UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Novel Control Strategies for Smart Electrical Car Parks

by

Tingting He

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy

Sydney, NSW, Australia

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for other degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature used are quoted in the thesis.

© Copyright 2018 Tingting He

Production Note: Signature removed prior to publication.

Acknowledgements

I would like to thank all those people who contributed one way or another towards the completion of this thesis. I highly appreciate the expert supervision, guidance, encouragement and financial support from my supervisor, Professor Jianguo Zhu throughout this thesis research. Associate Professor Dylan Lu has been a constant source of insightful thoughts, inspiration and guidance. I have benefited greatly, on numerous occasions, from his timely advice, continuous encouragement, and generous support over the years. I also would like to thank our group members Associate Professor Li Li, Dr Gang Lei and Associate Professor Youguang Guo for their time and valuable suggestions.

I would like to thank all my other friends in the Electrical Engineering Department for the good times I shared with them. Mr Tianshi Wang, Mr Shuo Wang, Mr Linfeng Zheng and Mr Jianwei Zhang were always there for me whenever I needed assistance with the experimental test on the dSPACE software and the hardware detection. Mr Tran-Hiep Dinh, Mr Sayed Royal and Miss Xinchi Wei always helped me with my studying.

I would like to express my special gratitude to my parents, Xiaoping Chen and Jing He, and my boyfriend Yingjie Bai for their love, their sacrifices without which I could not have achieved my goal. They were always ready to lend an ear when I needed to talk to someone to relieve the pressures of the day.

Finally, I acknowledge the financial support from the China Scholarship Council. Without the support, funding, opportunities, and encouragement offered to me from each of these, I would not have been able to complete this dissertation and degree.

Tingting He Sydney, NSW, Australia, 2018.

Contents

	Certificate	ii
	Acknowledgments	iii
	List of Figures	ix
	List of Tables	xiv
	List of Abbreviations	χvi
	Symbols	viii
	Abstract	XX
1	INTRODUCTION	1
	1.1 Significance and Background	1
	1.2 Research Objectives	2
	1.3 Thesis Organization	2
2	LITERATURE REVIEW	5
	2.1 Introduction	5
	2.2 Types of Electric Vehicles	6
	2.3 Types and Topologies of EV Chargers	7
	2.3.1 Unidirectional chargers	9
	2.3.2 Bidirectional chargers	11
	2.3.3 Wireless EV chargers	13
	2.4 Control Strategies and Methods for Chargers	14

		2.4.1	Direct power control	15
		2.4.2	Sliding mode direct power control	16
		2.4.3	Model predictive direct power control	18
		2.4.4	Model predictive sliding mode control	20
	2.5	Comm	unication Methods between EVs and Centre Controller	21
		2.5.1	Wi-Fi	21
		2.5.2	ZigBee	21
		2.5.3	WiMAX	22
		2.5.4	Comparison of wireless technology	23
	2.6	Conclu	ding Remarks	24
			AT CITA D CINIC / DICCITA D CINIC METHOD I	ZOD.
3		7'	AT, C)HARCHNC+/DISC)HARCHNC+ MF;THCDD F	'U.B.
3			AL CHARGING/DISCHARGING METHOD I	
3	SN	/IART	ELECTRIC CAR PARKS	25
3	SN 3.1	ART Introdu	ELECTRIC CAR PARKS	25 25
3	SN 3.1	ART Introdu	ELECTRIC CAR PARKS	25 25
3	SN 3.1	ART Introdu	ELECTRIC CAR PARKS	25 25 26
3	SN 3.1	ART Introdu System	ELECTRIC CAR PARKS action	25 25 26 28
3	SN 3.1	ART Introdu System 3.2.1	ELECTRIC CAR PARKS action	25 25 26 28 30
3	SN 3.1	Introdu System 3.2.1 3.2.2	ELECTRIC CAR PARKS action	25 25 26 28 30 32
3	SN 3.1 3.2	ART Introdu System 3.2.1 3.2.2 3.2.3 3.2.4	ELECTRIC CAR PARKS action	25 25 26 28 30 32
3	SN 3.1 3.2	ART Introdu System 3.2.1 3.2.2 3.2.3 3.2.4	ELECTRIC CAR PARKS action	25 26 28 30 32 32 35
3	SN 3.1 3.2	ART Introdu System 3.2.1 3.2.2 3.2.3 3.2.4 Propos	ELECTRIC CAR PARKS action	25 26 28 30 32 32 35
3	SN 3.1 3.2	ART Introdu System 3.2.1 3.2.2 3.2.3 3.2.4 Propos 3.3.1	ELECTRIC CAR PARKS netion	25 26 28 30 32 32 35 35
3	SN 3.1 3.2 3.3	ART Introdu System 3.2.1 3.2.2 3.2.3 3.2.4 Propos 3.3.1 3.3.2 3.3.3	ELECTRIC CAR PARKS action	25 26 28 30 32 32 35 35 36 37

