα∈ν and minu∈M because the ob-

jective function is concave in α and convex in u. Additionally, (4.10) can

be regarded as a multiple kernel learning (MKL) problem (Bach, Lanck-

riet & Jordan 2004), and the target kernel matrix is a convex combination

of base kernel matrices
{
K̃� ytyt

′
}
. Although λ is finite and (4.10) is

an MKL problem, we can not directly use existing MKL techniques like

(Rakotomamonjy, Bach, Canu & Grandvalet 2008) to solve this problem.

The reason is that the exponential number of possible labellings yt ∈ λ and

the fact that the base kernels are exponential in size make direct MKL com-

putations intractable.

Fortunately, not all the constraints in (4.8) are active at optimality. Thus

we can employ a cutting-plane algorithm (Kelley 1960) to find a subset ζ ∈ λ

of the constraints that can well approximate the original optimization prob-

lem. The detailed solutions of the cutting-plane algorithm for (4.10) are

described in Algorithm 4.1. Finding the most violated constraint yt is the

most challenging aspect of the cutting-plane algorithm.

According to (4.5), the most violated yt is equivalent to the following

optimization problem:

max
y∈λ

n∑
i,j=1

αiαjyiyjkij. (4.11)

We solve this integer optimization problem by enumerating all possible can-

didates of yt. Here we only enumerate the possible labelling candidates of the

instances in positive bags as all instances in the negative bags are assumed

to be negative in our paper. Lastly, we can derive the decision function from

the raw image dataset for the given query as:

f(x) =
∑
i:αi �=0

αiỹik̃(x, xi) (4.12)

where ỹi =
∑

t:yt∈λ uty
t
i and k̃(x, xi) = k(x, xi) + 1. The decision function

will be used to filter individual noisy images in each bag which correspond

to selected query expansions.
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Algorithm 4.1 Cutting-plane algorithm for solving (4.10)

1: Initialize yi = YI for xi ∈ BI as y1, and set ζ = {y1};
2: Use MKL to solve α and u in (4.10) with ζ;

3: Select most violated yt with α and set ζ = yt ∪ ζ;

4: Repeat step 2 and step 3 until convergence.

Filtering group noisy images

To filter group noisy images, we represent bag BI with the compound feature

φf,k of its first k positive instances:

φf,k(BI) =
1

k

∑
xi∈Ψ∗

f,k(BI)

xi (4.13)

with

Ψ∗
f,k(BI) =

argmax
Ψ⊆BI ,|Ψ|=k

∑
xi∈Ψ

f(xi). (4.14)

We refer to the instances in Ψ∗
f,k(BI) as the first k instances of BI according

to classifier f (see Equation 4.12). Since the closer of images in BI from

the bag center, the higher probability of these images to be relevant to the

bag. The assignment of relatively heavier weights to images which have short

distance to bag center would increase the accuracy of classifying bag BI to

be positive or negative, then increase the efficiency of filtering noisy group

images. Following (Carneiro et al. 2007), we assume ξi = [1+exp(α log d(xi)+

β)]−1 to be a weighting function, d(xi) represents the Euclidean distance

of images xi from the bag center, α ∈ R++ and β are scaling and offset

parameters which can be determined by cross-validation. The representation

of (4.13) for bag BI can be generalized to a weighted compound feature:

φf,k(BI) = φ(X, h∗) =
Xh∗

ξTh∗ (4.15)

with

h∗ =argmax
h∈H f(

Xh

ξTh
), s.t.

∑
i

hi = k (4.16)

51



CHAPTER 4. DIVERSITY

where X = [x1, x2, x3.., xi] ∈ RD×i is a matrix whose columns are the in-

stances of bag BI , ξ = [ξ1, ξ2, ξ3...ξi]
T ∈ Ri

++ are the vectors of weights, and

h∗ ∈ H = {0, 1}i \ {0} ( ∑i hi = k) is an indicator function for the first k

positive instances of bag BI .

Then classifying rule of bag BI to be selected or not is:

fω(X) =max
h∈H ωTφ(X, h),

∑
i

hi = k (4.17)

where ω ∈ RD is the vector of classifying coefficients, φ(X, h) ∈ RD is the

feature vector of (4.15), h is a vector of latent variables and H is the hypoth-

esis space {0, 1}i \ {0}. The learning problem is to determine the parameter

vector ω.

Given a training set τ = {BI , YI}nI=1, this is a latent SVM learning prob-

lem:

min
ω

1

2
‖ω‖2 + C

n∑
I=1

max (0, 1− YIfω (XBI
)) . (4.18)

Before solving (4.18), we first solve the classifying rule of (4.17). It is neces-

sary to solve the below following problem:

max
h∈H

ωTXh

ξTh
, s.t.

∑
i

hi = k. (4.19)

This is an integer linear-fractional programming problem. Since ξ ∈ Ri
++,

(4.19) is identical to the relaxed problem:

max
h∈ßi

ωTXh

ξTh
, s.t.

∑
i

hi = k (4.20)

where ßi = [0, 1]i is a unit box in Ri. (4.20) is a linear-fractional program-

ming problem and can be reduced to a linear programming problem of i+ 1

variables and i+ 2 constraints (Boyd & Vandenberghe 2004).

In this work, we take the concave-convex procedure (CCCP) (Yuille &

Rangarajan 2003) algorithm to solve (4.18). We rewrite the objective of
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Algorithm 4.2 Concave-convex procedure for solving (4.21)

1: Initialize ω with SVM by setting h = 1 ∈ Ri;

2: Compute a convex upper bound using the current model for the second

term of (4.21);

3: Minimize this upper bound by solving a structural SVM problem via the

proximal bundle method (Kiwiel 1990);

4: Repeat step 2 and step 3 until convergence.

(4.18) as two convex functions:

min
ω

[
1

2
‖ω‖2 + C

∑
I∈Dn

max (0, 1 + fω (XBI
))+

C
∑
I∈Dp

max (fω (XBI
) , 1)

⎤⎦−
⎡⎣C ∑

I∈Dp

fω (XBI
)

⎤⎦ (4.21)

where Dp and Dn are positive and negative training sets respectively.

The detailed solutions of the CCCP algorithm for (4.21) are described in

Algorithm 4.2. Lastly, we obtain the bag classifying rule as (4.17) to filter

group noisy images which correspond to noisy query expansions.

In summary, the existing automatic methods reduce the cost of manual

annotation by leveraging the generalization ability of machine learning mod-

els. However, this generalization ability is affected by both the quality of

the initial candidate images and the capability of models to retain images

from different distributions. Previous works primarily focus on accuracy and

scale, and most use an iterative mechanism for the image selection process

which often results in a dataset bias problem. To the best of our knowl-

edge, this is the first proposal for automatic domain-robust image dataset

construction. We achieve the domain adaptation ability of our dataset by

maximizing both the initial candidate images and the final selected images

from different distributions.
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4.3 Experiments

To demonstrate the effectiveness of our approach, we have constructed an

image dataset with 20 categories. We compare the image classification ability,

cross-dataset generalization ability, and diversity of our dataset with three

manually labelled and three automated datasets. We also report the object

detection ability of our dataset and compare it with weakly supervised and

web-supervised state-of-the-art methods.

4.3.1 Image Dataset DRID-20 Construction

Since most existing weakly supervised and web-supervised learning methods

were evaluated on the PASCAL VOC 2007 dataset, we choose the 20 cate-

gories in PASCAL VOC 2007 as the target categories for the construction of

DRID-20.

For each given query (e.g.,“horse”), we first expand the given query to

a set of query expansions with POS. To filter visual non-salient expansions,

we retrieve the top N = 100 images from the image search engine as positive

images (in spite of the fact that noisy images might be included). Set the

training set and validation set Ii = {I ti = 75, Ivi = 25}, I = {I t = 25, I
v
=

25}. By experimentation, we declare a query expansion i to be visually

salient if the classification result (Si ≥ 0.7) returns a relatively high score.

To filter the less relevant expansions, we select n+ positive training sam-

ples from these expansions that have a small semantic or visual distance.

We calculate the semantic distance and visual distance between the different

queries (e.g., “horse” and “cow”) to obtain the n− negative training samples.

Here, we set n = 1000 and train a classifier based on linear SVM to filter less

relevant expansions.

The first N = 100 (for category “plant” expansions, N = 350) images

are retrieved from image search engine for each selected query expansion to

construct the raw image dataset. We treat the selected query expansions as

positive bags and images therein as instances. Specifically, we define each
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positive bag as having at least a portion of δ = 0.7 positive instances. Neg-

ative bags can be obtained by randomly sampling a few irrelevant images.

MIL methods are applied to learn the decision function (4.12) for individual

noisy images filtering. The decision function (4.12) is also used to select the

most k positive instances in each bag, representing this bag for group noisy

images filtering. The value of k for different categories may be different.

In general, categories with larger query expansions tend to select a smaller

value. There are multiple methods for learning the weighting function (e.g.,

logistic regression or cross-validation), here we follow (Carneiro et al. 2007)

and use cross-validation to learn the weighting function. To this end, we

label 10 datasets, each containing 100 positive bags and 100 negative bags.

This labeling is also for the bag, we do not label instance-level images in the

bag. The positive bags and negative bags each have 50 images. Labelling

only needs to be carried out once to learn the weighting function and the

weighted bag classification rule (4.17). The learned weighted bag classifica-

tion rule (4.17) would be used to filter noisy bags (corresponding to group

noisy images). For better comparison with other datasets, we evenly select

positive images from positive bags to construct the dataset DRID-20. Each

category in DRID-20 has 1000 images and this dataset has been released

publicly on the website.

4.3.2 Comparison of Classification Ability, Cross-dataset

Generalization Ability, and Dataset Diversity

Experimental setting

We chose PASCAL VOC 2007 as the third-party testing benchmark dataset

for comparing the image classification ability of our dataset with other base-

line datasets. For this experiment, the same categories between various

datasets are compared. Specifically, we compare the category “airplane”,

“bird”, “cat”, “dog”, “horse” and “car/automobile” between STL-10(Coates

et al. 2011), CIFAR-10 (Krizhevsky & Hinton 2009) and DRID-20. We
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sequentially select [200,400,600,800,1000] training images from CIFAR-10,

STL-10 and DRID-20 as the positive training images, and use 1000 fixed ir-

relevant images as the negative training images to learn the image classifiers.

For comparison with ImageNet (Deng et al. 2009), Optimol (Li & Fei-

Fei 2010), Harvesting (Schroff et al. 2011) and AutoSet (Yao, Zhang, Shen,

Hua, Xu & Tang 2016), we use all the 20 categories among these datasets. In

specific, we randomly select 500 training images for each category from these

datasets as the positive training images. Similarly, we use 1000 fixed irrel-

evant images as the negative training images to learn the image classifiers.

We then test the performance of these classifiers on the corresponding cate-

gories of the PASCAL VOC 2007 dataset. We repeat the above experiment

ten times and use the average performance as the final performance for each

dataset. The image classification ability of all datasets for each category is

shown in Fig. 4.2 and Fig. 4.3.

For the comparison of cross-dataset generalization ability, we randomly

select 200 images for each category as the testing data. For the choice of

training data, we sequentially select [200,300,400,500,600,700,800] images

per category from various datasets as the positive training samples, and

use 1000 fixed irrelevant images as the negative training samples to learn

the image classifiers. The training images in each category are selected ran-

domly. In addition, the training data and testing data have no duplicates.

Like the comparison of image classification ability, we also compare the cate-

gory “airplane”, “bird”, “cat”, “dog”, “horse” and “car/automobile” among

STL-10 (Coates et al. 2011), CIFAR-10 (Krizhevsky & Hinton 2009) and

DRID-20. For comparison with ImageNet (Deng et al. 2009), Optimol (Li

& Fei-Fei 2010), Harvesting (Schroff et al. 2011) and AutoSet (Yao, Zhang,

Shen, Hua, Xu & Tang 2016), we also use all the 20 categories among these

datasets. The average classification accuracy represents the cross-dataset

generalization ability of one dataset on another dataset. The experimental

results are shown in Fig. 4.4 and Fig. 4.6 respectively.

