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ABSTRACT

Constraint propagation is central to the process of solving a constraint satisfac-

tion problem (CSP). It can be used to solve several large tractable classes of CSPs

directly and is also predominantly used to reduce the space of combinations that

will be explored by a search algorithm. Constraint propagation, also known as local

consistency enforcing, is the process of reducing domains of variables, strengthening

constraints, or creating new ones. Arc-consistency (AC) and path-consistency (PC)

are two well-known forms of local consistency. Designing efficient local consistency

algorithms is a central research task in constraint processing. A related important

question is to finding large tractable classes that can be solved by enforcing local

consistency.

The class of connected row-convex (CRC) constraints defined over linear do-

mains is a prominent tractable class which is a subclass of the class of row-convex

constraints. While the class of row-convex constraints is intractable, it was shown

that enforcing PC solves the CSPs over CRC constraints. The CRC constraint class

is very expressive and can model problems in domains such as temporal reasoning,

VLSI design, geometric reasoning, scene labelling as well as logical filtering.

In Chapter 2 we generalize the class of CRC constraints from linear domains

to tree domains and obtain the new tractable class of tree-preserving constraints.

We show that enforcing PC can transform a consistent tree-preserving constraint

network into an equivalent globally consistent network. We also observe that CRC

and tree-preserving constraint networks also can be solved by enforcing directional

PC (DPC), a weaker form of PC which can be enforced more efficiently. A natural

research question then is to characterize CSPs that are solvable with DPC. In Chap-

ter 3 we provide such a characterization and prove that any class of majority-closed

constraints is solvable with DPC and thus give a more efficient algorithm for solving

these constraints.

In above, we assume that the knowledge about a CSP (i.e. domains and con-



straints) is known by one central agent, which is often not available when the knowl-

edge about the problem is distributed among autonomous agents. Because of privacy

reasons, simply collecting all such knowledge from the individual agents is undesir-

able or impossible. To address the issue, we need to develop distributed algorithms

for solving distributed CSPs. We propose in Chapter 4 the first deterministic dis-

tributed algorithm to solve multiagent CRC constraint networks. Our algorithm is

a distributed partial PC algorithm which can efficiently transform a CRC constraint

network into an equivalent constraint network such that all constraints are mini-

mal (i.e., they are the tightest constraints) and all solutions can be generated in a

backtrack-free manner.

We then consider the class of simple temporal constraints in Chapter 5, which

is closely related to the class of CRC constraints and is widely used in temporal

planning and scheduling. In fact, discretized simple temporal constraints over finite

domains are CRC constraints. Previous approaches focus on enforcing partial PC or

directional PC to solve a simple temporal network (STN). We show that enforcing

AC is sufficient to solve an STN, which not only provides a more efficient algorithm

for STNs but also provides the first privacy-preserving distributed algorithm for

solving multiagent STNs.

While the above algorithms are complete for certain tractable constraint classes,

in Chapter 6 we propose a new distributed AC algorithm for general distributed

CSPs, which is more efficient and leaks less private information of agents than exist-

ing ones. In particular, our new distributed AC algorithm uses a novel termination

determination mechanism, which allows the agents to share domains, constraints

and communication addresses only with relevant agents. We further extend it to

the first distributed algorithm that enforces generalized AC (GAC) on k-ary (k ≥ 2)

distributed CSPs.
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Chapter 1

Introduction

A constraint satisfaction problem (CSP) comprises a set of variables ranging over

some domains of possible values, and a set of constraints that specify allowed value

combinations for these variables. An instance of a CSP is also called a constraint

network. Solving a constraint network amounts to assigning values to its variables

such that its constraints are satisfied. CSP is widely used in Artificial Intelligence

(AI). To name a few, CSP has been used to model problems in temporal planning

[38, 122], vehicle routing [78], planning and scheduling [3] and spatial reasoning [84].

However, deciding the consistency of CSPs is NP-complete in general [64]. There-

fore, developing efficient techniques to solve CSPs has always been an important

research topic in AI. There are two research mainstreams to tackle the problem:

one is to identify tractable classes that can be solved efficiently and the other is

to develop effective general schemes to solve the problem. A number of tractable

classes have been proposed in the literature. The class of connected row-convex

(CRC) constraints proposed by Deville, Barette and van Hentenryck [40] is perhaps

the most well-known one, which is a subclass of the class of row-convex constraints

proposed by van Beek and Dechter [7]. The class of CRC constraints generalizes sev-

eral tractable classes of constraints such as 2SAT, binary integer linear constraints

and monotone constraints [40]. The CRC constraint class is very expressive and

can model problems in domains such as temporal reasoning [73, 99], VLSI design

[15], geometric reasoning [72], scene labelling [7] as well as logical filtering [76]. Effi-

cient algorithms, such as the variable elimination algorithm by Zhang and Marisettis
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[135], have been proposed to solve CRC constraints.

On the other hand, backtracking search [33, 129] is the principal mechanism for

solving a general CSP; it assigns values to variables in a depth-first manner, and

backtracks to the previous variable assignment if there are no consistent values for

the variable at hand, and it needs only linear memory space. Lots of interests are in

improving the efficiency of backtracking search. Constraint propagation, also known

as local consistency enforcing [37], are in the core place of improving the efficiency

of backtracking search. Local consistency techqunies are often integrated within the

search to prune branches of the search tree that will lead the search to a dead end,

and thus could greatly shrink the search space. The most well-known forms of local

consistency are arc- and path-consistency [53, 113].

In contrast to the centralized setting, where a single CSP is solved by one agent,

in multiagent setting different CSPs belong to different agents, where some of those

problems are linked together through extra constraints. Such a distributed constraint

satisfaction problem (DisCSP) cannot be solved by a centralized method, as we

require a reliable protocol that can coordinate concurrent processes efficiently and

preserve the privacy of individual agents to the greatest extent possible. Formally, a

DisCSP consists of a set of local CSPs and a set of external constraints, where each

local CSP is owned by an autonomous agent and each external constraint is shared

by at least two different agents [128]. These agents aim to assign values to their own

local variables cooperatively such that all constraints of the network are satisfied.

DisCSPs can be used to model many combinatorial problems that are distributed

by nature, e.g., distributed resource allocation problems [28], distributed scheduling

problems [117], distributed interpretation tasks [94], multiagent truth maintenance

tasks [59] and multiagent temporal reasoning [14]. The backtracking search was

extended to asynchronous backtracking search for solving DisCSPs [128].



3

1.1 Related Works

1.1.1 Local Consistency Algorithms for CSPs

Arc-consistency (AC) is the most used way of propagating constraints. AC

ensures that, for any value a in the domain of a variable x, we can find a value b

in the domain of any other variable y such that the pair (a, b) is allowed by the

constraint between x and y. Mackworth is the first to clearly define the concept

of arc-consistency for binary constraints [89]. He also extended definitions and

algorithms to non-binary constraints [90] and analyzed the complexity [91]. The first

version of AC algorithm, known as AC1, was due to Fikes [46], but the algorithm is

rather inefficient because a single revision of an arc in a particular iteration causes

all the arcs to be revised in the next iteration whereas in fact only a small fraction

of them could possibly be affected. AC2 [125] and AC3 [89] both improve AC1 by

using a priority queue to record affected arcs and only affected arcs in the queue

will be further considered and revised in the next iteration. The difference is that

AC2 chooses a particular ordering of arcs to revise whereas AC3 does not, and thus

the former is just a special case of the latter. AC3 was extended to generalized

AC (GAC) in arbitrary networks in [90]. Mohr and Henderson proposed AC4 to

improve the time complexity [53, 100] and showed that AC4 has an optimal worst-

case time complexity. However, AC3 is often better than AC4 in practice, as AC4

almost always reaches its worst-case. Wallace discussed this issue in [123]. Bessiere

proposed AC6 which keeps the optimal worst-case time complexity of AC4 and

also has a better practical performance than AC3 [8]. Bessiere also proposed AC7

[11], which exploits the bidrectionality of value supports on constraints, but AC7 is

slower than AC6 in general. It was later shown that AC3 can be made optimal by

storing the smallest support for each value on each constraint, like AC6. The new

algorithm is called AC3.1 [12], which is practically comparable to AC6 and is easier
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to be implemented and integrated within search due to its simple data structure

requirements.

Path-consistency (PC) is a higher order consistency notion than AC. PC was

proposed by Montanari [101] for binary constraint networks to ensure that any con-

sistent solution to a two-variable subnetwork is extendible to any third variable.

Normally, PC can prune more inconsistent tuples and thus can produce a tighter

network than AC. However, PC requires much higher time and space complexities

than AC, and PC can produce additional constraints that were not in the network.

Moreover, PC is usually considered only in binary constraint networks as its defi-

nition prevents its use on non-binary constraint networks. As such, although many

PC algorithms have been proposed, like PC1 [101], PC2 [89], PC4 [100, 53], PC8

[24] and PC3.1 [12], they are seldom used in CSP solvers.

To alleviate the time and space requirements of enforcing PC, a weaker con-

sistency notion of PC, directional PC (DPC), has been proposed by Dechter and

Pearl [39]. DPC considers a given variable ordering and can thus be enforced more

efficiently than PC. On the other hand, traditional PC is enforced on complete

networks, Bliek and Sam-Haroud proposed to enforce PC on triangulated networks

instead, which is called partial PC (PPC) [13]. Enforcing PPC can be much faster

than PC for sparse networks, as far fewer new edges will be created.

1.1.2 Tractable Subclasses of CSPs

van Beek and Dechter proposed the class of row-convex constraints and showed

that if a constraint network is path-consistent (PC) and each of its constraints is

row-convex, then the network is globally consistent [7], in the sense that we can find a

solution backtrack-free following an arbitrary variable ordering. However, enforcing

PC on a row-convex constraint network may destroy its row-convexity. In fact, it was

pointed out that deciding the consistency of row-convex constraint networks is NP-
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complete [37]. Deville et al. then restricted the class of row-convex constraints and

obtained the class of connected row-convex (CRC) constraints [40]. They showed

that CRC constraints are closed under composition, intersection, and transposi-

tion, the basic operations of PC algorithms. This establishes that PC over CRC

constraints produces a globally consistent network and is thus a polynomial-time

decision procedure for CRC networks. Zhang and Marisetti proposed an efficient

variable elimination algorithm to solve CRC networks [135].

In [137], Zhang and Yap generalized the class of row-convex constraints defined

over linear domains to the class of tree-convex constraints defined over tree do-

mains. Likewise, they also restricted the class of tree-convex constraints to obtain a

tractable class of locally chain convex and strictly union closed constraints. However,

it turns out that a locally chain convex and strictly union closed constraint network

is just the disjoint union of several independent CRC constraint networks [68].

Jeavons et al. utilized the algebraic property to show that strong PC, namely,

both AC and PC, is sufficient to ensure global consistency if and only if the class

of binary constraints is majority-closed [62]. Notably, the class of CRC constraints

is also majority-closed. Chen et al. further showed that singleton arc-consistency

(SAC) is sufficient to decide the consistency of majority-closed constraint networks

[23]. A recent breakthrough characterizes all CSPs that are solvable by local consis-

tency enforcing methods: it shows that local consistency enforcing methods can be

used to decide the consistency of a problem if and only if the problem does not have

the ability to count [5] and any problem that can be decided by local consistency

enforcing methods also can be decided by enforcing strong PC [4]. Kozik further

showed that enforcing SAC solves the same family of problems that are solvable by

enforcing strong PC [71]. However, it remains unclear whether backtrack-free search

can be used to extract a solution for such a problem after enforcing strong PC or

SAC.
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1.1.3 Local Consistency Algorithms for DisCSPs

Several distributed algorithms for solving CRC constraints and simple temporal

constraints have been proposed in the literature. Kumar et al. [75] proposed a dis-

tributed algorithm, called D-CRC, for solving CRC constraints, which was shown to

be more efficient than the state-of-the-art centralized algorithm for CRC constraints.

There are, however, several drawbacks of D-CRC: (i) it is based on randomization

and as such it does not guarantee to return a solution even when the input CSP

is consistent; and (ii) it cannot determine whether the input is consistent; and (iii)

it cannot assign more than one variable to each agent, which makes the algorithm

unrealistic to solve large networks in real distributed systems. Boerkoel and Dur-

fee provided in [14] the extension of simple temporal network (STN) to multiagent

STN (MaSTN) as well as a distributed algorithm, called D�PPC, for computing

the complete joint solution space. However, as D�PPC is based on the P3C algo-

rithm [104], which triangulates the input constraint graph, it has the drawback of

creating new constraints between agents that are possibly not directly connected.

These new constraints are undesirable, as they introduce constraints between two

previously not directly connected agents and thus present a threat to the privacy of

the relevant agents.

There are also several distributed AC algorithms proposed in the literature,

including DisAC3 [6], DisAC4 [103] and DisAC6 [6], which are, respectively, the dis-

tributed versions of AC3, AC4 and AC6. Another distributed algorithm DisAC9 [52],

which is also a distributed version of AC6, is currently the state-of-the-art. Al-

though privacy is one main motivation and a major concern of solving DisCSPs

[44, 50, 124, 131], no distributed AC algorithms so far have considered the commu-

nication address privacy of individual agents. Indeed, the distributed AC algorithms

mentioned above either assume a complete agent communication graph, which re-

veals the communication address, thus the identity, of every agent, or broadcast
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deleted values of variable domains, revealing the existence of variables and their

domains. More precisely, the termination procedure of DisAC3, DisAC4, DisAC6

and DisAC9 assumes that the agent communication graph is complete, i.e., any

two agents know the communication address of each other, which implies that they

know the existence of each other and can directly send messages to each other. Also,

whenever an agent deletes a value from one of its local domains, the agent broad-

casts this information to all other agents immediately. This setting has the following

drawbacks: (i) the algorithm may need to send unnecessarily many messages; (ii)

the identities of agents and deleted domain values are revealed to irrelevant agents.

1.2 Thesis Outline and Contributions

This thesis extends the related works in the literature and explores centralized

and distributed local consistency algorithms for solving CSPs in several dimensions.

On the one hand, we explore centralized local consistency algorithms to identify more

general tractable constraint classes and to solve tractable constraint classes more

efficiently. On the other hand, we design more efficient distributed local consistency

algorithms to solve tractable constraint subclasses and to filter inconsistent tuples

for DisCSP solvers. The following paragraphs elaborate.

The first part, including Chapters 2 and 3, focuses on exploring constraint prop-

agation algorithms for solving CSPs.

1.2.1 Tree-Preserving Constraints

Tree-convex constraints are generalizations of the well-known row-convex con-

straints from linear domains to tree domains. Chapter 2 studies three tractable sub-

classes of tree-convex constraints, which are chain-, path- and tree-preserving con-

straints. The chain-preserving constraints subsume the well-know CRC constraints

studied in [40]. We prove that enforcing strong PC decides the consistency of a
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tree-preserving constraint network and, if no inconsistency is detected, transforms

the network into a globally consistent constraint network. Actually, we prove this by

two methods. The first method directly proves that enforcing strong PC transforms

a tree-preserving constraint network into a path-consistent tree-preserving network,

while the second method relies on the characterization of tree-preserving constraints

by closure under majority operations. Since every arc-consistent chain- or path-

preserving constraint is a tree-preserving constraint, we get a tractable subclass of

CSPs that is genuinely larger than the subclass of CRC constraints. We further

show that partial PC algorithms can be applied to solve tree-preserving constraint

networks in a backtrack-free style, which is more efficient than using a standard PC

algorithm. As an application, we show that a large tractable subclass of the tri-

hedral scene labelling problem can be modelled by tree-preserving constraints, and

thus can be solved by the techniques discussed in this chapter.

The works of Chapter 2 are published in the following papers:

Shufeng Kong, Sanjiang Li, Yongming Li and Zhiguo Long: On tree-preserving

constraints. In Proceeding of the 21st International Conference on Principles and

Practice of Constraint Programming (CP’15), pp. 244-261 (2015)

Shufeng Kong, Sanjiang Li, Yongming Li and Zhiguo Long: On tree-preserving

constraints. Annals of Mathematics and Artificial Intelligence, 81(3-4): 241-271

(2017)

1.2.2 CSPs Solvable with Directional PC

Chapter 3 investigates which CSPs can be solved by enforcing directional PC,

a weaker form of PC that can be enforced more efficiently. Given a complete bi-

nary constraint language1 Γ, it turns out that the directional PC algorithm by

Dechter and Pearl [39], DPC, can solve the problems defined over Γ, CSP(Γ), if

1The concept will become clear in Chapter 3.
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Γ is defined over domains with less than three values. Furthermore, we presented

the algorithm DPC∗, a simple variant of DPC, which can solve the CSP of any

majority-closed constraint language, and is sufficient for guaranteeing backtrack-

free search for majority-closed constraint networks. Note that the subclass of tree-

preserving constrains studied in Chapter 2 is also majority-closed. Our evaluations

also show that DPC∗ significantly outperforms the state-of-the-art algorithms for

solving majority-closed constraint networks.

The works of Chapter 3 are published in the following paper:

Shufeng Kong, Sanjiang Li and Michale Sioutis: Exploring directional path-

consistency for solving constraint networks. The Computer Journal, first online: 27

December 2017. doi: 10.1093/comjnl/bxx122

The second part, including Chapters 4, 5 and 6, focuses on exploring constraint

propagation algorithms for solving distributed CSPs.

1.2.3 A Distributed Partial PC Algorithm for Solving CRC Constraint

Networks

As mentioned in Chapter 1.3, the class of CRC constraints generalizes several

classes of constraints such as 2SAT, binary integer linear constraints, and mono-

tone constraints [40], and is useful in modelling problems in domains such as VLSI

design [15], scene labelling [7] as well as logical filtering [76]. Chapter 4 proposes

the first deterministic distributed algorithm, called DΔCRC, for solving CRC con-

straints. The algorithm can efficiently transform an input CRC constraint network

into an equivalent constraint network, where all constraints are minimal, and can

generate all solutions in a backtrack-free manner. DΔCRC does not suffer from the

problems that the state-of-the-art algorithm D-CRC has: (i) it is sound and complete

and (ii) it can assign more than one variable to each agent, allowing the algorithm to

solve large networks in real distributed systems. Furthermore, our theoretical and
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experimental comparisons showed that DΔCRC significantly outperforms D-CRC.

The works of Chapter 4 are published in the following paper:

Shufeng Kong, Jae Hee Lee and Sanjiang Li: A deterministic distributed al-

gorithm for reasoning with connected row-convex constraints. In Proceeding of the

16th International Conference on Autonoumous Agent and Multiagent Systems (AA-

MAS’17), pp. 203-211 (2017)

1.2.4 A Distributed AC Algorithm for Solving Multiagent STPs

The simple temporal constraints are widely used in temporal planning and

scheduling. In fact, discretized simple temporal constraints are CRC constraints

studied in Chapter 4. Chapter 5 presentes a novel AC-based approach for solving

the simple temporal problems (STP) and the multiagent STPs. We show that en-

forcing AC is sufficient for solving an STP. Considering that STPs are defined over

infinite domains, this result is rather surprising. Our empirical evaluations showed

that the AC-based algorithms are significantly more efficient than their PC-based

counterparts. This is mainly due to the fact that PC-based algorithms add many

redundant constraints in the process of triangulation. More importantly, since our

AC-based approach does not impose new constraints between agents that are previ-

ously not directly connected, it respects as much privacy of these agents as possible.

The works of Chapter 5 are published in the following paper:

Shufeng Kong, Jae Hee Lee and Sanjiang Li: Multiagent simple temporal

problem: the arc-consistency approach. In Proceeding of the 32th AAAI Conference

on Artificial Intelligence (AAAI’18), New Orleans, Louisiana, USA, February 2-7,

2018.
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1.2.5 A New Distributed Generalized AC Algorithm

Chapter 6 presentes new distributed algorithms DisAC3.1 and DisGAC3.1 for

efficient AC and GAC propagations. These algorithms do not assume a complete

agent communication graph and release less private information of individual agents

when enforcing AC and GAC. More precisely, an agent i only shares information

about its communication address, its domain Du, and its external constraint Ruv

with another agent j, if the variable v is owned by j. Our theoretical analysis

shows that our algorithms are efficient in both time and space. For problems that

can be modelled as distributed CSPs, we have shown that DisAC3.1 and DisGAC3.1

are efficient algorithms that can serve as good candidates for search space pruning.

Methods developed in this paper also can be adapted to solve the multi-agent STNs

studied in Chapter 5.

The works of Chapter 6 are published in the following paper:

Shufeng Kong, Jae Hee Lee and Sanjiang Li: A new distributed algorithm

for efficient generalized arc-consistency propagation. Autonomous Agent and Multi-

Agent Systems, first online: 10 May 2018. doi: 10.1007/s10458-018-9388-x

1.3 Preliminaries

The remainder of this chapter introduces necessary concepts and notations that

this work builds upon. Additional definitions, pertaining to individual tasks solved,

are given at the beginning of corresponding chapters.

1.3.1 Constraint Satisfaction Problem

Definition 1.1 (constraint satisfaction problem). A constraint satisfaction problem

(CSP) N is a triple 〈V,D, C〉, where:

• V is a non-empty finite set of variables;
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• D = {Dv | v ∈ V } is a collection of finite sets of values. We call Dv ∈ D the

domain of variable v ∈ V ;

• C is a finite set of pairs (s, R), called constraints, where

– s, which is called the scope of (s, R), is a tuple of variables from V ;

– R is a relation defined over the variables in s, i.e., if s = (v1, . . . , vl) then

R ⊆ Dv1 × · · · ×Dvl.

An instance of CSP is also called a constraint network. With a slight abuse of

notation, we will use the terms constraint network and CSP interchangeably in this

dissertation.

The arity of a constraint (s, R) is defined as the cardinality of its scope s. A

constraint with arity k is called a k-ary constraint and, in particular, a 2-ary con-

straint is also called a binary constraint. A CSP is called k-ary if it has a k-ary

constraint but has no constraint of arity greater than k.

Let N = 〈V,D, C〉 and N ′ = 〈V ′,D′, C ′〉 be CSPs. We say that N ′ is a subnet-

work of N , if V ′ = V , C ′ ⊆ C and D′
v ⊆ Dv for each v ∈ V , where D′

v and Dv are

the domains of v in N ′ and N , respectively.

A partial solution of N w.r.t. a subset V ′ of V is an assignment of values to

variables in V ′ such that all of the constraints (s, R) with s ⊆ V ′ are satisfied. A

partial solution w.r.t. V is called a solution of N . We write sol(N ) for the set of

solutions of N and say two CSPs N and N ′ are equivalent, if sol(N ) = sol(N ′).

We say that N is consistent if it has a solution, i.e., sol(N ) 	= ∅, and inconsistent,

otherwise. We say that N is empty if at least one of its domains or relations is

empty; if N is empty, then it is trivially inconsistent. Figure 1.1 illustrates a CSP,

where the assignment (v1 = a, v2 = e, v3 = c) is a solution.
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Figure 1.1 : A CSP example and its constraint graph.

Definition 1.2 (constraint graph). Given a binary CSP N = 〈V,D,C〉, the con-

straint graph GN of N is a pair (V,E), where E is a set of undirected edges over V ,

such that there is an edge eij between vi and vj in E if and only if ((vi, vj), Rij) ∈ C.

GN can be make complete or triangulated by adding missing edges and for every

newly added edge, say ekl between vk and vl, we also add a related universal con-

straint to C, namely ((vk, vl), Rkl = Dk ×Dl).

A binary CSP and its constraint graph are given in Figure 1.1.

Let N = 〈V,D,C〉 be a binary CSP. We assume that for any pair of variables

(v, w), there exists at most one constraint from v to w in C. We write this constraint

as ((v, w), Rvw) if it exists, and write

R−1
vw = {(b, a) | (a, b) ∈ Rvw}.

for the inverse of Rvw. We also assume that ((w, v), Rwv) with Rwv = R−1
vw is in C, if

((v, w), Rvw) is in C. For brevity, we often write Rvw for the constraint ((v, w), Rvw).

The usual operations on relations, e.g., intersection (∩), and composition (◦), are

applicable to constraints.

Given a binary CSP N = 〈V,D,C〉 and two variables v, w ∈ V , the image of
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Figure 1.2 : A distributed binary CSP example: Vi = {v1, v2}, Ci = {R12}, Vj =
{v3, v4}, Cj = {R34}, Vw = {v7}, Vp = {v6}, Vk = {v5}, Vq = {v8}, Vl = {v9}, Cij =
{R23, R24}, Cip = {R26}, Cjk = {R45}, Cwp = {R76}, Cpk = {R65}, Ckl = {R59} and
Ckq = {R58}.

a ∈ Dv under Rvw, denoted as Rvw(a), is the set {b ∈ Dw | (a, b) ∈ Rvw}. Each value

b in Rvw(a) is called a support of a on Rvw. We say a subset F of Dx is unsupported

if every value in F is not supported. Given A ⊆ Dv, the image of A under Rvw

is defined as Rvw(A) = {b ∈ Dw | ∃a ∈ A, (a, b) ∈ Rvw}. In Figure 1.1 the set of

supports of a ∈ D1 on R13 is {c, d}.

Definition 1.3 (distributed binary CSP). A distributed binary CSP is defined as

a pair 〈P , CX〉, where

• P = {N1, . . . ,Np} is a set of binary CSPs with Ni = 〈Vi,Di, Ci〉 (1 ≤ i ≤ p);

• CX =
⋃{Cij | 1 ≤ i, j ≤ p, i 	= j} is a set of external constraints, where each

Cij is a set of constraints from some variable in Vi to some variable in Vj.

We assume that Cji consists of the inverses of the constraints in Cij for all

1 ≤ i, j ≤ p, i 	= j.

We call v ∈ Vi a shared variable of agent i if it is connected to a variable w ∈ Vj

(j 	= i) through an external constraint, and call v a private variable of agent i

otherwise. A constraint Rvw is called a private constraint of agent i if Rvw ∈ Ci.

We call Rvw a shared constraint of agent i if either v or w but not both belong to Vi.
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The constraint graph of a given distributed binary CSP is defined similarly to

binary CSP. An example of a distributed binary CSP is given in Figure 1.2. We note

that in Definition 1.3 each binary CSP Ni corresponds to an agent i and that Cij is

the set of constraints shared between agents i and j. We call agent j a neighbor of

agent i if there is an external constraint between them, i.e., Cij 	= ∅.

1.3.2 Local Consistency and Properties of Constraint Networks

Definition 1.4 (arc-consistency). Given a binary CSP N = 〈V,D,C〉 and v, w ∈ V ,

we say that there is an arc (v, w) from v to w iff Rvw ∈ C. A constraint Rvw is

arc-consistent (AC) iff for every a ∈ Dv, there is a support of a on Rvw, i.e.,

Rvw(a) 	= ∅. We say that N is AC iff every constraint in C is AC.

In Figure 1.1 R13 is not AC because b ∈ D1 has no support on R13, i.e., R13(b) =

∅. On the other hand, R12 is AC becauseR12(a), R12(b) andR12(g) are all nonempty.

Definition 1.5 (AC-closure). Given a binary CSP N = 〈V,D,C〉, let N ′ = 〈V,D′, C ′〉

be a subnetwork of N . We call N ′ an AC-subnetwork of N , if C ′ = C and N ′ is

arc-consistent and not empty. We call N ′ the AC-closure of N , if N ′ is the largest

AC-subnetwork of N that is equivalent to N , in the sense that every other AC-

subnetwork N ′′ = 〈V,D′′, C〉 of N that is equivalent to N is a subnetwork of N ′.

For every binary CSP N = 〈V,D, C〉, since the AC-subnetworks we considered in

the above definition are different from N only in variable domains, we will identify

the AC-subnetwork with its variable domains when the context is clear (e.g., D′ for

the AC-subnetwork N ′ = 〈V,D′, C〉 of N ). Consider for example the binary CSP in

Figure 1.1. We have that {D′
v1

= {a}, D′
v2

= {e}, D′
v3

= {c}} is an AC-subnetwork

of N , while {D′′
v1

= {a, g}, D′′
v2

= {e, f}, D′′
v3

= {c, d}} is the AC-closure of N .

The definition of arc-consistency, AC-subnetwork and AC-closure of binary CSPs

naturally carry over to distributed binary CSPs. The AC-closure of a (distributed)
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Figure 1.3 : Path-Consistency [13].

binary CSP N has the same solution set as N , but its search space is smaller, which

often significantly facilitates the search for a solution.

Definition 1.6 ((partial) path-consistency). [13, 89] Let N = 〈V,D,C〉 be a con-

straint network and GN its constraint graph. Let πij = (vi = u0, u1, . . . , uk = vj)

be a path in GN with eij ∈ E(N ). We say πij is path-consistent (PC) if, for every

〈c0, ck〉 ∈ Rij, we can find values for all intermediate variables ux (0 < x < k) s.t.

all the constraints Rux,ux+1 (0 ≤ x < k) are satisfied. We say GN is partial path-

consistent (PPC) if every path πij in GN with eij ∈ E(N ) is PC. Moreover, we say

N is PC (resp. PPC) if the completion of GN (resp. GN ) is PPC.

Therefore, PC is a special case of PPC. We say a constraint network is strong

PC (PPC, resp.) if it is both AC and PC (PPC, resp.). An illustration of PC is

given in Figure 1.3.

Arc- and path-consistency are further generalized to k-consistency defined below.

Definition 1.7 (k-consistency). [47, 48] A constraint network N over n variables is

k-consistent if any consistent instantiation of any distinct k−1 variables can be con-

sistently extended to any k-th variable. We say N is strongly k-consistent if it is j-

consistent for all j ≤ k; and say N is globally consistent if it is strongly n-consistent.

2- and 3-consistency are exactly arc-consistency (AC) and path-consistency (PC)

respectively.

Definition 1.8 (decomposability). [37, 101] Let N = 〈V,D,C〉 be a constraint
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network and ≺= (v1, . . . , vn) an ordering of variables in V . Write V≤i = {vj | j ≤ i}.

We say that N is decomposable or backtrack-free w.r.t. ≺ if for any i < n, any

consistent assignment to V≤i can be consistently extended to an assignment to V≤i+1.