		3.4.2	Simulation settings	40
	3.5	Results	s and Discussions	42
	3.6	Conclu	ding Remarks	45
4	FC	UR-Q	QUADRANT OPERATIONS OF A BIDIREC-	
	TI	ONAI	L EV CHARGER	4 6
	4.1	Introdu	action	46
	4.2	Descrip	otion of EV Charger Topology	49
	4.3	Propos	ed MPC Scheme	53
		4.3.1	Conventional DPC	53
		4.3.2	MPDPC for grid-side	54
		4.3.3	MPDCC for EV-side	57
	4.4	Propos	ed Modified MPC	58
		4.4.1	Modulation of the extended voltage vectors	60
		4.4.2	Pre-selection algorithm	62
	4.5	Simula	tion Results	63
		4.5.1	Real power level system	65
		4.5.2	Scaled-down system	69
	4.6	Experi	mental Results	82
	4.7	Conclu	ding Remarks	94
5	M	ODEL	PREDICTIVE SLIDING MODE CONTROL	96
	5.1	Introdu	action	96
	5.2	System	Model	98
	5.3	Model	Predictive Control	100
	5.4	Propos	ed MPSMC Scheme	101

		5.4.1	Active power sliding surface	. 102
		5.4.2	Active power control law	. 103
		5.4.3	Proof of existence condition	. 104
		5.4.4	Proof of tracking condition	. 106
	5.5	Numer	ical Simulation	. 107
		5.5.1	Converter parameters	. 107
		5.5.2	Start-up dynamic and steady state performance	. 108
		5.5.3	Operation under load voltage demand variation	. 110
		5.5.4	Operation under load resistance variation	. 112
	5.6	Experi	mental Testing	. 114
		5.6.1	Selection of PI parameters for MPPIC scheme	. 115
		5.6.2	Comparison of MPSMC and MPPIC schemes	. 120
		5.6.3	Discussion	. 123
	5.7	Conclu	ding Remarks	. 125
6	SY	STEN	M CONTROL OF A SMART CAR PARK II	V-
Ü			TION WITH GRID	128
			action	
	6.2		and Reactive Power Controllers for AC and DC Buses	
			ical Simulation	
			ding Remarks	
	0.1	Concra		. 111
7	CO	ONCL	USIONS AND FUTURE WORK	143
	7.1	Conclu	sions	. 143
	7.2	Future	Work	. 145

viii	
V111	

References	147
List of Publications	164

List of Figures

2.1	Different working operation located in the PQ axis	9
2.2	Unidirectional charger structures	11
2.3	Bidirectional charger structures	12
2.4	Main components of a wireless charging system	13
2.5	Block diagram of conventional DPC	16
2.6	Block diagram of SMC	17
2.7	Working principle of MPC	18
2.8	Block diagram of MPC	19
2.9	Block diagram of MPSMC	20
3.1	Framework of the smart car park system	27
3.2	Average hourly prices of electricity in NSW	32
3.3	Electricity demand and average regional reference price	33
3.4	Main profits of smart electrical car parks	33
3.5	Flow chart of the proposed algorithm	38
3.6	Distribution of parking duration time	39
3.7	Distribution of arrival time	39
3.8	Distribution of departure time	40
3.9	Curve of final SOCs and desired SOCs	42
3.10	Three EVs SOCs and hourly prices	43