For the comparison of dataset diversity, we select five common categories
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“airplane”, “bird”,“cat”,“dog” and “horse” in STL-10, ImageNet, and DRID-

20 as testing examples. Following method (Deng et al. 2009) and (Collins

et al. 2008), we compute the average image of each category and measure the

lossless JPG file size. In particular, we resize all images in STL-10, ImageNet,

DRID-20 to 32×32 images, and create average images for each category from

100 randomly sampled images. Fig. 4.5 (a) presents the lossless JPG file sizes

of five common categories in dataset DRID-20, ImageNet and STL-10. The

example and average images for five categories in three datasets are shown

in Fig. 4.5 (b).

For image classification ability and cross-dataset generalization ability

comparison, we set the same options for all datasets. Particularly, we set

the type of SVM as C-SVC, the type of kernel as a radial basis function

and all other options as the default LIBSVM options. For all datasets, we

extract the same dense histogram of oriented gradients (HOG) feature (Dalal

& Triggs 2005) and train one-versus-all classifiers.

Baselines

To validate the performance of our dataset, we compare the image classifica-

tion ability, cross-dataset generalization ability and dataset diversity of our

dataset DRID-20 with two sets of baselines:

• Manually labelled datasets. The manually labelled datasets include

STL-10 (Coates et al. 2011), CIFAR-10 (Krizhevsky & Hinton 2009) and

ImageNet (Deng et al. 2009). The STL-10 dataset has ten categories, and

each category of which contains 500 training images and 800 test images. All

of the images are color 96 × 96 pixels. The CIFAR-10 dataset consists of

32×32 images in 10 categories, with 6000 images per category. ImageNet is

an image dataset organized according to the WordNet hierarchy. It provides

an average of 1000 images to illustrate each category.

• Automated datasets. The automated datasets contain Optimol (Li &

Fei-Fei 2010), Harvesting (Schroff et al. 2011) and AutoSet (Yao, Zhang,

Shen, Hua, Xu & Tang 2016). For (Li & Fei-Fei 2010), 1000 images for each
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category are collected by using the incremental learning method. Following

(Schroff et al. 2011), we firstly obtain the candidate images from the web

search and rank the returned images by the text information. Then we

use the top-ranked images to learn visual classifiers to re-rank the images

once again. We select the categories in DRID-20 as the target queries and

accordingly obtain the multiple textual metadata. Following the proposed

method in (Yao, Zhang, Shen, Hua, Xu & Tang 2016), we take iterative

mechanisms for noisy images filtering and construct the dataset. In total,

we construct 20 same categories as DRID-20 for Optimol, Harvesting, and

AutoSet.

Experimental results for image classification

By observing Fig. 4.2 and Fig. 4.3, we make the following conclusions:

It is interesting to observe that the categories “airplane”, “tv” and “plant”

have a relatively higher classification accuracy than other categories with a

small amount of training data. A possible explanation is that the scenes and

visual patterns of “airplane”, “tv” and “plant” are relatively simpler than

other categories. Even with a small amount of training data, there is still

a large number of positive patterns in both auxiliary and target domains.

That is to say, the samples are densely distributed in the feature space, and

the distribution of the two domains overlaps much more easily.

CIFAR-10 exhibits a much worse performance on image classification than

STL-10 and DRID-20 according to its accuracy over six common categories.

This demonstrates that the classifier learned with the training data from the

auxiliary domain performs poorly on the target domain. The explanation

is perhaps that the data distributions of CIFAR-10 are quite different from

those of the PASCAL VOC 2007 dataset. The CIFAR-10 dataset has a more

serious dataset bias problem than STL-10 and DRID-20.

STL-10 performs much better on category “dog” than CIFAR-10 and

DRID-20 when the number of training data is 400. The explanation is that

STL-10 may have more effective visual patterns than CIFAR-10 and DRID-
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20 on category “dog” with 400 training data. On the other hand, the positive

samples from CIFAR-10 and DRID-20 are distributed sparsely in the feature

space with 400 training images. It is likely that there is less overlap between

the auxiliary and target domains for CIFAR-10 and DRID-20.

DRID-20 outperforms the automated datasets in terms of average accu-

racy in 20 categories, which demonstrates the domain robustness of DRID-20.

A possible explanation is that our DRID-20 dataset, being constructed by

multiple query expansions, has many more visual patterns or feature dis-

tributions than Harvesting and Optimol. At the same time, compared to

AutoSet which uses iterative mechanisms in the process of image selection,

MIL mechanisms can maximize the retention of useful visual patterns. Thus,

our dataset has a better image classification ability.

Experimental results for cross-dataset generalization

Cross-dataset generalization measures the performance of classifiers learned

from one dataset and tested on another dataset. It indicates the robustness

of dataset (Torralba & Efros 2011, Yao, Hua, Shen, Zhang & Tang 2016).

By observing Fig. 4.4 and Fig. 4.6, we draw the following conclusions:

Compared to STL-10 and DRID-20, CIFAR-10 has a poor cross-dataset

generalization ability except on its own dataset. The explanation is that the

data distributions of its auxiliary domain and target domain are strongly

related, making it difficult for other datasets to exceed its performance when

tested on CIFAR-10. All images in CIFAR-10 are cut to 32×32 and the

objects in these images are located in the middle of the image. Besides,

these images contain relatively fewer other objects and scenes. The images

in STL-10 are 96×96 and are full size in DRID-20. These images not only

contain target objects but also include a large number of other scenarios

and objects. Based on these conditions, CIFAR-10 has a serious dataset

bias problem which coincides with its average cross-dataset generalization

performance.

AutoSet is better than Optimol, Harvesting, and ImageNet but slightly
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worse than DRID-20, possibly because the distribution of samples is relatively

rich. AutoSet is constructed using multiple textual meta-data and the objects

of its images have variable appearances, positions, viewpoints, and poses.

DRID-20 outperforms CIFAR-10, STL-10, ImageNet, Optimol, Harvest-

ing and AutoSet in terms of average cross-dataset performance, which demon-

strates the domain robustness of DRID-20. This may be because DRID-20

constructed by multiple query expansions and MIL selection mechanisms has

much more effective visual patterns than other datasets given the same num-

ber of training samples. In other words, DRID-20 has a much richer feature

distribution and is more easily overlapped with unknown target domains.

Experimental results for dataset diversity

The lossless JPG file size of the average image for each category reflects the

amount of information in an image. The basic idea is that a diverse image

dataset will result in a blurrier average image, the extreme being a gray

image. Meanwhile, an image dataset with limited diversity will result in a

more structured, sharper average image. Therefore, we expect the average

image of a more diverse image dataset to have a smaller JPG file size. By

observing Fig. 4.5:

DRID-20 has a slightly smaller JPG file size than ImageNet and STL-10

which indicates the diversity of our dataset. This phenomenon is universal

for all five categories. It can be seen that the average image of DRID-20 is

blurred and it is difficult to recognize the object, while the average image of

ImageNet and STL-10 is relatively more structured and sharper.

DRID-20 is constructed with the goal that images in this dataset should

exhibit domain robustness and be able to effectively alleviate the dataset bias

problem. To achieve domain robustness, we not only consider the source of

the candidate images but also retain the images from different distributions.
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4.3.3 Comparison of Object Detection Ability

To compare the object detection ability of our collected data with other

baselines (Divvala et al. 2014, Felzenszwalb, Girshick & Ramanan 2010, Siva

& Xiang 2011, Prest, Leistner, Civera & Ferrari 2012, Yao, Zhang, Shen,

Hua, Xu & Tang 2016), we selected PASCAL VOC 2007 as the test data.

Experimental setting

For each query expansion, we train a separate DPM to constrain the visual

variance. We resize images to a maximum of 500 pixels and ignore images

with extreme aspect ratios (aspect ratio > 2.5 or < 0.4). To avoid get-

ting stuck to the image boundary during the latent re-clustering step, we

initialize our bounding box to a sub-image within the image that ignores

the image boundaries. Following (Felzenszwalb et al. 2010), we also initial-

ize components using the aspect-ratio heuristic. Some of the components

across different query expansion detectors ultimately learn the same visual

pattern. For example, the images corresponding to the query expansion

“walking horse” are similar to the images corresponding to “standing horse”.

In order to select a representative subset of the components and merge sim-

ilar components, we represent the space of all query expansions components

by a graph G = {C,E}, in which each node represents a component and

each edge represents the visual similarity between them. The score di for

each node corresponds to the average precision. The weight on each edge ei,j

is obtained by running the jth component detector on the ith component

set. We solve the same objective function proposed in (Divvala et al. 2014)

to select the representative components S (S ⊆ V ) :

max
S

∑
i∈V

di · ϑ(i, S) (4.22)

where ϑ is a soft coverage function that implicitly pushes for diversity:

ϑ(i, S) =

⎧⎨⎩1 i ∈ S

1−∏j∈S(1− ei,j) i /∈ S.
(4.23)
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After the representative subset of components has been obtained, we aug-

ment them with the method described in (Felzenszwalb et al. 2010) and

subsequently merge all the components to produce the final detector.

Baselines

To validate the object detection ability of our collected data, we compare our

approach with three sets of baselines:

• Weakly supervised methods. The weakly supervised learning methods

include WSL (Siva & Xiang 2011) and SPM-VID (Prest et al. 2012). WSL

uses weak human supervision (VOC data with image-level labels for training)

and initialization from objectness. SPM-VID is trained on manually selected

videos without bounding boxes and shows results in 10 out of 20 categories.

•Web-supervised methods. Such methods includeWSVCL (Divvala et al.

2014) and IDC-MTM (Yao, Zhang, Shen, Hua, Xu & Tang 2016). WSVCL

takes web supervision and then trains a mixture DPM detector for the object.

IDC-MTM collects candidate images with multiple textual metadata and

filters these images using an iterative method. Images which are not filtered

out are then selected as positive training images for mixture DPM detector

learning.

• Fully supervised method. The fully supervised method includes OD-

DPM (Felzenszwalb et al. 2010). OD-DPM is a fully supervised object de-

tection method and it is a possible upper bound for weakly supervised and

web-supervised approaches.

Experimental results for object detection

We report the performance of object detection on PASCAL VOC 2007 test

set. Table 4.1 shows the results of our proposed method and compares it

to the state-of-the-art weakly supervised and web-supervised methods (Siva

& Xiang 2011, Prest et al. 2012, Divvala et al. 2014, Yao, Zhang, Shen,

Hua, Xu & Tang 2016). By observing the Table 4.1, we draw the following

conclusions:
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Compared to WSL and SPM-VID (which use weak supervision) and OD-

DPM (which uses full supervision), the training sets of our proposed approach

and WSVCL, IDC-MTM do not need to be labelled manually. Nonetheless,

the results of our proposed approach and WSVCL, IDC-MTM surpass the

previous best results of weakly supervised object detection methods WSL,

SPM-VID. A possible explanation is perhaps that both our approach and that

of WSVCL, IDC-MTM use multiple query expansions for candidate image

collection, and the training data collected by our approach and WSVCL,

IDC-MTM are richer and contain more effective visual patterns.

In most cases, our method surpasses the results obtained from WSVCL,

IDC-MTM, which also uses web supervision and multiple query expansions

for candidate images collection. The explanation for this is that we use

different mechanisms for the removal of noisy images. Compared to WSVCL,

IDC-MTM which uses iterative mechanisms in the process of noisy images

filtering, our approach applies a MIL method for removing noisy images.

This maximizes the ability to retain images from different data distributions

while filtering out the noisy images.

Our approach outperforms the weakly supervised and web-supervised

methods (Siva & Xiang 2011, Prest et al. 2012, Divvala et al. 2014, Yao,

Zhang, Shen, Hua, Xu & Tang 2016). The main reason being that our

training data is generated using multiple expansions and MIL filtering mech-

anisms. Thus, our data contains much richer and more accurate visual de-

scriptions for these categories. In other words, our approach discovers much

more useful linkages to visual patterns for the given category.