We say N is decomposable if it is decomposable w.r.t. every ordering of variables

in V .

It is easy to see that a network being decomposable and globally consistent are

equivalent.

Definition 1.9 (minimality). [101] Let N = 〈V,D,C〉 be a constraint network. We

say a non-empty constraint Rij ∈ C is minimal if any assignment 〈ai, aj〉 ∈ Rij to

variables vi, vj can be extended to a solution of N . We say N is minimal if it has a

complete constraint graph and every constraint in N is minimal.

Decomposable network is always minimal and a constraint network that admits

a minimal constraint is always consistent.

1.3.3 Triangulated Constraint Networks

Triangulated graphs play a key role in efficiently solving large sparse constraint

networks [13, 87, 104, 127]. An undirected graphG = (V,E) is said to be triangulated

or chordal if every cycle of length greater than 3 has a chord, i.e., an edge connecting

two non-consecutive vertices of the cycle. A network N is said to be triangulated

(resp. complete) if GN is triangulated (resp. complete).

Triangulated constraint graphs have the following nice property.

Theorem 1.1. [13] A triangulated constraint graph is PPC if every path of length

2 is PC.

If a constraint graph is not triangulated, we may add new edges (labeled with

universal constraints) to make it triangulated. In the following, we give a charac-

terization of triangulated graphs.
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Figure 1.4 : A graph G = (V,E).

Definition 1.10 (perfect vertex elimination ordering). [67] An ordering ≺ in a

graph G = (V,E) is called a perfect vertex elimination ordering in G, if the set of

successors of v

Fv := {w | (v, w) ∈ E, v ≺ w}

induces a complete subgraph of G for all v ∈ V .

For example, consider the graphG = (V,E) in Figure 1.4, the ordering (v1, v2, v3, v4)

is a perfect vertex elimination ordering in G, whereas the ordering (v2, v1, v3, v4) is

not.

Proposition 1.1. [67] A graph G is triangulated iff there exists a perfect vertex

elimination ordering in G.

1.3.4 Connected Row-Convex Constraint Networks

Suppose R ⊆ D1 × D2 is a binary relation. The (0,1)-matrix representation of

a relation R consists of |D1| rows and |D2| columns subject to orderings imposed

on D1, D2. The entry in the i-th row and j-th column of the matrix is 1, if the

corresponding pair of values from D1 ×D2 is in R, and is 0 otherwise.

Definition 1.11. [40] A binary relation R, represented as a (0,1)-matrix, is row-

convex if in each row all of the ‘1’s are consecutive. We say R is a connected row-

convex (CRC) relation if, after removing empty rows and columns in the matrix of
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R, (i) both R and its transpose are row-convex, and (ii) the positions of the ‘1’s in

any two consecutive rows or columns intersect, or are consecutive

Figure 1.5 shows two row-convex constraints, where the left one is CRC but the

right one is not.

(a) A CRC constraint. (b) A non-CRC constraint.

Figure 1.5 : A CRC constraint and a non-CRC constraint.

Row convex constraints are not closed under intersection and composition [40]—

the two operations to enforce PC, but CRC constraints are closed under these op-

erations.

Lemma 1.1. [40] CRC constraints are closed under intersection and composition.

Row-convex constraint networks have the following property.

Lemma 1.2. [7] A row-convex constraint network is decomposable and minimal if

it is strong PC.

The following theorem shows that CRC networks can be solved with PC, which

follows directly from the above two lemmas.

Theorem 1.2. Enforcing strong PC on a CRC constraint network transforms it into

an equivalent decomposable and minimal constraint network, if no inconsistency is

detected.

The following lemma shows that enforcing PPC on a triangulation of a CRC

network has the same effect as enforcing PC as far as only edges in the triangulation

are concerned.
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Lemma 1.3. [13] Let N be a CRC constraint network. Suppose G ⊇ GN is a

triangulation of GN and G∗ is the completion of GN . Further, let N� = 〈V,D,C�〉

and N ∗ = 〈V,D,C∗〉 be the constraint networks obtained by enforcing PPC on N

w.r.t G and G∗, respectively. Then C� ⊆ C∗.

As a corollary of Lemmas 1.2 and 1.3, we have the following result, which shows

that CRC networks can also solved with PPC.

Corollary 1.1. Let N be a CRC constraint network and G a triangulation of GN .

Suppose N ′ = 〈V,D,C ′〉 is the network obtained by enforcing PPC on N w.r.t. G.

If no inconsistency is detected, then all constraints in C ′ are minimal.

Proof. Suppose N is consistent. Let N ∗ = 〈V,D,C∗〉 be the path-consistent con-

straint network that is equivalent to N , i.e., N ∗ is obtained by enforcing PPC on

N w.r.t. the completion of GN . By Lemma 1.2, N ∗ is decomposable and minimal.

Further, by Lemma 1.3, we have C ′ ⊆ C∗, which finishes our proof.

By Lemma 1.3 and Theorem 1.1, enforcing PPC on a CRC constraint network

N can be done by the following two steps: (i) obtain a triangulation G of GN by

adding edges labeled with universal constraints, and (ii) make every path of length

two in G path-consistent by using relational intersection and composition.

1.3.5 Algebraic Closure Properties of Constraints

This subsection recalls some notions and results about constraint closure prop-

erties from [17] and [61]. A constraint relation (or an operation) is called one-sorted

if it is defined over a single domain and multi-sorted otherwise.

Definition 1.12. Suppose fD : Dr → D is a one-sorted operation on D. We say
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fD is near-unanimity if

(∀a, b ∈ Di) fD(b, a, . . . , a) = fD(a, b, a, . . . , a) = . . . = fD(a, . . . , a, b) = a. (1.1)

A ternary (r = 3) near-unanimity operation is called a majority operation.

Definition 1.13. Given a collection of finite sets D = {D1, . . . , Dn}, an r-ary

multi-sorted operation f is a collection of one-sorted operations {fD1 , . . . , fDn},

where fDi : Dr
i → Di. Let R ⊆ Di1 ×Di2 × . . .×Dim be a multi-sorted relation over

D. R is closed under f if for any r m-tuples 〈d11, d21, . . . , dm1〉, 〈d12, d22, . . . , dm2〉,

. . ., 〈d1r, d2r, . . . , dmr〉 in R, we have

〈fDi1 (d11, d12, . . . , d1r), . . . , f
Dim (dm1, dm2, . . . , dmr)〉 ∈ R

Intuitively, a relation R is r-decomposable if it is representable by a r-ary con-

straint network, i.e., there exists a r-ary constraint network such that its set of

solutions is exactly R. A formal definition is given below.

Definition 1.14. Let D = {D1, . . . , Dn} be a set of domains. An n-ary relation R

over D is a subset of D1×. . .×Dn. For any tuple t ∈ R and any 1 ≤ i ≤ n, we denote

by t[i] the value in the i-th coordinate position of t and write t as 〈t[1], . . . , t[n]〉.

Definition 1.15. Let R be an m-ary relation over domain D = {D1, . . . , Dn}. We

say R is r-decomposable if, for any m-tuples t and any I = (i1, . . . , ik) (a list of

indices chosen from {1, . . . ,m}) with k ≤ r, we have t ∈ R if πI(t) ∈ πI(R), where

πI(t) = 〈t[i1], ..., t[ik]〉 and πI(R) = {πI(t′) | t′ ∈ R}.

Definition 1.16. For a set of relations Γ, we write Γ+ for the set of all relations

which can be obtained from Γ by using some sequence of Cartesian product (for

R1, R2 ∈ Γ, R1 × R2 = {〈t1, t2〉 | t1 ∈ R1, t2 ∈ R2}), equality selection (for R ∈
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Γ, σi=j(R) = {t ∈ R | t[i] = t[j]} ), and projection (for R ∈ Γ, πi1,··· ,ik(R) =

{〈t[i1], · · · , t[ik]〉 | t ∈ R}).

We denote by CΓ the set of constraint networks all relations of which are taken

from Γ. We have the following extension of [61, Theorem 3.5] from the one-sorted

case to the multi-sorted case. The proof is similar to the one-sorted case and thus

omitted.

Theorem 1.3. Suppose Γ is a set of multi-sorted relations over a collection of finite

sets D = {D1, . . . , Dn}. For any r ≥ 3, the following conditions are equivalent:

1. There exists an r-ary near unanimity operation fDi on Di for each 1 ≤ i ≤ n

such that every relation R in Γ is closed under the multi-sorted operation

f = {fD1 , . . . , fDn}.

2. Every R in Γ+ is (r − 1)-decomposable.

3. For every constraint network N ∈ CΓ, establishing strong r-consistency en-

sures global consistency.
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Chapter 2

Tree-Preserving Constraints

2.1 Contribution

Tree-convex constraints are extensions of the well-known row-convex constraints.

Just like the latter, every path-consistent tree-convex constraint network is globally

consistent. However, it is NP-complete to decide whether a tree-convex constraint

network has solutions. This chapter studies and compares three subclasses of tree-

convex constraints, which are called chain-, path-, and tree-preserving constraints

respectively.

The class of tree-preserving constraints strictly contains the subclasses of path-

preserving and arc-consistent chain-preserving constraints. We prove that, when

enforcing strong path-consistency on a tree-preserving constraint network, in each

step, the network remains tree-preserving. This ensures global consistency of con-

sistent tree-preserving networks after enforcing strong path-consistency, and also

guarantees applicability of the partial path-consistency algorithms to tree-preserving

constraint networks, which is usually much more efficient than the path-consistency

algorithms for large sparse constraint networks. As an application, we show that the

class of tree-preserving constraints is useful in solving the scene labelling problem.

2.2 Introduction and Chapter Outline

Since deciding the consistency of CSP instances is NP-complete in general, lots of

efforts have been devoted to identifying tractable subclasses. There are two main ap-

proaches for constructing tractable subclasses. The first approach is structural-based,
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in which tractable subclasses are obtained by restricting the topology of the under-

lying graph of the constraint network (being a tree or having treewidth bounded

by a constant [37]); the second approach is language-based, in which tractable sub-

classes are obtained by by restricting the type of the allowed constraints between

variables (cf. [7]). Recently, researchers also propose a hybrid approach for con-

structing tractable classes, see e.g., the subclass of CSP instances satisfying the

broken-triangle property (BTP) [30, 31].

In this chapter, we are mainly interested in the language-based tractable sub-

classes. Montanari [101] showed that path-consistency is sufficient to guarantee that

a constraint network is globally consistent if the relations are all monotone. Van

Beek and Dechter [7] generalized monotone constraints to row-convex constraints,

which are further generalized to tree-convex constraints by Zhang and Yap [137].

These constraints also have the nice property that every path-consistent constraint

network is globally consistent.

However, neither row-convex constraints nor tree-convex constraints are closed

under intersection, which is one of the main operations of path-consistency (PC)

algorithms. This means that enforcing path-consistency may destroy row and tree-

convexity. Deville et al. [40] proposed a tractable subclass of row-convex constraints,

called connected row-convex (CRC) constraints, which are closed under composition

and intersection. Zhang and Freuder [134] also identified a tractable subclass of tree-

convex constraints, called locally chain convex and strictly union closed constraints.

They also proposed the important notion of consecutive constraints. Kumar [74]

showed that the subclass of arc-consistent consecutive tree-convex (ACCTC) con-

straints is tractable by providing a polynomial time randomised algorithm. Nev-

ertheless, for the ACCTC problems, “it is not known whether there are efficient

deterministic algorithms, neither is it known whether strong path-consistency en-

sures global consistency on those problems.”[134]
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In this chapter, we study and compare three subclasses of tree-convex constraints,

which are called, respectively, chain-, path- and tree-preserving constraints.

In Section 2.3, we start with basic notations and concepts that will be used

throughout the chapter. Based on the concept of tree domains, we introduce chain-

, path- and tree-preserving constraints. Chain-preserving constraints are exactly

“locally chain convex and strictly union closed” constraints in the sense of [134],

which include CRC constraints as a special case where tree domains are linear.

Arc-consistent chain-preserving constraints, path-preserving constraints and AC-

CTC constraints are all strictly contained in the class of tree-preserving constraints.

Therefore, the remainder of this chapter will focus on the more general tree-

preserving constraints. We show in Section 2.4 that the class of tree-preserving

constrains is closed under intersection and composition, which are operations of

the path-consistency algorithm. This guarantees that a tree-preserving constraint

network remains tree-preserving after enforcing path-consistency on it. Recall that

every path-consistent tree-convex constraint network is globally consistent [137].

This shows that the class of tree-preserving constraints is tractable and can be

solved by the path-consistency algorithm. We also prove in this section that our

definitions and results for tree-preserving constraints can be extended to domains

with acyclic graph structures, called forest domains in this chapter.

The above properties of tree-preserving constraints bear similarity to CRC con-

straints. Bliek and Sam-Haround [13] showed that enforcing partial path-consistency

(PPC) is sufficient to solve sparse CRC constraint networks. PPC enforces PC on

sparse constraint graphs by triangulating instead of completing them and thus can

be enforced more efficiently than enforcing PC. As far as CRC constraints are con-

cerned, the pruning capacity of path-consistency on triangulated graphs and their

completion are identical on the common edges. In Section 2.5, we show that PPC
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[13] is sufficient to decide the consistency of tree-preserving constraint networks.

Moreover, we show that, after enforcing PPC, we can find a solution in a backtrack-

free style if no inconsistency is detected.

Section 2.6 is concerned with the application of tree-preserving constraints in

scene labelling. Solving the scene labelling problem is a crucial part of figuring out

the possible 3D scenes of a 2D projection, which has applications in both vision and

geometric modelling. Research in this field has centred on the trihedral scene la-

belling problem, i.e., scenes where no four planes share a point. The trihedral scene

labelling problem has been shown to be NP-complete [66]. Based on the forest do-

mains associated to each possible variable type by Zhang and Freuder [134] (see

Figure 2.9), we show that all 39 possible types of the trihedral scene labelling prob-

lem instances are tree-convex, and 29 of them are tree-preserving. This means that

a large subclass of the trihedral scene labelling problem can be modelled by tree-

preserving constraint networks and thus can be efficiently solved by the techniques

discussed in this chapter. As a byproduct, since every instance of the NP-complete

trihedral scene labelling problem can be modelled by a tree-convex constraint net-

work, we show that the class of tree-convex constraints is NP-complete.

It is interesting to compare our approach with another research line of studying

tractable subclasses of CSPs, which focuses on the algebraic closure property of

constraints [17, 45, 61]. In Section 2.7, we study the algebraic closure property

of tree-preserving constraints and establish the equivalence between tree-preserving

constraints and constraints that are closed under a “standard” majority operation.

In this way, we provide an alternative way to prove the tractability of tree-preserving

constraints.

Section 2.8 reports experimental evaluations on enforcing PPC and PC on tree-

preserving constraint networks and Section 2.9 concludes the chapter.
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2.3 Preliminaries

Necessary notations and results about CSP, AC, PC and PPC are provided in

section 1.3.

Let D be the domain of a variable x. An undirected graph structure can often

be associated to D such that there is a bijection between the vertices in the graph

and the values in D. If the graph is connected and acyclic, i.e., a tree, then we say

it is a tree domain of x. Tree domains arise naturally in e.g., scene labelling [134]

and combinatorial auctions [27]. We note that, in this chapter, we fix a specific tree

domain for each variable x.

In this chapter, we distinguish between trees and rooted trees. Standard notions

from graph theory are assumed. In particular, the degree of a node a in a graph G,

denoted by deg(a), is the number of neighbours of a in G. A node a is called a leaf

node if it has only one neighbour, i.e., deg(a) = 1.

Definition 2.1. A tree is a connected graph without any cycle (cf. Figure 2.1(a)).

A tree is rooted if it has a specified node r, called the root of the tree. Given a tree

T , a subgraph I is called a subtree of T if I is connected. The empty subgraph is a

subtree of any tree.

Let T be a tree (rooted tree, resp.) and I a subtree of T . I is a path ( chain,

resp.) in T if each node in I has at most two neighbours (at most one child, resp.)

in I. Given two nodes p, q in T , the unique path that connects p to q is denoted by

πp,q.

Suppose a is a node of a tree T . A branch of a is a connected component of

T \ {a}.

Figure 2.1 gives illustrations of these notions.

Throughout this chapter, we always associate a tree structure Tx = (Dx, Ex)
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Figure 2.1 : (a) A tree T . Subgraphs with node sets {a, b, c, d}, {a, b, c}, and {c, b, d}
form, respectively, a subtree, a chain, and a path of T . The degree of node b is 3
and the three branches of b are the subtrees with node sets {c}, {d} and {a, e}
respectively. (b) A binary constraint Rxy between Tx and Ty, where a dashed arrow
from a node u in Tx to a node v in Ty indicates that (u, v) is in Rxy. Node c is
supported under Rxy with image {f, g, h}, and b is unsupported under Rxy.

with a given domain Dx, where Ex is the set of tree edges connecting values in Dx.

For convenience, we often use the notation Tx to denote the domain Dx and call Tx

a tree domain. Also, a ∈ Tx means that a ∈ Dx.

In this chapter, unless stated otherwise, we assume that Rxy is the inverse of

Ryx, and if there is no constraint for (x, y), we assume that Rxy is the universal

constraint (i.e., Dx ×Dy).

Definition 2.2. Let x, y be two variables with finite tree domains Tx = (Dx, Ex)

and Ty = (Dy, Ey), and R a constraint from x to y. We say R, w.r.t. Tx and Ty, is

(cf. Figure 2.2)

- tree-convex if the image of every value a in Dx (i.e., R(a)) is a subtree of Ty;

- consecutive if the image of every edge in Tx is a subtree in Ty;

- path-preserving if the image of every path in Tx is a path in Ty;

- tree-preserving if the image of every subtree in Tx is a subtree in Ty.

In case Tx and Ty are rooted, we say R, w.r.t. Tx and Ty, is
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(a) (b) (c)

Figure 2.2 : (a) Rxy is a chain- but not path-preserving constraint as the the image
of the path {c, b, d} of Tx is {e, f, g, h}, which is not a path of Ty; (b) Rxy is a
path- but not chain-preserving constraint as the image of the chain {a, c} of Tx is
{e, f, g}, which is not a chain of Ty; (c) Rxy is a tree-preserving but neither path-
nor chain-preserving constraint as the image of the path {a, b} of Tx, which is also
a chain of Tx, is {e, f, g, h} that is neither a path nor a chain of Ty.

- chain-preserving if the image of every chain in Tx is a chain in Ty.

We note that a subtree (a path or a chain) of Tx (or Ty) in the above definition

is possibly empty. We also note that chain-preserving constraints are exactly those

“locally chain convex and strictly union closed” constraints defined in [134].

CRC constraints are special chain-preserving constraints defined over chain do-

mains. The following definition of CRC constraints is equivalent to the one given in

Definition 1.11.

Definition 2.3. Let x, y be two variables with finite tree domains Tx and Ty, where

Tx and Ty are chains. A constraint R from x to y is connected row-convex (CRC),

w.r.t. Tx and Ty, if both R and R−1 are chain-preserving.

Definition 2.4. A binary constraint network N over variables in V and tree do-

mains Tx (x ∈ V ) is called tree-convex, chain-, path-, or tree-preserving if every

constraint R ∈ N is tree-convex, chain-, path-, or tree-preserving, respectively. A

CRC constraint network is defined similarly.

The following proposition summarizes relations between these tree-convex con-
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straints.

Proposition 2.1. Every chain-, path-, or tree-preserving constraint (network) is

consecutive and every path-preserving constraint (network) is tree-preserving. More-

over, every arc-consistent consecutive tree-convex (ACCTC) constraint (network) is

tree-preserving.

Proof. First, we notice that an edge is a chain, a path and a subtree, and a chain

or a path is a subtree. Then the claim that every chain-, path-, or tree-preserving

constraint is consecutive directly follows from Definition 2.2.

Second, we show that if a constraint Rxy is path-preserving, then it is also tree-

preserving. Let Rxy be a path-preserving constraint over tree domains Tx and Ty.

Suppose that Rxy is not tree-preserving. We know that there exists a subtree tx of

Tx such that Rxy(tx) is not a subtree of Ty. Therefore, tx can be divided into two

parts, say t1x and t2x, such that Rxy(t
1
x) is disconnected from Rxy(t

2
x). Let v1 ∈ t1x,

v2 ∈ t2x such that Rxy(v1) 	= ∅ and Rxy(v2) 	= ∅. Let πv1,v2 be the path from v1 to

v2 in Tx. Let π1 = πv1,v2 ∩ t1x and π2 = πv1,v2 ∩ t2x. Then Rxy(π1) is disconnected

from Rxy(π2). Therefore, Rxy(πv1,v2) cannot be a path of Ty which contradicts that

Rxy is path-preserving.

Finally, if a constraint Rxy over tree domains Tx and Ty is arc-consistent consec-

utive tree-convex, we show that Rxy is also tree-preserving. Let tx be an arbitrary

subtree of Tx. We show that Rxy(tx) is a subtree of Ty. Let t0 be a subtree of tx such

that |t0| = 1. Because Rxy is tree-convex, Rxy(t0) is a subtree of Ty. Let t be a sub-

tree of tx and ev1v2 be an edge of Tx with v1 ∈ t, v2 	∈ t and v2 ∈ tx. Suppose Rxy(t)

is a subtree of Ty. Because Rxy is arc-consistent consecutive tree-convex, Rxy(ev1v2)

is also a subtree of Ty, and Rxy(v1) 	= ∅. Because ∅ 	= Rxy(v1) ⊆ Rxy(t)∩Rxy(ev1v2),

Rxy(t) and Rxy(ev1v2) are connected. Thus, Rxy(t∪ev1v2) is also subtree of Ty. There-

fore, by induction, we can add edges to t0 one by one until t0 = tx, and in each step,
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Rxy(t0) is a subtree of Ty.

Although every arc-consistent chain- or path-preserving constraint is tree-preserving,

Figure 2.2(c) shows that the other direction is not always true. Furthermore, Fig-

ure 2.1(b) shows that not every chain-preserving (or consecutive tree-convex) con-

straint is tree-preserving and Figure 2.2(a,b) show that chain-preserving constraints

and path-preserving constraints are incomparable.

The following results of trees will be used in the proof of some results in this

chapter.

Lemma 2.1. [137] Let T be a tree and suppose ti (i = 1, . . . ,m) are subtrees of T .

Then
⋂m

i=1 ti is nonempty iff ti ∩ tj is nonempty for every 1 ≤ i 	= j ≤ m.

Lemma 2.2. Let T be a tree and t, t′ subtrees of T . Suppose {u, v} is an edge in

T . If u ∈ t and v ∈ t′, then t ∪ t′ is a subtree of T ; if, in addition, u 	∈ t′ and v 	∈ t,

then t ∩ t′ = ∅.

Proof. The first part is clear as the edge {u, v} connects t and t′. Suppose u 	∈ t′,

v 	∈ t. We show t ∩ t′ = ∅. Suppose this is not the case and there exists w ∈ t ∩ t′.

Then we have πw,u ⊆ t and πw,v ⊆ t′. Since u is a neighbour of v, we have either

u ∈ πw,v or v ∈ πw,u, i.e., either u ∈ t′ or v ∈ t. Both contradict our assumption

that u 	∈ t′, v 	∈ t. Therefore, we must have t ∩ t′ = ∅.

Using Lemma 2.1, Zhang and Yap [137] proved the following result:

Theorem 2.1. A tree-convex constraint network is globally consistent if it is path-

consistent.

In the following, we will focus on the class of tree-preserving constraints.
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2.4 Tree-Preserving Constraints

In this section, we show that the class of tree-preserving constraints is tractable.

Given a tree-preserving constraint network N , we show that, when enforcing strong

path-consistency on N , in each step, the network remains tree-preserving. Hence,

by Theorem 2.1, we know that, if no inconsistency is detected, a tree-preserving

constraint network will be transformed into an equivalent globally consistent network

after enforcing strong path-consistency.

Firstly, we show that tree-preserving constraint networks are closed under arc-

consistency.

Lemma 2.3. Suppose Rxy and Ryx are tree-preserving (tree-convex) w.r.t. tree

domains Tx and Ty. Let t be a subtree of Tx and R′
xy = {〈a, b〉 ∈ Rxy : a ∈ t} and

R′
yx = {〈b, a〉 ∈ Ryx : a ∈ t} the restrictions of Rxy and Ryx to t. Then both R′

xy

and R′
yx are tree-preserving (tree-convex).

Proof. Note that a path or subtree of t is also a path or subtree of Tx. The con-

clusion then follows directly from the definitions of tree-preserving and tree-convex

constraints.

As a corollary, we have

Corollary 2.1. Let N be a tree-preserving (tree-convex) constraint network over tree

domains Tx (x ∈ V ). Assume that t is a nonempty subtree of Tx. When restricted

to t, N remains tree-preserving (tree-convex).

The following lemma examines unsupported values of a tree-preserving con-

straint.

Lemma 2.4. Suppose Rxy is nonempty and tree-preserving w.r.t. tree domains Tx

and Ty. If v ∈ Ty has no support in Tx under Ryx, then all supported nodes of Ty
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are in the same branch of v. That is, every node in any other branch of v is not

supported under Ryx.

Proof. Suppose a, b are two supported nodes in Ty. There exist u1, u2 in Tx s.t.

u1 ∈ Ryx(a) and u2 ∈ Ryx(b). By Ryx = R−1
xy , we have a ∈ Rxy(u1) and b ∈ Rxy(u2).

Hence a, b ∈ Rxy(πu1,u2). Since Rxy is tree-preserving, Rxy(πu1,u2) is a subtree in Ty.

If a, b are in two different branches of v, then πa,b must pass v and hence we must

have v ∈ Rxy(πu1,u2). This is impossible as v has no support.

It is worth noting that this lemma does not require Ryx to be tree-preserving.

The following result then follows directly.

Proposition 2.2. Let N be a tree-preserving constraint network over tree domains

Tx (x ∈ V ). If no inconsistency is detected, then N remains tree-preserving after

enforcing arc-consistency.

Proof. Enforcing arc-consistency on N only removes values which have no support

under some constraints. For any y ∈ V , if v is an unsupported value in Ty, then,

by Lemma 2.4, every supported value of Ty is located in the same branch of v.

Deleting all these unsupported values from Ty, we get a subtree t of Ty. Applying

Corollary 2.1, the restricted constraint network to t remains tree-preserving.

Secondly, we consider the intersection and composition of tree-preserving con-

straints.

When doing relational intersection, we may need to remove some unsupported

values from domains. Unlike CRC [40, Lemma 13] and chain-preserving constraints

[134, Proposition 5], removing a value from a domain may change the tree-preserving

property of a network. Instead, we need to remove a ‘trunk’ from the tree domain

or just keep one branch.
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Figure 2.3 : Mab is a trunk of tree T , i.e., the subtree induced by vertices with red
colour.

Definition 2.5. Suppose a 	= b are two nodes of a tree T that are not neighbours.

The trunk between a, b, written as Ma,b, is defined as the connected component of

T \ {a, b} which contains all the internal nodes of πa,b (see Figure 2.3). The M-

contraction of T by Ma,b, denoted by T �Ma,b, is the tree obtained by removing the

nodes with associated edges in Ma,b and adding an edge {a, b} to T .

To improve readability, we defer the proofs of Lemmas 2.5-2.7 to Appendix.

Lemma 2.5. Let N be an arc-consistent and tree-preserving constraint network

over tree domains Tx (x ∈ V ). Suppose x ∈ V and Ma,b is a trunk in Tx. When

restricted to Tx �Ma,b and enforcing arc-consistency, N remains tree-preserving if

no inconsistency is detected.

The following two lemmas consider the intersection of two tree-preserving con-

straints.

Lemma 2.6. Assume Rxy and R′
xy are two arc-consistent and tree-preserving con-

straints w.r.t. trees Tx and Ty. Let R∗
xy = Rxy ∩ R′

xy. Let W = {w ∈ Tx | R∗
xy(w) 	=

∅} be the set of supported values of R∗
xy. Suppose u ∈ Tx and u 	∈ W . Then there

exist at most two values w1, w2 in W s.t. no value in W other than wi is on the

path πwi,u for i = 1, 2.
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Yes

No Yes

Enforce AC 

NoRestrict to a subtree, or Delete some 
trunk from and enforce AC on

AC?

Lemmas 5, 6 and Proposition 2

Lemma 7

Proposition 2

Figure 2.4 : The flow diagram of proof of Theorem 2.2.

Remark 2.1. If there is only one value w1 in W that satisfies the condition in

Lemma 2.6, regarding u as the root of Tx, then W is contained in the subtree rooted

at w1; if there are two values w1, w2 inW that satisfy the condition in the Lemma 2.6,

then the trunk Mw1,w2 should be contracted from Tx to make W connected.

Lemma 2.7. Suppose Rxy and R
′
xy are arc-consistent and tree-preserving constraints

w.r.t. trees Tx and Ty and so are Ryx and R′
yx. Let R

∗
xy = Rxy∩R′

xy. Assume {u, v}

is an edge in Tx s.t. R∗
xy(u) 	= ∅, R∗

xy(v) 	= ∅, and R∗
xy(u) ∪ R∗

xy(v) is disconnected

in Ty. Then there exist unique r ∈ R∗
xy(u) and s ∈ R∗

xy(v) s.t. every node in Mr,s is

unsupported under R∗
yx.

The following result follows from the definition of tree-preserving constraints.

Proposition 2.3. Assume that Rxz and Rzy are two tree-preserving constraints

w.r.t. trees Tx, Ty, and Tz. Then their composition Rxz ◦Rzy is tree-preserving.

Proof. Let R′
xy = Rxz ◦Rzy and tx be an arbitrary subtree of Tx. Then we have that

R′
xy(tx) = Rzy(Rxz(tx)). Because Rxz is tree-preserving, we have that Rxz(tx) is a

subtree of Tz. Similarly, Rzy(Rxz(tx)) is a subtree of Ty. Thus, R
′
xy is tree-preserving.

Finally, we give the main result of this section.
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Theorem 2.2. Let N be a tree-preserving constraint network. If no inconsistency

is detected, then enforcing strong path-consistency determines the consistency of N

and transforms N into a globally consistent network.