3.11	Total costs for EVs	43
3.12	Total costs for car park	44
3.13	Active power profits for car park	44
4.1	Diagram of the smart car park system	47
4.2	Eight converter input voltage vectors	52
4.3	Circuit topology of AC/DC converter connected with battery via a	
	DC/DC converter	54
4.4	Proposed MPC scheme for two-stage charger	55
4.5	Basic and extended voltage vectors	60
4.6	Control diagram for the MMPC method	64
4.7	Simulation results for real system providing the reactive power	67
4.8	Simulation results for real system consuming the reactive power	68
4.9	Performance by using MPC for system in Ref. [24]	70
4.10	Simulation results from DPC during first scenario	73
4.11	Simulation results from MPC during first scenario	74
4.12	Simulation results from MMPC during first scenario	76
4.13	Simulation results from DPC during second scenario	77
4.14	Simulation results from MPC during second scenario	79
4.15	Simulation results from MMPC during second scenario	80
4.16	Experimental setup	83
4.17	Conventional DPC under exchanging active and reactive power	
	separately operation	85
4.18	Proposed MPC under exchanging active and reactive power	
	separately operation	86

4.19	Proposed MMPC under exchanging active and reactive power
	separately operation
4.20	Conventional DPC under exchanging active and reactive power simultaneously operation
4.21	Proposed MPC under exchanging active and reactive power simultaneously operation
4.22	Proposed MMPC under exchanging active and reactive power simultaneously operation
5.1	Topology of a three-phase AC/DC converter
5.2	Basic principle of MPPIC method
5.3	Basic principle of the proposed MPSMC method
5.4	Steady and dynamic performances, where (a) DC voltage, (b) Active power, (c) Instantaneous voltage and current of phase A in MPSMC, and (d) Instantaneous voltage and current of phase A in MPPIC 109
5.5	Unexpected DC Voltage demand increase condition, where (a) DC voltage, (b) Active power, (c) Instantaneous voltage and current of phase A in MPSMC, and (d) Instantaneous voltage and current of phase A in MPPIC
5.6	Unexpected DC Voltage demand decrease condition, where (a) DC voltage, (b) Active power, (c) Instantaneous voltage and current of phase A in MPSMC, and (d) Instantaneous voltage and current of phase A in MPPIC
5.7	Unexpected load variation condition, where (a) DC voltage, (b) Active power, (c) Instantaneous voltage and current of phase A in MPSMC, and (d) Instantaneous voltage and current of phase A in

5.8	Experimental setup of the AC/DC converter, where the labelled numbers are ① DC resistive load, ② DC power supply, ③ dSPACE,
	4 inductors, 5 DC capacitor C , 6 AC/DC converter, and 7 control unit
5.9	V_{dc} performances with different K_p gains for voltage variation operations
5.10	V_{dc} performances with different K_i gains for voltage variation operations
5.11	V_{dc} performances with different K_p gains for the load variation operation
5.12	Experimental results of sudden increase of DC voltage, where (a) DC voltage of MPSMC, (b) DC voltage of MPPIC, (c) Active power, (d) Reactive power, (e) Instantaneous voltage and current of phase A in MPSMC, and (f) Instantaneous voltage and current of phase A in MPPIC
5.13	Experimental results of unexpected decrease demand of DC voltage, where (a) DC voltage of MPSMC, (b) DC voltage of MPPIC, (c) Active power, (d) Reactive power, (e) Instantaneous voltage and current of phase A in MPSMC, and (f) Instantaneous voltage and current of phase A in MPPIC
5.14	Experimental results of unexpected change on load resistance, where (a) DC voltage of MPSMC, (b) DC voltage of MPPIC, (c) Active power, (d) Reactive power, (e) Instantaneous voltage and current of phase A in MPSMC, and (f) Instantaneous voltage and current of phase A in MPPIC
6.1	System block diagram for EV charging stations with (a) AC bus structure, and (b) DC bus structure
6.2	DC bus topology with modular AC/DC converters