4.4 Conclusions

In this chapter, we presented a new framework for domain-robust image

dataset construction with web images. Three successive modules were em-

ployed in the framework, namely query expanding, noisy expansion filter-

ing and noisy image filtering. To verify the effectiveness of our proposed
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method, we constructed an image dataset DRID-20. Extensive experiments

demonstrated the superiority of our method to several weakly supervised and

web-supervised state-of-the-art methods.
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Table 4.1: Object detection results (A.P.) (%) on PASCAL VOC 2007

(TEST).

Method WSL SPM-VID WSVCL IDC-MTM Our OD-DPM

Supervision weak weak web web web full

airplane 13.4 17.4 14.0 14.8 15.5 33.2

bike 44.0 - 36.2 38.4 40.6 59.0

bird 3.1 9.3 12.5 16.5 16.1 10.3

boat 3.1 9.2 10.3 7.4 9.69 15.7

bottle 0.0 - 9.2 12.6 13.7 26.6

bus 31.2 - 35.0 39.5 42.0 52.0

car 43.9 35.7 35.9 38.1 37.9 53.7

cat 7.1 9.4 8.4 8.9 9.8 22.5

chair 0.1 - 10.0 9.3 9.6 20.2

cow 9.3 9.7 17.5 17.9 18.4 24.3

table 9.9 - 6.5 10.2 10.6 26.9

dog 1.5 3.3 12.9 11.5 11.6 12.6

horse 29.4 16.2 30.6 31.8 36.1 56.5

motorcycle 38.3 27.3 27.5 29.7 36.9 48.5

person 4.6 - 6.0 7.2 7.9 43.3

plant 0.1 - 1.5 1.1 1.3 13.4

sheep 0.4 - 18.8 19.5 20.4 20.9

sofa 3.8 - 10.3 10.3 10.8 35.9

train 34.2 15.0 23.5 24.2 27.6 45.2

tv/monitor 0.0 - 16.4 15.6 18.4 42.1

average 13.87 15.25 17.15 18.22 19.74 33.14
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Figure 4.2: Image classification ability of CIFAR-10, STL-10 and DRID-20 on PASCAL VOC 2007 dataset: (a)

airplane, (b) bird, (c) cat, (d) dog, (e) horse, (f) car/automobile and (g) average.
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Figure 4.3: Image classification ability of Optimol, Harvesting, ImageNet,

AutoSet and DRID-20 on PASCAL VOC 2007 dataset.
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Figure 4.4: Cross-dataset generalization ability of classifiers learned from

CIFAR-10, STL-10, DRID-20 and then tested on: (a) CIFAR-10, (b) STL-

10, (c) DRID-20, (d) Average.
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Figure 4.5: (a) Comparison of the lossless JPG file sizes of average images

for five different categories in DRID-20, ImageNet and STL-10. (b) Exam-

ple images from DRID-20, ImageNet, STL-10 and average images for each

category indicated by (a).
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Figure 4.6: Cross-dataset generalization ability of classifiers learned from Optimol, Harvesting, ImageNet, AutoSet,

DRID-20 and then tested on: (a) Optimol, (b) Harvesting, (c) ImageNet, (d) AutoSet, (e) DRID-20, (f) Average.
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Chapter 5

Accuracy

5.1 Introduction

Directly constructing image dataset with the retrieved images is not practical.

It is mainly due to the number of images retrieved from image search engine

for each query and the unsatisfactory accuracy of ranking relatively rearward

images. In order to improve the overall accuracy, method (Lin et al. 2003)

re-ranked images by taking into account of the text contents on the orig-

inal page from which the images were obtained. The method in (Fergus

et al. 2005) involved visual clustering of the images using probabilistic La-

tent Semantic Analysis (pLSA) (Hofmann 1999) on a visual vocabulary while

(Vijayanarasimhan & Grauman 2008) used multiple instance learning and it-

eratively methods to learn the visual models. Li et al. in (Li & Fei-Fei 2010)

proposed an incremental learning strategy to learn the visual models. How-

ever, all of these methods have a restriction on the total number of images

which can be retrieved from the image search engine.

To overcome the restriction of downloading number, method (Berg &

Forsyth 2006) and (Schroff et al. 2011) proposed to use web search instead

of image search engine to obtain a large pool of candidate images. The

method in (Berg & Forsyth 2006) can be mainly divided into two steps: First,

train a classifier with manual intervention. Then, the classifier is used to re-

69



CHAPTER 5. ACCURACY
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Figure 5.1: Illustration of the process for obtaining multiple textual meta-

data. The input is a textual query that we would like to find multiple textual

metadata for. The output is a set of selected textual metadata which will be

used for raw image dataset construction.

rank the retrieved images. The advantages of this method are overcoming

the restriction of downloading number, as well as avoiding the problem of

polysemy and providing relatively high accuracy images for the given query.

However, due to the needs of manual intervention, the cost of this method is

high which results in a scale problem. The method in (Schroff et al. 2011)

adopt text information to re-rank images retrieved from web search and used

these top-ranked images to learn visual models to re-rank images once again.

The advantage is eliminating the need for manual intervention. However, the

accuracy of image dataset constructed by this method is relatively low. The

main reason is the low accuracy of images returned from web search.

In order to leverage the high accuracy as well as overcome the download-

ing restrictions of image search engine, we propose a novel image dataset con-

structing framework, through which a large number of highly relevant images

are automatically extracted from the web. Specifically, we first discover a set

of semantically rich textual metadata, from which the visual non-salient and

less relevant textual metadata are removed. The selected textual metadata is

used to retrieve sense-specific images to construct the raw image dataset. To

suppress the search error and noisy textual metadata (which are not filtered

out) induced noisy images, we further divide the retrieved noises into three
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types and use different methods to filter these noises separately. It should be

noted, as we are mainly interested in constructing image datasets for natural

image recognition, we would like to remove artificial images from the raw

image dataset. To verify the effectiveness of our proposed approach, we con-

struct an image dataset with 100 categories, which we refer to as WSID-100

(web-supervised image dataset 100). Extensive experiments on image classi-

fication, cross-dataset generalization, and object detection demonstrate the

superiority of our approach.

5.2 Framework and Methods

We are targeting at automatically constructing image dataset in a scalable

way while ensuring the accuracy. We automatize the three most labor cost

steps. Fig. 5.1 shows the process of multiple textual metadata discovering

and noisy textual metadata filtering. Fig. 5.2 demonstrates the process of

noisy images filtering. The following subsections describe the details of our

proposed framework.

5.2.1 Multiple Textual Metadata Discovering

Images returned from an image search engine tend to have relatively higher

accuracy (compared to Flickr and web search), but downloads are restricted

to a certain number. In addition, the accuracy of ranking-rearward images is

also unsatisfactory. To overcome these restrictions, synonyms are often used

to collect more images from image search engine. However, this method only

works well for queries which have been defined in an existing ontology (e.g.,

WordNet (Miller 1995)). Apart from this, images collected by synonyms tend

to have the homogenization problem.

Inspired by recent work (Michel et al. 2011), we can use untagged corpora

to discover a set of semantically rich textual metadata for modifying the

given query. Our motivation is to leverage multiple textual metadata for

overcoming the download restriction of image search engine (scalability). We
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Figure 5.2: Illustration of the process for obtaining selected images. The

input is a set of selected textual metadata. Artificial images, inter-class

noisy images, and intra-class noisy images are marked with red, green and

blue bounding boxes separately. The output is a group of selected images in

which the images corresponding to different textual metadata.

use this semantically rich textual metadata (corresponding images) to reflect

the different visual distributions for the given query. The detailed candidate

textual metadata discovered in this step can be found on website1.

5.2.2 Noisy Textual Metadata Filtering

Multiple textual metadata discovering not only brings all the useful data, but

also some noises (e.g., “betting dog”, “missing dog” and “hot dog” in Fig.

5.3). Using this noisy textual metadata to retrieve images will have a negative

effect on the accuracy. To this end, we prune this noisy textual metadata

before we collect candidate images for the target query. We divide the noisy

textual metadata into two types (visual non-salient and less relevant) and

propose to filter these two types of noises separately.

Visual non-salient textual metadata pruning

From the visual consistency perspective, we want to identify visual salient

and eliminate non-salient textual metadata in this step (e.g., “betting dog”

1http://www.multimediauts.org/dataset/WSID-100.html
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Visual non-salient

Betting dog

Missing dog

Less relevant

Hot dog

Figure 5.3: A snapshot of the retrieved images for visual non-salient and less

relevant textual metadata.

and “missing dog” in Fig. 5.3). The intuition is that visual salient textual

metadata should exhibit predictable visual distributions. Hence, we can use

the image classifier-based pruning method.

For each textual metadata , we retrieve the top N samples from Google

Image Search Engine as positive images; then randomly split them into a

training and validation set Ii = {I ti , Ivi }. A pool of unrelated samples was

collected as negative images. Similarly, the negative images were also split

into a training and validation set I = {I t, Iv}. We extract 4096 dimensional

deep features (based on AlexNet (Krizhevsky et al. 2012)) for each image and

train a linear support vector machine (SVM) classifier by using I ti and I
t
.

The validation set {Ivi , Iv} were applied to calculate the classification results

Si. When Si takes a relatively larger value, we think textual metadata i is

visually salient.

Less relevant textual metadata pruning

Normalized Google Distance (NGD) (Cilibrasi & Vitanyi 2007) extracts the

semantic distance between two terms by using the Google page counts. We

denote the semantic distance of all textual metadata by a graph Gsemantic in

which the target query is center y. Other textual metadata x has a score
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Sxy corresponds to the NGD between term x and y. Semantically relevant

textual metadata usually has a smaller semantic distance than less relevant

(e.g., “yawning dog”, “Eskimo dog” and “police dog” which has 0.388, 0.286

and 0.372 respectively is much smaller than “down dog” which has 0.703).

However, this assumption is not always true from the perspective of visual

relevance. For example, “hot dog” has a relatively smaller semantic distance

0.213, but it is not relevant to the target query “dog”. Thus, we need to

identify both of semantic and visual relevant textual metadata for the target

query. Similar to the semantic distance, we denote the visual distance of

all textual metadata by graph Gvisual in which the target query is center y.

Other textual metadata x has a score Vxy corresponds to the visual distance

between term x and y. Similar to the previous step, we obtain the visual

distance between target query y and other textual metadata x by the score

of the center y node classifier fy on the x th node retrieved images Ix. The

difference lies in the different test images.

By treating word-word (semantic) and visual-visual distance (visual) as

features from two different views, we formulate less relevant textual metadata

pruning as a multi-view learning problem. Our objective is to find both

semantically and visually relevant textual metadata. During training, we

model each view with one classifier and jointly learn two classifiers with

a regularization term that penalizes the differences between two different

classifiers. Two views are reproducing kernel Hilbert spaces HK(1) and HK(2) .

Given l labeled data (x1, y1), ...(xl, yl) ∈ X × {±1} and u unlabeled data

xl+1, ...xl+u ∈ X , we seek to find predictors f (1)∗ ∈ HK(1) and f (2)∗ ∈ HK(2)

that minimize the following objective function:

(f (1)∗, f (2)∗) = argmin
f (1)∈H

K(1)

f (2)∈H
K(2)

Loss(f (1), f (2)) + γ1
∥∥f (1)

∥∥2
H

K(1)

+ γ2
∥∥f (2)

∥∥2
H

K(2)
+ λ

l+u∑
i=l+1

[f (1)(xi)− f (2)(xi)]
2.

(5.1)

The first term is loss function and the next two are the regularization terms.