Proof. Figure 2.4 is the flow diagram of the proof.

If we can show thatN is still tree-preserving after enforcing strong path-consistency,

then by Theorem 2.1 the new network is globally consistent if no inconsistency is

detected.

By Proposition 2.2, N remains tree-preserving after enforcing arc-consistency.

To enforce path-consistency on N , we need to call the following updating rule:

Rxy ←Rxy ∩ (Rxz ◦Rzy) (2.1)

Ryx ←R−1
xy (2.2)

for x, y, z ∈ V until the network is stable.

Suppose N is arc-consistent and tree-preserving w.r.t. trees Tx for x ∈ V before

applying (2.1). Note that if R∗
xy = Rxy ∩ (Rxz ◦ Rzy) (as well as its inverse R∗

yx)

is arc-consistent, then R∗
xy(u) is nonempty for any node u in Tx. By Lemma 2.7,

R∗
xy(u)∪R∗

xy(v) is connected for every edge {u, v} in Tx as otherwise there will exist

unsupported nodes in Ty under the inverse of R∗
xy. Therefore R∗

xy is arc-consistent

and consecutive, and hence, tree-preserving. Since R∗
yx = R∗−1

xy = Ryx ∩ (Ryz ◦Rzx),

analogously, we have R∗
yx is tree-preserving.

If R∗
xy is not arc-consistent, then there exists u ∈ Tx s.t. R∗

xy(u) is empty. By

Lemma 2.6 and Remark 2.1, we should restrict the domain to a subtree or contract

some trunk from Tx and enforce arc-consistency. If R∗
yx is not arc-consistent, then we

do analogously. By Lemma 2.5 and Proposition 2.2, if no inconsistency is detected,

then we have an updated arc-consistent and tree-preserving network. Still write N
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for this network and recompute R∗
xy, R

∗
yx and repeat the above procedure until either

an inconsistency is detected or both R∗
xy and R

∗
yx are arc-consistent. Note that, after

enforcing arc-consistency, the composition Rxz ◦Rzy may have changed.

Once arc-consistency of R∗
xy and R∗

yx is achieved, we update Rxy with R∗
xy and

Ryx with R∗
yx and continue the process of enforcing path-consistency until N is

path-consistent or an inconsistency is detected.

In above, we assume that each domain is associated to a tree structure. Actually,

our definitions and results of tree-preserving constraints can be straightforwardly

extended to domains with acyclic graph structures (which are connected or not).

We call such a structure a forest domain.

Proposition 2.4. The consistency of a tree-preserving constraint network over for-

est domains can be reduced to the consistency of several parallel tree-preserving net-

works over tree domains.

Proof. Given a tree-preserving constraint network N over forest domains F1, ..., Fn

of variables v1, ..., vn, suppose that Fi consists of trees (i.e., maximally connected

components) ti,1, . . . , ti,ki . Note that the image of each tree, say ti,1, of Fi under

constraint Rij is a subtree t of Fj. Assume t is contained in the tree tj,s of forest Fj.

Then the image of tj,s under constraint Rji is a subtree of ti,1. This establishes, for

any 1 ≤ i 	= j ≤ n, a 1-1 correspondence between trees in Fi and trees in Fj if the

image of each tree is nonempty. In this way, the consistency of N is reduced to the

consistency of several parallel tree-preserving networks over tree domains.

Figure 2.5 shows a tree-preserving network over forest domains. We note that N

cannot be modelled as tree-preserving over tree domains. For example, if we modify

F1 as a tree T1 by adding edges {a, b} and {b, c}. Then, in order to make R13 tree-

preserving, edges {g, h} and {h, i} should be added to F3. Write T3 for the new tree.
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Figure 2.5 : A tree-preserving network N = {R12, R13, R23} over forest domains F1,
F2, and F3, where each forest domain consists of three trees which contain only one
node.

Likewise, in order to make R12 tree-preserving, edges {d, e} and {e, f} should be

added to F2. Write T2 for the new tree. However, R23 is not tree-preserving w.r.t.

T2 and T3.

Recall that when enforcing path-consistency, we transform a constraint network

into a complete constraint graph despite the number of non-trivial constraints it has.

In the following section, we consider a more efficient path-consistency algorithm that

respects the density of non-trivial constraints in the network.

2.5 Partial PC for Tree-Preserving Constraints

Partial PC (PPC) is a more general consistency condition than PC and can be

enforced more efficiently for constraint networks with sparse constraint graphs. The

idea of PPC is to enforce path-consistency on sparse constraint graphs by trian-

gulating instead of completing them. Bliek and Sam-Haroud demonstrated that,

as far as CRC constraints are concerned, the pruning capacity of path-consistency

on triangulated graphs and their completions are identical on the common edges.

In this section, we show that a similar result applies to tree-preserving constraints.

Moreover, we show that, after enforcing strong PPC (i.e., both AC and PPC), we

can find a solution in a backtrack-free style if no inconsistency is detected.
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Figure 2.6 : A triangulated graph G, where 〈v1, v2, v3, v4, v5〉 is a perfect vertex
elimination ordering of G.

Basic definitions and results related to graph triangulation and PPC have been

given in subsections 1.3.2 and 1.3.3. Some extra graph notations and results are

given below.

Definition 2.6 ([13]). Suppose ≺= 〈v1, v2, ..., vn〉 is a perfect vertex elimination

ordering of graph G. For 1 ≤ i ≤ n, we denote by Gi the subgraph of G induced by

Si = {vn−i+1, ..., vn} and write Fi = {vk ∈ N(vn−i)|vn−i ≺ vk}.

Since the vertex elimination ordering is perfect, the subgraph induced by Fi is

complete. An example is given in Figure 2.6, where G is a triangulated constraint

graph and 〈v1, . . . , v5〉 is a perfect vertex elimination ordering of G. By Defini-

tion 2.6, we can see that Si just denotes the last i vertices w.r.t. the ordering.

Therefore, we have S1 = {v5}, S2 = {v4, v5}, S3 = {v4, v4, v5}, S4 = {v2, v3, v4, v5}

and S5 = {v1, v2, v3, v4, v5}. Finally, Fi denotes the set of vertices that are adja-

cent to vn−i and after it w.r.t. the ordering. Therefore, we have F1 = {v5}, F2 =

{v4, v5}, F3 = {v3, v5} and F4 = {v2, v5}.

Proposition 2.5 ([13]). A triangulated constraint graph G is path-consistent iff

every path of length 2 is path-consistent.

The following result is a straightforward extension from CRC constraints [13] to

tree-preserving constraints. For the purpose of being self-contained, we provide a
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Figure 2.7 : Illustration of proof of Lemma 2.8. The figure is taken from [13].

complete proof below.

Lemma 2.8. Suppose N is a strongly partial path-consistent tree-preserving con-

straint network with a triangulated constraint graph G = (V,E). Assume that ≺=

〈v1, v2, ..., vn〉 is a perfect vertex elimination ordering of G. Let Gi, Si, Fi(1 ≤ i ≤ n)

be defined as in Definition 2.6. Suppose i is the largest index such that Gi is com-

plete. Assume that vj is a node in Si that is not a neighbour of vn−i in G. Let

Rvn−i,vj =
⋂

x∈Fi

(
Rvn−i,x ◦Rx,vj

)
. Then

(i) The constraint graph G′ = (V,E ∪ {(vn−i, vj)}) is triangulated and ≺ is also

a perfect vertex elimination ordering of G′ and Fi is exactly the set {x |

(vn−i, x), (x, vj) ∈ E};

(ii) G′ is strongly path-consistent;

(iii) The constraint Rvn−i,vj and its inverse are tree-preserving.

Proof. (i) This result directly follows from the proof of [13, Lemma 1].

(ii) First, we show that G′ is PC. To this end, because G′ is triangulated, it is

sufficient to show that every path of length 2 of G′ is PC by Proposition 2.5. Because

G is PC, paths of length 2 of G′ that do not go through vn−i and vj are PC. So, let

us consider paths of length 2 of G′ that go through vn−i and vj.
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Let Gs be the subgraph of G that is induced by Fi ∪ {vn−i}. Note that Gi is

the subgraph of G that is induced by Fi ∪ {vj}. See Figure 2.7 for an illustration

where the vertices in Fi are colored black. We claim that Gs and Gi are globally

consistent. By assumption, we know that Gi is complete. Because ≺ is a perfect

vertex elimination ordering of G, we know that Gs is also complete. Now, because Gi

and Gs are complete, strongly path-consistent and tree-preserving, they are globally

consistent by Theorem 2.1.

Let π be a path of length 2 of G′ that goes through vn−i and vj. We now show

that π is PC. To this end, we have to consider the following two cases:

Case 1: π = 〈vn−i, vk, vj〉 with some vk ∈ V (vk 	= vn−i, vj). By (i), we know that

Fi is exactly the set {x | (vn−i, x), (x, vj) ∈ E}. Therefore, vk ∈ Fi. Because Gs is

globally consistent, it admits at lease one solution, say α. Because Gi is also globally

consistent, α|Fi
can be consistently extended to vj such that all constraints in Gi

are satisfied. Therefore, α can be extended to a solution of Gs∪Gi, say β. Then we

have that, for all x ∈ Fi, 〈β|vn−i
, β|x〉 ∈ Rvn−i,x and 〈β|x, β|vj〉 ∈ Rx,vj . Therefore,

〈β|vn−i
, β|vj〉 ∈ ⋂

x∈Fi

(
Rvn−i,x ◦Rx,vj

)
. Thus, Rvn−i,vj =

⋂
x∈Fi

(
Rvn−i,x ◦Rx,vj

)
	= ∅.

Further, because vk ∈ Fi, for any 〈a, b〉 ∈ Rvn−i,vj , there is some c ∈ Dk such that

〈a, c〉 ∈ Rvn−i,vk and 〈c, b〉 ∈ Rvk,vj , and thus π = 〈vn−i, vk, vj〉 is PC.

Case 2: π = 〈vn−i, vj, vk〉 with some vk ∈ V (vk 	= vn−i, vj). Since G′ is triangu-

lated by (i), there is an edge {vn−i, vk} of G′. Therefore, vk ∈ Fi. Surely, Rvn−i,vk is

not empty, because it is a constraint in G and G is PC. Now, we show that for any

〈a, b〉 ∈ Rvn−i,vk , there is some c ∈ Dj such that 〈a, c〉 ∈ Rvn−i,vj and 〈c, b〉 ∈ Rvjvk .

Because Gs is globally consistent, 〈a, b〉 can be extended to a solution of Gs. Sim-

ilar to case 1, we know that the solution of Gs can be extended to a solution of

Gs ∪ Gi. We write such a solution of Gs ∪ Gi as ψ. Let value c be the restriction

of ψ to variable vj. Certainly, 〈c, b〉 ∈ Rvjvk . Further, for any x ∈ Fi, let c
′ be the
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Figure 2.8 : Illustration of proof of Theorem 2.3.

restriction of ψ to x. We have that 〈a, c′〉 ∈ Rvn−i,x and 〈c′, c〉 ∈ Rx,vj , and thus

〈a, c〉 ∈ Rvn−i,vj =
⋂

x∈Fi

(
Rvn−i,x ◦Rx,vj

)
. Therefore, we have that π = 〈vn−i, vj, vk〉 is

also PC.

Second, we show that G′ is AC. To this end, it is sufficient to prove that Rvn−i,vj

is AC. Because Rvn−i,vk(vk ∈ Fi) is AC, for any a ∈ Dn−i, there is a v ∈ Dk such

that 〈a, b〉 ∈ Rvn−i,vk
. Further, because π = 〈vn−i, vj, vk〉 is PC, there is a c ∈ Dj

such that 〈a, c〉 ∈ Rvn−i,vj and 〈c, b〉 ∈ Rvj ,vk . Similarly, for any c ∈ Dj, there is a

a ∈ Dn−i such that 〈c, a〉 ∈ Rvj ,vn−i
. So, Rvn−i,vj is AC.

(iii) By (i), we have Fi = {x | {vn−i, x}, {x, vj} ∈ E}. According to Proposi-

tion 2.3, we know that Rvn−i,x ◦Rx,vj is tree-preserving for any x ∈ Fi. Furthermore,

because Rvn−i,vj is arc-consistent by (ii), according to Lemma 2.7, we know that

Rvn−i,vj =
⋂

x∈Fi

(
Rvn−i,x ◦Rx,vj

)
is tree-preserving. Similarly, since

R−1
vn−i,vj

=
⋂
x∈Fi

(
Rvn−i,x ◦Rx,vj

)−1
=

⋂
x∈Fi

(
R−1

x,vj
◦R−1

vn−i,x

)
=

⋂
x∈Fi

(
Rvj ,x ◦Rx,vn−i

)
,

we know that the inverse of Rvn−i,vj is also tree-preserving.

By the above lemma, we now prove that the result obtained for CRC constraints

in [13] also applies to tree-preserving constraints.

Theorem 2.3. For a tree-preserving constraint network N with a triangulated con-
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straint graph G, strong PC on G is equivalent to strong PC on the completion of G

in the sense that the relations computed for the constraints in G are identical.

Proof. The proof is analogous to that for CRC constraints in [13]. Suppose we have

a triangulated constraint graph G = (V,E) that is strongly PC. We will add to G

the missing edges one by one until the graph is complete. To prove the theorem, we

show that the relations of the constraints can be computed from the existing ones

so that each intermediate graph, including the completed graph, is strongly PC. Let

i be the largest index such that Gi is complete. Since Gi+1 is not complete, we add

one by one all missing edges {vn−i, vj} into Gi+1 and compute their corresponding

constraints as

Rvn−i,vj =
⋂
x∈Fi

(
Rvn−i,x ◦Rx,vj

)

(see Figure 2.8 for an illustration, where vertices in Fi are denoted in black). By

Lemma 2.8, we know Rvn−i,vj and its inverse are tree-preserving and the revised

graph G′
i+1 remains triangulated. Continuing in this way, we will transform Gi+1

into a complete graph. Applying the above procedure to Gi+1, and so on, until the

whole graph is complete, we will have the desired result.

Then, we show that enforcing PPC on a consistent tree-preserving constraint

network transforms it into an equivalent constraint network that is backtrack-free

in the following sense.

Definition 2.7 ([37]). A constraint network is backtrack-free relative to a given

ordering ≺= 〈x1, · · · , xn〉 if for every i ≤ n− 1, every partial solution of {x1, . . . , xi}

can be consistently extended to xi+1.

We now have the main result of this section.

Theorem 2.4. Suppose N is a tree-preserving constraint network with triangulated

constraint graph G. If no inconsistency is detected, then enforcing strong PPC on
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G transforms it into an equivalent consistent network that is backtrack-free relative

to the reverse ordering of any perfect elimination ordering ≺= 〈v1, · · · , vn〉 of G.

Proof. Suppose ≺= 〈v1, · · · , vn〉 is a perfect elimination ordering of G. In the fol-

lowing, we use notations Si, Fi and Gi that are defined in Definition 2.6.

Assume that no inconsistency is detected. Write N ∗ for the equivalent network

obtained from enforcing strong PPC on N . We show that N ∗ is backtrack-free w.r.t.

the ordering ≺−1= 〈vn, vn−1, ..., v1〉. To this end, we need to show that, for any

2 ≤ i ≤ n, any consistent instantiation of vertices in Si−1 = {vn, vn−1, · · · , vn−i+2}

can be consistently extended to vn−i+1.

Suppose the above statement holds for any 2 ≤ i ≤ j. We show that it holds for

i = j + 1. Because the elimination ordering is perfect, Fj ∪ {vn−j} is complete. So,

the restriction of N into Fj∪{vn−j} is strongly PC and tree-preserving and thus, by

Theorem 2.2, globally consistent. Therefore, any consistent instantiation to vertices

in Fj could be consistently extended to vn−j. Also, because there are no edges (i.e.,

no constraints) between vn−j and vertices in Gj \ Fj, any consistent instantiation

to vertices in Gj could be consistently extended to vn−j such that all constraints

in Gj+1 are satisfied. In this way, we have shown that N ∗ is backtrack-free w.r.t.

≺−1.

According to Theorem 2.4, enforcing PPC is sufficient to solve tree-preserving

constraint networks. In the following, we will show that conservative dual-consistency

(CDC) [81] is equal to PPC for tree-preserving constraint networks with triangulated

constraint graphs.

Given a binary constraint network N , N|vi=ai represents the network obtained

fromN by restricting the domain of vi to the singleton {ai} and AC(N|vi=ai) denotes

the network obtained by enforcing AC on N|vi=ai .
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Definition 2.8. [81] Let N be a binary constraint network over variable set V . N

is called conservative dual-consistent (CDC) if for any Rvivj ∈ N and any 〈ai, aj〉 ∈

Rvivj , we have aj ∈ D∗
j where D∗

j is the domain of vj w.r.t. AC(N|vi=ai). N is

called strongly CDC if it is both AC and CDC.

Proposition 2.6. Strong partial path-consistency is equivalent to strong conserva-

tive dual-consistency for tree-preserving constraint networks with triangulated con-

straint graphs.

Proof. Let N be a tree-preserving constraint network over variable set V . Suppose

that the constraint graph G = (V,E) of N is triangulated. If N is strongly CDC,

then N is also strongly PPC, because conservative dual-consistency is a stronger

consistency condition than partial path-consistency [83]. Now, suppose that N is

strongly PPC, we show that N is also strongly CDC. We first obtain a new network

N ′ by adding all the missing edges to G to make it complete. Constraints of newly

added edges are all set to be universal. Then we enforce strong PC on N ′. Now, N ′

is strongly PC and N ′ is equivalent to N . By Theorem 2.2, N ′ is globally consistent.

Let Rvivj be an arbitrary constraint of N . By Theorem 2.3, Rvivj is also a constraint

of N ′. Then, for any tuple 〈ai, aj〉 ∈ Rvivj , it can be extended to a solution ψ of N ′

which is also a solution of N . Therefore, we have aj ∈ D∗
j where D∗

j is the domain

of vj w.r.t. AC(N|vi=ai), and we know that N is CDC. Because N is also AC, it is

strongly CDC.

Consequently, we can adopt efficient strong CDC enforcing algorithms, such as

sCDC1 [83], to enforce PPC for tree-preserving constraint networks.

Finally, we give Algorithm 2.1 below to find solutions for tree-preserving con-

straint networks.

We first explain how Algorithm 2.1 works, and then prove its correctness and
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Algorithm 2.1: Solving tree-preserving constraint network using PPC.

input : A tree-preserving constraint network N .
output: A solution or inconsistency.

1 Triangulate the constraint graph G(N );
2 Find a perfect elimination order of G(N ), {v1, v2, · · · , vn};
3 Enforce PPC on G(N );
4 if no inconsistency is detected then
5 Choose values an and an−1 for vn and vn−1 respectively s.t. (an, an−1)

satisfies Rn,n−1;
6 for i← n− 2 to 1 do
7 S =

⋂
vk∈Fn−i

Rki(vk);

8 Pick a value ai from S for vi;

9 end

10 end
11 else return inconsistency ;

analyse its time complexity in Theorem 2.5. Lines 1-3 are self-explanatory. Line 5

instantiates G2 = {vn, vn−1}, and then Lines 6-9 consistently instantiate G3 to Gn

in a sequential way. Line 8 extends the consistent instantiation of Gi to Gi+1 by

finding a consistent value for vn−i.

Take the constraint graph in Figure 2.6 as an example. The algorithm first

assigns consistent values a5 and a4 to the variables v5 and v4 of G2 = {v5, v4}

respectively, and then extends the instantiation of G2 to G3 by finding a consistent

value for v3, i.e., to find a value a3 for vertex v3 such that (ai, a3) ∈ Rvi,v3 for all

i ∈ F2. To achieve this, Algorithm 2.1 computes the intersection of Rvi,v3(ai) for all

i ∈ F2. By Theorem 2.3, the intersection S is nonempty. Then Algorithm 2.1 picks

any value from S for v3. Similarly, the algorithm extends the instantiation of G3 to

G4, and then extends the instantiation of G4 to G5.

Theorem 2.5. Algorithm 2.1 is correct and its time complexity is O(n(e+f)+α(e+

f)d3), where α is the maximum degree of vertices in G(N ), the constraint graph of

the input tree-preserving constraint network, f is the number of added edges to make

G(N ) triangulated and d is the maximal domain size.
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Proof. The correctness of Algorithm 2.1 follows directly from Theorem 2.3. Now,

we analyze time complexity of the algorithm. Finding a minimum triangulation for

G(N ) in Line 1 could be done in O(n(e + f))[67], where f is the number of added

edges. In Line 2, a perfect elimination ordering for the minimum triangulation of

G can be found in O(n + e + f) [67]. Also, enforcing PPC in Line 3 can be done

in O(α(e + f)d3)[13], and Lines 6-9 take time O(αnd). Therefore, the overall time

complexity of the algorithm is O(n(e+ f) + α(e+ f)d3).

In the next section, we consider a particular application of tree-preserving con-

straints.

2.6 The Scene Labelling Problem

The scene labelling problem [58] is a classification problem where every edge in

a line-drawing picture has to be associated with a label describing it. The scene

labelling problem is NP-complete in general and this is true even in the case of

the trihedral scenes, i.e., scenes where no four planes share a point [66]. Several

tractable subclasses of scene labelling problem have been identified (cf. [29, 65]).

Labels used in the scene labelling problem are listed as follows:

‘+’ The edge is convex, i.e.,, the edge can be touched by a ball;

‘−’ The edge is concave, i.e.,, the edge cannot be touched by a ball;

‘→’ Only one plane associated with the edge is visible, and when one moves in the

direction indicated by the arrow, the pair of associated planes is to the right.

In the case of trihedral scenes, there are only four basic ways in which three

plane surfaces can come together at a vertex [25, 58]. A vertex projects into a ‘V ’,

‘W ’, ‘Y ’ or ‘T ’-junction in the picture (each of these junction-types may appear

with an arbitrary rotation in a given picture). A complete list of the labelled line
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Figure 2.9 : Possible labelled line configurations of a junction in a picture and their
corresponding forest structures.

configurations that are possible in the vicinity of a node in a picture is given in

Figure 2.9.

In this section, we show that (i) every instance of the trihedral scene labelling

problem can be modelled by a tree-convex constraint network over forest domains;

(ii) a large subclass of the trihedral scene labelling problem can be modelled by

tree-preserving constraints.

A CSP for the scene labelling problem can be formulated as follows. Each junc-

tion in the line-drawing picture is a variable. The domains of the variables are the

possible configurations as shown in Figure 2.9. The constraints between variables

are simply that, if two variables share an edge, then the edge must be labelled the

same at both ends.

Proposition 2.7. Every instance of the trihedral scene labelling problem can be

modelled by a tree-convex constraint network. Furthermore, there are only 39 possible

configurations of two neighbouring nodes in 2D projected pictures of 3D trihedral

scenes, and 29 out of these can be modelled by tree-preserving constraints.

Proof. The complete list of these configurations and their corresponding tree-convex
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or tree-preserving constraints can be found in the online appendix1. Because ‘—’

must be labelled by an arrow from right to left and ‘|’ can be labelled by any

labels, the T-junctions decompose into unary constraints. For this reason, we do

not consider T-junctions in line drawing pictures.

As a consequence, the consistency of any constraint network whose relations are

taken from these 29 relations 2 can be decided by enforcing strong path-consistency.

Moreover, because it is NP-hard to decide if a trihedral scene labelling instance is

consistent, we have the following corollary.

Corollary 2.2. The consistency problem of tree-convex constraint networks is NP-

complete.

A scene labelling instance and its corresponding constraint network are shown in

Figure 2.10; the network is tree-preserving but neither chain-preserving nor CRC.

Consider the line drawing on the left of Figure 2.10 and the constraints for the

drawing listed on the right. One can easily verify that all constraints are tree-

preserving w.r.t. the forest structures listed in Figure 2.9, but, for example, R21 is

not chain-preserving w.r.t. the forest structures illustrated in Figure 2.9 and R25 is

not CRC.

In the following section we give another method for proving the tractability of

the class of tree-preserving constraints.

2.7 Algebraic Closure Properties of Tree-Preserving Con-

straints

We have shown that strong path-consistency ensures global consistency for the

classes of chain-, path-, and tree-preserving constraints and thus identified three

1https://www.researchgate.net/publication/301815699_Appendix
2Among those 29 relations, 14 relations are not chain- or path-preserving.
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(b) Constraints for the drawing. All of them
are tree-preserving constraints.

Figure 2.10 : A scene labelling instance and its corresponding constraint network.

tractable classes of binary relations. Our approach follows the research line initiated

by Dechter [36] and continued in e.g. [7, 40, 133, 137], which are based on the idea

of achieving global consistency by enforcing local consistency.

An alternative approach to the study of tractable classes of relations focuses on

certain algebraic closure properties of constraints [17, 45, 62]. In this section, we

show that, under mild restrictions, a relation is tree-preserving if and only if it sat-

isfies some algebraic closure property, which has been introduced in subsection 1.3.5.

For each tree domain, we introduce a natural majority operation.

Definition 2.9. Let Tx be a nonempty tree domain for a variable x. We define a

majority operation mx as:

(∀a, b, c ∈ Tx) mx(a, b, c) = πa,b ∩ πb,c ∩ πa,c, (2.3)

where a, b, c are not necessarily distinct and πu,v denotes the unique path from u to

v in Tx. We call mx the standard majority operation on Tx.

Even for one-sorted relations over a tree domain T , the class of tree-preserving
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Figure 2.11 : (a) R is a relation from tree domain T to T , and R =
{(a, a), (b, a), (c, c)}. R is closed under the standard majority operation on T , but
it is not tree-preserving w.r.t. T . (b) R is a relation from tree domain T to T , and
R = {(a, a), (b, b), (c, b), (d, a)}. R is tree-preserving w.r.t. T , but it is not closed
under the standard majority operation on T .

relations on T is not comparable to the class of relations that are closed under the

standard majority operation on T (see Figure 2.11 for an illustration).

The following lemma gives two important properties of relations closed under

standard majority operations.

Lemma 2.9. Let Tx and Ty be two nonempty tree domains and mx and my their

standard majority operations. Suppose R ⊆ Tx × Ty is a nonempty relation that is

closed under {mx,my}. Then

• R−1, the inverse of R, is closed under {my,mx};

• if a′, b′ ∈ Ty are the only supported nodes in the path from a′ to b′, then

R−1(Ma′,b′) = ∅, where Ma′,b′ is the trunk between a′, b′ in Ty.

Proof. The first result follows directly from the definition.

To prove the second result, suppose 〈a, a′〉 and 〈b, b′〉 ∈ R and no other nodes in

πa′,b′ are supported (see Figure 2.12 (a) for an illustration). If there exist c′ ∈Ma′,b′

and c ∈ Tx such that 〈c, c′〉 ∈ R, then we have 〈mx(a, b, c),my(a
′, b′, c′)〉 ∈ R. It is

clear that my(a
′, b′, c′) is a node in πa′,b′ which is different from a′ and b′. This is a
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Figure 2.12 : Illustration of proof of proposition 2.8. Broken arrow lines indicate
images of the node and empty circles indicates empty support nodes.

contradiction and hence the statement is correct.

Let T ′
y = Ty �Ma′,b′ and m

′
y the standard majority operation on tree T ′

y. Based

on Lemma 2.9, it is easy to see that, when restricted to T ′
y, R and its inverse are also

closed under {mx,m
′
y}. If we continue contracting and revising Ty and Tx in this

way, then, in finite steps, we will reach a state in which every node is supported.

Write the revised tree domains in this state as T ∗
x and T ∗

y and let m∗
x and m∗

y be

their corresponding standard majority operations. Then, when restricted to T ∗
x and

T ∗
y , R and R−1 are closed under {m∗

x,m
∗
y}. This suggests that it is reasonable to

consider relations that are arc-consistent.

Based upon this observation, we have the following characterisation.

Proposition 2.8. Let Tx and Ty be two nonempty tree domains and mx and my

their standard majority operations. Suppose R ⊆ Tx × Ty is a nonempty relation

such that both R and its inverse, R−1, are arc-consistent. Then R is closed under

{mx,my} iff both R and R−1 are tree-preserving w.r.t. Tx and Ty.
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Proof. Suppose R is closed under {mx,my}. We first prove that Rxy is tree-convex.

Suppose not. Then we have a ∈ Tx, a
′, b′, c′ ∈ Ty such that 〈a, a′〉, 〈a, b′〉 ∈ R,

c′ ∈ πa′,b′ but 〈a, c′〉 	∈ R (see Figure 2.12 (b) for an illustration). Because R−1 is

arc-consistent, there exists c ∈ Tx such that 〈c, c′〉 ∈ R. Consider the three tuples

〈a, a′〉, 〈a, b′〉, 〈c, c′〉 in R. We have 〈mx(a, a, c),my(a
′, b′, c′)〉 ∈ R as R is closed

under {mx,my}. Since mx(a, a, c) = a and my(a
′, b′, c′) = c′, we have 〈a, c′〉 ∈ R,

which is a contradiction. Therefore, Rxy is tree-convex. Next, we prove that R

is consecutive. Suppose not. Then there exist two neighbouring nodes a, b ∈ Tx

such that R(a) ∪ R(b) is not a subtree of Ty. This means that there are a′ ∈ R(a),

b′ ∈ R(b), and c′ ∈ Ty such that c′ is in πa′b′ but not in either R(a) or R(b). Because

R−1 is arc-consistent, there exists c in Tx such that 〈c, c′〉 ∈ R (see Figure 2.12

(c) for an illustration). Consider the three tuples 〈a, a′〉, 〈b, b′〉, 〈c, c′〉 in R. We

have 〈mx(a, b, c),my(a
′, b′, c′)〉 ∈ Rxy. Because a is a neighbour of b, mx(a, b, c) =

πab∩πbc∩πac is either a or b. Therefore, we have either 〈a, c′〉 ∈ R or 〈b, c′〉 ∈ R, which

is a contradiction. Therefore, Rxy is arc-consistent and consecutive tree-convex and,

hence, tree-preserving. Similarly, R−1 is tree-preserving since it is also closed under

{mx,my}.