6.3	Proposed DC bus for charging stations
6.4	Proposed AC bus for charging stations
6.5	Arrival and departure time of the parking EVs
6.6	Active and reactive powers of the power grid
6.7	Active power of the EV batteries
6.8	Active power of the storage device
6.9	SOC of EV batteries while connected to charging stations 139
6.10	Currents of EV batteries while connected to charging stations 139

List of Tables

2.1	Examples of EVs on the market	7
2.2	EV charger power levels	8
2.3	Comparison of the primary IEEE 8-2.11 specifications	22
2.4	Comparison of Emerging Wireless Technologies	23
3.1	Major notations for variables used in this chapter	29
3.2	Range of charging/discharging power	31
3.3	Distribution parameters of arrival and departure times	41
3.4	Simulation settings	41
4.1	The converter voltage vectors in $\alpha\beta$ coordinate	51
4.2	Modulation of the extended voltage vectors	61
4.3	Pre-select algorithm	64
4.4	System parameters for simulation and experiment	71
5.1	Electric parameters of the AC/DC converter	08
5.2	Settling time for simulation and experimental tests	26
6.1	Features of AC and DC buses systems	31
6.2	System parameters for bidirectional charger	35

6.3 System performance of DC and AC buses	6.3	ace of DC and AC buses
---	-----	------------------------

Abbreviations

AEMO - Australia Energy Market Operator

DPC - Direct Power Control

DTC - Direct Torque Control

EV - Electric Vehicle

G2V - Grid-to-Vehicle

ICE - Internal Combustion Engine

IGBT - Insulated-Gate-Bipolar-Transistor

KVL - Kirchhoff's Voltage Law

MMPC - Modified Model Predictive Control

MPC - Model Predictive Control

MPDCC - Model Predictive Direct Current Control

MPDPC - Model Predictive Direct Power Control

MPPIC - Model Predictive Proportional Integral Control

MPSMC - Model Predictive Sliding Mode Control

PFC - Power Factor Correction

PHEV - Plug-in Electric Vehicle

PI - Proportional Integral

PLL - Phase Locked Loop

PWM - Pulse Width Modulation

SMC - Sliding Mode Control

SOC - State of Charge

SVC - Static Var Compensator

SVPWM - Space Vector Pulse Width Modulation

THD - Total Harmonic Distortion

UTS - University of Technology Sydney

 VOC - Voltage Oriented Control

V2G - Vehicle-to-Grid

V2V - Vehicle-to-Vehicle

V4G - Vehicle-for-Grid

WPAN - Wireless Personal Area Networks

Symbols

```
m - the mth EV
M - the total number of EVs
n - the nth period
N - the total periods
N_m - the total parking periods of the mth EV
\mathbb{E}_m^n - the energy of the mth EV in the nth period (kWh)
E_m - the current stored energy of the mth EV (kWh)
E_{m,c}^n - the charging energy of the mth EV (kWh)
E_{m,d}^n - the discharging energy of the mth EV (kWh)
C_m - the battery capacity of the mth EV (kWh)
SOC_{m,fin} - the final SOC of the mth EV (%)
SOC_{m,ini} - the initial SOC of the mth EV (%)
p_m^n - the charging/discharging power of the m{\rm th} EV in the n{\rm th} period (kW)
p_{m,c,max} - the maximum charging power of the mth EV (kW)
p_{m,c,max} - the maximum charging power of the mth EV (kW)
p_{m,d,max} - the maximum discharging power of the mth EV (kW)
\mathbf{S}_{\alpha\beta} - the switching states in the \alpha\beta coordinate
```

xix

 $\mathbf{S_{abc}}$ - the switching state vector in the abc coordinate

 $\mathbf{v}_{\alpha\beta}$ - the input voltage vector of the three-phase converter in $\alpha\beta$ coordinate