The last term is called “co-regularization” which encourages the selection
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of a pair predictors (f (1)∗, f (2)∗) that agree on the unlabeled data. During

testing, we make predictions by averaging the classification results from both

of two views and the prediction rule is:

J =
1

2
(f (1)(x) + f (2)(x)) (5.2)

Following (Sindhwani, Niyogi & Belkin 2005, Brefeld, Gärtner, Scheffer &

Wrobel 2006), we adopt the form of loss function as:

Loss(f (1), f (2)) =
1

2l

l∑
i=1

([
f (1)(xi)− yi

]2
+
[
f (2)(xi)− yi

]2)
(5.3)

We give the solution to (5.1) in the Appendix A.1. After we obtain the

models for two views, we use (5.2) to prune less relevant textual metadata.

5.2.3 Noisy Images Filtering

The selected textual metadata were used to collect images from image search

engine to construct the raw image dataset. Due to the error index of image

search engine, some noises may be included (artificial and intra-class noisy

images). In addition, a few noisy textual metadata which are not filtered out

can also bring some noises (inter-class noisy images). As shown in Fig. 5.2,

our process for filtering noisy images consists of three major steps: artificial

images pruning, inter-class and intra-class noisy images pruning.

Artificial images pruning

As we are mainly interested in constructing image datasets for natural image

recognition, we would like to remove artificial images from the raw image

dataset. The artificial images contain “sketches”, “drawings”, “cartoons”,

“charts”, “comics”, “graphs”, “plots” and “maps”. Since artificial images

tend to have only a few colors in large areas or sharp edges in certain orien-

tations, we choose the visual features of color and gradient histogram for sep-

arating artificial images from natural images. We train a radial basis function

SVM model by using the selected visual features. The artificial images were
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obtained by retrieving queries: “sketch”, “drawings”,“cartoons”, “charts”,

“comics”, “graphs”, “plots” and “maps” (250 images for each query, 2000

images in total), natural images were obtained by directly using the images

in ImageNet (2000 images in total).

After the pruning model was learned, we apply it to the entire raw im-

age dataset to prune artificial images. The pruning model achieves around

94 percent classification accuracy on artificial images (using two-fold cross-

validation) and significantly reduces the number of artificial images in the

raw image dataset. There is some loss of the natural images, with, on aver-

age, 6 percent removed. Although this seems to be a little high, the accuracy

of the resulting dataset is greatly improved.

Inter-class noisy images pruning

Inter-class noisy images were caused by the noisy textual metadata which

are not filtered out. As shown in Fig. 5.2 “bronze dog” images, these noises

tend to exist in the form of “groups”. Hence we proposed to use multi-

instance learning (MIL) based method to filter these “group” noisy images.

Each selected textual metadata was treated as a “bag” and the images corre-

sponding to the textual metadata were treated as “instances”. We formulate

inter-class noisy images pruning as a MIL problem. Our objective is to prune

group noisy images (corresponding to negative “bags”).

We denote the bags as Bi, the positive and negative bags as B+
i and

B−
i , respectively. l+ and l− denote the numbers of positive and negative

bags separately. All instances belong to feature space Q. Bag Bi contains

ni instances xij, j = 1, ..., ni. For simplicity, we re-index instances as xk

when we line up all instances in all bags together, k = 1, ..., n and n =∑l+

i=1 n
+
i +

∑l−
i=1 n

−
i .

To characterize bags, we take the instance-based feature mapping method

proposed in (Chen, Bi & Wang 2006, Maron 1998). Specifically, we assume

each bag may consist of more than one target concept and the target concept

can be approximated by an instance in the bags. Under this assumption, the
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most-likely-cause estimator can be written as:

Pr(xk|Bi) ∝ s(xk, Bi) = max
j

exp(−
∥∥xij − xk

∥∥
σ2

), (5.4)

where σ is a predefined scaling factor. s(xk, Bi) can be explained as a simi-

larity between bag Bi and concept xk. It is determined by the concept and

the closest instance in the bag. Then the bag Bi can be embedded with

coordinates

m(Bi) = [s(x1, Bi), s(x
2, Bi), ...s(x

n, Bi)]
�. (5.5)

Given a training set which contains l+ positive bags and l− negative bags,

we apply the mapping function (5.5) and obtain the following matrix repre-

sentation of all training bags:

⎡⎢⎢⎢⎢⎢⎣
s(x1, B+

1 ) · · · s(x1, B−
l−)

s(x2, B+
1 ) · · · s(x2, B−

l−)
...

. . .
...

s(xn, B+
1 ) · · · s(xn, B−

l−)

⎤⎥⎥⎥⎥⎥⎦ . (5.6)

Each column corresponds to a bag, and the kth feature realizes the kth row

of the matrix. Generally speaking, when xk achieves a high similarity to

some positive bags and low similarity to negative bags, we think that the

feature s(xk, ·) induced by xk provides “useful” information in separating

the positive from negative bags.

Instance-based feature mapping tends to has a better generalization abil-

ity. The disadvantage is that it may require an expensive computational cost.

Our solution is to construct 1-norm SVM classifiers and select important fea-

tures simultaneously. The motivation is 1-norm SVM can be formulated as

a linear programming (LP) problem and the computational cost will not be
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an issue. The 1-norm SVM is formulated as follows:

min
w,b,ε,η

λ
n∑

k=1

|wk|+ C1

l+∑
i=1

εi + C2

l−∑
j=1

ηj

s.t. (w�m+
i + b) + εi � 1, i = 1, ..., l+,

−(w�m−
j + b) + ηj � 1, j = 1, ..., l−,

εi, ηj � 0, i = 1, ..., l+, j = 1, ..., l−

(5.7)

where ε and η are hinge losses. Choosing different parameters C1 and C2

will penalize on false negatives and false positives. We usually let C1 = δ,

C2 = 1−δ and 0 < δ < 1 so that the training error is determined by a convex

combination of the training errors occurred on positive bags and on negative

bags.

To solve the 1-norm SVM (5.7) with linear programming, we rewrite

wk = uk − vk, where uk, vk � 0. Then we can formulate linear programming

in variables u, v, b, ε and η as:

min
u,v,b,ε,η

λ
n∑

k=1

(uk + vk) + δ
l+∑
i=1

εi + (1− δ)
l−∑
j=1

ηj

s.t.
[
(u− v)�m+

i + b
]
+ εi � 1, i = 1, ..., l+,

− [(u− v)�m−
j + b

]
+ ηj � 1, j = 1, ..., l−,

εi, ηj � 0, i = 1, ..., l+, j = 1, ..., l−

uk, vk � 0, k = 1, ..., n.

(5.8)

The solutions of linear programming (5.8) equivalent to those obtained by

the 1-norm SVM (5.7). The reason is that for all k = 1, ..., n, any optimal

solution to (5.8) has at least one of the two variables uk and vk equal to 0.

Suppose w∗ = u∗−v∗ and b∗ are the solutions of (5.8), then the influence

of the kth feature on the classifier can be determined by the value of w∗
k.

Specifically, we select features {s(xk, ·) : k ∈ φ} to meet the conditions:

φ = {k : |w∗
k| > 0}. (5.9)
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Algorithm 5.1 The algorithm for learning bag classifier
Input:

Positive bags B+
i and negative bags B−

i .

1: For (each bag Bi = {xij : j = 1, ..., ni})
2: for (every instance xk)

3: d← minj

∥∥xij − xk
∥∥

4: the kth element of m(Bi) is s(x
k, Bi) = e−

d2

σ2

5: end

6: End

7: Solve the linear programming in (5.8)

Output:

The optimal solutions w∗ and b∗, the bag classifier (5.10).

Finally, we obtain the classification rule of bag Bi to be positive or negative

is:

y = sign

(∑
k∈φ

w∗
ks(x

k, Bi) + b∗
)
. (5.10)

The detailed process of learning the bag classifier is described in Algorithm

5.1. We apply the rule (5.10) to classify bags. When the bag is classified to

be negative, the group images corresponding to the bag will be filtered out.

Intra-class noisy images pruning

After we prune inter-class noisy images, we then only care the intra-class

noises corresponding to the positive bags. Intra-class noises were induced by

the error index of image search engine. As shown in Fig. 5.2, these noises

usually exist in the form of “individuals”.

The basic idea of pruning intra-class noises in positive bags is according

to their contributions to the classification of the bag. Instances (correspond-

ing to images) in the bags can be divided into two types: positive class and

negative class. An instance is assigned to the positive class when its contri-

bution to
∑

k∈φ w
∗
ks(x

k, Bi) is greater than a threshold θ. For instance xij in
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Algorithm 5.2 The algorithm for pruning intra-class noises
Input:

φ = {k : |w∗
k| > 0},

ϕ =
{
j∗ : j∗ = argminj

∥∥xij − xk
∥∥ , k ∈ φ

}
.

1: Initialize νk = 0 for every k in φ

2: For (every j∗ in ϕ)

3: φj∗ = {k : k ∈ φ, j∗ = argminj

∥∥xij − xk
∥∥}

4: for (every k in φj∗)

5: νk ← νk + 1

6: end

7: End

8: For (every xij∗ with j∗ in ϕ)

9: Compute g(xij∗) using (5.12)

10: End

Output:

All positive instances xij∗ satisfying g(xij∗) > θ

bag Bi, we define an index set ϕ as:

ϕ =

{
j∗ : j∗ = argmax

j
exp

(
−
∥∥xij − xk

∥∥2
σ2

)
, k ∈ φ

}
. (5.11)

Then the bag classification rule (5.10) only needs the instances xij∗ , j
∗ ∈ ϕ.

Removing an instance xij∗ , j
∗ /∈ ϕ from the bag will not affect the value of∑

k∈φ w
∗
ks(x

k, Bi) in (5.10). There may exist more than one instance in bag

Bi maximizes exp(−‖xij−xk‖2
σ2 ) for a given xk, k ∈ φ. We denote the number

of maximizers for xk by νk. We then rewrite the bag classification rule (5.10)

in terms of the instances indexed by ϕ as:

y = sign

(∑
j∗∈ϕ

g(xij∗) + b∗
)
,

where

g(xij∗) =
∑
k∈φ

w∗
ks(x

k, xij∗)

νk
(5.12)
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determines the contribution of xij∗ to the classification of the bag Bi. In-

stance xij∗ belongs to the positive class if g(xij∗) > θ. Otherwise, xij∗ belongs

to the negative class. The choice of threshold θ is a application specific prob-

lem. In our experiments, the parameter θ is chosen to be bag dependent

as − b∗
|ϕ| . The detailed process of pruning intra-class noises is described in

Algorithm 5.2. We apply the rule (5.12) to prune negative instances (corre-

sponding to the intra-class noises).

5.3 Experiments

In this section, we first construct an image dataset with 100 categories and

conduct experiments on image classification, cross-dataset generalization,

and object detection to verify the effectiveness of our dataset. Then we

quantitative analyze the parameter sensitivity of our proposed approach. Fi-

nally, we introduce how to use our provided platform for evaluating various

algorithms in the task of pruning noisy images.

5.3.1 Image Dataset Construction

We choose all the 20 categories in PASCAL VOC 2007 dataset plus 80 other

categories as the target categories to construct our dataset WSID-100. The

reason is existing weakly supervised and web-supervised methods were eval-

uated on this dataset.

For each category, we first discover the multiple textual metadata from

Google Books with POS. Then the first N = 100 images were retrieved for

each discovered textual metadatato represent its visual distribution. In spite

of the fact that noises may be contained, we treat the retrieved images as

positive samples and split them into a training and validation set Ii = {I ti =
75, Ivi = 25}. We gather a random pool of negative images and split them into

a training and validation set I = {I t = 25, I
v
= 25}. Through experiments,

we declare a textual metadata i to be visual salient when the classification

result Si ≥ 0.6. We have released the discovered textual metadata for 100
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categories and the corresponding images (original image URL) on website1.

To prune less relevant textual metadata, we calculate the word-word and

visual-visual distance between visual salient textual metadata and target

query. We label l1 = 500 positive data and l2 = 500 negative data. This

labelling is for the textual metadata. We use a total of l = l1 + l2 = 1000

labeled and u = 500 unlabeled data to learn the multi-view prediction rule

(5.2). This labeling work only needs to be done once and the prediction rule

(5.2) will be used for pruning all less relevant textual metadata.