On the other hand, suppose both R and R−1 are tree-preserving. We prove that

R is closed under {mx,my}. Take three arbitrary tuples 〈a, a′〉, 〈b, b′〉, 〈c, c′〉 from

R. We need to prove 〈mx(a, b, c),my(a
′, b′, c′)〉 ∈ R. For convenience, we denote

m,m′ formx(a, b, c) andmy(a
′, b′, c′) respectively. Because R is tree-preserving, from

a′, b′ ∈ R(πa,b), we know πa′,b′ is contained in R(πa,b). In particular, m′ ∈ R(πa,b).

Similarly, we also have m′ ∈ R(πa,c) and m
′ ∈ R(πb,c). Note that πa,b = πa,m ∪ πb,m,

πb,c = πb,m ∪ πc,m, and πa,c = πa,m ∪ πc,m. We know m′ belongs to at least two

of R(πa,m), R(πb,m), and R(πc,m). Suppose m′ 	∈ R(πc,m). Then 〈m,m′〉 	∈ R and

m′ ∈ R(πa,m) and m′ ∈ R(πb,m). There are a1 ∈ πa,m and b1 ∈ πb,m such that

〈a1,m′〉 ∈ R and 〈b1,m′〉 ∈ R. Since R−1 is tree-preserving, R−1(m′) is a subtree of
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Tx. From πa1,b1 ⊆ R−1(m′) and m ∈ πa1,b1 , we know m ∈ R−1(m′), i.e., 〈m,m′〉 ∈ R,

which is a contradiction. Therefore, the assumption that m′ 	∈ R(πc,m) is incorrect.

This implies that m′ belongs to each of R(πa,m), R(πb,m), and R(πc,m). We therefore

have a1 ∈ πa,m, b1 ∈ πb,m, and c1 ∈ πc,m such that 〈a1,m′〉, 〈b1,m′〉, and 〈c1,m′〉 are

all in R. Let t be the subtree spanned by a1, b1, c1 in Tx. Then t is contained in

R−1(m′) since R−1 is tree-preserving. From m ∈ t, we have the desired result that

〈m,m′〉 ∈ R.

Remark 2.2. Proposition 2.8 establishes the connection between tree-preserving

constraints and those binary constraints that are closed under the standard majority

operation. Using this result, it is natural to extend the definition of tree-preserving

constraints to non-binary tree-preserving constraints. For a non-binary relation R,

assuming that it is arc-consistent in each variable, we may call R a tree-preserving

constraint if it is closed under the standard majority operation induced by the rele-

vant tree domains.

Using Proposition 2.8, we now give an alternative proof for Theorem 2.2.

Proof of Theorem 2.2: Let N = {xiRijxj | 1 ≤ i, j ≤ n} be a tree-preserving

constraint network. We note that if no inconsistency is detected after enforcing arc-

consistency, then N remains tree-preserving (see Proposition 2.2). Without loss of

generality, we suppose N is arc-consistent. Write Ti for the tree-domain of variable

xi. Let Γ be the set of binary relations over D = {Ti | 1 ≤ i ≤ n} that are

closed under the multi-sorted operation f = (mxi
| 1 ≤ i ≤ n), where each mxi

is the standard majority operation over Ti. By Proposition 2.8, every relation Rij

in N is closed under {mxi
,mxj

}. That is, each Rij is a relation in Γ and thus N

is an instance of CΓ. By Theorem 1.3, we have the result that establishing strong

path-consistency ensures global consistency for N .

Proposition 2.8 considers only tree domains. We can also generalize it to forest
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domains.

Definition 2.10. Given a forest domain Fx with trees {t1, ..., tn}, the standard

majority operation mx for Fx is defined as:

mx(a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

πab ∩ πbc ∩ πac if a, b, c ∈ ti (1 ≤ i ≤ n),

a if a, b ∈ ti, c ∈ tj; or a, c ∈ ti, b ∈ tj (i 	= j),

b if a ∈ ti, b, c ∈ tj (i 	= j),

a if a ∈ ti, b ∈ tj, c ∈ tk (i 	= j 	= k).

We note that the order of a, b, c matters. That is, for example, mx(a, b, c) may

not be the same as mx(b, c, a).

Proposition 2.9. If R and its inverse R−1 are both arc-consistent and tree-preserving

over forest domains Fx and Fy, then R and R−1 are closed under {mx,my} and

{my,mx} respectively.

Proof. Because R and R−1 are arc-consistent and tree-preserving, there is a bijection

between trees in Fx = {t1, t2, ..., tn} and trees in Fy = {t′1, t′2, ..., t′n} such that

R(ti) = t′i and R
−1(t′i) = ti for every 1 ≤ i ≤ n. For any 〈a, a′〉, 〈b, b′〉, 〈c, c′〉 ∈ R,

consider the following cases separately.

(1) Suppose a, b, c ∈ ti for some ti ∈ Fx. Because R and R−1 are tree-preserving,

a′, b′, c′ are all in t′i. Then, by Proposition 2.8, 〈mx(a, b, c),my(a
′, b′, c′)〉 ∈ R.

(2) Suppose a, b ∈ ti and c ∈ tj, or a, c ∈ ti and b ∈ tj for some i 	= j. We have

a′, b′ ∈ t′i and c
′ ∈ t′j, or a

′, c′ ∈ t′i and b
′ ∈ t′j. Thus 〈mx(a, b, c),my(a

′, b′, c′)〉 =

〈a, a′〉 ∈ R.

(3) Suppose a ∈ ti and b, c ∈ tj for some i 	= j. We have a′ ∈ t′i and b′, c′ ∈ t′j.

Thus 〈mx(a, b, c),my(a
′, b′, c′)〉 = 〈b, b′〉 ∈ R.
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(4) Suppose a ∈ ti, b ∈ tj and c ∈ tk for some pairwise different i, j, k. We have

a′ ∈ t′i, b
′ ∈ t′j and c

′ ∈ t′k. Thus 〈mx(a, b, c),my(a
′, b′, c′)〉 = 〈a, a′〉 ∈ R.

Remark 2.3. For the 39 different relations in the trihedral scene labelling problem,

29 of them are tree-preserving. These 29 relations are all closed under the standard

majority operations defined above for forest domains. As we have expected, the other

ten relations are not closed under the standard majority operations.

2.8 Evaluations

In this section, we report experimental evaluations of local consistency enforcing

algorithms for sparse tree-preserving constraint networks.

As we have shown in Section 4, enforcing strong PPC is sufficient to solve tree-

preserving constraint networks. Although enforcing PPC should be generally faster

than enforcing PC for sparse constraint networks [13], for practical interests, we

conduct experimental comparisons between PPC algorithms and their counterparts,

PC algorithms, for solving sparse tree-preserving constraint networks. We consider

two competitive strong PC algorithms, sDC1 [82, 83] and PC2001 [12], for compar-

isons. It is worthwhile to note that sDC1 is a strong dual consistency (DC) enforcing

algorithm and DC has been shown to be equal to PC for binary constraint networks

[82, 83]. Just like PC, DC considers every distinct pair of variables of binary con-

straint networks. However, conservative DC (CDC) only considers a pair {vi, vj} if

there is a constraint Rvivj imposed on it. As Proposition 2.6 suggests strong CDC is

equivalent to strong PPC for tree-preserving constraint networks with triangulated

constraint graphs, we adopt the efficient strong CDC enforcing algorithm sCDC1 to

enforce strong PPC on such networks. We also devise another strong PPC algo-

rithm, called PPC2001, upon the algorithm PC2001. We do it by modifying PC2001

to enforce PC on a triangulation instead of the completion of the input constraint

graph.
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By Proposition 2.8, the class of tree-preserving constraints is closed under the

standard majority operation, and thus tree-preserving constraint networks can also

be solved by enforcing singleton arc-consistency (SAC) (see e.g., [23]). We also

include two state-of-the-art SAC algorithms, SAC3-SDS [9] and SAC-opt [10], for

comparisons. However, it is worthwhile to note that it is unknown whether enforcing

SAC would enable backtrack-free search for tree-preserving constraint networks 1.

By Proposition 2.6, a random tree-preserving constraint network can be gener-

ated as follows:

(1) For every domain Dx of the network, generate a random tree Tx for with vertex

set Dx.

(2) For each pair of variables x and y, generate an arc-consistent relation Rxy ⊆

Dx ×Dy s.t. Rxy is closed under {mx,my}.

Four parameters are used to generate a random tree-preserving network: (1) n

- the number of variables, (2) d - the size of the domains, (3) ρ - the density of

the constraint graph (i.e., the ratio of non-universal constraints to n2), (4) l - the

looseness of the constraints (i.e., the ratio of the number of allowed tuples to d2).

All constraints are represented as Boolean matrices. Experimentation was car-

ried out on a computer with an Inter Core i5 processor with a frequency of 2.9 GHz

per CPU core, 8 GB of RAM, and the MAC OSX. The experimental platform is

Eclipse with JDK 8.

Experimental results are presented in Figure 2.13, where each test is averaged

over 20 instances. We can observe that lower densities of constraint graphs do

not benefit the performances of sCDC1 and PC2001 much. On the other hand,

1We compare our algorithm with SAC algorithms in a sense that when only consistency check-
ing task is considered, whether our algorithm still outperforms the state-of-the-art SAC algorithms
on tree-preserving constraint networks
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Figure 2.13 : Performance evaluation of different local consistency algorithms for
solving tree-preserving constraint networks with different densities. We set n = 100,
d = 30 and l = 0.5.

SAC3-SDS, SAC-opt, sCDC1 and PPC2001 are all exploiting the sparsity of con-

straint networks. In particular, they all perform better when constraint networks

are sparser. The PPC algorithms sCDC1 and PPC2001 can outperform their coun-

terparts, the PC algorithms sCD1 and PC2001, by up to a factor of 7 and 3.5

respectively. Moreover, sCDC1 beats all the other considered algorithms.

SAC3-SDS performs reasonably well for sparse tree-preserving constraint net-

works and is comparable to PPC2001. It also outperforms SAC-opt roughly by a

factor of 2, but its performance is about twice worse than that of sCDC1. Unexpect-

edly, sDC1 is comparable to SAC-opt for sparse tree-preserving constraint networks,

because SAC is a weaker consistency condition than PC and thus SAC algorithms

are usually expected to be more efficient than PC algorithms.
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2.9 Conclusion

The study of tractable subclasses of constraint satisfaction problems is one of the

most important research problems in artificial intelligence. In this chapter, we stud-

ied three tractable subclasses of tree-convex constraints, which are generalizations

of the well-known row-convex constraint. We proved that enforcing strong path-

consistency decides the consistency of a tree-preserving constraint network and,

if no inconsistency is detected, transforms the network into a globally consistent

constraint network. Actually, we proved this by two methods. The first method

directly proved that enforcing strong path-consistency transforms a tree-preserving

constraint network into a path-consistent tree-preserving network, while the sec-

ond method relied on the characterisation of tree-preserving constraints by closure

under majority operations. Since every arc-consistent chain- or path-preserving con-

straint is a tree-preserving constraint, we got a tractable subclass of CSPs that is

genuinely larger than the subclass of CRC constraints. We further showed that

PPC algorithms can be applied to solve tree-preserving constraint networks in a

backtrack-free style, which is more efficient than using a standard path-consistency

algorithm. As an application, we proved that every relation used in the trihedral

scene labelling problem can be modelled by a tree-convex constraint, and, among

these different relations (39 in total), 29 are tree-preserving constraints. This means

that a large tractable subclass of the NP-hard trihedral scene labelling problem can

be solved by the techniques discussed in this chapter.

Appendix to This Chapter: Proofs

Lemma 5 Let N be an arc-consistent and tree-preserving constraint network over

tree domains Tx (x ∈ V ). Suppose x ∈ V and Ma,b is a trunk in Tx. When

restricted to Tx �Ma,b and enforcing arc-consistency, N remains tree-preserving if

no inconsistency is detected.
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Proof. The proof of this result heavily uses Lemma 2.13 and Proposition 2.2.

First, we consider how trunks propagate in the network. Starting from the trunk

Ma,b in Tx, we get, as in Lemma 2.13, a unique trunk May ,by in Ty for each y 	= x

in V if Rxy(a) ∪ Rxy(b) is not connected in Ty. Furthermore, each trunk May ,by (in

Ty) will also propagate in the network, obtaining a (possibly new) trunk Mayz ,byz in

Tz for each z 	= y. Continuing this way, we stop until no new trunks are generated.

Since there are finitely many different trunks in each tree domain, the process will

stop in a finite number of steps. Write Ty for the set of trunks obtained for variable

y. We note that nodes in these trunks have to be deleted from the corresponding

tree domain to maintain arc-consistency.

We next amalgamate these trunks in each Ty. By Lemma 2.11, the union of two

connected trunks can be the whole tree, a branch, or a larger trunk. Similarly, we

can prove that if a trunk and a branch are connected, then their union is a branch,

a trunk, or the whole tree. If the union of all trunks in a Ty is the whole tree, viz.

Ty, then the network is inconsistent. In the following, we assume that this is not

the case. This implies that the trunks in Ty can be merged into a set of pairwise

disconnected maximal trunks and maximal branches. Let ty be the subtree of Ty

obtained after removing all these maximal branches. We now restrict the constraint

network to subtrees ty (y ∈ V ) and enforce arc-consistency. By Corollary 2.1 and

Proposition 2.2, we get a new arc-consistent tree-preserving network N ′ over smaller

tree domains, say T ′
y (y ∈ V ), if no inconsistency is detected.

Consider the original trunk Ma,b in Tx. If Ma,b ∩ T ′
x = ∅ or T ′

x ⊆ Ma,b, then

we need do nothing as the network is either tree-preserving or trivially inconsistent

after contracting Ma,b. If Ma,b ∩ T ′
x is a branch of T ′

x, then we use Corollary 2.1

again and transform N ′ into a new arc-consistent and tree-preserving network if

no inconsistency is detected. If neither of the above happens, then Ma,b ∩ T ′
x is a
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trunk in T ′
x. We repeat the above process again and again until no new branches

are generated.

From now on, we suppose that no branches are obtained by merging trunks in

any Ty. Furthermore, for each variable y, we denote by MT y the set of maximal

trunks of Ty after amalgamation. We contract the maximal trunks in MT y one by

one and write T ∗
y for the contracted tree.

For any two variables y 	= z, we show that Ryz, when restricted to T ∗
y and T ∗

z ,

remains tree-preserving. Suppose MT y = {Ma1,b1 , ...,Mak,bk} and assume, without

loss of generality, that the firstm ≤ k trunks satisfy the precondition of Lemma 2.13,

i.e., Ryz(ai) ∪Ryz(bi) is disconnected for 1 ≤ i ≤ m. By Lemma 2.13, there exists a

unique trunkMa′i,b
′
i
in Tz such that a′i ∈ Ryz(ai), b

′
i ∈ Ryz(bi) andRzy(Ma′i,b

′
i
) ⊆Mai,bi

for each 1 ≤ i ≤ m.

LetMN y = {Ma1,b1 , ...,Mam,bm} and Nz = {Ma′1,b
′
1
, ...,Ma′m,b′m}.Note that trunks

in Nz are not necessarily maximal. Let Ma′′i ,b
′′
i
be the maximal trunk in MT z which

contains Ma′i,b
′
i
.1 We write MN z = {Ma′′1 ,b

′′
1
, ...,Ma′′m,b′′m}. We now show how to con-

tract these trunks so that we get T ∗
y and T ∗

z while preserving the tree-preserving

property.

First, we contract all maximal trunks in MT y that are not in MN y. Because

the images of the two nodes ai, bi under Ryz are connected in Tz, the constraint Ryz

remains tree-preserving after the contraction. Let T ′
y be the resultant tree domain

of y.

Second, we contract all maximal trunks in MN y from T ′
y and contract all corre-

sponding trunks in Nz from Tz. Clearly, the resultant tree domain of y is exactly T ∗
y .

Denote by T ′
z the resultant tree domain of z. By Lemma 2.13, Ryz is tree-preserving

1Since no branches can be obtained by merging trunks in Tz, we know that Ma′
i,b

′
i
is contained

in a maximal trunk.
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when restricted to T ∗
y and T ′

z. Note that, after the contraction of Ma′i,b
′
i
from Tz,

Ma′′i ,b
′′
i
becomes a trunk in T ′

z. We then contract all these trunks together with all

other maximal trunks in MT z from T ′
z. The resultant tree domain is exactly T ∗

z .

We show that Ryz is still tree-preserving when restricted to T ∗
y and T ∗

z . Given

any subtree t of T ∗
y , because Ryz is tree-preserving w.r.t. T ∗

y and T ′
z, we know

t′ ≡ Ryz(t) is a nonempty subtree of T ′
z. By Lemma 2.12 we know t′ is a (possibly

empty) subtree of T ∗
z . This proves that Ryz is still tree-preserving when restricted

to T ∗
y and T ∗

z .

Because the arbitrariness of y, z above, we know every Ruw, in particular Rzy,

is tree-preserving w.r.t. T ∗
u and T ∗

w. Note that these constraints are not necessarily

arc-consistent. By Proposition 2.2 again, we transform these constraints into arc-

consistent constraints while remaining tree-preserving. In summary, we know that,

when restricted to Tx�Ma,b and enforcing arc-consistency,N remains tree-preserving

if no inconsistency is detected.

Lemma 6 Assume Rxy and R′
xy are two arc-consistent and tree-preserving con-

straints w.r.t. trees Tx and Ty. Let R∗
xy = Rxy ∩ R′

xy. Let W = {w ∈ Tx | R∗
xy(w) 	=

∅} be the set of supported values of R∗
xy. Suppose u ∈ Tx and u 	∈ W . Then there

exist at most two values w1, w2 in W s.t. no value in W other than wi is on the

path πwi,u for i = 1, 2.

Proof. Suppose w1, w2, w3 are three supported values of R∗
xy in Tx s.t. no value in

W other than wj is on the path πwj ,u for 1 ≤ j ≤ 3. Take w′
i ∈ R∗

xy(wi) (i = 1, 2, 3).

Let {u1} = πw1,w2 ∩πw1,w3 ∩πw2,w3 and {u′1} = πw′
1,w

′
2
∩πw′

1,w
′
3
∩πw′

2,w
′
3
. By the choice

of w1, w2, w3, they cannot be on a same path. In particular, u1 is different from

w1, w2, w3. Furthermore, since u1 is on πw1,w2 , it must be on either πu,w1 or πu,w2 .

In either case, we have u1 is not in W .
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u

v r s

w

Figure 2.14 : Illustration of proof of Lemma 2.7.

Because Rxy is tree-preserving, from wi, wj ∈ Ryx(πw′
i,w

′
j
), we know πwi,wj

is

contained in Ryx(πw′
i,w

′
j
) for any 1 ≤ i 	= j ≤ 3. In particular, u1 is in Ryx(πw′

i,w
′
j
).

In other words, Rxy(u1) ∩ πw′
i,w

′
j
	= ∅. By Lemma 2.1, we know Rxy(u1) ∩ πw′

1,w
′
2
∩

πw′
1,w

′
3
∩ πw′

2,w
′
3
	= ∅. Because {u′1} = πw′

1,w
′
2
∩ πw′

1,w
′
3
∩ πw′

2,w
′
3
, we know u′1 ∈ Rxy(u1).

Analogously, we have u′1 ∈ R′
xy(u1) and, hence, u1 is a value in W . This is a

contradiction. Therefore, there exist at most two values w1, w2 in W s.t. no value

in W other than wj is on the path πwj ,u for i = 1, 2.

Lemma 7 Suppose Rxy and R′
xy are arc-consistent and tree-preserving constraints

w.r.t. trees Tx and Ty and so are Ryx and R′
yx. Let R

∗
xy = Rxy∩R′

xy. Assume {u, v}

is an edge in Tx s.t. R∗
xy(u) 	= ∅, R∗

xy(v) 	= ∅, and R∗
xy(u) ∪ R∗

xy(v) is disconnected

in Ty. Then there exist unique r ∈ R∗
xy(u) and s ∈ R∗

xy(v) s.t. every node in Mr,s is

unsupported under R∗
yx.

Proof. Write Tr = R∗
xy(u) and Ts = R∗

xy(v). Clearly, Tr and Ts are nonempty

subtrees of Ty. Since they are disconnected, there exist (unique) r ∈ Tr, s ∈ Ts s.t.

πr,s ∩ (Tr ∪ Ts) = {r, s} (see Figure 2.14 for an illustration). Write A = Rxy(u),

B = Rxy(v), C = R′
xy(u) and D = R′

xy(v). We show every node in Mr,s is not

supported under R∗
yx.

Suppose w is an arbitrary internal node on πr,s. We first show w is not supported
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under R∗
yx. Note w ∈ A ∪ B, w ∈ C ∪ D, w 	∈ A ∩ C, and w 	∈ B ∩ D. There are

two cases according to whether w ∈ A. If w ∈ A, then we have w 	∈ C, w ∈ D, and

w 	∈ B. If w 	∈ A, then we have w ∈ B, w 	∈ D, and w ∈ C. Suppose w.l.o.g. w ∈ A.

By w ∈ A = Rxy(u), we have u ∈ Ryx(w); by w 	∈ B = Rxy(v), we have v 	∈ Ryx(w).

Similarly, we have u 	∈ R′
yx(w) and v ∈ R′

yx(w). Thus subtree R′
yx(w) is disjoint

from subtree Ryx(w). This shows R
∗
yx(w) = ∅ and hence w is not supported under

R∗
yx.

Second, suppose w1 is an arbitrary node in Mr,s s.t. w1 is in a different branch

of w to r and s, i.e., πw,w1 ∩ (Tr ∪ Ts) = ∅. We show w1 is not supported under R∗
yx

either.

Again, we assume w ∈ A. In this case, we have u ∈ Ryx(w) ⊆ Ryx(πw,w1)

and v ∈ R′
yx(w) ⊆ R′

yx(πw,w1). As πw,w1 ∩ (Tr ∪ Ts) = ∅, we have πw,w1 ∩ Tr =

πw,w1 ∩ A ∩ C = ∅. As πw,w1 ∩ A 	= ∅ and A ∩ C 	= ∅, by Lemma 2.1, we must

have πw,w1 ∩ R′
xy(u) = ∅. This shows u 	∈ R′

yx(πw,w1). Similarly, we can show

v 	∈ Ryx(πw,w1). Thus subtree R′
yx(πw,w1) is disjoint from subtree Ryx(πw,w1) and,

hence, R∗
yx(πw,w1) = ∅. This proves that w1 is unsupported under R∗

yx either.

In summary, every node in Mr,s is unsupported.

The following simple properties are used to assist the proofs of Lemmas 2.5-2.7.

Lemma 2.10. Suppose Ma,b and u are, respectively, a trunk and a node of tree T .

Let ta = {w ∈ T | a ∈ πw,b} and tb = {w ∈ T | b ∈ πw,a}. Then

(i) a ∈ ta, b ∈ tb, a, b 	∈ Ma,b. Moreover, ta and tb are subtrees of T separated by

Ma,b and {ta, tb,Ma,b} is a partition of T .

(ii) u 	∈ Ma,b iff a ∈ πu,b or b ∈ πu,a; if u ∈ Ma,b, then πu,a ⊆ Ma,b ∪ {a} and

πu,b ⊆Ma,b ∪ {b}.
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Proof. Take a as the root of T . Let a1 be the child of a that is on the path πa,b.

Then ta is the subtree obtained by removing the subtree rooted at a1, and tb is the

subtree rooted at b. The results are then clear.

The next lemma considers the union of two connected trunks.

Lemma 2.11. Suppose Ma,b and Mc,d are two trunks of tree T = (V,E). Then

Ma,b ∪Mc,d is connected if and only if either (i) Ma,b ∩Mc,d 	= ∅ or (ii) there exist

x ∈ {a, b}, y ∈ {c, d} s.t. {x, y} is an edge in T and x ∈ Mc,d, y ∈ Ma,b. Moreover,

if Ma,b ∪Mc,d is connected, then it is T , or a trunk or branch of T .

Proof. If either (i) or (ii) holds, then clearly Ma,b ∪ Mc,d is connected. Suppose

Ma,b∪Mc,d is connected butMa,b∩Mc,d = ∅, we show (ii) holds. BecauseMa,b∪Mc,d

is connected, there exist u ∈ Ma,b, v ∈ Mc,d such that {u, v} is an edge in T . In

addition, becauseMa,b∩Mc,d = ∅, we have v 	∈Ma,b, u 	∈Mc,d. Then by Lemma 2.10,

we know a ∈ πv,b or b ∈ πv,a, and c ∈ πu,d or d ∈ πu,c. Without loss of generality,

suppose a ∈ πv,b and c ∈ πu,d. From a ∈ πv,b and u ∈Ma,b, we have u ∈ πv,b. Because

u is a neighbour of v, this is possible only if v = a and u ∈ πa,b. Analogously, we

also have u = c and v ∈ πc,d. Therefore, we have {a, c} ∈ E, c ∈Ma,b and a ∈Mc,d.

Note that in this case Ma,b ∪Mc,d =Mb,d is another trunk.

We next suppose Ma,b ∩ Mc,d 	= ∅ and c, d /∈ Ma,b. We show that a ∈ Mc,d

iff b ∈ Mc,d. Suppose otherwise a ∈ Mc,d but b 	∈ Mc,d. Then by b 	∈ Mc,d and

Lemma 2.10 we have either c ∈ πb,d or d ∈ πb,c. In either case, by a ∈ Mc,d and

Lemma 2.10, we have c ∈ πa,b or d ∈ πa,b, which contradicts the assumption that

c, d 	∈Ma,b. Thus, we have a ∈Mc,d iff b ∈Mc,d.

We now consider the following possible cases (symmetric cases are omitted):

(1) Suppose c, d /∈ Ma,b and a, b /∈ Mc,d. By Lemma 2.10, we have a ∈ πc,b or

b ∈ πc,a, a ∈ πd,b or b ∈ πd,a, c ∈ πa,d or d ∈ πa,c, and c ∈ πb,d or d ∈ πb,c. Since
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(a) (b) (c) (d) (e) (f)

Figure 2.15 : Possible configurations of two connected trunks Ma,b and Mc,d, where
Ma,b∪Mc,d is the whole tree in (c) and (d), a trunk in (a), (b) and (f), and a branch
in (e).

Ma,b ∩Mc,d 	= ∅, it is straightforward to show that {a, b} = {c, d} and Ma,b =Mc,d.

(2) Suppose c, d /∈ Ma,b and a, b ∈ Mc,d. Because c, d 	∈ Mc,d, we know a, b, c, d

are pairwise different. Moreover, we have a ∈ πc,b or b ∈ πc,a, and a ∈ πd,b or

b ∈ πd,a. We can prove that Ma,b ∪Mc,d = Mc,d is a trunk. There are two possible

configurations (see Figure 2.15 (a) and (b)).

(3) Suppose c, d ∈Ma,b and a, b ∈Mc,d. Then, a, b, c, d are pairwise different. We

can prove that Ma,b ∪Mc,d is the whole tree. There are two possible configurations

(see Figure 2.15(c) and (d)).

(4) Suppose c, d ∈ Ma,b, a ∈ Mc,d, but b /∈ Mc,d. Then a, b, c, d are pairwise

different. We can prove that Ma,b ∪Mc,d is a branch of b. There is only one possible

graph (see Figure 2.15(e)).

(5) Suppose c ∈ Ma,b, d /∈ Ma,b, a ∈ Mc,d, and b /∈ Mc,d. Then c 	= a, b and

a 	= c, d, but it is possible that b = d. In this case, we can prove that a, c ∈ πd,b,

a ∈ πd,c, and c ∈ πa,b (see Figure 2.15(f)). Moreover, we have Ma,b ∪Mc,d = Md,b is

a trunk.

The next lemma considers what happens to a subtree when we contract a trunk

from the tree domain.

Lemma 2.12. Suppose Ma,b and t are, respectively, a trunk and a subtree of tree T .
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Figure 2.16 : Illustration of proof of Lemma 2.13.

If t is not contained in Ma,b, then t, when restricted to T �Ma,b, is also a subtree

of Tx �Ma,b.

Proof. Let ta = {u ∈ T | a ∈ πu,b} and tb = {u ∈ T | b ∈ πu,a}. By Lemma 2.10,

a ∈ ta, b ∈ tb, ta and tb are two subtrees separated by Ma,b, and {ta, tb,Ma,b} is a

partition of T .

If t ⊆ Ma,b, then all nodes in t are deleted after the contraction of T by Ma,b;

if t ∩Ma,b = ∅, then no nodes in t are deleted after the contraction of T by Ma,b;

if t 	⊆ Ma,b and t ∩Ma,b 	= ∅, there are three subcases. First, if t ∩ ta 	= ∅ and

t ∩ tb 	= ∅, then both a, b are in t. After contraction, t is the union of two subtrees

t ∩ ta and t ∩ tb, which are connected by the new edge {a, b}. Hence, t is still a

subtree. Second, if t∩ ta 	= ∅ but t∩ tb = ∅, then a ∈ t but b 	∈ t. After contraction,

t will be replaced by t∩ta. Third, if t∩ta = ∅ and t∩tb 	= ∅, then, after contraction,

t will be replaced by t ∩ tb.

Given a tree-preserving constraint Rxy w.r.t. tree domains Tx and Ty. Suppose

a, b are two nodes in Tx s.t. Rxy(a)∪Rxy(b) is not connected in Ty. We now consider

how to modify Ty so that Rxy remains tree-preserving after contracting trunk Ma,b

from Tx.

Lemma 2.13. Suppose Rxy and Ryx are arc-consistent and tree-preserving w.r.t.
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tree domains Tx and Ty. Let a, b be two nodes in Tx s.t. Rxy(a) ∪ Rxy(b) is not

connected in Ty. Then there exist unique r, s ∈ Ty s.t. r ∈ Rxy(a), s ∈ Rxy(b),

and Ryx(Mr,s) ⊆ Ma,b. Moreover, Rxy and Ryx are tree-preserving when restricted

to Tx �Ma,b and Ty �Mr,s.