 $\mathbf{v}_{\mathbf{g},\alpha\beta}$ - the grid voltage vector in the $\alpha\beta$ coordinate

 $\mathbf{i}_{\mathbf{g},\alpha\beta}$ - the grid current vector in the $\alpha\beta$ coordinate

 * - the complex conjugate

 $\mathbf{i}_{\mathbf{g}}^{*}$ - the complex conjugate of grid current

ABSTRACT

Due to the clean energy imperatives and strong desire to reduce greenhouse gas emissions, electric vehicles (EVs) were introduced into the car market several decades ago. In 2016, electric cars hit a new record with over 750 thousand sales worldwide. China was the largest electric car market with more than 40% of all car sales in the world. With an increasing number of electric cars, private and publicly accessible charging infrastructure has also continued to grow. As most of the time these electric cars are parked in personal or public car parks. A car park with these parked electric vehicles can be regarded as a large energy storage system. These vehicle batteries can be used as energy storage devices to exchange the power between the grid and vehicles. With this idea, a new smart car park model is proposed, where the power flows among electrical vehicles, as well as between batteries and the main grid. Based on this model, an optimal charging/discharging scheme is developed to maximum the profits for the car park and reduce the cost for the car owners. The proposed smart electrical car park is able to buy or sell electricity in the form of active and/or reactive power, i.e. kWh and/or kVARh, from or to the main grid to improve the power quality. According to the current state of charge of the car battery bank, customer and grid demands, a control centre makes the decisions and sends the instructions for the specific charging/discharging mode to each charging station.

The model predictive control (MPC) method is distinguished for its several advantages: free of modulation, simple inclusion of system parameters, constraints and demands in the algorithm. With this MPC strategy, EV chargers are able to transmit the active and reactive power between the EV batteries and the power grid. When providing the reactive power from the EVs to the main grid, EV batteries can be regarded as static VAR compensators to improve the power quality. To improve the system performance, a modified MPC scheme is proposed for better performance. The modified MPC is based on the application of an optimal voltage vector chosen from an extended set of 20 modulated voltage vectors with a fixed

duty ratio. To solve the computational problem introduced by the increased voltage sets, a pre-selective algorithm is proposed for the MMPC method. Six voltage vectors are pre-selected from the 20 sectors. The conventional and proposed MPC methods are compared through numerical simulation and experimental test results via a two-stage two-level three-phase off-board charger. Better system performance can be achieved with the modified MPC method.

The conventional MPC method, however, produces a large overshoot/undershoot, a long settling time and a large steady state error under disturbances. To overcome these deficiencies, a sliding mode controller is employed to replace the PI controller in MPC. A model predictive sliding mode control (MPSMC) scheme is proposed to achieve better stability and dynamic performances. Since the control law and the controller are based on the system model, the proposed scheme can reduce the effects of unexpected disturbances, such as the output voltage demand and the resistive load variations. Numerical simulation and experimental test results are obtained via the proposed MPSMC method and compared with the results form the traditional MPC scheme.

For convenient integration into the power grid, the topology of an electric car park can be based on either AC bus or DC bus. The EV chargers can be controlled to achieve four-quadrant operation, delivering active and reactive power from or to the main grid. The system performance obtained from simulation tests with these two topologies are compared and discussed, including the cost, reliability, size, active and reactive power ripples, and current distortion, etc.