We construct the raw image dataset by using the textual metadata which

are not filtered out. Specifically, we collect the top 100 images for each

selected textual metadata. Since not enough textual metadata was found

for query “potted plant”, we collect the top 500 images for “potted plant”

textual metadata. To filter artificial images, we learn a radial basis function

SVM model by using the visual feature of color and gradient histogram.

Although the color and gradient histogram + SVM framework that we use is

not the prevailing state-of-the-art method for image classification, we found

our method to be effective and sufficient in pruning artificial images.

By treating each selected textual metadata as a “bag” and the images

therein as “instances”, we formulate inter-class and intra-class noisy images

pruning as a multi-instance learning problem. Our objective is to prune

“group” (bag-level) inter-class noisy images and “individual” (instance-level)

intra-class noisy images. To learn the bag prediction rule (5.10), we directly

use the previously labeled l1 = 500 positive textual metadata and l2 = 500

negative textual metadata corresponding images as the l+ = l1 = 500 positive

bags and l− = l2 = 500 negative bags. We apply the prediction rule (5.10)

to filter “group” inter-class noisy images. The value of g(xij∗) in (5.12)

determines the contribution of xij∗ to the classification of the bag Bi. In our

experiment, we choose the threshold θ as bag dependent θ = − b∗
|ϕ| . That is

we choose positive instance xij∗ satisfying g(xij∗) > − b∗
|ϕ| . The value of b∗

and ϕ can be obtained by solving (5.8) and (5.11), respectively.
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5.3.2 Comparison of Image Classification Ability and

Cross-dataset Generalization Ability

Experimental setting

For the comparison of image classification ability, we choose PASCAL VOC

2007 (Everingham et al. 2010) as the testing benchmark dataset. The same

categories among various datasets are compared. Specifically, we randomly

select 500 images for each category from various datasets as the positive

training samples. 1000 unrelated images are chosen as the negative samples

to train SVM classification models.

We test the classification ability of these models on PASCAL VOC 2007

dataset. The experiments are repeated for ten times and the average clas-

sification ability is taken as the final performance for various datasets. The

experimental results are shown in Fig. 5.4 and Table 5.1.

For cross-dataset generalization ability comparison, we randomly select

200 images per category from various datasets as the testing data. [200,300,400,

500,600,700,800] images for each category from various datasets are sequen-

tially chosen as the positive training samples. Similar to the comparison of

image classification ability, we use the same 1000 unrelated images as the neg-

ative training samples to learn image classification models. Training and test-

ing data for each category has no duplicates. Since dataset STL-10 (Coates

et al. 2011) and CIFAR-10 (Krizhevsky & Hinton 2009) have only 6 same cat-

egories “airplane”, “bird”, “cat”, “dog”, “horse” and “car/automobile” with

other datasets, they won’t be compared with our dataset and other datasets

in this experiment. For other datasets, we compare all the 20 same cate-

gories. The average classification accuracy on all categories illustrates the

cross-dataset generalization ability of one dataset on another dataset (Deng

et al. 2009). The experimental results are shown in Fig. 5.5.

For image classification and cross-dataset generalization ability compar-

ison, we set the same options to learn classification models for all datasets.

Specifically, we train SVM classifiers by setting the kernel as a radial ba-
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sis function. The other settings use the default of LIBSVM (Chang &

Lin 2011). For all images, we extract the 4096 dimensional deep features

based on AlexNet (Krizhevsky et al. 2012).

Baselines

We compare our dataset with two sets of baselines:

• Manually labeled datasets. This set of baselines consists of STL-10

(Coates et al. 2011), CIFAR-10 (Krizhevsky & Hinton 2009) and ImageNet.

STL-10 contains ten categories in which per category has 500 training and

800 testing images. Both of training and testing images are used to represent

this dataset. CIFAR-10 includes 10 categories and each category contains

6000 images. ImageNet provides an average of 1000 images to represent each

category and is organized according to the WordNet hierarchy.

•Web-supervised datasets. This set of baselines consists of DRID-20 (Yao

et al. 2017), Optimol (Li & Fei-Fei 2010) and Harvesting (Schroff et al. 2011).

DRID-20 contains 20 categories and each category has 1000 images. For

Optimol (Li & Fei-Fei 2010), we select all the categories in PASCAL VOC

2007 as the target categories and collect 1000 images for each category by

taking the incremental learning mechanism. For Harvesting (Schroff et al.

2011), we first retrieve the possible images from Google web search engine

and rank the retrieved images through the text information. The top-ranked

images are then leveraged to learn classification models to re-rank the images

once again. In total, we construct 20 same categories as PASCAL VOC 2007

for Harvesting dataset.

Experimental results

Cross-dataset generalization ability and image classification ability on third-

party testing dataset measure the performance of classifiers learned from one

dataset and tested on another dataset. It indicates the robustness of the

dataset (Torralba & Efros 2011).
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Table 5.1: The average accuracy (%) comparison over 14 and 6 common

categories on the PASCAL VOC 2007 dataset.

Method
PASCAL VOC 2007

14 categories 6 categories

STL-10 - 39.75

CIFAR-10 - 19.04

ImageNet 48.95 41.02

Optimol 42.69 35.97

Harvesting 46.33 34.89

DRID-20 51.13 46.04

Ours 53.88 49.48

From Fig. 5.4, we observe that the categories “plant”, “tv” and “air-

plane” present a relatively higher classification accuracy than other categories

when using the same number of training images. One possible explanation is

that the “diversity” of “plant”, “tv” and “airplane” are simpler than other

categories. The images are densely distributed in the feature space. For

categories “plant”, “tv” and “airplane”, training and testing images overlaps

much more easily.

According to the average accuracy over 6 common categories on the PAS-

CAL VOC 2007 dataset in Table 5.1, the performance of CIFAR-10 is much

lower than other datasets. The explanation is that CIFAR-10 has a limited

diversity and a serious dataset bias problem (Torralba & Efros 2011). In

CIFAR-10, the objects are pure and located in the middle of the images.

However, in the testing dataset and other compared datasets, these images

not only consist of target objects, but also plenty of other scenarios and

objects.

By observing Fig. 5.4, Fig. 5.5 and Table 5.1, our dataset outperforms

the web-supervised and manually labeled datasets in terms of image clas-

sification ability and cross-dataset generalization ability. Compared with
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STL-10, CIFAR-10, ImageNet, Optimol and Harvesting, our dataset which

was constructed by multiple textual metadata has a better diversity and can

well adapt to the third-party testing dataset. Compared with DRID-20, our

method treats textual and visual relevance as features from two different

views and takes multi-view based method to leverage both of textual and vi-

sual distance for pruning less relevant textual metadata. Our method can be

more effective in pruning textual metadata, and then obtain a more accurate

dataset. At the same time, we convert the inter-class and intra-class noises

pruning into solving a linear programming problem, not only improves the

accuracy but also the efficiency.

5.3.3 Comparison of Object Detection Ability

Due to the success of DPM (Felzenszwalb et al. 2010) detector, training

detection models without bounding boxes has received renewed attention.

Since recently state-of-the-art web-supervised and weakly supervised meth-

ods have been evaluated on PASCAL VOC 2007 dataset, we also test the

object detection ability of our collected data on this dataset.

Experimental setting

We firstly remove images which have extreme aspect ratios (> 2.5 or < 0.4)

and resize images to a maximum of 500 pixels. Then we train a separate DPM

for each selected textual metadata to constrain the visual variance. Specif-

ically, we initialize our bounding box with a sub-image in the process of

latent re-clustering to avoid getting stuck to the image boundary. Following

(Felzenszwalb et al. 2010), we take the aspect-ratio heuristic method to ini-

tialize our components. Some components across different textual metadata

detectors share visual similar patterns (e.g., “police dog” and “guard dog” ).

We take the method proposed in (Divvala et al. 2014) to merge visual simi-

lar and select representative components. After we obtain the representative

components, we leverage the approach proposed in (Felzenszwalb et al. 2010)

to augment and subsequently generate the final detector.
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Baselines

Three sets of baselines are chosen to compare with our collected data:

• Weakly supervised methods. This set of baselines consists of (Siva &

Xiang 2011) and (Prest et al. 2012). Method (Siva & Xiang 2011) leverages

image-level labels for training and initializes from objectness. Method (Prest

et al. 2012) takes manually labeled videos without bounding box for training

and presents the results in 10 out of 20 categories.

• Web-supervised methods. The web-supervised method (Divvala et al.

2014) leverages web information as a supervisor to train DPM detector.

• Fully supervised method. The fully supervised method (Felzenszwalb

et al. 2010) is a possible upper bound for weakly supervised and web-supervised

methods.

Experimental results

Table 5.4 presents the object detection results of our collected data and other

state-of-the-art methods on the PASCAL VOC 2007 test set. From Table

5.4, we have the following observations:

Compared with method (Siva & Xiang 2011) and (Prest et al. 2012) which

leverages weak supervision and (Felzenszwalb et al. 2010) which requires full

supervision, our method and (Divvala et al. 2014) don’t need to label the

training data. Nonetheless, our method and (Divvala et al. 2014) achieve

better detection results than previously best weakly supervised methods (Siva

& Xiang 2011) and (Prest et al. 2012). One possible explanation is our

approach as well as (Divvala et al. 2014) takes multiple textual metadata

for images collection, the accuracy of training data collected by (Divvala

et al. 2014) and our method is much higher than (Siva & Xiang 2011) and

(Prest et al. 2012). The training data collected by our approach and (Divvala

et al. 2014) contains more effective visual patterns.

Compared to method (Divvala et al. 2014) which also leverages multi-

ple textual metadata for images collection and web supervision, our method

achieves the best results in most cases. Possibly because we take different
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Table 5.2: The average recall and precision for ten categories corresponding

to different Si.

Si 0.8 0.7 0.6 0.5 0.4 0.3

Recall 35.6% 72.3% 97.4% 98.7% 100% 100%

Precision 87.2% 78.8% 71.2% 52.7% 46.4% 39.6%

Table 5.3: The average accuracy of inter-class noisy images filtering for ten

categories corresponding to different δ.

δ 10−3 10−2 10−1 100 101 102

Accuracy 96.2% 97.5% 96.6% 98.2% 97.6% 98.5%

methods to filter noisy textual metadata and images. Method (Divvala et al.

2014) takes iterative approaches during the process of noisy textual meta-

data and images removing while our method leverages a multi-view based

method for noisy textual metadata removing and multi-instance learning-

based method for noisy images removing. Our method can obtain a better

diversity of the selected images in the condition of ensuring the accuracy.

Our method discovers much richer as well as more useful linkages to visual

descriptions for the target category.

5.3.4 Parameter Sensitivity Analysis

There are lots of parameters in the process of our experiments, we mainly an-

alyze two parameters Si and δ in our proposed framework (C1 = δ, C2 = 1−δ

and 0 < δ < 1). To analyze parameter Si and δ, we choose 10 categories and

manually label 50 textual metadata for each category. For each textual meta-

data, we retrieve the top 100 images from image search engine to represent

the visual distribution. The value of Si is selected from the set of {0.3, 0.4,
0.5, 0.6, 0.7, 0.8} by applying the 3-fold cross-validation method. Table 5.2

demonstrates the average recall and precision for 10 categories corresponding

to different Si. Finally, we choose the value of Si to be 0.6. The reason is we
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want to get a relatively higher recall while ensuring an acceptable precision.

For the parameter δ, the value is selected from {10−3, 10−2, ..., 102}. We

also use the 3-fold cross-validation to select the value of δ. Table 5.3 shows

the average accuracy of inter-class noisy images filtering. By observing Table

5.3, we found our method is robust to the parameter δ when it is varied in a

certain range.