Proof. Choose r ∈ Rxy(a) and s ∈ Rxy(b) such that the path πr,s from r to s in

Ty is a shortest one among {πr′,s′ : r′ ∈ Rxy(a), s
′ ∈ Rxy(b)} (see Figure 2.16 for

an illustration). In particular, we have πr,s ∩ (Rxy(a) ∪ Rxy(b)) = {r, s}. We assert

that the image of every node v in Mr,s under Ryx is contained in Ma,b. Suppose

otherwise and there exists u in Tx \Ma,b s.t. (u, v) ∈ Rxy. Assume that u is in the

same connected component as a. Since the subtree Ryx(πv,s) contains u and b, it

also contains a. This implies that there is a node v′ on πv,s which is in Rxy(a). This

is impossible as v ∈ Mr,s and Rxy(a) ∩ πr,s = {r}. Therefore Ryx(v) ⊆ Ma,b for any

v ∈Mr,s. Hence Ryx(Mr,s) ⊆Ma,b holds.

It is clear that, when restricted to Tx�Ma,b and Ty�Mr,s, Rxy({a, b}) is connected

and so is Ryx({r, s}). For any other edge {a′, b′} in Tx �Ma,b, by Ryx(Mr,s) ⊆Ma,b,

Rxy({a′, b′}) ∩Mr,s = ∅ and the image of {a′, b′} is unchanged (hence connected)

after the M-contraction of Ty. This shows that Rxy is consecutive when restricted

to Tx �Ma,b. Furthermore, for every node c in Tx �Ma,b, since c is supported by a

node in Ty�Mr,s, we know that Rxy(c) is a nonempty subtree in Ty. By Lemma 2.12

and Rxy(c) ∩Mr,s = ∅, we know Rxy(c) ∩ (Ty �Mr,s) is also a nonempty subtree in

Ty �Mr,s. This shows that Rxy is tree-preserving when restricted to Tx �Ma,b and

Ty �Mr,s. On the other hand, for any subtree t in Ty �Mr,s, w.l.o.g., assume that

r, s ∈ t. Then Ryx(t) = Ryx(t∩tr)∪Ryx(t∩ts), where tr and ts are the two connected

components of Ty separated by Mr,s. Because both Ryx(t ∩ tr) and Ryx(t ∩ ts) are

subtrees in Tx and, hence, subtrees in Tx �Ma,b by Lemma 2.12. By a ∈ Ryx(t∩ tr)

and b ∈ Ryx(t ∩ ts), we know Ryx(t) is a subtree of Ty �Mr,s. This shows that Ryx
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is tree-preserving when restricted to Tx �Ma,b and Ty �Mr,s.

It is possible that there is a node v ∈ Ty�Mr,s s.t. Ryx(v) ⊆Ma,b, but the image

of Tx �Ma,b under the restricted Rxy is a subtree of Ty �Mr,s.
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Chapter 3

CSPs Solvable with Directional PC

3.1 Contribution

Among the local consistency techniques used for solving constraint networks,

path-consistency (PC) has received a great deal of attention. However, enforcing

PC is computationally expensive and sometimes unnecessary. Directional path-

consistency (DPC) is a weaker notion of PC that considers a given variable ordering

and can thus be enforced more efficiently than PC. This chapter shows that DPC

(the DPC enforcing algorithm of Dechter and Pearl [39]) decides the constraint

satisfaction problem (CSP) of a constraint language if it is complete and has the

variable elimination property (VEP). However, we also show that no complete VEP

constraint language can have a domain with more than 2 values. We then present

a simple variant of the DPC algorithm, called DPC∗, and show that the CSP of

a constraint language can be decided by DPC∗ if it is closed under a majority

operation. In fact, DPC∗ is sufficient for guaranteeing backtrack-free search for

such constraint networks. Examples of majority-closed constraint classes include the

classes of connected row-convex (CRC) constraints and tree-preserving constraints,

which have found applications in various domains, such as scene labeling, temporal

reasoning, geometric reasoning, and logical filtering. Our experimental evaluations

show thatDPC∗ significantly outperforms the state-of-the-art algorithms for solving

majority-closed constraints.
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3.2 Introduction and Chapter Outline

Many Artificial Intelligence tasks can be formulated as constraint networks [101],

such as natural language parsing [93], temporal reasoning [38, 104], and spatial rea-

soning [84]. A constraint network comprises a set of variables ranging over some

domain of possible values, and a set of constraints that specify allowed value com-

binations for these variables. Solving a constraint network amounts to assigning

values to its variables such that its constraints are satisfied. Backtracking search is

the principal mechanism for solving a constraint network; it assigns values to vari-

ables in a depth-first manner, and backtracks to the previous variable assignment if

there are no consistent values for the variable at hand. Local consistency techniques

are commonly used to reduce the size of the search space before commencing search.

However, searching for a complete solution for a constraint network is still hard. In

fact, even deciding whether the constraint network has a solution is NP-complete

in general. Therefore, given a particular form of local consistency, a crucial task is

to determine problems that can be solved by backtrack-free search using that local

consistency [48].

This chapter considers a particular form of local consistency, called path-consistency

(PC), which is one of the most important and heavily studied local consistencies in

the literature (see e.g. [89, 53, 113, 13, 24]). Recently, it was shown that strong PC

can be used to decide the satisfiability of a problem if and only if the problem does

not have the ability to count [5, 4]; however, it remains unclear whether backtrack-

free search can be used to extract a solution for such a problem after enforcing

PC.

Directional path-consistency (DPC) [39] is a weaker notion of PC that considers

a given variable ordering and can thus be enforced more efficiently than PC. The

DPC enforcing algorithm of Dechter and Pearl [39], denoted by DPC, has been used
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to efficiently solve reasoning problems in temporal reasoning [38, 104] and spatial

reasoning [114]. It is then natural to ask what binary constraint networks with

finite domains can be solved by DPC. Dechter and Pearl [39] showed that DPC is

sufficient for enabling backtrack-free search for a network with a constraint graph of

regular width 2, i.e., there exists a width 2 ordering of the constraint graph which

remains width 2 after applying DPC. We consider the aforementioned question

in the context of constraint languages, which is a widely adopted approach in the

study of tractability of constraint satisfaction problems [18]. Specifically, we are

interested in finding all binary constraint languages Γ such that the consistency of

any constraint network defined over Γ can be decided by DPC.

To this end, we first exploit the close connection between DPC and variable elim-

ination by defining constraint languages that have the (weak) variable elimination

property (VEP) (which will become clear in Definition 3.4). We call a constraint

language Γ complete if it contains all relations that are definable in Γ (in the sense

of Definition 3.1). Then, we show that the CSP of a constraint language Γ can be

decided by DPC if it is complete and has VEP, which is shown to be equivalent

to the Helly property. However, we also show that no complete VEP constraint

language can have a domain with more than 2 values.

We then present a simple variant of the algorithm DPC, called DPC∗, and show

that the consistency of a constraint network can be decided by DPC∗ if it is de-

fined over any majority-closed constraint language. In fact, we show that DPC∗ is

sufficient for guaranteeing backtrack-free search for such constraint networks. Sev-

eral important constraint classes have been found to be majority-closed. The most

well-known one is the class of connected row-convex (CRC) constraints [40], which is

further generalized to a larger class of tree-preserving constraints in Chapter 2. The

class of CRC constraints has been successfully applied to temporal reasoning [73],

logical filtering [76], and geometric reasoning [72], and the class of tree-preserving
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constraints can model a large subclass of the scene labeling problem (cf. Chapter 2).

We also conduct experimental evaluations to compare DPC∗ to the state-of-the-art

algorithms for solving majority-closed constraints, and show thatDPC∗ significantly

outperforms the latter algorithms.

The remainder of this chapter is organized as follows. In Section 3.3 we introduce

basic notions and results that will be used throughout the chapter. In Section 3.4 we

present the DPC algorithm, and in Section 3.5 we discuss the connection between

DPC and variable elimination. In Section 3.6 we prove that a complete constraint

language Γ has weak VEP if and only if Γ is majority-closed. We then present

in Section 3.7 our variable elimination algorithm DPC∗, and empirically evaluate

DPC∗ in Section 3.8. Finally, Section 3.9 concludes the chapter.

3.3 Preliminaries

In this chapter we are concerned with binary constraint networks (BCNs) defined

over a particular constraint language and we use constraint languages, constraint

classes and sets of relations interchangeably. This chapter heavily uses closure

properties of constraint relations which have been introduced in subsection 1.3.5.

Other necessary notations and results about CSP and DPC are also provided in

section 1.3.

Definition 3.1. A relation R is said to be definable in Γ if R ∈ Γ+, and a set of

binary relations Γ is said to be complete if every binary relation definable in Γ is

also contained in Γ. The completion of Γ, written as Γc, is the set of all binary

relations contained in Γ+.

The following lemma asserts that a complete set of binary relations is closed

under the operations that are used to achieve PC.

Lemma 3.1. [26] Let Γ be a complete set of binary relations over a domain D.
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Algorithm 3.1: DPC

Input : A binary constraint network N = 〈V,D, C〉;
an ordering ≺ = (v1, . . . , vn) on V .

Output: An equivalent subnetwork that is strongly DPC relative to ≺, or
“Inconsistent”.

1 for k ← n to 1 do
2 for i < k with Rik ∈ C do
3 Di ← Di ∩Rki(Dk);
4 if Di = ∅ then
5 return “Inconsistent”

6 for i, j < k s.t. i 	= j and Rik, Rjk ∈ C do
7 if Rij 	∈ C then
8 Rij ← Di ×Dj;
9 C ← C ∪ {Rij};

10 Rij ← Rij ∩ (Rik ◦Rkj);
11 if Rij = ∅ then
12 return “Inconsistent”;

13 return N .

Suppose R, S are binary relations in Γ. Then R ∩ S and R ◦ S are also in Γ.

Let Γ be a set of binary relations. A BCN N = 〈V,D, C〉 is defined over (or,

simply, over) Γ if R ∈ Γ for every constraint (s, R) in C. The constraint satisfaction

problem (CSP) of Γ, denoted by CSP(Γ), is the problem of deciding the consistency

of BCNs defined over Γ. Note that CSP(Γ+) is log-space reducible to CSP(Γ) [26].

A set of binary relations Γ is weakly closed under singletons, if {〈a, b〉} ∈ Γ+ for

any R ∈ Γ and any 〈a, b〉 ∈ R.

In this chapter, we often assume that the constraint languages are complete and

weakly closed under singletons. We will see that this is not very restrictive as,

for any set Γ of binary relations that is closed under a majority operation ϕ, the

completion Γc of Γ is also closed under ϕ [61] and weakly closed under singletons

(cf. Proposition 3.4).
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3.4 The Strong Directional PC Algorithm

This section recalls the notions of directional arc-consistency (DAC) and direc-

tional path-consistency (DPC), and the strong DPC enforcing algorithm of Dechter

and Pearl [37].

Definition 3.2. [37] Let N = 〈V,D, C〉 be a BCN and ≺ = (v1, . . . , vn) an ordering

of the variables in V . We say that N is directionally arc-consistent (DAC) relative

to ≺ if vi is arc-consistent relative to vk for all k > i with Rik ∈ C. Similarly,

N is directionally path-consistent (DPC) relative to ≺ if, for any i 	= j, (vi, vj) is

path-consistent relative to vk for all k > i, j whenever Rik, Rjk ∈ C. Meanwhile, N

is strongly DPC relative to ≺ if it is both DAC and DPC relative to ≺.

The strong DPC algorithm is presented as Algorithm 3.1. In comparison with

traditional PC algorithms [24], a novelty of this single pass algorithm is its explicit

reference to the constraint graph of the input constraint network. As only Line 8

may require extra working space, Algorithm 3.1 has a very low space complexity in

practice. Further, Algorithm 3.1 runs in O(w∗(≺) · e · (α+ β)) time [37], where e is

the number of edges of the output constraint graph, w∗(≺) is the induced width [37]

of the ordered graph along ≺, and α, β are the runtimes of relational intersection

and composition respectively. Note that w∗(≺) ≤ n and α, β are bounded by O(d2)

and O(d3), respectively, where d is the largest domain size.

Proposition 3.1. [37] Let (N ,≺) be an input to Algorithm 3.1, where ≺ = (v1, . . . , vn).

Suppose N ′ = 〈V,D′, C ′〉 is the output. Then

(i) GN ′ is triangulated and ≺−1, the inverse of ≺, is a PEO of GN ′;

(ii) N ′ is equivalent to N and strongly DPC relative to ≺.

Let Γ be a set of binary relations. We say that Algorithm 3.1 decides CSP(Γ) if,
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(a) The constraint graph
GN of a graph coloring
problem N .

(b) The constraint graph obtained
by applying Algorithm 3.1 to (N ,≺)
where ≺ = (v1, v2, v3, v4).

Figure 3.1 : A graph coloring problem with domain Di = {red, blue} for i = 1, 2, 3, 4
[37].

for any given BCNN inCSP(Γ) and any ordering≺ of variables ofN , Algorithm 3.1

returns “Inconsistent” iff N is inconsistent.

The following corollary follows directly from Proposition 3.1.

Corollary 3.1. Let Γ be a complete set of binary relations. Then the following two

conditions are equivalent:

(i) Algorithm 3.1 decides CSP(Γ).

(ii) Let N be any not trivially inconsistent BCN in CSP(Γ). Suppose N ’s con-

straint graph GN is triangulated and let ≺−1 = (vn, . . . , v1) be a PEO of it.

Then N is consistent if N is strongly DPC relative to ≺.

Example 3.1. The graph coloring problem N with domains {red, blue} depicted in

Figure 3.1 is taken from [37] and can be decided by Algorithm 3.1. After applying

Algorithm 3.1 to (N ,≺), where ≺ = (v1, v2, v3, v4), a solution can be obtained along

≺ in a backtrack-free manner (see Figure 3.1b).

3.5 Directional PC and Variable Elimination

This section characterizes the binary constraint languages Γ such that CSP(Γ)

can be decided by DPC. We observe that DPC achieves (strong) DPC using the
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idea of variable elimination [37]: it iterates variables along the ordering ≺−1, and

propagates the constraints of a variable vk to subsequent variables in the ordering

with the update rule Rij ← Rij ∩ (Rik ◦Rkj), as if vk is ‘eliminated ’.

The following definition formalizes the process of elimination.

Definition 3.3. Let N = 〈V,D, C〉 be a BCN with V = {v1, ..., vn} and D =

{D1, ..., Dn}. For a variable vx in V , let Ex = {Rix | Rix ∈ C}. The network

obtained after vx is eliminated from N , written as

N−x = 〈V \ {vx}, {D′
1, ..., D

′
x−1, D

′
x+1, ..., D

′
n}, C ′〉,

is defined as follows:

• If Ex = {Rix}, we set C ′ = C \ Ex and let

D′
j =

⎧⎪⎨
⎪⎩

Di ∩Rxi(Dx), if j = i

Dj, otherwise
(3.1)

• If |Ex| 	= 1, we set D′
j = Dj for all j 	= x, and let

C ′ = (C \ Ex) ∪ {(Rix ◦Rxj) ∩Rij | Rjx, Rix ∈ Ex, i 	= j}.

Rij is assumed to be Di ×Dj if Rij 	∈ C.

Figure 3.2 illustrates the elimination process.

Definition 3.4. A BCN N = 〈V,D, C〉 is said to have the variable elimination

property (VEP), if, for any vx in V , every solution of N−x can be extended to a

solution of N .

N is said to have weak VEP, if, for any vx in V such that vx is AC relative to

all relations in Ex, every solution of N−x can be extended to a solution of N .
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Figure 3.2 : Two binary constraint networks N and N−4.

A set of binary relations Γ is said to have (weak) VEP if every BCN in CSP(Γ)

has (weak) VEP. Such a set of binary relations Γ is also called a (weak) VEP class.

It is easy to see that, if a BCN (a set of binary relations) has VEP, then it also

has weak VEP. The following example explains why we should take special care

when eliminating variables with only one successor in Eq. (3.1).

Figure 3.3 : A constraint graph that is a chain.

Example 3.2. Let N = 〈V,D, C〉 be a BCN defined by V = {v1, v2, v3}, D1 = D2 =

D3 = {0, 1}, and C = {((v3, v2), R), ((v2, v1), R)} with R = {(1, 0)} (see Figure 3.3).

Suppose we do not have the operation specified in (3.1) and ≺ = (v3, v2, v1) is the

variable elimination ordering. Let N−3 be the restriction of N to {v1, v2}. Then

N−3 has a unique solution σ but it cannot be extended to a solution of N .
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Proposition 3.2. Let Γ be a complete set of binary relations that is weakly closed

under singletons. Then DPC decides CSP(Γ) iff Γ has VEP.

Proof. We address the ‘if’ part first. Assume that Γ has VEP, and let N = 〈V,D, C〉

be a network in CSP(Γ) that is not trivially inconsistent and strongly DPC relative

to ≺ = (v1, . . . , vn), where GN is triangulated and ≺−1 is a PEO of it. We show

that N is consistent. Let Vi = {v1, . . . , vi} and N|Vi
be the restriction of N to Vi.

We claim that N|Vi
is consistent for k = 1, . . . , n and prove the claim by induction

on k. First, since N is not trivially inconsistent, D1 is not empty and there is an

a1 ∈ D1. Then, N|V1 is consistent and has a solution σ1 = 〈a1〉. Further, suppose

that N|Vi
is consistent and σi = 〈a1, a2, ..., ai〉 is a solution of N|Vi

. We show that σi

can be extended to a solution σi+1 = 〈a1, . . . , ai, ai+1〉 of N|Vi+1
. Since Γ has VEP

and N|Vi
is indeed the same network as the one obtained by eliminating vi+1 from

N|Vi+1
, by Definition 3.4, σi can be extended to a solution σi+1 of N|Vi+1

. Thus, by

induction, N is consistent. By Corollary 3.1, DPC decides CSP(Γ).

Next, we address the ‘only if’ part. Assume that DPC decides CSP(Γ). We

show that Γ has VEP. Let N = 〈V,D, C〉 be a not trivially inconsistent network

in CSP(Γ). Given vx ∈ V , we show that every solution of N−x can be extended

to N . Without loss of generality, we assume that x = n. Let σ = 〈a1, . . . , an−1〉

be a solution of N−n, and En = {Rin | Rin ∈ C}. By the definition of N−n, for

any Rin, Rjn ∈ En(i 	= j), we have 〈ai, aj〉 ∈ (Rin ◦ Rnj) ∩ Rij. We then construct

a new problem N ′ = 〈V,D′, C ′〉 in CSP(Γ), where D′ = {D′
1, ..., D

′
n−1, Dn} with

D′
i = {ai} for 1 ≤ i < n and C ′ = {{〈ai, aj〉} | 1 ≤ i 	= j < n} ∪ En. Clearly, σ is

also a solution of N ′
−n and N ′

−n is strongly PC and, hence, strongly DPC relative

to the ordering (v1, . . . , vn−1). Further, since 〈ai, aj〉 ∈ (Rin ◦ Rnj) ∩ Rij for any

Rin, Rjn ∈ En(i 	= j), we have that N ′ is strong DPC relative to ≺ = (v1, . . . , vn).

As GN ′
−n

is a complete graph, GN ′ is triangulated with ≺−1 being a PEO of it. As
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Figure 3.4 : An illustration of Example 3.3.

DPC decides CSP(Γ) and N ′ ∈ CSP(Γ), by Corollary 3.1, N ′ is consistent and

has a solution that extends σ and is also a solution of N . This shows that N is

consistent and, hence, Γ has VEP.

Therefore, if N = 〈V,D, C〉 is defined over a complete VEP class, then DPC

can decide it. Note that in the above proposition we require Γ to be complete. This

is important; for example, every row-convex constraint [7] network has VEP (cf.

the proof of [135, Theorem 1]) and, hence, the class of row-convex constraints has

VEP. However, DPC does not decide the consistency problem over the row-convex

constraint class because it was shown to be NP-complete (cf. e.g. [63]).

VEP is closely related to the Helly property. For example, any set of intervals

on the real line satisfies the Helly property, because the intersection of all intervals

is not empty if every pair of intervals intersects. We give the formal definition as

follows.

Definition 3.5. A set Γ of binary relations over D = {D1, ..., Dn} is said to have

the Helly property if for any k > 2 binary relations, Ri ⊆ Dui
× Du0(1 ≤ i ≤

k, 1 ≤ ui 	= u0 ≤ n), in Γ, and for any k values, ai ∈ Dui
(1 ≤ i ≤ k), such

that Ri(ai) = {b ∈ Du0 | 〈ai, b〉 ∈ Ri} is nonempty, we have
⋂k

i=1Ri(ai) 	= ∅ iff

Ri(ai) ∩Rj(aj) 	= ∅ for any 1 ≤ i 	= j ≤ k.
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Example 3.3. Let Du0 = {a, b, c, d}, Du1 = {e}, Du2 = {f}, Du3 = {g} and R1 =

{〈e, a〉, 〈e, b〉, 〈e, c〉}, R2 = {〈f, b〉, 〈f, c〉, 〈f, d〉}, R3 = {〈g, c〉, 〈g, d〉, 〈g, a〉}. See Fig-

ure 3.4 for an illustration. Then Γ = {R1, R2, R3} over D = {Du0 , Du1 , Du2 , Du3}

has the Helly property.

Theorem 3.1. A set of binary relations Γ over D = {D1, ..., Dn} has VEP iff it

has the Helly property.

Proof. Suppose Γ has VEP. We show that Γ has the Helly property. Let D =

{D1, ..., Dn} be the set of domains related to relations in Γ. Suppose Ri ⊆ Dui
×Du0

(1 ≤ i ≤ k, 1 ≤ ui 	= u0 ≤ n) are k > 2 binary relations in Γ and ai ∈ Dui

(1 ≤ i ≤ k) are values such that ∅ 	= Ri(ai) ⊆ Du0 . Suppose Ri(ai) ∩ Rj(aj) is

nonempty for any i, j with 1 ≤ i 	= j ≤ k. We show that
⋂k

i=1Ri(ai) is nonempty.

To this end, we construct a BCN N = 〈V,D′, C〉 over Γ with V = {v1, ..., vk, vk+1},

D′ = {Du1 , ..., Duk
, Du0}, and C = {Ri,k+1 | 1 ≤ i ≤ k}, where Ri,k+1 = Ri.

Consider N−(k+1). As Ri(ai) ∩ Rj(aj) 	= ∅, we have 〈ai, aj〉 ∈ Ri,k+1 ◦ Rk+1,j. This

shows that σ = 〈a1, . . . , ak〉 is a solution of N−(k+1). Since Γ and, hence, N have

VEP, N has a solution that extends σ. Hence there exists a ∈ Du0 such that

a ∈ Ri,k+1(ai) for every 1 ≤ i ≤ k. Thus
⋂k

i=1Ri(ai) 	= ∅. This proves that Γ has

the Helly property.

Suppose Γ over D = {D1, ..., Dn} has the Helly property. We show that Γ has

VEP. Let N = 〈V,D, C〉 be a not trivially inconsistent BCN defined over Γ with

V = {v1, v2, ..., vn} and C is a set of binary constraints ((vi, vj), R) with R ∈ Γ.

Let En = {Rin | Rin ∈ C}. Assume σ = 〈a1, a2, ..., an−1〉 is a solution of, say,

N−n. We show that there exists an ∈ Dn such that 〈a1, ..., an−1, an〉 is a solution

of N . If En is empty, we can take any an from Dn which is nonempty since N

is not trivially inconsistent; if En contains only one constraint, say, ((vi, vn), Rin),

by ai ∈ D′
i = Di ∩ Rni(Dn), there exists an ∈ Dn such that 〈ai, an〉 ∈ Rin; if
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En contains k ≥ 2 constraints and let them be ((vui
, vn), Ruin) (1 ≤ i ≤ k), we

have 〈aui
, auj

〉 ∈ Ruiuj
∩ (Ruin ◦ Rnuj

) for 1 ≤ i 	= j ≤ k. Therefore, we have

Ruin(ai) ∩ Rujn(aj) 	= ∅ for 1 ≤ i 	= j ≤ k. By the Helly property of Γ, we have⋂k
i=1Ruin(ai) 	= ∅. So we can take any an ∈ ⋂k

i=1Ruin(ai) so that 〈a1, . . . , an−1, an〉

is a solution of N . Therefore, Γ has VEP.

The class of row-convex constraints and the class of tree-convex constraints have

the Helly property and, thus, they have VEP by Theorem 3.1.

Proposition 3.2 only concerns a complete set of binary relations that has VEP.

The following proposition, viz., Proposition 3.3, does not require a set of binary

relations to be complete. However, we also note that path-consistency operations

can destroy the Helly property; this suggests that Proposition 3.3 is only useful

when N happens to have the Helly property after enforcing DPC.

Proposition 3.3. Suppose Γ is a set of binary relations that has the Helly property.

Let N ∈ CSP(Γ). Suppose N is not trivially inconsistent and GN is triangulated

with ≺−1 = (vn, . . . , v1) as a PEO of it. Then N is consistent if it is strongly DPC

relative to ≺.

Proof. Let N ∈ CSP(Γ). Suppose N = 〈V,D, C〉 is not trivially inconsistent

and GN is triangulated with ≺−1 = (vn, . . . , v1) being a PEO of it. Suppose N is

strongly DPC relative to ≺. We show that N is consistent. Let Vk = {v1, . . . , vk}

and Nk be the restriction of N to Vk. Since N is not trivially inconsistent, we have

that N1 is consistent. Suppose Nk is consistent, we show that Nk+1 is consistent.

Let σ = 〈a1, . . . , ak〉 be a solution of Nk. Let Ek+1 = {Ri,k+1 | Ri,k+1 ∈ C, i ≤

k}. Since GN is triangulated and ≺−1 = (vn, . . . , v1) is a PEO of it, for any two

different constraints Ri,k+1, Rj,k+1 ∈ Ek+1, we have Rij ∈ C. Further, since N is

strongly DPC relative to ≺, we have 〈ai, aj〉 ∈ (Ri,k+1 ◦Rk+1,j)∩Rij. Thus, we have

Ri,k+1(ai) ∩ Rj,k+1(aj) 	= ∅ for any two different constraints Ri,k+1, Rj,k+1 ∈ Ek+1.
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Since Γ has the Helly property, we have
⋂

Ri,k+1∈Ek+1
Ri,k+1(ai) 	= ∅. Therefore, σ

can be extended to a solution of Nk+1 and Nk+1 is consistent. By induction on k,

we have that N is consistent.

3.6 Weak VEP Classes and Majority-Closed Classes

In this section we characterize weak VEP classes. We show that a complete set

of binary relations Γ has weak VEP iff all relations in Γ are closed under a majority

operation.

Proposition 3.4. Let Γ be the set of binary relations that is closed under a multi-

sorted majority operation ϕ = {ϕ1, ..., ϕn} on D = {D1, ..., Dn}. Then Γ is weakly

closed under singletons.

Proof. Suppose R is a relation in Γ and 〈a, b〉 ∈ R ⊆ Di × Dj. We show that

{〈a, b〉} is closed under ϕ. For any t1, t2, t3 ∈ {〈a, b〉}, we have t1 = t2 = t3 = 〈a, b〉,

and, hence, ϕ(t1, t2, t3) = 〈ϕi(a, a, a), ϕj(b, b, b)〉 = 〈a, b〉. This shows that {〈a, b〉} is

closed under ϕ and, hence, a relation in Γ.

Next, we show that complete weak VEP classes are majority-closed classes.

Theorem 3.2. Let Γ be a complete set of binary relations over a set of finite domains

D = {D1, ..., Dn}. Then Γ has weak VEP iff it is a majority-closed class.

Proof. We first deal with the ‘only if’ part. Suppose that Γ is a complete set of

binary relations that has weak VEP. By Theorem 1.3, we only need to show that

for every BCN in CSP(Γ), establishing strong PC ensures global consistency. Let

N 0 be a network in CSP(Γ) and suppose N = 〈V,D, C〉 is the network obtained by

enforcing strong PC on N 0. Since Γ is complete and hence closed under operations

for achieving PC by Lemma 3.1, N is also a problem in CSP(Γ). Suppose N is not
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Figure 3.5 : Illustration of proof of Theorem 3.2.

trivially inconsistent. We show that any partial solution of N can be extended to a

solution of N .

Suppose V ′ = {v1, . . . , vm−1} ⊂ V and σ = 〈a1, . . . , am−1〉 is a solution of N|V ′ ,

which is the restriction of N to V ′. Assume further that vm 	∈ V ′ is a new variable

and let V ′′ = V ′ ∪ {vm}. We show that σ can be consistently extended to N|V ′′ ,

the restriction of N to V ′′. Because N is strongly PC, N|V ′′ is strongly PC as well.

In particular, vi is AC relative to vm for any Rim in C, and Rij is PC relative to

vm (i.e., Rij ⊆ Rim ◦ Rmj) for any i 	= j such that both Rim and Rjm are in C.

By Definition 3.3, N|V ′ is the same as (N|V ′′)−m, viz., the network obtained by

eliminating vm from N|V ′′ . Moreover, since N and, hence, N|V ′′ are AC, vm is AC

relative to all constraints Rim that are in C. By the assumption that Γ has weak

VEP, σ can be consistently extended to vm. Following this reasoning, we will find a

solution of N that extends σ.

Next, we consider the ‘if’ part. Suppose that Γ is a complete set of binary

relations that is closed under some multi-sorted majority operation ϕ = {ϕ1, . . . , ϕn}

on D. Let N = 〈V,D, C〉 be a problem in CSP(Γ) and vx a variable in V . Let

Ex = {Rix | Rix ∈ C}, and N−x = 〈V \ {vx},D, C ′〉, where C ′ = (C ∪ {(Rix ◦Rxj)∩

Rij | Rjx, Rix ∈ Ex}) \Ex. Suppose that vx is AC relative to all relations in Ex. We

only need to show that any solution of N−x can be extended to a solution of N . We

prove this by contradiction.
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Let σ be a solution ofN−x. Assume that σ cannot be extended to a solution ofN .