5.3.5 Platform Introduction

Due to the cost of manual labeling is too high, crawling data from the Internet

and using the web data (without manual annotation) to train models for

various computer vision tasks have attracted broad attention. However, due

to the complex of the Internet, the crawled data tend to have noise. Removing

noise and choosing high-quality instances for training often plays a key role

in the quality of the last trained model. To this end, we provide a benchmark

platform for evaluating the performance of various algorithms in the task of

pruning noise. The specific steps are as follows:

step 1: obtaining the raw image data for 100 categories from our website1;

step 2: performing algorithms to prune noise and select useful data from the

raw image data;

step 3: running cross-dataset generalization experiments on the selected data

and our publicly released dataset WSID-100.

Algorithms which have a better cross-dataset generalization ability tend to

have a better ability in the task of pruning noise and selecting high-quality

data.

5.4 Conclusions

In this chapter, we presented an automatic image dataset construction frame-

work. To verify the effectiveness of the proposed framework, we built an
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image dataset with 100 categories. Extensive experiments have shown the

superiority of our dataset over manually labeled datasets STL-10, CIFAR-10,

ImageNet and web-supervised datasets Harvesting, Optimol and DRID-20 on

image classification and cross-dataset generalization. In addition, we success-

fully applied our data to improve the object detection performance on the

PASCAL VOC 2007 dataset. We have publicly released our web-supervised

image dataset on website to facilitate the research in the web-vision and other

related fields.
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Figure 5.4: The image classification accuracy (%) comparison over 14 and 6 categories on the PASCAL VOC 2007

dataset.
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Figure 5.5: The cross-dataset generalization ability of various datasets by using a varying number of training images,

and tested on (a) ImageNet, (b) Optimol, (c) Harvesting, (d) DRID-20, (e) Ours, (f) Average.
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Table 5.4: Object detection results (A.P.) (%) on PASCAL VOC 2007 dataset (Test).

Method (Siva & Xiang 2011) (Prest et al. 2012) (Divvala et al. 2014) Ours (Felzenszwalb et al. 2010)

Supervision weak weak web web full

airplane 13.4 17.4 14.0 17.8 33.2

bike 44.0 - 36.2 42.4 59.0

bird 3.1 9.3 12.5 17.7 10.3

boat 3.1 9.2 10.3 9.8 15.7

bottle 0.0 - 9.2 16.2 26.6

bus 31.2 - 35.0 44.6 52.0

car 43.9 35.7 35.9 39.7 53.7

cat 7.1 9.4 8.4 11.2 22.5

chair 0.1 - 10.0 9.4 20.2

cow 9.3 9.7 17.5 19.8 24.3

table 9.9 - 6.5 12.3 26.9

dog 1.5 3.3 12.9 12.4 12.6

horse 29.4 16.2 30.6 39.5 56.5

motorcycle 38.3 27.3 27.5 36.3 48.5

person 4.6 - 6.0 8.2 43.3

plant 0.1 - 1.5 1.2 13.4

sheep 0.4 - 18.8 23.7 20.9

sofa 3.8 - 10.3 12.6 35.9

train 34.2 15.0 23.5 31.5 45.2

tv/monitor 0.0 - 16.4 20.2 42.1

average 13.87 15.25 17.15 21.32 33.14
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Chapter 6

Privileged Information

6.1 Introduction

Data-driven classifier learning approaches become very brittle and prone to

over-fitting when the training data is inadequate either in quantity or qual-

ity. Unfortunately, this is often the case in many real-world applications. A

natural solution to alleviate this limitation is incorporating additional privi-

leged information (Wang & Ji 2015, Li et al. 2014, Niu et al. 2017, Divvala

et al. 2014). For example, in object recognition, in addition to the image

features and labels (e.g., , “horse”), the learner may also leverage object at-

tributes (e.g., , “walking” and “jumping”) in the training process. In human

action recognition, besides the RGB features and human action labels, human

joint positions can be incorporated into the classifier training. In practice,

the privileged information can be tags, properties, attributes, positions or

the context of the web images.

However, learning classifier with privileged information is a challenging

problem. The difficulty lies in three aspects. Firstly, the process of manually

labeling privileged information is very expensive. Secondly, it is only avail-

able during training and unseen during testing. We cannot combine the priv-

ileged information with input features to predict the category label. Thirdly,

learning classifiers with PI overly depends on the quality of the collected PI.
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Tags:
Animal
Horse
Running
Kerala
Canon

Tags:
Vehicle

Jets
aircraft

Outdoor
Rotor

Tags:
Indoor
Photo frame
mouse

Tags:
Group Tripod

Mouse
Glasses

Figure 6.1: Examples of textual tags (privileged information) for images on

image sharing website “Flickr”. Both of useful and noisy tags are included.

As shown in Fig 6.1, images on website Flickr1 tend to have multiple textual

tags. These textual tags are often associated with noise in practice. If we

failed to remove noise, the accuracy and robustness of the learned classifier

would be greatly reduced, and, in extreme cases, may become even worse.

Motivated by that, we seek to extract and leverage useful privileged in-

formation to enhance classifier learning. Different from previous works which

discover privileged information from manually labeled descriptions, our ap-

proach extracts the privileged information from untagged corpora. The mo-

tivation is to eliminate the dependency on manually labeled data and obtain

a relatively more accurate and richer privileged information. Besides, differ-

ent from previous works which usually encode privileged information into the

parameters of the classifier during training, we focus on encoding privileged

information into the structure of the classifier during training.

In our work, there are two tags for the image that we collected in the pre-

vious chapter: one for the category tag and one for the semantic refinement

subcategory tag. So we can use the semantic refinement subcategory tags as

PI information to enhance our classifier learning.

1https://www.flickr.com/
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6.2 Framework and Methods

We treat each selected privileged information as a subcategory for the tar-

get category. Suppose we obtain M subcategories in the previous step, we

retrieve the top few candidate training images from image search engine for

each subcategory.

6.2.1 Formulation

Since the retrieved training images may contain noise, we need to select

appropriate samples to train robust classifiers (Fergus et al. 2004, Berg &

Forsyth 2006). To this end, a binary indicator hi ∈ {0, 1} is used to indicate

whether or not training instance xi is selected. To be exact, hi = 1 when xi

is selected, and hi = 0 otherwise. Due to the precision of images returned

from the image search engine tends to have a relatively high accuracy, we

define each positive subcategory as at least having a portion of η positive

images. The value of η can be estimated from some prior knowledge (Li

et al. 2011, Yao, Hua, Shen, Zhang & Tang 2016). We define h = [h1, ...hN ]
�

as the indicator vector, and use H = {h|∑i∈Im hi = η |Gm| , ∀m} to represent
the feasible set of h, where Im represents the set of instance indices in Gm,

and |Gm| denotes the cardinality of Gm.

We assume there are N retrieved web images coming from C categories

and belonging to S subcategories. zi,s ∈ {0, 1} is a binary indicator variable

and takes the value of 1 when xi belongs to the s-th subcategory, and 0

otherwise. We denote Ns =
∑N

i=1 zi,s as the number of web training images

from the s-th subcategory. By treating each subcategory as a “bag” and the

retrieved images therein as “instances”, we formulate noisy images removing

and integrated classifiers learning as an instance-level MIL problem:

min
h,wc,s,ξm

1

2

C∑
c=1

S∑
s=1

‖wc,s‖2 + C1

M∑
m=1

ξm (6.1)
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s.t.
1

|Gm|
∑
i∈Im

hi(
S∑

s=1

Pi,s(wYm,s)
�φ(xi)−

(wĉ,ŝ)
�φ(xi)) � η − ξm, ∀m, ŝ, ĉ �= Ym

ξm � 0, ∀m

(6.2)

where C1 is a trade-off parameter, ξm are slack variables and φ(·) is the

feature mapping function. Pi,s is the probability that the i -th training sample

comes from the s-th subcategories. It can be obtained by calculating Pi,s =

(zi,s/Ns)/
∑S

s=1(zi,s/Ns). The explanation for constraint (6.2) is that we

force the total decision value of each bag obtained based on the classifier

corresponding to its own category to be larger than those obtained by using

the classifiers for the other categories. The motivation is we want to reduce

the bag-level loss by removing noise and identifying the good instances within

the training bags.

Since the visual distributions of the training samples from same category

or subcategory are generally more similar than different categories and sub-

categories, we train one classifier for each category and each subcategory.

In general, a total of C × S classifiers fc,s(x)|c = 1, ...C, s = 1, ...S will be

learned. For better representation, we omit the bias term and use

fc,s(x) = (wc,s)
�ø(x) (6.3)

representing the classifier of the s-th subcategory and the c-th category.

The decision function for category C is obtained by integrating the learned

classifiers from multiple subcategories:

fc(xi) =
S∑

s=1

Pi,sfc,s(xi). (6.4)

During testing, we want to find the labels of the most matched subcat-

egory and category, whose classifier achieves the largest decision value from

all the subcategories and categories respectively. Thus, the subcategory label

of image x can be predicted by:

argmax
s

w�
c,sφ(x) (6.5)
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and the category label by:

argmax
c

(max
s

w�
c,sφ(x)). (6.6)

6.2.2 Optimization

Problem (6.1) is a non-convex mixed integer problem and is hard to solve

directly. However, the dual form of (6.1) can be relaxed as a multiple kernel

learning (MKL) problem (Bach et al. 2004) which is much easier to solve.

The dual form of (6.1) is:

min
h

max
α

−1

2
α�Qhα+ ζ�α

s.t.
∑
c,s

αm,c,s = C1, ∀m,

αm,c,s � 0, ∀m, c, s.

(6.7)

α ∈ RD (D = M · C · S) is a vector containing dual variables αm,c,s.

ζ ∈ RD is a vector, in which ζm,c,s = 0 if c = Ym and ζm,c,s = η oth-

erwise. Each element in matrix Qh ∈ RD×D can be calculated through:

Qh = (1/ |Gm| |Gm̂|)
∑

i∈Im
∑

j∈Im̂ hihjø(xi)
�ø(xj)λ(i, j, c, ĉ, s, ŝ).

Problem (6.7) is a mixed integer programming problem and is hard to

directly optimize the indicator vector h. Inspired by recent works (Li et al.

2011, Li, Kwok, Tsang & Zhou 2009), we can find the coefficients of hth
�
t .

For consistent presentation, we denote d = [d1, ...dT ]
�, T = |H|, and the

feasible set of α, d as ν and D = {d|d�1 = 1,d � 0}, respectively. Then we

can get the following optimization problem:

min
d∈D

max
α∈ν

− 1

2

T∑
t=1

dtα
�Qhtα+ ζ�α. (6.8)

When we set the base kernel as Qht , the above problem is similar to the

MKL dual form and we are able to solve it on its primal form, which is a

convex optimization problem:

min
d∈D,wt,ξm

1

2

T∑
t=1

‖wt‖2
dt

+ C1

M∑
m=1

ξm (6.9)
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s.t.
T∑
t=1

w�
t ϕ(ht, Gm, c, s) � ζm,c,s − ξm, ∀m, c, s (6.10)

where ϕ(ht, Gm, c, s) is the feature mapping function induced by Qht . We

solve the convex problem in (6.9) by updating d and {wt, ξm} in an alterna-

tive way.

Update d: We firstly fix {wt, ξm} to solve d. By introducing a dual

variable β for constraint d�1 = 1, the Lagrangian form of (6.9) can be

derived as:

£ =
1

2

T∑
t=1

‖wt‖2
dt

+ C1

M∑
m=1

ξm −
∑
m,c,s

αm,c,s

(
T∑
t=1

w�
t ϕ(ht, Gm, c, s)− ζm,c,s + ξm) + β(

T∑
t=1

dt − 1).

(6.11)

Through set the derivative of (6.11) with respect to dt as zero, we can

get:

dt =
‖wt‖√
2β

, ∀t = 1, ..., T. (6.12)

For parameter β, ‖wt‖/
√
2β is monotonically decreasing. In addition, pa-

rameter dt satisfy
∑T

t=1 dt = 1. Therefore, we can use binary search method

to solve β and recover dt according to (6.12).