Therefore, Ex cannot be empty, otherwise σ can be trivially extended to a solution

of N . The case where Ex = {Rix} is a singleton is also impossible, as by (3.1), vi is

AC relative to Rix and we could extend σ to a solution of N by assigning any valid

value to vx. Suppose that Ex has q ≥ 2 constraints and let them be ((v1, vx), R1), . . .,

((vq, vx), Rq). We define a new problem N ′ = 〈V,D, Ex〉 as illustrated in Figure 3.5.

Since vx is AC relative to all relations in Ex, it is easy to verify that N ′ has a

solution. For example, one can construct a solution of N ′ by simply picking a value

from Dx for vx and then extending that valuation to v1, . . . , vq. Now, we construct a

q-ary relation R = {〈γ(v1), . . . , γ(vq)〉 | γ is a solution of N ′}. The solution set S of

N ′ can be obtained by using a sequence of the Cartesian product, equality selection,

and projection operations [61]. Therefore, S ∈ Γ+. Since R = πv1,...,vq(S), we have

R ∈ Γ+. By Theorem 1.3, R should be 2-decomposable; however, in the sequel we

show that it is not, which is a contradiction.

Let t = 〈σ(v1), . . . , σ(vq)〉, where σ is a solution of N−x. It is clear that t is a

solution of N ′|{v1,...,vq}. For any list of indices I chosen from {1, . . . , q}, with |I| ≤ 2,

we claim that πI(t) ∈ πI(R). We recall that, for any two relations Rix, Rjx ∈ Ex,

the relation between vi and vj in N−x is Rij ∩ (Rix ◦ Rxj). Therefore, any partial

solution 〈σ(vi), σ(vj)〉(1 ≤ i, j ≤ q) of N ′ can be consistently extended to vx and, by

the construction ofN ′, further consistently extended to a solution ofN ′. Thus, πI(t)

is in πI(R) for any list of indices I chosen from {1, . . . , q}, with |I| ≤ 2. However,

t 	∈ R because σ cannot be extended to a solution of N ′, which implies that R is

not 2-decomposable.

3.7 The Variable Elimination Algorithm DPC∗

This section presents a variant of DPC for solving BCNs defined over any weak

VEP class. The new algorithm, called DPC∗ and presented as Algorithm 3.2, can
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Algorithm 3.2: DPC∗

Input : A binary constraint network N = 〈V,D, C〉;
an ordering ≺ = (v1, . . . , vn) on V .

Output: An equivalent subnetwork that is decomposable relative to ≺ (see
Definition 3.6), or “Inconsistent”.

1 for k ← n to 1 do
2 if k has only one successor and that successor is i then
3 Di ← Di ∩Rki(Dk)
4 if Di = ∅ then
5 return “Inconsistent”

6 else
7 for i < k with Rik ∈ C do
8 Dk ← Dk ∩Rik(Di)
9 if Dk = ∅ then

10 return “Inconsistent”

11 for i < k with Rik ∈ C do
12 for j < i with Rjk ∈ C do
13 if Rij 	∈ C then
14 Rij ← Di ×Dj

15 C ← C ∪ {Rij}
16 Rij ← Rij ∩ (Rik ◦Rkj);
17 if Rij = ∅ then
18 return “Inconsistent”

19 return N .

solve problems that are not solvable by DPC (cf. Example 3.4 and Proposition 3.6).

Compared with the variable elimination algorithm for solving CRC constraints [135],

DPC∗ enforces a weaker AC condition instead of full AC. We first justify the cor-

rectness of Algorithm 3.2.

Theorem 3.3. Let Γ be a complete weak VEP class. Suppose N is a BCN defined

over Γ and ≺ = (v1, . . . , vn) any ordering of the variables of N . Then, given N and

≺, Algorithm 3.2 does not return “Inconsistent” iff N is consistent.

Proof. Suppose the input network N is consistent. Since DPC∗ only prunes off
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certain infeasible domain values or relation tuples, the algorithm does not find any

empty domains or relations in Lines 4, 9, and 17. Thus, it does not return “Incon-

sistent”.

Suppose the algorithm does not return “Inconsistent” and let N ′ = 〈V,D′, C ′〉

be the output network, where D′ = {D′
1, ..., D

′
n}. We show that N ′ is consistent.

Write M(0) for N and write M(i) for the result of the i-th loop in the call of

DPC∗ on input N and ≺ = (v1, v2, ..., vn). Then N ′ = M(n−1) and all M(i) (0 ≤

i < n) are equivalent to N . Let Qi be the restriction of M(i) to {v1, v2, ..., vn−i}

(0 ≤ i < n). In essence, Qi is obtained by eliminating vn−i+1 from Qi−1 (Lines

2-5 or Lines 11-18), while also enforcing AC (Lines 7-10) for vn−i+1 relative to all

its successors if it has more than one successor. Since Γ is a complete weak VEP

class, every BCN defined over Γ has weak VEP. In particular, each Qi(0 ≤ i < n) is

defined over Γ and has weak VEP. This implies that every solution of Qi+1 can be

extended to a solution of Q1. Since no inconsistency is detected in the process, we

have D′
1 	= ∅ and thus Qn−1 is consistent. By the above analysis, this implies that

Qn−2, ...,Q1,Q0 = M(0) = N are all consistent.

The preceding proof also gives a way to generate all solutions of a consistent input

network backtrack-free by appropriately instantiating the variables along the input

ordering ≺. Indeed, for all 1 ≤ k < n, a solution 〈a1, . . . , ak〉 of N ′
k can be extended

to a solution 〈a1, . . . , ak+1〉 ofN ′
k+1 by choosing an element ak+1 from the intersection

of all Ri,k+1(ai) with i ≤ k and Ri,k+1 ∈ C ′, which is always nonempty as shown in

the preceding proof. As we know that if Γ is majority-closed, the completion of Γ

is also majority-closed [61], and that complete majority-closed classes and complete

weak VEP classes are equivalent by Theorem 3.2, this also proves the following

result:

Definition 3.6. A constraint network N is decomposable relative to a variable
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Figure 3.6 : A constraint network N and its elimination N−w.

ordering ≺ = (v1, . . . , vn) if any partial solution of N on {v1, ..., vk} for any 1 ≤

k < n can be extended to a solution of N .

Proposition 3.5. Suppose N is a consistent BCN defined over a majority-closed

class and ≺ = (v1, ..., vn) an ordering of variables of N . Then, given N and ≺,

Algorithm 3.2 returns an equivalent subnetwork N ′ that is decomposable relative to

≺.

Note that Lines 2-10 in DPC∗do not achieve DAC of input networks. Therefore,

DPC∗ does not achieve strong DPC. Since the overall runtime of Lines 2-10 is the

same as enforcing DAC, this places DPC∗ in the same time complexity class as

DPC, which is O(w∗(≺)ed3), where w∗(≺) is the induced width of the ordered con-

straint graph along the input variable ordering ≺. The following example, however,

gives a BCN that can be solved by DPC∗ but not by DPC, which shows that the

loop in Lines 7-10 is necessary.

Example 3.4. Let D = {a, b, c} and ϕ be the majority operation on D such that for

all i, j, k ∈ D, ϕ(i, j, k) = a if i 	= j, j 	= k, and i 	= k, and ϕ(i, j, k) = r otherwise,

where r is the repeated value (e.g., ϕ(b, c, b) = b). Let Γ = {R1, R2, R3, R4, R5, R6},

where R1 = {〈a, a〉, 〈a, c〉}, R2 = {〈c, c〉, 〈c, b〉}, R3 = {〈b, b〉, 〈b, a〉}, R4 = {〈a, c〉},

R5 = {〈c, b〉}, and R6 = {〈a, b〉}. Every R ∈ Γ is closed under the majority op-

eration ϕ on D. Now, consider the constraint network N ∈ CSP(Γ) as presented

in Figure 3.6. Since Rxw ◦ Rwz = R6, Rxw ◦ Rwy = R4, and Ryw ◦ Rwz = R5, the
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eliminated network N−w is the same as the restriction of N to the set of variables

{vx, vy, vz}. Let σ(vx) = a, σ(vy) = c, σ(vz) = b. Then σ is a solution of N−w, but σ

cannot be extended to a solution of N . Thus, N and hence Γ do not have VEP. By

Theorem 3.2, DPC does not decide CSP(Γ).

On the other hand, since Γ is majority-closed, by Proposition 3.5, DPC∗ can

correctly decide the consistency of N . This observation is confirmed by calling the

two algorithms on N . Take the PEO ≺ = (w, x, y, z) as an example; the other

PEOs are analogous. Let (N ,≺) be an input to DPC. After processing w, we have

Dx = {a}, Dy = {c}, Dz = {b} and Rxy = {〈a, c〉}, Rxz = {〈a, b〉}, Rzy = {b, c}.

We can observe that 〈x = a, y = c, z = b〉 is a solution to the eliminated subnetwork.

Thus, if we keep running DPC, it will not detect inconsistency. On the other

hand, for DPC∗, when eliminating w, DPC∗ makes w AC relative to its neighbors.

Note that DPC does not perform this operation. After that, Dw is empty, and the

algorithm will stop and output “Inconsistent”.

Proposition 3.6. Let ϕ = {ϕ1, . . . , ϕn} be a majority operation on D = {D1, . . . , Dn}.

If there exists a domain Di in D that contains more than two elements, then the

set Γϕ of binary relations that are closed under ϕ has neither the Helly property nor

VEP.

Proof. Suppose a, b, c are three different values from Di. It is easy to see that the

relations R1 = {〈a, a〉, 〈a, b〉}, R2 = {〈a, b〉, 〈a, c〉}, and R3 = {〈a, a〉, 〈a, c〉} are

all closed under ϕ. Therefore, R1, R2, and R3 are all in Γϕ. Because any two of

R1(a), R2(a), R3(a) have a common element but R1(a) ∩ R2(a) ∩ R3(a) = ∅, this

shows that Γϕ does not have the Helly Property and, hence by Theorem 3.1, does

not have VEP.

This result shows that no complete VEP class could have a domain with 3 or more

values. Therefore, there are no interesting complete constraint languages except
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Algorithm DPC∗ PC2001 SAC3-SDS
Time O(w∗(≺)ed3) O(n3d3) O(ned3)

Table 3.1 : Comparison of time complexities among state-of-the-art algorithms for
solving majority-closed constraint networks.

the boolean ones that can be decided by DPC (cf. Proposition 3.2), while all

binary majority-closed classes (including CRC and tree-preserving constraints) can

be decided by DPC∗ (cf. Proposition 3.5).

DPC∗ can also be used to solve majority-closed constraints of higher arities. This

is because, by Theorem 1.3, every relation definable in a majority-closed language

is 2-decomposable. Therefore, for each majority relation R of arity m > 2, if a

constraint c = ((y1, ..., ym), R) appears in a constraint network N , we could replace

c with a set of binary constraints cij = ((yi, yj) | πij(R)) (1 ≤ i < j ≤ m), where

πij(R) = {〈t[yi], t[yj]〉 | t ∈ R}.

3.8 Evaluations

In this section we compare algorithm DPC∗ against the state-of-the-art algo-

rithms for solving majority-closed constraint networks. These are SAC3-SDS [9]

andPC2001 [12]. SAC3-SDS is currently the best singleton arc-consistency (SAC)

enforcing algorithm [35]. Enforcing either SAC or PC correctly decides the consis-

tency of a majority-closed constraint network [61, 23]. Note that Singleton linear

arc-consistency (SLAC) is an alternative consistency notion that can be enforced

to solve majority-closed constraint networks [71], but, to the best of our knowledge,

no practical SLAC algorithms have been made available so far. Comparison of time

complexities among the three algorithms is presented in Table 3.1.

Two different sets of data are considered for experiments, which are described

as follows:
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Figure 3.7 : Performance comparisons among DPC∗, SAC3-SDS and PC2001 for
solving tree-preserving constraint networks.

(1) Tree-preserving constraint networks. These networks are randomly generated

using the random tree-preserving constraint generator detailed in [69].

(2) Random majority-closed constraint networks. These can be used to test the

average performance of different algorithms. To generate such networks, we need to

generate random majority-closed constraint languages as follows:

(a) Randomly define a majority operation ⊗i : D
3
i → Di for each domain Di ∈ D
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Figure 3.8 : Performance comparisons among DPC∗, SAC3-SDS and PC2001 for
solving random majority-closed constraint networks.

as follows: for any x, y, z ∈ Di,

⊗i(x, y, z) =

⎧⎪⎨
⎪⎩

any v ∈ Di, if x, y, z are all different,

any repeated value of x, y, z, otherwise.

Note that v is chosen randomly for each triple 〈x, y, z〉, and it is a random choice

in Di.
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(b) Randomly generate constraints Rij ⊆ Di ×Dj and test whether

{〈⊗i(tx[1], ty[1], tz[1]),⊗j(tx[2], ty[2], tz[2])〉 |

tx, ty, tz ∈ Rij} ⊆ Rij

(3.2)

holds. By definition, Rij is majority-closed under (⊗i,⊗j) iff (3.2) holds.

We used the model in [13, 40] to generate random consistent constraint networks

for experiments. These constraint networks were generated by varying four param-

eters: (1) the number of variables n, (2) the size of the domains d, (3) the density

of the constraint networks ρ (i.e. the ratio of non-universal constraints to n2) and

(4) the looseness of constraints l (i.e. the ratio of the number of allowed tuples to

d2). We fix three of the four parameters and vary the remaining parameter. All algo-

rithms were implemented taking equal care and using Python 3.6. Experiments were

carried out on a computer with an Intel Core i5-4570 processor (3.2 GHz frequency

per CPU core) and 4 GB of memory.

The graphs in Figure 3.7 and Figure 3.8 illustrate the experimental comparisons

among algorithms DPC∗, SAC3-SDS and PC2001 for solving tree-preserving and

random majority-closed constraint networks respectively. The data points in each

graph are CPU times averaged over 20 instances.

From Figure 3.7 and Figure 3.8, we observe that the corresponding results re-

garding tree-preserving and random majority-closed constraint networks are quali-

tatively similar. Therefore, our analysis only focuses on Figure 3.7 and the results

are applicable to Figure 3.8 as well.

We observe in Figure 3.7a and Figure 3.7b that all algorithms approximately

show linear time behaviors with respect to n and d. On the other hand, Figure 3.7c

shows that PC2001 is not sensitive to the density of networks whereas DPC∗ and

SAC3-SDS perform better when the density of networks is lower. Figure 3.7d
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shows that the CPU time for DPC∗ remains almost unchanged when increasing the

looseness of constraints. However, the CPU times for PC2001 and SAC3-SDS

both go up and then drop down when increasing the looseness of constraints. Fi-

nally, we also observe in all the graphs in Figure 3.7 that the performance differences

among DPC∗, PC2001 , and SAC3-SDS are remarkable. In particular, DPC∗

is up to 7 times and 5 times faster than PC2001 and SAC3-SDS respectively.

This is mainly due to the fact that DPC∗ is a single pass algorithm over the or-

dered input constraint networks and, hence, very scalable compared to PC2001

and SAC3-SDS.

3.9 Conclusion

This chapter investigated which constraint satisfaction problems can be effi-

ciently decided by enforcing directional path-consistency. Given a complete binary

constraint language Γ, it turns out that DPC can decide CSP(Γ) if Γ is defined

over domains with less than three values. For a possibly incomplete binary con-

straint language Γ, we proved that Γ has the Helly property if, and only if, for

any not trivially inconsistent and triangulated binary constraint network N over Γ,

N is consistent if it is strongly DPC relative to the inverse ordering of some per-

fect elimination ordering of the constraint graph of N . The classes of row-convex

and tree-convex constraints are examples of constraint classes which have the Helly

property. More importantly, we presented the algorithm DPC∗, a simple variant of

DPC, which can decide the CSP of any majority-closed constraint language, and is

sufficient for guaranteeing backtrack-free search for majority-closed constraint net-

works, which have found applications in various domains, such as scene labeling,

temporal reasoning, geometric reasoning, and logical filtering. Our evaluations also

show thatDPC∗ significantly outperforms the state-of-the-art algorithms for solving

majority-closed constraint networks.
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Chapter 4

A Distributed Partial PC Algorithm for Solving

CRC Constraint Networks

4.1 Contribution

The class of CRC constraints generalizes several tractable classes of constraints

and is expressive enough to model problems in domains such as temporal reason-

ing, geometric reasoning, and scene labelling. This chapter presents the first dis-

tributed deterministic algorithm for connected row-convex (CRC) constraints. Our

distributed (partial) path consistency algorithm efficiently transforms a CRC con-

straint network into an equivalent constraint network, where all constraints are min-

imal (i.e., they are the tightest constraints) and generating all solutions can be done

in a backtrack-free manner. When compared with the state-of-the-art distributed

algorithm for CRC constraints, which is a randomized one, our algorithm guarantees

to generate a solution for satisfiable CRC constraint networks and it is applicable

to solve large networks in real distributed systems. The evaluations show that our

algorithm outperforms the state-of-the-art algorithm in both practice and theory.

4.2 Introduction and Chapter Outline

Although solving general constraint satisfaction problems (CSPs) is known to be

NP-hard, many subclasses have been identified as tractable. The class of connected

row-convex (CRC) constraints [40] is an important tractable subclass of CSPs, which

generalizes several subclasses of constraints such as 2SAT, binary integer linear con-

straints, and monotone constraints [40]. The CRC constraint class is very expressive
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and can model problems in domains such as temporal reasoning [99, 73], VLSI design

[15], geometric reasoning [72], scene labelling [7] as well as logical filtering [76].

In this chapter we are interested in handling CRC constraints from a distributed

CSP perspective. Modelling problems from a distributed perspective is attractive

when privacy and autonomy are of concern, as the conventional centralized ap-

proaches are often not applicable in this case. The following example illustrates a

distributed CSP involving CRC constraints.

Example 4.1. Two agents A,B have their private variables V A
P = {xA, yA} and

V B
P = {yB, zB}, respectively, defined on finite domains. The private variables

are subject to binary constraints such as fA(yA) + xA · yA ≤ 0.5, where fA is a

real-valued function that is either strictly increasing or decreasing. Agents A and

B also have shared variables V A
S = {zA, tA} and V B

S = {xB, tB}, respectively,

which are connected with other agent’s shared variables through constraints, such

as fA(zA)+ xB ≤ 0.3. They can be also connected with the agent’s private variables

through constraints. Each agent has control over only its own variables, where the

values of its private variables are not known to the other agent. Figure 4.1 illus-

A B

Figure 4.1 : A constraint graph of Example 4.1.

trates an example constraint graph, where all edges correspond to the constraints

mentioned in the example. All constraints here are CRC [40]. The problem cannot

be solved in a centralized way; a distributed algorithm is therefore required so as to
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take consideration of the privacy of agents.

In the literature, Yokoo et al. [130] proposed a distributed backtracking algo-

rithm for general distributed CSPs and, since then, efficient algorithms have been

developed for specific distributed CSPs that are tailored to the problem domains of

interest, e.g., the distributed scheduling problem [85], the distributed plan coordi-

nation problem [34], and the distributed simple temporal problem (STP) [14].

Recently, Kumar et al. [75] proposed a distributed algorithm, called D-CRC,

for solving CRC constraints, which was shown to be more efficient than the state-

of-the-art centralized algorithm for CRC constraints. There are, however, several

drawbacks of D-CRC: (i) it is based on randomization and as such it does not

guarantee to return a solution even when the input CSP is consistent; and (ii) it

cannot determine the inconsistency of the input; and (iii) it cannot assign more

than one variable to each agent, which makes the algorithm unrealistic to solve

large networks in real distributed systems.

The previous observations suggest us that designing an efficient deterministic dis-

tributed algorithm for reasoning with CRC constraints is critically important. To

tackle this problem, we adopt in this chapter a powerful method, called P3C [104],

which was originally designed to solve simple temporal networks (STNs) and makes

use of the convex property of simple temporal constraints. Recently, Boerkoel and

Durfee [14] successfully extended P3C to STNs in distributed settings, which sug-

gests that their approach can also be adapted to distributed solving of other convex

constraints, such as CRC constraints. However, while the classes of CRC constraints

and simple temporal constraints both share the convex properties, it was observed

that, as opposed to simple temporal constraints, CRC constraints are not distribu-

tive in the sense that the relational composition operation is not distributive over

nonempty intersections [86]. This presents a significant obstacle for a straightfor-
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ward adaptation of the machinery devised for STNs to CRC constraints.

In this chapter, we present a deterministic distributed algorithm, called DΔCRC,

for solving CRC constraint networks. To this end, we prove that P3C can indeed be

adapted to transform an input CRC constraint network into an equivalent constraint

network, where all constraints are minimal (i.e., they are the tightest constraints)

and generating all solutions can be done in a backtrack-free manner. Then we extend

the result to distributed settings by employing the communication mechanism by

Boerkoel and Durfee [14] that was originally devised for distributed STNs. Our

algorithm DΔCRC does not suffer from the aforementioned deficiencies that the

state-of-the-art algorithm D-CRC has, and it is more efficient than D-CRC in theory

as well as in practice.

The remainder of the chapter is organized as follows. After a short introduc-

tion of basic definitions and notations in section 4.3, We propose in section 4.4 a

centralized strong partial path consistency algorithm (�CRC) for CRC constraint

networks. Then in section 4.5 we extend this to a distributed setting and present

the distributed �CRC algorithm (DΔCRC) for CRC constraint networks, where

we adopt the communication mechanism from [14]. In section 4.6 we evaluate the

DΔCRC algorithm against the state-of-the-art algorithm for solving CRC constraints

and conclude the chapter in section 4.7 with further discussion.

4.3 Preliminaries

Basic notions and results about binary constraint networks, triangulated con-

straint graphs, and connected row-convex constraints can be found in section 1.3.

4.4 An Efficient Centralized Algorithm for CRC Constraints

In this section we present an efficient algorithm to enforce strong partial path-

consistency (PPC) on CRC constraint networks. The algorithm, called �CRC, is
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adapted from the well-known P3C algorithm [104], which enforces PPC on sim-

ple temporal networks and was further generalized to enforce PPC on qualitative

constraint networks defined over distributive subalgebras [87].

As opposed to simple temporal constraints and distributive subalgebras, CRC

constraints are defined over finite domains and are not distributive [86] (i.e., the

relational composition operation is not distributive over nonempty intersections of

CRC constraints). Consequently, naively adapting the algorithms from [104, 87] to

CRC constraints does not lead to an algorithm that enforces strong PPC on CRC

constraint networks. We solve this in the following way:

First, as the domains of CRC networks are finite, arc-consistency (AC) is not

automatically achieved with a naive adaptation of P3C. Therefore, including an

AC enforcing mechanism in the algorithm is necessary for enforcing strong PPC

on the CRC networks. Instead of simply including an AC enforcing mechanism

as a preprocessing procedure (cf. [135]) that can cause extra computing effort, we

integrate the AC enforcing mechanism tightly into the algorithm.

Second, contrary to the proofs in [104, 86], which implicitly make use of distribu-

tivity of constraints, we prove that �CRC enforces strong PPC without making use

of distributivity of CRC constraints (cf. Theroem 4.1).

Our algorithm �CRC is presented as Algorithm 4.1. It takes as input a CRC

network N = 〈V,D,C〉 and an ordering ≺= (vn, . . . , v1) on V . It first eliminates

variables vk along the ordering ≺ and propagates the information of constraints

involving vk to its successors Fk := {vi |Rki ∈ C, i < k} by using the following elim-

ination rule.

Eliminate vk: For all vi, vj ∈ Fk update Rij as Rij ∩ (Rik ◦Rkj) and update Di as

Di ∩Rki(Dk).
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Algorithm 4.1: �CRC

Input : A constraint network N = 〈V,D,C〉, where C is a set of CRC constraints;
An ordering ≺= (vn, . . . , v1) on V .

Output: A triangulated PPC network that is equivalent to N if N is consistent, or
“inconsistent”.

// Phase 1: Eliminate variables
1 for k ← n to 2 do
2 (result,N ) ← Eliminate(vk,N ,≺)
3 if result = False then
4 return “inconsistent”

// Phase 2: Reinstate variables
5 for k ← 2 to n do
6 N ← Reinstate(vk,N , ≺)

7 return N
8 Function Eliminate(vk,N = 〈V,D,C〉,≺)
9 for i ← k − 1 to 1 s.t. Rik ∈ C do

10 for j ← i− 1 to 1 s.t. Rjk ∈ C do
11 if Rij 	∈ C then
12 add constraint Rij := Di ×Dj to C

13 Rij ← Rij ∩ (Rik ◦Rkj)
14 if Rij = ∅ then
15 return (False, N )

16 Di ← Di ∩Rki(Dk)
17 if Di = ∅ then
18 return (False, N )

19 return (True, N )

20 Function Reinstate(vk,N = 〈V,D,C〉,≺)
21 C∗ ← C
22 for i ← k−1 to 1 s.t. Rik ∈ C do
23 for j ← i−1 to 1 s.t. Rjk ∈ C do

// R∗
kj and R∗

ki are in C∗

24 Rki ← Rki ∩ (R∗
kj ◦Rji)

25 Rkj ← Rkj ∩ (R∗
ki ◦Rij)

26 Dk ← Dk ∩Rik(Di)

27 return 〈V,D,C〉

After the elimination phase, Algorithm 4.1 reinstates the variables according the

inverse ordering ≺−1 and propagates the information of the constraints back to the

neighboring predecessors.
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Reinstate vk : For all vi, vj ∈ Fk, update Rik as Rik ∩ (Rij ◦ Rjk) and Rjk as

Rjk ∩ (Rji ◦Rik) and update Dk as Dk ∩Rik(Di).

We first show that Algorithm 4.1 outputs a triangulated network.

Lemma 4.1. Let (N ,≺) be an input to Algorithm 4.1 where N is consistent. Then

Algorithm 4.1 outputs a triangulated CRC constraint network N ′ which is equivalent

to N and has ≺ as its perfect elimination ordering.

Proof. Suppose N is consistent and N ′ is the output of Algorithm 4.1. Because

CRC constraints are closed under intersection and composition (cf. Lemma 1.1), N ′

is also a CRC constraint network. Moreover, as the operations (i.e., intersection,

composition and adding universal relations) in Algorithm 4.1 do not modify the

solution space of N , N ′ is equivalent to N .

We next prove that N ′ is triangulated. Write N d = 〈V,D,Cd〉 for the network

obtained after the elimination phase (lines 1–4) of Algorithm 4.1. For any 1 < k ≤ n,

note that the set of variables Fk induces a subnetwork of N d whose constraint graph

is complete. This shows that ≺= (vn, . . . , v1) is a perfect vertex elimination ordering

in GN d . Since the reinstatement phase does not alter the graph structure, ≺ is also a

perfect vertex elimination ordering in the constraint graph ofN ′. By Proposition 1.1,

we know N d and N ′ are both triangulated graphs.

Algorithm 4.1 also decides the consistency of CRC constraint networks. The

proof uses the Helly property as stated in the following lemma.

Lemma 4.2. [7] Let F be a finite collection of (0,1)-row vectors that are row-convex

and of equal length such that every pair of row vectors in F have a non-zero entry

in common. Then all row vectors in F have a non-zero entry in common.

The following result follows from [135, Theorem 1]. For completeness we include

a proof here.
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Proposition 4.1. Let (N ,≺) be an input to Algorithm 4.1. Then N is consistent

if and only if the algorithm does not return “inconsistent” in the elimination phase.

Proof. Suppose that the input constraint network N is consistent. Then, because

the operations in Algorithm 4.1 do not modify the solution set of N , the algorithm

does not find any empty relation in lines 14–15 or empty domain in lines 17–18.

Thus, it does not return “inconsistent” (line 4).

LetN d = 〈V,D,Cd〉 be the network obtained after the elimination phase (lines 1–

4) of Algorithm 4.1. Now suppose that the elimination step (lines 1–4) of the

algorithm did not return “inconsistent” as its output. We show thatN d is consistent.

Let N d
k be the subnetwork of N d induced by variables v1, . . . , vk. We claim that N d

k

is consistent for k = 1, . . . , n and prove the claim by induction on k. First, N d
1

is consistent, because D1 is not empty; otherwise the elimination step would have

detected the inconsistency in lines 17–18. Now, suppose that N d
k is consistent and

let Ak := 〈a1, . . . , ak〉 ∈ D1 × · · · ×Dk be a solution for N d
k . We show that Ak can

be extended to a solution Ak+1 = 〈a1, . . . , ak+1〉 for N d
k+1. To this end, we need to

show that 〈ai, ak+1〉 ∈ Ri,k+1 for all i ≤ k with Ri,k+1 ∈ Cd. Observe that after the

elimination phase, (i) for any variable vi with i ≤ k, Ri,k+1 is arc-consistent, and (ii)

for any pair of variables (vi, vj) with i, j ≤ k with Ri,k+1, Rj,k+1 ∈ Cd, we have that

Rij ⊆ Ri,k+1 ◦ Rk+1,j. Since 〈ai, aj〉 ∈ Rij, we also have Ri,k+1(ai) ∩ Rj,k+1(aj) 	= ∅

for all i, j ≤ k with Ri,k+1, Rj,k+1 ∈ Cd.

Then, by Lemma 4.2, the intersection of all Ri,k+1(ai) with i ≤ k,Ri,k+1 ∈ Cd

is not empty. Thus there exists a value ak+1 with 〈ai, ak+1〉 ∈ Ri,k+1 for all i ≤

k,Ri,k+1 ∈ Cd and we showed that Ak+1 = 〈a1, . . . , ak+1〉 is a solution of N d
k+1.

Thus N d
k is consistent for k = 1, . . . , n and in particular for N d = N d

n . Since

operations in Algorithm 4.1 do not modify the solution set of N , networks N d and

N are equivalent. Thus, N is consistent.
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The preceding proof also shows that one can generate all solutions of a consistent

input network backtrack-free by applying�CRC and instantiating the variables along

the inverse of the input ordering ≺. This is because for all 1 ≤ k < n a solution

〈a1, . . . , ak〉 of N d
k can be extended to a solution 〈a1, . . . , ak+1〉 of N d

k+1 by choosing

an element ak+1 from the intersection of all Ri,k+1(ai) with i ≤ k,Ri,k+1 ∈ Cd, which

is not empty as shown in the preceding proof. This proves the following result.

Proposition 4.2. Algorithm 4.1 returns, on input (N ,≺), an equivalent CRC net-

work N ′ that is decomposable with respect to the inverse of ≺, if N is consistent.

We next show that Algorithm 4.1 also enforces strong PPC.

Theorem 4.1. Algorithm 4.1 returns, on input (N ,≺), a network N ′ that is AC

and PPC, if N is consistent.

Proof. Suppose N is consistent. Let N ′ = 〈V,D,C〉 be the output of Algorithm 4.1

on (N ,≺), and N ′
k be the subnetwork of N ′ induced by v1, v2, ..., vk. We note that

N ′
k is triangulated for all k (cf. Lemma 4.1). Now we claim that N ′

k is AC and PPC

for 1 ≤ k ≤ n. We prove the claim by induction on k.

First, N ′
1 is trivially AC and PPC, as D1 is not empty.

Now suppose N ′
k−1 is AC and PPC. We first prove that N ′

k is AC. Let i, j < k.

Then all Rij ∈ C are AC by the induction hypothesis. Now suppose Rik ∈ C. Note

that Rki is AC due to line 26 in Algorithm 4.1. We show that Rik is also AC. If

there is no j 	= i with vj ∈ Fk, then Rik is AC by line16. Thus suppose there exists

j 	= i with vj ∈ Fk and let ai ∈ Di. Then by the induction hypothesis, Rij is AC and

PPC with respect to N ′
k−1, thus by Corollary 1.1 it is minimal with respect to N ′

k−1.

There exists a solution for N ′
k−1 which assigns ai to vi. Furthermore, this solution

can be extended to a solution σ of N ′ as N ′ is decomposable with respect to the

inverse of ≺ by Proposition 4.2. Suppose σ assigns ak to vk. Then (ai, ak) ∈ Rik
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holds. This proves that N ′
k is AC.

We now show that N ′
k is PPC. Since all paths π in N ′

k−1 are PC by the induction

hypothesis, we can assume that π includes vk, and because N ′
k is triangulated, by

Theorem 1.1 we can assume that π is of length 2.

Suppose π has the form (vi, vk, vj) with i, j < k (see Figure 4.2 for an illustration).

By induction hypothesis N ′
k−1 is PPC and, by Corollary 1.1, Rij is minimal with

Figure 4.2 : Illustration of proof of Theorem 4.1.

respect to N ′
k−1. Then there exists a solution of N ′

k−1 that assigns values ai and

aj to variables vi and vj, respectively. This solution can be extended to a solution

σ of N ′ by Proposition 4.2. Suppose σ assigns ak to vk. Then, (ai, ak) ∈ Rik and

(ak, aj) ∈ Rkj. Thus (vi, vk, vj) is PC.

Now suppose π has the form (vi, vj, vk) with i, j < k. We show that for any

(ai, ak) ∈ Rik there exists aj such that (ai, aj) ∈ Rij and (aj, ak) ∈ Rjk, i.e., Rij(ai)∩

Rkj(ak) 	= ∅. By lines 22–25 in the algorithm, we have for all μ < k with Rkμ ∈ C

that

Rkμ = R∗
kμ ∩

⋂
vν∈Fk

(R∗
kν ◦Rνμ) (4.1)

This in particular means that

Rkj = R∗
kj ∩

⋂
vν∈Fk

(R∗
kν ◦Rνj) (4.2)
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Thus, to show that Rij(ai) ∩ Rkj(ak) is not empty, it suffice to show by the Helly

property (cf. Lemma 4.2) that the intersection of any two of the following sets is not

empty:

Rij(ai), R∗
kj(ak),

⋂
vν∈Fk

(R∗
kν ◦Rνj)(ak)

First, from equation (4.1) it follows that Rki ⊆ R∗
kν ◦ Rνi for all vν ∈ Fk. Thus

(ak, ai) ∈ Rki ⊆ R∗
kj ◦Rji and the intersection of Rij(ai) and R

∗
kj(ak) is not empty.

Then, because Rkj 	= ∅ is AC by the induction hypothesis, we know Rkj(ak) 	=

∅. Then equation (4.2) implies that the intersection of R∗
kj(ak) and

⋂
vν∈Fk

(R∗
kν ◦

Rνj)(ak) is not empty.

Finally, for an arbitrary ν < k with vν ∈ Fk we have by equation (4.1) that

Rki ⊆ R∗
kν ◦Rνi. Since Rνi is PC with respect to N ′

k−1 we also have that Rki ⊆ R∗
kν ◦

(Rνj◦Rji). Then, because (ak, ai) ∈ Rki 	= ∅, we have that (ak, ai) ∈ (R∗
kν◦Rνj)◦Rji.

Thus, the intersection of Rij(ai) and (R∗
kν ◦Rνj)(ak) is not empty for all ν < k with

vν ∈ Fk. Then, by the Helly property (cf. Lemma 4.2), the intersection of Rij(ai)

and
⋂

vν∈Fk
(R∗

kν ◦Rνj)(ak) is not empty. Altogether, we have that Rij(ai)∩Rkj(ak)

	= ∅ and have showed π is PC with respect to N ′
k.

In summary, we have proved that N ′
k is AC and PPC for all 1 ≤ k ≤ n. Thus

N ′ = N ′
n is AC and PPC.

By Corollary 1.1 and Theorem 4.1, we have the following result.

Corollary 4.1. Algorithm 4.1 transforms an input CRC constraint network into

an equivalent network where all its constraints are minimal, if no inconsistency is

detected.

By the above result, the minimal network of a consistent CRC constraint net-

work N can be computed as follows: (i) complete N by adding edges labeled with

universal constraints, and (ii) apply Algorithm 4.1 on the completion of N .
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We now turn our attention to the analysis of the time complexity of Algo-

rithm 4.1. We first recall some concepts in graph theory required for the analysis of

the time complexity of Algorithm 4.1.

An ordered graph is a pair (G,≺), where G = (V,E) is an undirected graph and

≺ is an ordering on V . The nodes adjacent to v that succeeds it in the ordering

are called its children. The width of a node in an ordered graph is its number of

children. The width of an ordering ≺, denoted by w(≺), is the maximum width

among all of its nodes. The induced graph of an ordered graph (G,≺) is an ordered

graph (G∗,≺), where G∗ = (V,E∗) is obtained from G as follows: the nodes of G

are processed from first to last with respect to ≺; when a node v is processed, we

connect all of its children with edges. The induced width of an ordering ≺, denoted

by w∗(≺), is the width of the ordering ≺ with respect to G∗.

Proposition 4.3. Algorithm 4.1 runs in time O(w∗(≺)ed), where e is the number

of edges of the induced graph of GN and d is the largest domain size.

Proof. Because the elimination phase and the reinstatement phase have the same

time complexity, we will only consider the elimination phase. Let (G∗ = (V,E∗),≺)

be the induced graph of (GN ,≺). Given vk ∈ V , let Fk = {vi | i < k, eik ∈ GN}. We

first analyze the time complexity of function Eliminate. Lines 11–18 are executed

at most |Fk|2 times. Since both the composition operation and the intersection

operation run in O(d) [135, 40], the operations in line 13 and line 16 takes O(d)

time. We can conclude that it takes O(|Fk|2d) time for function Eliminate to

eliminate variable vk. Therefore, the time complexity of the elimination phase is

O(
∑n

k=1 |Fk|2d). Because |Fk| ≤ w∗(≺), we have

n∑
k=1

|Fk|2 ≤
n∑

k=1

(|Fk|w∗(≺)) = w∗(≺)
n∑

k=1

|Fk| (4.3)

= w∗(≺)e, (4.4)



107

(a) A and B elimi-
nate their own pri-
vate variables fol-
lowing the order-
ings ≺A

P= (yA, xA)
and ≺B

P= (zB, yB)

(b) A and B
collaborate on
eliminating the
shared variables
following ≺S=
(zA, tB, xB, tA);

(c) A and B collab-
orate on reinstating
the shared variables
following the order-
ing (≺S)

−1.

(d) A and B re-
instate their own
private variables
following the order-
ings (≺A

P )
−1 and

(≺B
P )

−1, respec-
tively.

Figure 4.3 : Execution of DΔCRC on Example 4.1.

where e = |E∗|. Therefore, Algorithm 4.1 runs in O(w∗(≺)ed).

Note that when the constraint network is complete, Algorithm 4.1 runs in time

O(n3d). This can be compared with PC-CRC [40], the state-of-the-art PC enforcing

algorithm for CRC constraints, which runs in time O(n3d2). It is worth mentioning

that Algorithm 4.1 performs even more efficiently when the input networks are

sparse.

4.5 An Efficient Distributed Algorithm for CRC Constraints

In this section, we extend �CRC to a distributed algorithm, called DΔCRC, for

solving distributed CRC networks. Except for some details, we follow the work by

Boerkoel and Durfee [14], which extends P3C to solving simple temporal networks

in distributed settings. For further details, we refer the readers to [14].

Recall that the definition of a binary distributed constraint network, where each

agent owns a portion of the whole constraint network, is given in Definition 1.3.

We note that in Definition 6.5 each local constraint network Ni corresponds to

an agent i and that CX is a set of constraints that are shared by two different agents.
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Algorithm 4.2: DΔCRC

Input : Ni = 〈Vi, Di, Ci〉: Agent i’s part of a distributed constraint network M.
≺i

P= (vp, . . . , v1): Ni’s private variable elimination ordering.
≺S= (ws, . . . , w1): M’s shared variable elimination ordering.

Output: Agent i’s part of a PPC constraint network that is equivalent to M.

// Phase 1: Eliminate private variables
1 for � ← p to 1 do
2 (Result,Ni) ← Eliminate(v�,Ni,≺i

P );
3 if Ni = False then
4 Broadcast “inconsistent”
5 return “inconsistent”

// Phase 2: Eliminate shared variables
6 for � ← s to 1 s.t. w� ∈ V i

S do
7 foreach wj ∈ V i

X s.t. j > � and Rj� ∈ CX do
8 Wait for the elimination of wj by other agent and for the updated

information about constraints involving w�.

9 (Result,Ni) ← Eliminate(w�,Ni,≺S , )
10 if Result = False then
11 Broadcast “inconsistent”
12 return “inconsistent”

13 else
14 for j, k < � s.t. Rj�, R�k ∈ CX do
15 Send updated information about Rjk to the agents to whom variables

wj and wk belong.

// Phase 3: Reinstate shared variables
16 for � ← 1 to s s.t. w� ∈ V i

S do
17 for j ← �− 1 to 1 s.t. Rj� ∈ CX do
18 for k ← j − 1 to 1 s.t. Rk� ∈ CX do
19 Wait for the reinstatement of wj and wk by another agents and for the

updated information about Rjk.
20 Rj� ← Rj� ∩ (Rjk ◦Rk�)
21 Rk� ← Rk� ∩ (Rkj ◦Rj�)

22 D� ← D� ∩Rj�(Dj)
23 for k ← �+ 1 to s s.t. wk ∈ V i

X , Rk�, Rkj ∈ CX do
24 Send updated relation about Rj� to the agent to whom variable wk

belongs.

// Phase 4: Reinstate private variables
25 for � ← 1 to p do
26 Ni ← Reinstate(v�,Ni,≺i

P )

Definition 4.1. Given a binary distributed constraint network M = (P , CX), a

variable v ∈ Vj is called an external variable of agent i if there is an external
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constraint ((v, w), R) ∈ CX with v ∈ Vi and w ∈ Vj, i 	= j. We use the notation V i
X

for the set of external variables of agent i.

Definition 4.2. Let V(CX) be the set of all variables that appear in some constraint

in CX . Then each Vi can be partitioned into two disjoint sets: the private variable

set V i
P = {vi | vi ∈ Vi, vi 	∈ V(CX)} and the shared variable set V i

S = {vi | vi ∈

Vi, vi ∈ V(CX)}. The private subnetwork of Ni, denoted by N i
p, is the subnetwork

induced by V i
P , and the shared subnetwork of M, denoted by MS, is the subnetwork

induced by
⋃

Ni∈P V
i
S. ≺S is an ordering of variables of the shared subnetwork and

≺i
P is an ordering of agent i’s private variables.

DΔCRC, which is presented as Algorithm 4.2, is a distributed version of Algo-

rithm 4.1. Given a distributed constraint network M, the algorithm takes as its

input agent i’s part of M (i.e., Ni = 〈Vi, Di, Ci〉) as well as private and shared

elimination orderings ≺i
P and ≺S. Like Algorithm 4.1, Algorithm 4.2 eliminates

all variables of Ni and then reinstates them. Concerning private variables in V i
P ,

agent i can eliminate and reinstate them independently. However, agent i needs to

collaborate with other agents that are connected through external constraints so as

to correctly eliminate and reinstate shared variables in V i
S. In order to avoid using

outdated information, the algorithm adopts the communication mechanism of the

distributed PPC algorithm introduced in [14].

We explain the algorithm based on Example 4.1.

Phase 1: Agent i eliminates its private variables along the ordering ≺i
P indepen-

dently (see Figure 4.3a).

Phase 2: Agent i eliminates its shared variables along the ordering ≺S. Before

eliminating a shared variable v ∈ V i
S, agent i must wait for possible updates

related to v (line 8). In Figure 4.3b, when agent B eliminates xB, because
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zA precedes xB and connected to xB, zA should be eliminated before xB.

Therefore, agent B must wait for agent A to eliminate zA and update RtAxB .

Phase 3: Agent i reinstates its shared variables along the ordering (≺S)
−1. When

agent i reinstates a variable w� ∈ V i
S, for any pair (wj, wk) of other agents’

shared variables that precede w� and connected to w� through a relation, agent

i must wait for all updates on Rjk before updating R�j and R�k using Rjk (line

19). In Figure 4.3c, when agent A reinstates variable zA, it needs to update

relations RzAxB and RzAtA using RtAxB . In order to avoid using outdated

information, all possible changes on RtAxB must be made beforehand.

Phase 4: Agent i reinstates its private variables following the ordering (≺i
P )

−1 (see

Figure 4.3d).

We can prove the following using the proof idea in [14, Theorem 6]

Theorem 4.2. Algorithm 4.2 decides the consistency of its input distributed con-

straint network and enforces strong PPC on it if no inconsistency is detected.

Because Algorithm 4.2 returns the same networks as the its centralized counter-

part Algorithm 4.1, we can also show the following results similarly to Proposition 4.2

and Theorem 4.1,

Proposition 4.4. Given an input (M,≺1
P , . . . ,≺m

P ,≺S), Algorithm 4.2 returns a

network M′ that is decomposable with respect to the inverse of ≺ = (≺1
P , . . . ,≺m

P ,≺S),

if M is consistent.

Theorem 4.3. Algorithm 4.2 transforms a consistent input CRC constraint network

into an equivalent one where all its constraints are minimal.

Consequently, agents can jointly generate any solution of a consistentM backtrack-

free by applying Algorithm 4.2 to it and instantiating the variables following the

inverse of ≺ = (≺1
P , . . . ,≺m

P ,≺S).
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Proposition 4.5. Algorithm 4.2 has the same time complexity as its centralized

counterpart Algorithm 4.1.

Proof. At each constraint update at most one message is sent or received. Thus the

runtime added for communication is O(e), where e is the number of edges of the

triangulated constraint graph GNi
. Since the agents may need to wait for constraints

update from other agents, in the worst case, the elimination and reinstatement of

all shared variables must be done sequentially. Consequently, Algorithm 4.2 has the

same time complexity class as Algorithm 4.1.

4.6 Evaluations

In this section we theoretically and experimentally compare our algorithm DΔCRC

against the state-of-the-art algorithm D-CRC (sections 4.6.1 and 4.6.2). Further-

more, we analyze our algorithm in more detail (section 4.6.3).

For the experimental comparisons we implemented both DΔCRC and D-CRC

on the FRODO 2.0 [80] platform that simulates parallel algorithms for CSPs on

a single machine. We measured the computing time of both algorithms using the

simulated time metric [116], which is a common metric for computing times of

parallel algorithms that run in a simulated environment. In all our experiments we

set for both distributed algorithms the default communication latency to zero. Our

experiments were carried out on a computer with an Intel Core i5-4570 processor

with a 3.2 GHz frequency per CPU core, 4 GB memory.

4.6.1 Theoretical Comparisons

First of all, D-CRC by Kumar et al. [75] is a randomized algorithm for solving

CRC constraint networks. As such, D-CRC cannot detect inconsistency of an input

CRC constraint network; at best, the user can stop it after a time-out to declare

the input as inconsistent; nevertheless this does not guarantee the inconsistency of
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(b) Performance evaluation of the two al-
gorithms in the size d of domains. We set
ρ = 0.5 and n = 30.
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gorithms in the density ρ of the input net-
works. We set n = 30 and d = 20.

Figure 4.4 : Performance comparisons between DΔCRC and D-CRC.

its input, i.e, it can generate false negatives. By contrast, our algorithm DΔCRC is

deterministic, sound and complete.

The expected time complexity of D-CRC is O(γn2d2), where γ is the largest

vertex degree of the constraint graph. By contrast, the time complexity of our

algorithm DΔCRC is O(w∗(≺)ed) (see Proposition 4.5). Since w∗(≺) ≤ γ and

e ≤ n2, our algorithm DΔCRC outperforms D-CRC at least by a factor of d on

average.
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For our experimental comparisons, we also included a preprocessing procedure for

D-CRC and procedures for generating the input orderings and solutions for DΔCRC.

The theoretical time complexities of those procedures are, however, all dominated

by the main algorithms.

4.6.2 Experimental Comparisons

We considered random consistent CRC constraint networks that were used in the

literature for evaluations (cf. [40], [135] and [75]). These CRC constraint networks

were generated by varying three parameters that affect the time complexity of both

algorithms: (i) the number n of variables; (ii) the size d of the largest domain; (iii)

the density ρ = 2|C|/n(n + 1) of the input CRC constraint network. We fixed two

from three parameters and varied the remaining parameter. When we fixed ρ we

set it 0.5, as distributed problems usually involve sparse networks, ρ = 0.5 meaning

a high density value for practical distributed problems.

For the comparisons we assigned to each agent only one single variable (i.e.,

the number of agents is equal to the number of variables), because D-CRC has the

limitation that it does not allow each agent to possess more than one variable. By

contrast, our algorithm DΔCRC is more flexible and can assign multiple variables

to the agents. But for fair comparisons, we used the same agent setting for D-CRC

and DΔCRC.

The graphs in Figures 4.4a–c illustrate the experimental comparisons between

algorithms DΔCRC and D-CRC. The data points in each graph are computing times

averaged over 20 instances.

We observe in the graphs that both algorithms show linear time behaviors with

respect to n and d and a sublinear time behavior with respect to ρ. We also ob-

serve that the performance differences between the two algorithms are remarkable.

DΔCRC not only runs faster than D-CRC, but it also scales up to 7 times better
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than D-CRC with increasing parameter values. This owes to the theoretical prop-

erty of DΔCRC, i.e., it leverages the input network structure and scales better also

in theory with the increasing size of the domain. All in all, we can conclude that

DΔCRC is more suitable than D-CRC for distributed problems.

4.6.3 In-depth Evaluation of DΔCRC

As mentioned previously, the setting for the experimental comparisons did not

allow assign an agent to two or more variables, i.e., the number of agents had to

be equal to the number of variables. Therefore, we also evaluated our algorithm

exclusively (see Figure 4.5), where we changed the number nA of agents in the

input networks. Each agent is assigned to around �nA/n� variables that are chosen

randomly from the input network.
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Figure 4.5 : Evaluation of our algorithm DΔCRC for different number of agents and
network density. We set n = 30 and d = 20.

We observe in Figure 4.5 that the performance graph of DΔCRC forms a U-shape

for all the network densities. This is because more agents allows for more constraints

to be handled concurrently, but from a certain number of agents on, this effect is

dominated by the delays caused by the inter-agent communications.
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In the figure we also notice that the number of agents needed for the optimal

performance shifts to the right with decreasing network density. This phenomenon

owes to the fact that networks with lower densities involve less constraints between

agents, allowing the agents to handle more constraints concurrently.

The results also show that DΔCRC runs up to two times faster when the agents

are assigned to two or more variables and not to only one variable. Consequently,

DΔCRC can outperform D-CRC even more significantly.

4.7 Conclusion

In this chapter, we have proposed the first deterministic distributed algorithm,

called DΔCRC, for solving CRC constraints. The algorithm can efficiently transform

an input CRC constraint network into an equivalent constraint network, where all

constraints are minimal, and can generate all solutions in a backtrack-free manner.

DΔCRC does not suffer from the problems that the state-of-the-art algorithm D-

CRC has: (i) it is sound and complete and (ii) it can assign more than one variable

to each agent, allowing the algorithm to solve large networks in real distributed

systems. Furthermore, our theoretical and experimental comparisons showed that

DΔCRC significantly outperforms D-CRC.

The results of this chapter can be easily extended to the class of tree-preserving

constraints, as they both the classes of CRC constraints and tree-preserving con-

straints enjoy the Helly property. One may wonder if the results can be extended

to other majority closed constraint languages as well. However, since the proofs of

Propositon 4.1 and Theorem 4.1 heavily rely on the Helly property, which is not

enjoyed by all majority closed constraint languages, we may need to devise new

methods to establish these results.
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Chapter 5

A Distributed AC Algorithm for Solving

Multiagent STPs

5.1 Contribution

The Simple Temporal Problem (STP) is a fundamental temporal reasoning prob-

lem and has recently been extended to the Multiagent Simple Temporal Problem

(MaSTP). In this chapter we present a novel approach that is based on enforcing

arc-consistency (AC) on the input (multiagent) simple temporal network. We show

that the AC-based approach is sufficient for solving both the STP and MaSTP and

provide efficient algorithms for them. As our AC-based approach does not impose

new constraints between agents, it does not violate the privacy of the agents and

is superior to the state-of-the-art approach to MaSTP. Empirical evaluations on

diverse benchmark datasets also show that our AC-based algorithms for STP and

MaSTP are significantly more efficient than existing approaches.

5.2 Introduction and Chapter Outline

The Simple Temporal Problem (STP) [38] is arguably the most well-known quan-

titative temporal representation framework in AI. The STP considers time points as

the variables and represents temporal information by a set of unary or binary con-

straints, each specifying an interval on the real line. Since its introduction in 1991,

the STP has become an essential sub-problem in planning or scheduling problem [2].

While the STP is initially introduced for a single scheduling agent and is solved

by centralized algorithms, many real-world applications involve multiple agents who
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XAlice

BobY

Figure 5.1 : An illustration of Example 5.1. Alice, Bob, company X, company Y
are four agents, each owning a local simple temporal network. The circles represent
variables and edges constraints. Red edges represent constraints that are shared by
two different agents.

interact with each other to find a solution like the following example:

Example 5.1. When Alice is looking for a position at company X, she might need

to arrange an interview appointment with X. Suppose that her colleague Bob is also

applying for the position and Alice and Bob are both applying for another position at

another company Y . To represent and solve such an interview scheduling problem,

we need a multiagent framework (see Figure 5.1 for an illustration).

Recently, the extension of STP to multiagent STP (MaSTP) has been provided

in [14], which presents a formal definition of the MaSTP as well as a distributed

algorithm, called D�PPC, for computing the complete joint solution space.

However, as D�PPC is based on the P3C algorithm [104], which triangulates the

input constraint graph, it has the drawback of creating new constraints between

agents that are possibly not directly connected. In Figure 5.1, D�PPC triangulates

the inner cycle by adding at least one new constraint either between X and Y

or between Alice and Bob. Neither of these new constraints are desirable, as they

introduce constraints between two previously not directly connected agents and thus

present a threat to the privacy of the relevant agents.
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As the recent technological advancements have allowed for solving larger prob-

lems that are highly interwoven and dependent on each other, efficiency and privacy

have become critical requirements. To address this challenge, we propose a new

approach to solve the MaSTP, which is based on arc-consistency.

A constraint R between two variables x, y is called arc-consistent (AC), if for

every value dx from the domain of x there is a value dy in the domain of y such that

(dx, dy) ∈ R. While AC is an important tool for solving finite (multiagent) constraint

satisfaction problems (CSPs) [101, 6, 103, 52] at first glance it is not clear how it

can be applied to solving CSPs with real domains such as the STP, because either

the existing AC algorithms are fine-grained and work with each single element of

a domain to enforce AC, which is impossible for real domains, or they are coarse-

grained, but cannot guarantee their termination, as real domains can be infinitely

refined when constraints are propagated.1

This chapter is organized as follows. Section 5.3 introduces some necessary def-

initions and notations. We provide the first AC-based approach for solving STP

and analyze its computational complexity in section 5.4. We then provide the first

AC-based approach for solving multiagent STP, which preserves the privacy of the

agents, and analyze its computational complexity in section 5.5. Finally, we ex-

perimentally show that both our centralized and distributed algorithms outperform

their existing counterparts for solving STP in section 5.6.

5.3 Preliminaries

This section briefly introduces the STP. Details can be found in [38].

The simple temporal problem (STP) is a constraint satisfaction problem where

1[38] for example, suggest discretizing the domains to overcome this issue, in which case the
total number of contraint propagations would depend on the sizes of the domains. The performance
of our AC algorithm for (multiagent) STP does not depend on the sizes of the domains.
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each constraint is a set of linear inequalities of the form

avw ≤ w − v ≤ bvw, (5.1)

where avw, bvw are constants and v, w are variables defined on a continuous domain

representing time points. The constraint in (5.1) is abbreviated as Ivw = [avw, bvw].

As (5.1) is equivalent to −bvw ≤ v − w ≤ −avw, we also obtain Iwv = I−1
vw =

[−bvw,−avw]. The domain of each variable v is an interval Iv = [av, bv], where Iv

could be a singleton or empty. Assume that o is a special auxiliary variable that

represents the fixed zero temporal point. Then the domain Iv can also be regarded

as a constraint from o to v and Iv = [av, bv] = [aov, bov] = Iov.

Algebraic operations on STP constraints are defined as follows. The intersection

of two STP constraints defined on variables v, w yields a new constraint over v, w

that represents the conjunction of the constraints. It is defined as

Ivw ∩ I ′vw := [max{avw, a′vw},min{bvw, b′vw}].

The composition of an STP constraint Ivu over variables v, u and another STP

constraint Iuw over u, w yields a new STP constraint over v, w that is inferred from

the other two constraints and is defined as Ivu ⊗ Iuw := [avu + auw, bvu + buw]. Here

we require that [a, b]⊗∅ = ∅ for any a ≤ b.

Remark 5.1. For STP constraints, the composition and intersection are associa-

tive and, as noted in [38], composition distributes over non-empty intersection for

intervals, i.e., I ⊗ (J ∩K) = (I ⊗ J) ∩ (I ⊗K) for any three intervals I, J,K such

that J ∩K 	= ∅.

Definition 5.1. An instance of STP is called a simple temporal network (STN)

and is a tuple 〈V,D,C〉, where V is a finite set of variables, D = {Iv | v ∈ V } is a
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set of intervals, and C is a set of STP constraints defined on V .

We assume that all variables in V appear in C and at most one constraint exists

between any pair of variables v and w. Moreover, if Ivw = [a, b] is the constraint in

C from v to w, we always assume that the constraint Iwv = I−1
vw = [−b,−a] is also

in C. As previously mentioned, the domain Iv of each variable v can be regarded as

either a unary constraint, or a binary constraint Iov = Iv, where o is a fixed variable

representing the zero time point.

An STN naturally induces a graph in the following sense.

Definition 5.2. The constraint graph GN = (V,E) of an STN N = 〈V,D,C〉 is

an undirected graph, where the set E of edges consists of constrained unordered pairs

of variables in C, i.e.,

E = {{v, w} | v, w ∈ V, v 	= w, Ivw ∈ C}.

Let GN = (V,E) be the constraint graph of an STN N . We can use a labelled

directed graph to illustrate N , where for any undirected edge {v, w} ∈ E there

is exactly one directed edge (v, w) that is labelled with the corresponding interval

[avw, bvw].

A path π from v to w in GN is a sequence of variables u0, u1, ..., uk such that

v = u0, w = uk, and {us, us+1} is an edge in E for each s = 0, . . . , k − 1 (k is called

the length of π). We write
⊗

π for the composition of all these Ius,us+1 , i.e.,

⊗
π = Iu0,u1 ⊗ Iu1,u2 ⊗ ...⊗ Iuk−1,uk

(5.2)

If v = w, then we call π a cycle at v. For a cycle π, let [a, b] =
⊗

π. We call π a

negative cycle if b < 0.
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Definition 5.3. A solution of an STN N = 〈V,D,C〉 is an assignment, that assigns

to each variable v ∈ V a time point from Iv ∈ D such that all constraints in C are

satisfied. N is said to be consistent if N has a solution. Two STNs are said to be

equivalent if they have the same solution set.

Definition 5.4. Let N = 〈V,D,C〉 be a consistent STN and let v and w be variables

in V . A constraint Ivw from v to w is said to be minimal if every assignment that

assigns time points from domains Iv and Iw to v and w, respectively, and satisfies

Ivw can be extended to a solution of N . A domain Iv of v ∈ V is said to be minimal

if every assignment of a time point from Iv to v can be extended to a solution of

N . We say N is minimal if every constraint in C as well as every domain in D

is minimal (note that, since we regard domains as constraints between the zero time

point o and variables, we also require the domains to be minimal).

5.4 Solving the STP with Arc-Consistency

In this section we show that enforcing arc-consistency is sufficient to solve the

STP.

Definition 5.5. Let N = 〈V,D,C〉 be an STN. Suppose v and w are two variables

in V , Iv and Iw are, respectively, their domains, and Ivw is a constraint in C from

v to w. We say that Ivw is arc-consistent (AC) (relative to Iv and Iw) if for any

tv ∈ Iv there exists some tw ∈ Iw such that tw − tv ∈ Ivw, i.e., avw ≤ tw − tv ≤ bvw.

We say that N is AC if both Ivw and Iwv are AC for every constraint Ivw ∈ C.