Update wt: When d is fixed, wt can be obtained by solving α in (6.8).

Problem (6.8) is a quadratic programming problem w.r.t α. Since there are

M ·C ·S variables in our problem, it is time-consuming to employ the existing

quadratic programming solvers. Inspired by recent work (Li, Tsang, Kwok

& Zhou 2009), we can employ the cutting-plane algorithm (Kelley 1960) to

solve this quadratic programming problem.

We start from a small number of base kernels and at each iteration we

add a new violating base kernel. Therefore, only a small set of h need to

be solved at each iteration and the whole problem can be optimized more

effectively. By setting the derivatives of (6.11) with respect to {wt, ξt, dt} as
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Algorithm 6.1 Cutting-plane algorithm for solving the proposed instance-

level MIL model.
Input:

Image bags {(Gm, Ym)|Mm=1}.
1: Initialize yi = 1 for all xi in selected bags Gm.

2: Set t = 1 and C = {h1};
3: Repeat

4: t = t+ 1;

5: Solve MKL to obtain (d, α) in (6.8) based on C ;

6: //Find the most violating ht

7: for each bag Gm

8: Fix the labelling of instances in all other bags;

9: Enumerate the candidates of yi in Gm;

10: Find the optimal ym by maximizing (6.15);

11: end

12: repeat lines 7-11 until there is no change in h;

13: Add the most violating ht to the violation set C =

14: C ∪ ht;

15: Until The objective of (6.8) converges.

Output:

The learnt image classifier f (x).

zeros, (6.8) can be rewritten as:

max
β,α∈ν

−β + ζ�α

s.t.
1

2
α�Qhtα � β, ∀t.

(6.13)

We solve (6.13) by solving α with only one constraint at the first, then

add a new violating constraint iteratively. Particularly, since each constraint

is associated with an ht , we can obtain the most violated constraint by

optimizing:

max
h

1

2
α�Qhα (6.14)

100



CHAPTER 6. PRIVILEGED INFORMATION

After a simple derivation, we can rewrite (6.14) as:

max
h

h�(
1

2
Q̂� (α̂α̂�))h (6.15)

where α̂i = 1/ |Gm|
∑

c,s αm,c,s for i ∈ Im and Q̂ =
∑

c,ĉ,s,ŝ φ(xi)
�φ(xj)λ(i, j, c, ĉ, s, ŝ).

Problem (6.15) can be solved approximately through enumerate the binary

indicator vector h in a bag by bag fashion iteratively to maximize (6.15) until

there is no change in h. The detailed solutions for our instance-level MIL

model are described in the Algorithm 6.1.

6.3 Experiments

In this section, we first conduct experiments on both image categorization

and sub-categorization to demonstrate the superiority of our proposed ap-

proach. Then we analyze the parameter sensitivity and time complexity of

our proposed approach in this section.

6.3.1 Image categorization

Experimental setting

We follow the setting in (Bergamo & Torresani 2010, Li & Fei-Fei 2010) and

exploit web images as the training set, human-labeled images as the testing

set. Particularly, we evaluate the performance of our approach and other

baselines on the following datasets:

• PASCAL VOC 2007 (Everingham et al. 2010). The PASCAL VOC

2007 dataset contains 9963 images in 20 categories. Each category has train-

ing/validation data and test data. For this experiment, we only use the test

data in PASCAL VOC 2007 as the benchmark testing set.

• STL-10 (Coates et al. 2011). The STL-10 dataset has ten categories,

and each category of which contains 500 training images and 800 test images.

We also use the test images in STL-10 as the benchmark testing set.

• CIFAR-10 (Krizhevsky & Hinton 2009). The CIFAR-10 dataset consists

of 60000 images in 10 categories, with 6000 images per category, of which
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5000 are training images and 1000 are test images. Similarly, we only use

the test images in CIFAR-10 as the benchmark testing set.

After we obtain the selected PI, we treat each selected PI as a subcategory

for the target category. The top 100 images were chosen for constructing the

positive bags which corresponding to the selected subcategories. Negative

bags can be obtained by randomly sampling a few irrelevant images. By

treating each subcategory as a “bag” and the images therein as “instances”,

we formulate noisy images removing and classifiers learning as an instance-

level MIL problem. We specifically propose a new MIL model to select a

subset of training images from each bag and simultaneously learn the optimal

classifiers based on the selected images. We define each positive bag as having

at least a portion of η = 0.7 positive instances and set the trade-off parameter

C1 = 10−1. To compare with other baseline methods, we evenly select 500

images from positive bags for each category to learn the integrated classifier.

In this experiment, the features are 4096-dimensional deep features based on

AlexNet (Krizhevsky et al. 2012).

Baselines

To quantify the performance of our proposed approach, three set of weakly

supervised baselines are selected to compare with our approach:

• Sub-categorization methods. The sub-categorization methods Sub-

Cate (Hoai & Zisserman 2013) and RN-CMF(Ristin, Gall, Guillaumin &

Van Gool 2015) can also be used to do image categorization. For method

Sub-Cate, the candidate images are retrieved from the image search engine.

Then we discover the subcategories of these candidate images through clus-

tering by using visual features. We also evenly select 500 images from these

subcategories to train image classifier. For method RN-CMF, we obtain the

candidate images from the image search engine. We take the framework of

Random Forests and the proposed regularized objective function to select

500 images for each category to train the image classier.

• MIL methods. The MIL methods contain instance-level method mi-
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SVM (Andrews et al. 2003) and bag-level method sMIL (Bunescu & Mooney

2007). For method mi-SVM, the training images are also retrieved from the

image search engine. Particularly, we take the proposed heuristic way to

iteratively select 500 images for each category and train the image classifier.

For method sMIL, we first retrieve the candidate images from the image

search engine, then we partition the candidate images into a set of clusters.

Each cluster is treated as a “bag” and the images therein as “instances”.

Correspondingly, we take the proposed MIL method to select the 500 training

images for each category and train the image classifier.

• Privileged information methods. The privileged information methods

include sMIL-PI (Li et al. 2014), LIR (Wang & Ji 2015), WSDG-PI (Niu

et al. 2017) and VCL (Divvala et al. 2014). For method sMIL-PI and WSDG-

PI, we cope with noise in the labels of retrieved web images and incorporate

the textual features extracted from the surrounding descriptions to modify

the parameters of the classifier during training. For method LIR, we encode

privileged information as regularization term to refine parameter estimation

during training. Similarly, we also collect 500 images for each category to

learn classifiers for sMIL-PI, WSDG-PI and LIR. For method VCL, we obtain

the candidate privileged information from untagged corpora and leverage

the proposed iterative method to purify the noisy privileged information and

images. We evenly select 500 images from this selected privileged information

for each category to learn the classifier.

Experimental results

The detailed and average performance comparison results are summarized in

Fig 6.4, Fig 6.5, and Table 6.1. From Fig 6.4, Fig 6.5, and Table 6.1, we have

the following observations:

Among the 20 categories in PASCAL VOC 2007, we achieved the best

results in 19 categories. In the ten categories of STL-10 and CIFAR-10,

we obtained the best results in all categories. Moreover, our approach also

achieved the best average results on all three datasets.
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The performance of privileged information methods sMIL-PI, LIR, WSDG-

PI, VCL and our method was better than sub-categorization and MIL meth-

ods. The explanation is perhaps that it is necessary to leverage privileged

information during the process of classifier learning. Learning directly from

web images without privileged information may affect the performance of the

classifier due to the limitations of only using visual features.

Privileged information methods VCL and our method performed better

than three other PI methods sMIL-PI, LIR and WSDG-PI on the task of

image categorization. One possible explanation is that the privileged infor-

mation extracted from untagged corpora in both of our method and VCL is

much richer and more accurate than three other methods in which the PI is

obtained from the surrounding textual descriptions. Due to the limitations

of personal knowledge, manually labeled PI is usually not rich enough. In ad-

dition, useful PI is often associated with noise in practice, and it is necessary

to remove the noise before using them.

Finally, our proposed approach achieved the best average performance on

all three datasets. Compared to MIL and sub-categorization methods, the

classifiers learned by our approach not only using the visual features, but also

the textual PI. Privileged information is usually more discriminative than the

visual features in practical applications. For example, text descriptions are

usually better than the raw image pixels to classify the objects. Compared

to privileged information methods which extract PI from the surrounding

textual descriptions, the privileged information extracted by our method

from untagged corpora is much more accurate and general. So the learned

classifiers are more robust. Compared to VCL which leverages an iterative

mechanism in the process of noisy privileged information and web images

removing, the PI and training images extracted by our method are much

richer and have a better diversity. In addition, our method exploits multiple

PI to learn integrated classifier is more robust than VCL which takes multiple

PI to learn a single classifier.
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Table 6.1: The average performance comparison on the PASCAL VOC 2007,

STL-10 and CIFAR-10 dataset.

Method
Dataset

PASCAL STL-10 CIFAR-10

sMIL 0.383 0.351 0.254

mi-SVM 0.414 0.381 0.278

RN-CMF 0.499 0.394 0.313

Sub-Cate 0.432 0.426 0.336

sMIL-PI 0.437 0.454 0.355

LIR 0.482 0.472 0.376

WSDG-PI 0.522 0.485 0.432

VCL 0.545 0.513 0.429

Ours 0.582 0.557 0.464

6.3.2 Image sub-categorization

Experimental setting

For image sub-categorization, we choose a subset of ImageNet as the testing

benchmark dataset. The reason is that ImageNet which constructed accord-

ing to the WordNet has a hierarchy structure. In particular, we select five

categories including “airplane”, “bird”, “cat”, “dog” and “horse” as the tar-

get categories and all their leaf synsets as the subcategories. We are only

concerned with the two-tier structure and deeper structure synsets are ig-

nored. We obtain 5 categories and 97 subcategories. A detailed number of

subcategories for each category in this experiment is provided in Table 6.2.

The top 1000 images for each subcategory were retrieved from image search

engine (Bing Image Search API-v7). We perform a cleanup step for broken

links, webpages and obtain top ranked 700 images for each subcategory. We

have a total number of 97 × 700 training images. We leverage the proposed

MIL model to remove noise and learn classifiers. Specifically, we exploit the

learned classifiers to re-rank the images in each subcategory according to the
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Table 6.2: The detailed number of subcategories used for image sub-

categorization in this experiment.

Category airplane horse bird cat dog

Subcategories 15 29 26 9 18

probability to be a positive sample. We sequentially select the top-ranked

[100, 150, 200, 250, 300, 350, 400, 450, 500] images from each subcategory as

the positive training samples to learn classifiers. 500 images per subcategory

from ImageNet were selected as the testing data. In addition, we leveraged

the top-ranked 500 images per subcategory as the positive training samples

to learn classifiers and sequentially select [100, 150, 200, 250, 300, 350, 400,

450, 500] images per subcategory from ImageNet as the testing data. For

this experiment, we also use the deep features based on AlexNet (Krizhevsky

et al. 2012).

Baselines

We compare the image sub-categorization ability of our method with four

baseline methods:

•multi-SVM (Andrews et al. 2003). For the multi-SVM method, the class

number is 97. We directly use the retrieved images from the image search

engine as the positive samples to learn classifiers (without noise pruning

operation).

• Sub-Cate (Hoai & Zisserman 2013). Method Sub-Cate takes joint clus-

tering and classification for subcategories discovering. For this experiment,

the latent cluster number for each coarse category is known and equal to the

number of given subcategories.

• RN-CMF (Ristin et al. 2015). For RNCMFmethod, the labeled training

data is unavailable for both “coarse” categories and “fine” subcategories. The

training images are retrieved from image search engine which may include

noise due to the error index of image search engine. We assume there are
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Figure 6.2: Sub-categorization accuracy (%) of the different methods (a)

using a varying number of training images for per subcategory, and (b) using

a varying number of testing images for per subcategory.

five trees corresponding to our five coarse categories and start the recursively

learning. The depth of the tree for this experiment is all limited to two levels.

• MMDL (Wang, Wang, Bai, Liu & Tu 2013). MMDL formulate image

selection as a multi-instance learning problem. For this experiment, the

subcategories are assumed as “bags” and the retrieved images therein as

instances. We take the proposed multi-instance learning function to select

images from the retrieved images and learn the image classifiers.

Experimental results

Fig. 6.2 presents the image sub-categorization results achieved by different

methods when using a varying number of training and testing images. The

accuracy is measured by the average classification rate per subcategory.

By observing Fig. 6.2, we can see the best performance is achieved by our

method, which produces significant improvements over method Sub-Cate and

multi-SVM, particularly the number of positive training images over 250 for

each subcategory. The reason is that our method considers the noisy images

during the process of classifier learning. Due to the error index of image

search engine, some noise may be included. We need to remove noise and
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select useful images from the retrieved web images to learn robust classifiers

for each subcategory.

From Fig. 6.2, we notice that the performance of the multi-SVM and

Sub-Cate peaks at the value of training numbers 200 or 250 and decreases

monotonically after this peaks. One possible explanation is that the image

search engine provides images based on the estimated relevancy concerning

the query. Images far down in the ranking list are more likely to be noise,

which may result in degrading of the sub-categorization accuracy, especially

for non-robust methods.

It is interesting to note in Fig. 6.2, while method RN-CMF implements

a form of noise removing, the classification accuracy did not improve with

the number of positive training images increase. One possible explanation is

that the noise in the training data is not the only factor that affects the clas-

sification accuracy. The visual distribution of the selected images is another

important factor that we can’t ignore. Furthermore, the poor accuracy of

Sub-Cate suggests that naively adding the number of training images with-

out considering the visual distributions not only does not help but worsens

the classification accuracy.

By observing Fig. 6.2, our approach compares very favorably with com-

peting algorithms, in terms of different numbers of training and testing im-

ages. Compared to method multi-SVM, Sub-Cate, RN-CMF, and MMDL,

our approach achieves significant improvements in the sub-categorization ac-

curacy. The reason is our proposed MIL model not only considers the pos-

sible presence of noise in the web training data, but also tries to ensure the

diversity of the selected images for classifier learning.

6.3.3 Parameter Sensitivity Analysis

For parameter sensitivity analysis, we mainly concern the number of labeled

positive and negative PI in the process of PI purifying and two parameters

C1 and η in our MIL model. PASCAL VOC 2007 was selected as the bench-

mark testing dataset to evaluate the performance variation of our proposed
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Figure 6.3: The parameter sensitiveness of C1, η, Np and Nn in terms of

image categorization accuracy.

approach. In particular, we vary one parameter by fixing other parameters

as the default value. Fig 6.3 presents the parameter sensitiveness of C1, η,

Np and Nn in terms of image categorization accuracy on testing dataset.

By observing Fig 6.3 (a), we found our method is robust to the parameter

C1 when it is varied in a certain range [10−3, 10−2, 10−1, 100, 101, 102, 103].

From Fig 6.3 (b), we noticed that the performance of our method is growing

when η increases but less than 0.7. The reason is perhaps that our training

data was derived from image search engine. Due to the error index of image

search engine, there may be too much noise in each bag which will result in

decreasing the classification accuracy when η � 0.7. When η increases over

0.7, the performance of our method decreases. One possible explanation is

that the training set is less diverse. With the increase of η, the number of

subcategories is decreasing, which may lead to the degradation of domain

robustness of the classifier.

By observing Fig 6.3 (c), we found the performance of our method is

growing when Np increases but less than 500. The explanation is that when

Np � 500, the performance of the noisy PI purifying classifier increases, and

when Np increases over 500, the noisy PI purifying classifier may have been

over-fitted. In this condition, some positive PI may be removed by mistake,

resulting in a decrease in the performance of the final integrated classifier.

From Fig 6.3 (d), we observed that the performance of our method shows a

relatively rapid increase when the number of Nn � 500. When the number

of negative PI is larger than 500, the performance of our method increases
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at a relatively slower rate.

6.3.4 Time Complexity Analysis

During the process of our proposed multi-instance learning, we solve the

convex problem in (6.9) by using the cutting-plane algorithm. Through find-

ing the most violating candidate ht and solve the MKL subproblem at each

iteration, the time complexity of (6.9) can be approximately computed as

T ·O(MKL), where the T is the number of iterations and the O(MKL) is the

time complexity of the MKL sub-problem. According to (Platt 1999), the

time complexity of MKL is between t ·O(LCM) and t ·O((LCM)2.3), where

M,L,C are the numbers of latent domains, bags and categories respectively.

t is the number of iterations in MKL.

6.4 Conclusions

In this chapter, we presented a new approach for enhancing classifier learning

by using the collected web images. Different from previous works, our ap-

proach, while improving the accuracy and robustness of the classifier, greatly

reduces the time and labor dependence. Specifically, we proposed a new

instance-level MIL model to select a subset of training images from each se-

lected privileged information and simultaneously learn the optimal classifiers

based on the selected images. Extensive experimental results demonstrated

the superiority of our proposed approach over existing weakly supervised

state-of-the-art methods.
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Figure 6.4: The detailed performance comparison over 20 categories on the PASCAL VOC 2007 dataset.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

As the computer vision community considers more visual categories and

greater intra-class variations; it is clear that larger and more exhaustive

datasets are needed. However, the process of constructing such datasets is

laborious and monotonous. It is unlikely that the manual annotation can

keep pace with the growing need for annotated datasets. To reduce the cost

of manual annotation, automatically constructing image datasets by using

the web data has attracted more and more peoples attention. However,

there are still three unsolved and partially solved problems that can be fur-

ther discussed. In consideration of these problems, the main content and

innovation of this thesis follow.

This thesis proposes a new framework for discovering and distinguishing

multiple visual senses for polysemous words. We argue that the current poor

performance of existing methods for image dataset construction is due to the

visual polysemy. We solved the problem by allowing sense-specific diversity

in search results. Compared to existing methods, our proposed method can

not only figure out the right sense but also generates the right mapping

between semantic and visual senses. The experimental results demonstrated

the superiority of our proposed approach over existing weakly supervised
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state-of-the-art approaches.

This thesis presents a new framework for domain-robust image dataset

construction which can be generalized well to unseen target domains. Three

successive modules were employed in the framework, namely query expand-

ing, noisy expansion filtering, and noisy image filtering. To verify the effec-

tiveness of our proposed method, we constructed an image dataset DRID-20.

Extensive experiments demonstrated the superiority of our approach.

This thesis presents an automatic image dataset construction framework.

We aim at collecting accurate images for given queries from the Web. Specif-

ically, we formulate noisy textual metadata removing and noisy images fil-

tering as a multi-view and multi-instance learning problem separately. Our

proposed approach not only improves the accuracy, but also enhances the

diversity of the selected images. To verify the effectiveness of our proposed

approach, we construct an image dataset with 100 categories. The experi-

ments show significant performance gains by using the generated data of our

approach on several tasks, such as image classification, cross-dataset gener-

alization and object detection.

This thesis proposes a new approach for enhancing classifier learning by

using the collected web images. Different from previous works, our approach,

while improving the accuracy and robustness of the classifier, greatly reduces

the time and labor dependence. Specifically, we proposed a new instance-

level MIL model to select a subset of training images from each selected

privileged information and simultaneously learn the optimal classifiers based

on the selected images. Extensive experimental results demonstrated the

superiority of our proposed approach over existing weakly supervised state-

of-the-art methods.

7.2 Future Work

The purpose of this study is to reduce the cost of obtaining diverse, accu-

rate, and high-quality images from the web. This thesis presents a series
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of theoretical research and experimental demonstrations on image dataset

construction. Further directions of research are discussed below.

1) Due to the superiority of the deep model in the process of learning param-

eters, more and more scholars began to use deep learning based methods

to solve problems and achieved good results. In the future, we will try

to use deep learning based method to solve the polysemy, diversity, and

accuracy problem in the process of image dataset construction.

2) Large-scale visual recognition. We eliminate the dependency on manually

labelled data and propose to learning classifiers directly through web data.

This makes large-scale visual recognition possible. In the future work, the

use of web data for large-scale visual recognition is one of our research

directions.

3) Understanding actions. Actions (e.g., “horse fighting”, “reining horse”)

are too complex to be explained using simple primitives. Our collected

images which have semantic refinement tags help in discovering a com-

prehensive vocabulary that covers all nuances of any action. For example,

we have discovered over 150 different variations of the walking action in-

cluding “primitives walking”, “couple walking”, “frame walking”. Such

an exhaustive vocabulary helps in generating fine-grained descriptions of

images. In the future work, understanding actions through web data is

also one of our research directions.

4) Paraphrasing. Rewriting a textual phrase in other words while preserving

its semantics is an active research area in NLP. Our method can be used

to discover paraphrases. For example, we discover that a “grazing horse”

is visually similar to a “eating horse”. Our collected data can be used

to produce a visual similarity score for textual phrases. Establishing a

measure of semantic similarity from the visual point of view is also a

research direction for us.
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Appendix A

Solutions

A.1 The detailed solutions to (5.1)

We denote reproducing kernels corresponding to HK(1) and HK(2) by

kH
K(1)

: X × X → R

and

kH
K(2)

: X × X → R,

respectively. We introduce the notation for the “span of the data” in space:

LH
K(1)

:= span{kH
K(1)

(xi, ·)}l+u
i=1 ⊂ HK(1)

and

LH
K(2)

:= span{kH
K(2)

(xi, ·)}l+u
i=1 ⊂ HK(2) .

According to the Representer Theorem (Argyriou, Micchelli & Pontil 2009),

we have

(f (1)∗, f (2)∗) ∈ LH
K(1)

× LH
K(2)

.

Thus we can write the solution as:

f (1)∗(·) =
u+l∑
i=1

αikH
K(1)

(xi, ·) ∈ LH
K(1)
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f (2)∗(·) =
u+l∑
i=1

βikH
K(2)

(xi, ·) ∈ LH
K(2)

where

α = (α1, ..., αu+l) ∈ Ru+l

and

β = (β1, ..., βu+l) ∈ Ru+l.

We denote an arbitrary element of LH
K(1)

and LH
K(2)

by

f (1)
α =

u+l∑
i=1

αikH
K(1)

(xi, ·)

and

f
(2)
β =

u+l∑
i=1

βikH
K(2)

(xi, ·),

respectively. Kernel matrices

(KH
K(1)

)ij = kH
K(1)

(xi, xj)

and

(KH
K(2)

)ij = kH
K(2)

(xi, xj)

are partitioned into blocks corresponding to labeled and unlabeled points:

KH
K(1)

=

(
Au×u Cu×l

C
′
l×u Bl×l

)
KH

K(2)
=

(
Du×u Fu×l

F
′
l×u El×l

)
.

We now can rewrite the co-regularization term as:

l+u∑
i=l+1

[f (1)
α (xi)− f

(2)
β (xi)]

2 = ‖(AC)α− (DF )β‖2 ,

and it follows from the reproducing property∥∥f (1)
α

∥∥2
H

K(1)
= α

′
KH

K(1)
α

and ∥∥∥f (2)
β

∥∥∥2
H

K(2)

= β
′
KH

K(1)
β.
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The objective function is quadratic in α and β and thereby a solution (f (1)∗, f (2)∗)

can be found by differentiating and solving a system of linear equations:[
1

l
JKH

K(1)
+ γ1I + λKH

K(1)

]
α− λKH

K(2)
β =

1

l
Y

[u
l
JKH

K(2)
+ γ2I + λKH

K(2)

]
β − λKH

K(1)
α =

u

l
Y

where Y is a label vector given by Yi = yi for 1 � i � l and Yi = 0

for l + 1 � i � l + u; J is a diagonal matrix given by Jii = |Yi|. The

detailed solutions for the above linear equations can be found in (Sindhwani

et al. 2005).
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