An STN N ′ = 〈V,D′, C〉 with D′ = {I ′v | v ∈ V } is called the AC-closure of N ,

if N ′ is the largest arc-consistent STN which is equivalent to N , in the sense that

for every other arc-consistent STN N ′′ = 〈V,D′′, C〉 with D′′ = {I ′′i | v ∈ V }, we

have that I ′′v ⊆ I ′v for all v ∈ V .

Lemma 5.1. Let N = 〈V,D,C〉 be an STN and v, w ∈ V two variables that are
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constrained by Ivw in C. Then Ivw is arc-consistent relative to Iv and Iw iff Iv ⊆

Iw ⊗ Iwv.

Proof. It suffices to show that

Iw ⊗ Iwv = {x ∈ R | ∃y ∈ Iw s.t. y − x ∈ Ivw} (5.3)

Let Iv = [a, b], Iw = [c, d] and Ivw = [e, f ]. Then

{x ∈ R | ∃y ∈ Iw s.t. y − x ∈ Ivw}

= {x ∈ R | ∃c ≤ y ≤ d s.t. e ≤ y − x ≤ f}

= {x ∈ R | ∃c ≤ y ≤ d s.t. y − f ≤ x ≤ y − e}

= {x ∈ R | c− f ≤ x ≤ d− e}

= [c, f ]⊗ [−f,−e] = Iw ⊗ Iwv,

which proves Eq. (5.3).

Lemma 5.2. Let N = 〈V,D,C〉 be an arc-consistent STN and v, w ∈ V two vari-

ables that are constrained by Ivw in C. Then Iv ⊆ Iw ⊗ Iwv.

Proof. This follows directly from Lemma 5.1 and that Ivw is AC relative to Iv and

Iw.

The following result directly follows from Lemma 5.2.

Corollary 5.1. Let N = 〈V,D,C〉 be an arc-consistent STN. Let π be a path in N

from w to v. Then Iv ⊆ Iw ⊗⊗
π.

Lemma 5.3. Let N = 〈V,D,C〉 be an arc-consistent STN and v, w variables in V .

If N is consistent, then Iv ⊆ Iw ⊗ Imwv, where I
m
wv is the minimal constraint from w

to v.
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Proof. Since N is consistent, Imwv is nonempty. Recall that Imwv is the intersection

of the compositions along all paths in N from w to v (cf. [38, §3]) and composition

distributes over non-empty intersection for intervals. The result follows directly from

Corollary 5.1.

Lemma 5.4 ([111]). Suppose N = 〈V,D,C〉 is an STN. Then N is inconsistent if

and only if there exists a negative cycle.

Lemma 5.5. Given a consistent STN N = 〈V,D,C〉 with n = |V |, for any path π

of length ≥ n there is a path π′ of length < n such that
⊗

π′ ⊆ ⊗
π.

Proof. Since the length of π is ≥ n, π must have a cycle at a variable v. As the

cycle is not negative, removing the cycle and leaving only v in the path results in

a path π′ with
⊗

π′ ⊆ ⊗
π. Repeating this procedure until there is no cycle gives

the desired result.

Lemma 5.6. Let N = 〈V,D,C〉 be an STN and N ′ its AC-closure. Then N is

consistent iff N ′ has no empty domain.

Proof. We prove N is inconsistent iff N ′ has an empty domain. As N and N ′ are

equivalent, if N ′ has an empty domain, then N is inconsistent.

Now suppose N is inconsistent. Then by Lemma 5.4, there exists a negative

cycle π in N at some w such that
⊗

π = [l, h] with h < 0. Now let v be a variable

in N with Iwv = [e, f ] and let I ′v = [a, b], I ′w = [c, d] be the domains of v and w in

N ′, respectively. Choose k ∈ N sufficiently large, such that kh < b − d − f . Then,

by Lemma 5.3 we have

I ′v ⊆ I ′w ⊗
(⊗

πk ⊗ Iwv

)
(5.4)

= [c, d]⊗ ([kl, kh]⊗ [e, f ])

= [c+ kl + e, d+ kh+ f ],
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where πk is the concatenation of k copies of path π. Because kh < b− d− f , (5.4)

is possible only if I ′v is empty.

Theorem 5.1. Let N = 〈V,D,C〉 be a consistent STN and N ′ its AC-closure.

Then all domains in N ′ are minimal.

Proof. If the constraint graph GN is connected, i.e., for any two variables v, w, there

is a path in GN that connects v to w, then we may replace the constraint from v to

w with the nonempty minimal constraint Imvw (or add Imvw, if there was no constraint

between v and w). We write the refined STN as N ∗. For any two variables v, w, by

Lemma 5.3, Iv is contained in Iw ⊗ Imwv and Iw is contained in Iv ⊗ Imvw. This shows

that N ∗ is the same as the minimal STN of N , and thus, establishes the minimality

of each Iv.

In case the constraint graph is disconnected, we consider the restriction of N to

its connected components instead. The same result applies.

Two special solutions can be constructed if N is arc-consistent and has no empty

domain.

Proposition 5.1. Let N = 〈V,D,C〉 be an arc-consistent STN with D = {Iv |

v ∈ V } and Iv = [av, bv] for each v. If no Iv is empty, then the assignments

A = {av | v ∈ V } and B = {bv | v ∈ V } are two solutions of N .

Proof. Let N ′ = 〈V,D′, C ′〉 be the minimal STN of N . By Theorem 5.1, we have

D′ = D and N ′ is equivalent to N . The above claim follows as the assignments

A = {av | v ∈ V } and B = {bv | v ∈ V } are two solutions of the minimal STN N ′

(cf. [37, Corollary 3.2]).

Theorem 5.2. Enforcing AC is sufficient to solve STP.
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Proof. Let N be an STN and N ′ its AC-closure. If N ′ has an empty domain, then

N has no solution by Lemma 6.1. If N ′ does not have an empty domain, then we

can use Proposition 5.1 to find a solution.

Remark 5.2. (i) As solving an STN is equivalent to solving a system of linear

inequalities, the solution set of an STN is a convex polyhedron. Thus any convex

combination of the two solutions A and B is again a solution of the STN. (ii) Enforc-

ing AC can in essence find all solutions of an STN: Suppose N is arc-consistent and

has no empty domain. We pick an arbitrary variable v that has not been instantiated

yet, then assign any value from Dv to v, and enforce AC on the resulting network.

We repeat this process until all variables are instantiated. (iii) Proposition 5.1 can

also be obtained by first showing that STP constraints are both max/min-closed, and

then using the result in [63, Thm 4.2], which states that the AC-closure of a con-

straint network over max/min-closed constraints have the maximal and the minimal

values of the domains as two solutions. As a consequence of this, Theorem 5.1 can

also be obtained, because the solution set of an STN is convex (cf. Remark 5.2 (i)).

5.4.1 A Centralized AC Algorithm for the STP

In this section we propose an AC algorithm, called ACSTP, to solve STNs. The

algorithm is presented as Algorithm 5.1.

Theorem 5.3. Given an input STN N , Algorithm 5.1 returns “inconsistent” if N

is inconsistent. Otherwise, it returns the AC-closure of N .

Proof. We first note that intersection and composition of constraints do not change

the solution set of the input STN N . This has two implications: First, if a domain

Iv becomes empty during the process of the algorithm, then the solution set of N

is empty and N is inconsistent. Second, if the algorithm terminates and its output

N ′ is AC, then N ′ is the AC-closure of N . Consequently, it suffices to show that if

the algorithm terminates and returns N ′, then N ′ is AC.
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Algorithm 5.1: ACSTP

Input : An STN N = 〈V,D,C〉 and its constraint graph G = (V,E), where
|V | = n.

Output: An equivalent network that is AC, or “inconsistent”.

1 Q← ∅

2 for k ← 1 to n do
3 foreach v ∈ V do
4 I ′v ← Iv
5 foreach w ∈ V s.t. {v, w} ∈ E do
6 Iv ← Iv ∩ Iw ⊗ Iwv

7 if Iv = ∅ then return “inconsistent”
8 if I ′v = Iv then Q← Q ∪ {v}
9 else Q← Q \ {v}

10 if #Q = n then return N
11 return “inconsistent”

We first consider the case, where the algorithm returns N ′ in line 21 at the kth

iteration of the for-loop (lines 2–10) for some 1 ≤ k ≤ n. We show that N ′ is AC.

Let Ikv be the domain of v obtained after the kth iteration of the for-loop. Due to

lines 6 and 8, we have for all {v, w} ∈ E that Ikv ⊆ Ik−1
v ∩(Ik−1

w ⊗Iwv) and I
k−1
w = Ikw.

Thus we have for {v, w} ∈ E that Ikv ⊆ Ikw ⊗ Iwv, which is by Lemma 5.1 equivalent

to saying that Ivw is AC w.r.t. domains Ikv and Ikw. Hence, the output N ′ is AC.

Now suppose that the algorithm exited in line 11 returning “inconsistent”. Thus,

at the nth iteration of the for-loop we have #Q < n in line 21. We prove that N

is inconsistent by contradiction. Assume that N is consistent. For any v ∈ V and

any k ≥ 1, we write Πk
v for the set of paths from o (the auxiliary variable denoting

the zero time point) to v with length ≤ k in the constraint graph of N . We claim

Ik−1
v ⊆

⋂
π∈Πk

v

⊗
π (5.5)
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for any k ≥ 1. Then, with Imv being the minimal domain of v, we have

Imv ⊆ In−1
v ⊆

⋂
π∈Πn

v

⊗
π = Imv ,

because Imv is the intersection of the compositions along all paths in N from o to v

(cf. [38, §3]), where it suffices to only build compositions along paths of length ≤ n

by Lemma 5.5. Thus Inv = In−1
v = Imv for all v ∈ V , which is a contradiction to our

assumption that at the nth iteration of the for-loop we have #Q < n in line 21.

We now prove (5.5) by using induction on k. First, for k = 1, since Π1
v contains

only one path of length 1 (i.e., the edge {o, v}), we have I0v = Iv =
⋂

π∈Π1
v

⊗
π. Now

suppose (5.5) is true for k − 2 for all w ∈ V . Then by line 6 and our induction

hypothesis we have

Ik−1
v ⊆ Ik−2

v ∩
(⋂

w

Ik−2
w ⊗ Iwv

)

⊆ Ik−2
v ∩

⎛
⎝⋂

w

⎛
⎝ ⋂

π∈Πk−1
w

⊗
π

⎞
⎠⊗ Iwv

⎞
⎠

⊆

⎛
⎝ ⋂

π∈Πk−1
v

⊗
π

⎞
⎠ ∩

⎛
⎝ ⋂

(π∈Πk
v)∧(|π|≥2)

⊗
π

⎞
⎠

=
⋂

π∈Πk
v

⊗
π,

which proves (5.5).

Theorem 5.4. Algorithm 5.1 runs in time O(en), where e is the number of edges

of the constraint graph of the input STN and n is the number of variables.

Proof. There are at most n iterations of the for-loop and each iteration involves

O(e) operations.
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Remark 5.3. Algorithm 5.1 can also be understood as computing the shortest path

from a source vertex o to every other vertex v and the shortest path from every

other vertex v to the source vertex o. This can be realized in time O(en) by using a

shortest path tree algorithm with negative cycle detection (cf. [118, Section 7.2] and

[70, Section 7.1].

5.5 Solving the MaSTP with Arc-Consistency

In this section we extend ACSTP to a distributed algorithm DisACSTP to solve

multiagent simple temporal networks (MaSTNs).

A multiagent simple temporal network (MaSTN) [14] is defined similarly as Def-

inition 1.3.

Constraint graphs for MaSTNs can be defined analogously as that for STNs, where

we use EX for the set of edges corresponding to constraints in CX . See Figure 5.1

for an illustration. In Figure 5.1, the edges in EX are represented as red lines.

Definition 5.6. Suppose M = 〈P , CX〉 is an MaSTN. Let Ivw ∈ CX with v ∈

Vi, w ∈ Vj be an external constraint. We say that Ivw is an external constraint of

agent i, and write CX
i for the set of external constraints of agent i. We call v and

w a shared and an external variable of agent i, respectively. We write V X
i for the

set of external variables of agent i. In Figure 5.1, the vertices for shared variables

are represented as red circles.

DisACSTP is presented in Algorithm 5.2. In DisACSTP each agent i gets as input

its portion Ni of the input MaSTN M and the set CX
i of its external constraints,

and runs its own algorithm. Similar to ACSTP, DisACSTP updates the domains

of Ni at each iteration of the for-loop and maintains a queue Qi to record the

information about the unchanged domains. When a domain becomes empty during

the updates, then the agent can terminate the algorithm and conclude that the
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Algorithm 5.2: DisACSTP

Input : Ni: agent i’s portion of MaSTN M;
V X
i : the set of agent i’s external variables;
CX

i : the set of agent i’s external constraints;
parent(i): the parent of agent i w.r.t. T (M);
children(i): the children of agent i w.r.t. T (M);
n: the number of variables of M.

Output: Agent i’s portion of the AC-closure of M or “inconsistent”.
1 Qi ← ∅

2 for k ← 1 to n do
3 Send the domains of the shared variables to the neighbors.
4 Receive the domains of the external variables from the neighbors.
5 foreach v ∈ Vi do
6 I ′v ← Iv
7 foreach w ∈ Vi ∪ V X

i s.t. {v, w} ∈ Ei ∪ EX
i do

8 Iv ← Iv ∩ Iw ⊗ Iwv

9 if Iv = ∅ then
10 Broadcast “inconsistent”.
11 return “inconsistent”

12 if I ′v = Iv then Qi ← Qi ∪ {v}
13 else Qi ← Qi \ {v}
14 if #Qi = #v then
15 if root(i) then
16 Send inquiry (“Are all Qi full?”, k) to children(i)

17 while true do
18 m← ReceiveMessage()
19 if m is domains of external variables from a neighbor then
20 break

21 if m is inquiry ( “Are all Qi full?”, k) then
22 if leaf(i) then
23 Send feedback (“yes”, k) to parent(i)

24 else Send m to children(i)

25 if m is feedback (“yes”, k) then
26 if all feedbacks received from children(i) then
27 if root(i) then
28 Broadcast “arc-consistent”
29 return Ni

30 else Send m to parent(i)

31 if m is “arc-consistent” then
32 return Ni

33 if m is “inconsistent” then
34 return “inconsistent”

35 return “inconsistent”
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input MaSTN M is inconsistent. There are however aspects in DisACSTP that are

different from ACSTP, which stem from the fact that in MaSTP an agent cannot

have the global knowledge of the states of other agents’ processes without sharing

certain information with other agents. These aspects are the following:

1. The total number n of the variables in the input MaSTN is initially not known

to individual agents. This, however, can easily be determined using an echo

algorithm [22]. We can therefore regard n as given as an input to DisACSTP.

2. As the agents may run their processes at different paces, at each iteration of the

for-loop (lines 2–34), they synchronize the domains of their external variables

(lines 3–4). Otherwise, some agents might use stale external domains and

make wrong conclusions.

3. When a domain becomes empty while running DisACSTP, an agent broadcasts

(lines 9–11) this information to other agents so that they can terminate their

algorithms as soon as possible.

4. If the queue Qi of an agent i is full (i.e., it contains all of the agent’s variables

in Vi) after an iteration of the for-loop, then the agent shares this information

with all other agents in M so as to jointly determine whether the queues of

all agents are full and the network is arc-consistent (lines 15–16 and 21–30).

5. If the queue Q of an agent is not full after an iteration of the for-loop, then the

agent broadcasts this information to all other agents, so that they can move

to the next iteration of the for-loop as soon as possible.

All the preceding aspects are subject to communication of certain information be-

tween agents. DisACSTP coordinates this communication while (i) preserving the

privacy of each agent and (ii) reducing the duration of any idle state of an individual

agent. Concretely:
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• Each agent shares information only with the agents who are connected through

an external constraint. We call them the neighbors of the agent. This neighborhood-

relationship among the agents induces a graph that we call henceforth the agent

graph.

• Each agent shares with its neighbors only the domains of its shared variables.

No other information is shared (such as its network structure, constraints,

private variables and their domains) and only the neighbors w.r.t. the agent

graph can share the information. This property is a critical advantage over

D�PPC [14], as D�PPC often creates new external constraints during the

process and reveal more private information of the agents than necessary.

• Each agent uses a broadcasting mechanism to share global properties of the

input MaSTN, i.e., an agent first sends a message (e.g., “inconsistent”) to its

neighbors, then the neighbors forward the message to their neighbors and so

on, until all agents receive the message. To reduce the number of messages,

duplicates are ignored by the agents.

An agent i broadcasts the following messages: “arc-consistent”, “inconsistent”

and “Qi is not full”, where the last message is indirectly broadcasted by agent

i skipping lines 14–34 and moving to the next iteration of the for-loop and then

sending its shared domains to its neighbors. This initiates a chain reaction

among the idle neighbors of agent i who have not moved to the next iteration

yet, as they quit the idle states (lines 19–20) and move to the next iteration

of the for-loop and then send also their shared domains to their idle neighbors

(lines 3–4).

• There is a dedicated agent who checks at each iteration of its for-loop (given

its queue is full) whether the queues of all other agents are full at the same

iteration. This dedicated agent is determined by building a minimal spanning
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tree (e.g., by using an echo algorithm [22]) T (M) of the agent graph. The

agent who is the root (henceforth the root agent) of this tree becomes then

the dedicated agent.

The root agent sends an inquiry to its children to check whether the queues

of all its descendants are full (lines 15–16). The inquiry is then successively

forwarded by the descendants whose queues are full. We have to distinguish

here between two cases:

(1) If all descendants’ queues are full, then the inquiry reaches all the leaf

agents and returns back as feedbacks (lines 22–23) until the root agent receives

all the feedbacks (lines 25–30) and broadcasts “arc-consistency”.

(2) If a descendant’s queue is not full, then the descendant moves on to the

next iteration of the for-loop and initiates a chain reaction among other agents

by sending the domains of its shared variables to its neighbors (cf. the second

paragraph of the third bullet point).

Due to the properties so far considered, DisACSTP is guaranteed to simulate the

behavior of ACSTP while allowing concurrent domain update operations.

Theorem 5.5. Let M = 〈P , CX〉 be an MaSTN. Let Nmax be a network with emax =

max
{
ei + eXi

∣∣ 1 ≤ i ≤ p
}
, where ei and e

X
i are the number of edges of the constraint

graph of Ni and the number of external constraints of agent i, respectively. Then

Algorithm 5.2 enforces AC on M in time O(emaxn).

5.6 Evaluation

In this section we experimentally compare our algorithms against the state-of-

the-art algorithms for solving STNs. For centralized algorithms, we compare our

ACSTP algorithm against P3C algorithm [104]; for distributed algorithms, we com-

pare our DisACSTP algorithm against D�PPC algorithm [14]. All experiments for
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Figure 5.2 : Evaluation of ACSTP and P3C. The y-axes (on the log scale) represent
the number constraint checks.

distributed algorithms used an asynchronous simulator in which agents are simu-

lated by processes which communicate only through message passing and default

communication latency is assumed to be zero. Our experiments were implemented

in Python 3.6 and carried out on a computer with an Intel Core i5 processor with a

2.9 GHz frequency per CPU, 8 GB memory 1.

As measures for comaring performances we use the number of constraint checks

and the number of non-concurrent constraint checks (NCCCs) performed by the

centralized algorithms and the distributed algorithms, respectively. Given an STN

1The source code for our evaluation can be found in https://github.com/
sharingcodes/MaSTN
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Figure 5.3 : Evaluation of DisACSTP and D�PPC. The y-axis (on the log scale)
represent the number of NCCCs.

N = 〈V,D,C〉, a constraint check is performed when we compute relation r ←

Ivw ∩ (Ivu ⊗ Iuw) and check if r = Ivw or r 	⊆ Ivw.

5.6.1 ACSTP vs. P3C

Datasets

We selected instances from the benchmark datasets of STNs used in [106] for

evaluations. We considered the scale-free graphs (Scale-free-1) with 1000 vertices

and density parameter varying from 2 to 50. We also considered the scale-free graphs

(Scale-free-2) with varying vertex count. The scale-free density parameter for this
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selection is 5. Beside these artificially constructed graphs, we also considered graphs

that are based on the road network of New York City (New York). This dataset

contains 170 graphs on 108–3906 vertices, 113–6422 edges.

Results

The results are presented in Figure 5.2, where base-10 log scales are used for

the y-axes. For the scale-free graphs we observe that ACSTP is 100–1000 times

faster than P3C. The dataset New York only contains very sparse networks (each

network’s density is less than 1%), thus both algorithms could easily solve these

networks. However, we still observe that ACSTP is about 5–12 times faster than

P3C.

5.6.2 DisACSTP vs. D�PPC

Datasets

We selected instances from the benchmark datasets of MaSTNs used in [14]

for evaluations. The first dataset BDH was randomly generated using the mul-

tiagent adaptation of Hunsberger’s [60] random STN generator. Each MaSTN

has N agents each with start time points and end time points for 10 activities,

which are subject to various local constraints. In addition, each MaSTN has X

external contraints. We evaluated the algorithms by varying the number of agents

(N ∈ {2, 4, 8, 12, 16}, X = 50×(N−1)) and the total number of external constraints

(N = 16, X ∈ {100, 200, 400, 800}).

The second dataset WS is derived from a multiagent factory scheduling domain

[126], where N agents are working together to complete T tasks in a manufac-

turing environment. We evaluated algorithms by varying the number of agents

(N ∈ {2, 4, 8, 12, 16}, T = 20 × N) and the total number of tasks (N = 16, T ∈

{80, 160, 240, 320, 400, 480}).



136

Results

The results are presented in Figure 5.3, where base-10 log scales are again used for

the y-axes. For the DBH random networks (Figure 5.3a) we observe that DisACSTP

is 5–30 times faster than D�PPC. For the WS scheduling networks (Figure 5.3b)

DisACSTP is 2–10 times faster than D�PPC. For both datasets we observe that,

with increasing x-values, the y-values (i.e., NCCCs) for DisACSTP grow slower than

those for D�PPC.

5.7 Conclusion

In this chapter we presented a novel AC-based approach for solving the STP

and the MaSTP. We have shown that arc-consistency is sufficient for solving an

STN. Considering that STNs are defined over infinite domains, this result is rather

surprising. Our empirical evaluations showed that the AC-based algorithms are

significantly more efficient than their PC-based counterparts. This is mainly due to

the fact that PC-based algorithms add many redundant constraints in the process of

triangulation. More importantly, since our AC-based approach does not impose new

constraints between agents that are previously not directly connected, it respects as

much privacy of these agents as possible. We should note here that even though our

distributed algorithm DisACSTP showed remarkable performance, it can be further

fine-tuned by using different termination detection mechanisms (cf. [96] and [107,

Ch. 14]).

It would be interesting to see how the result in this chapter can be used for

solving the general disjunctive temporal problems [115]. Potential extensions of this

chapter also include adapting our AC algorithms to incremental algorithms for the

STP [105], dynamic situations [102] and uncertainty [120].
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Chapter 6

A New Distributed Generalized AC Algorithm

6.1 Contribution

Generalized arc-consistency propagation is predominantly used in constraint

solvers to efficiently prune the search space when solving constraint satisfaction

problems. Although many practical applications can be modelled as distributed

constraint satisfaction problems, no distributed arc-consistency algorithms so far

have considered the privacy of individual agents.

In this chapter, we propose a new distributed arc-consistency algorithm, called

DisAC3.1, which leaks less private information of agents than existing distributed

arc-consistency algorithms. In particular, DisAC3.1 uses a novel termination deter-

mination mechanism, which allows the agents to share domains, constraints and

communication addresses only with relevant agents. We further extend DisAC3.1

to DisGAC3.1, which is the first distributed algorithm that enforces generalized

arc-consistency on k-ary (k ≥ 2) constraint satisfaction problems. Theoretical

analyses show that our algorithms are efficient in both time and space. Experi-

ments also demonstrate that DisAC3.1 outperforms the state-of-the-art distributed

arc-consistency algorithm and that DisGAC3.1’s performance scales linearly in the

number of agents.

6.2 Introduction and Chapter Outline

Since CSP is an NP-complete problem in general, local consistency techniques

are often used to prune the search space before or during the search for a solution.
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Among those local consistency techniques, arc-consistency (AC) is the most studied

and used pruning method for solving binary CSPs [8, 12, 89, 100]. AC has been

generalized to generalized arc-consistency (GAC) for k-ary (k ≥ 2) CSPs [100].

There are several distributed AC algorithms proposed in the literature, including

DisAC3 [6], DisAC4 [103] and DisAC6 [6], which are, respectively, the distributed ver-

sions of AC3 [89], AC4 [103] and AC6 [8]. Another distributed algorithm DisAC9 [52],

which is also a distributed version of AC6, is currently the state-of-the-art.

Although privacy is one main motivation and a major concern of solving dis-

tributed constraint satisfaction problems (DisCSPs) [44, 50, 124, 131], no distributed

AC algorithms so far have considered the communication address1 privacy of individ-

ual agents. Indeed, the distributed AC algorithms mentioned above either assume

a complete agent communication graph, which reveals the communication address ,

thus the identity , of every agent, or broadcast deleted values of variable domains,

revealing the existence of variables and their domains.

More precisely, the termination procedure of DisAC3, DisAC4, DisAC6 and DisAC9

assumes that the agent communication graph is complete2, i.e., any two agents know

the communication address of each other, which implies that they know the existence

of each other and can directly send messages to each other. Also, whenever an agent

deletes a value from one of its local domains, the agent broadcasts this information

to all other agents immediately. This setting has the following drawbacks: (i) the

algorithm may need to send unnecessarily many messages; (ii) the identities of agents

and deleted domain values are revealed to irrelevant agents.

In this chapter we propose a new distributed algorithm for enforcing AC and the

first distributed algorithm for enforcing GAC on DisCSPs, which allows the agents to

1The address of an agent, as defined in [128], represents the unique identity of the agent in the
agent communication graph.

2Although not explicitly stated in [52], DisAC9 implicitly assumes a complete agent communi-
cation graph, as it uses the distributed snapshot algorithm [19, 107].
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share domains, constraints and communication addresses only with relevant agents.

It is worthwhile to note that the aspect of parallel processing (cf. [32, 51, 108, 132])

is not considered in this chapter, as it requires global knowledge about the input

problem, which is often not available when the knowledge about the problem (i.e.,

domains and constraints) is distributed among autonomous agents. Because of pri-

vacy reasons, collecting all such knowledge from the individual agents is undesirable

or impossible [128, 129]. Also we assume that each agent owns a local CSP including

variables and domains, and not just a single constraint as discussed in [54, 55].

In this chapter we first propose a new distributed AC algorithm, called DisAC3.1,

which is based on the optimal AC algorithm AC2001/3.1 [12] and avoids the afore-

mentioned issues. DisAC3.1 uses a novel termination determination mechanism,

where a dedicated agent determines the termination of the algorithm by compar-

ing the timestamps of each message that the sender and the recipient report sepa-

rately. This termination mechanism does not require a complete agent communica-

tion graph, as agents send messages to relevant agents only when necessary. As a

result, DisAC3.1 does not reveal more information of each agent than necessary.

Moreover, DisAC3.1 has a low time complexity O(ed2) and a low space com-

plexity O(ed), where e is the number of edges and d is the largest domain size

in the constraint graph of the input DisCSP. Moreover, our experiments also show

that DisAC3.1 outperforms the state-of-the-art distributed arc-consistency algorithm

DisAC9.

Furthermore, we extend algorithm DisAC3.1 to the first distributed algorithm,

called DisGAC3.1, that enforces generalized arc-consistency on k-ary (k ≥ 2) CSPs.

Experiments show that the performance of DisGAC3.1 scales linearly in the number

of agents.

The remainder of the chapter is organized as follows. After a short introduction
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Algorithm 6.1: AC2001/3.1

Input : A binary CSP N = 〈V,D,C〉.
Output: The AC-closure of N , or “inconsistent”.

1 Q← {(v, w) |Rvw ∈ C, v 	= w}
2 while Q 	= ∅ do
3 (v, w) ← Q.pop()
4 if Revise(v, w) then
5 if Dv = ∅ then
6 return “inconsistent”

7 Q← Q ∪ {(u, v) |Ruv ∈ C, u 	= v}

8 return D

of necessary background knowledge in Section 2, we describe in Section 6.4 our

new distributed AC algorithm DisAC3.1 and, in Section 4 give theoretical analyses

of DisAC3.1. Then, we extend DisAC3.1 to the first distributed GAC algorithm

DisGAC3.1 in Section 6.6, and evaluate our algorithms empirically in Section 6.7.

The last section concludes the chapter.

6.3 Preliminaries

Basic notations and results about CSP, DisCSP, AC and GAC can be found in

section 1.3.

Several AC algorithms for building the AC-closures of binary CSPs have been

proposed in the past decades [8, 12, 89, 100, 101]. In this chapter, we will extend

AC2001/3.1 [12], which is known to be optimal, to a distributed algorithm.

The AC2001/3.1 algorithm, presented in Algorithm 6.1, is similar to the clas-

sical AC3 algorithm [89] with the following differences in the Revise function: in

AC2001/3.1 we assume that for any domain Dv, there is an arbitrary ordering im-

posed on values in Dv. For each constraint Rvw and for each value a ∈ Dv, the

smallest support of a on Rvw is stored in SSvw(a). Therefore, if the smallest support
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Function Revise(v, w)

1 revised ← false

2 foreach a ∈ Dv do
3 b← SSvw(a)
4 if b /∈ Dw then
5 b← NextValue(b,Dw)
6 while b 	= NIL and (b /∈ Dw or (a, b) /∈ Rvw) do
7 b← NextValue(b,Dw)

8 if b 	= NIL then
9 SSvw(a) ← b

10 else
11 delete a from Dv

12 revised ← true

13 return revised

of a, say b, is deleted, then the algorithm only needs to search for the next smallest

support b′ > b of a and does not need to search the whole domain every time as

is the case of AC3. For example, suppose that the binary CSP in Figure 1.1 is an

input to AC2001/3.1, then we have that SS21(f) = b. If b is removed from D1 and

the ordering is a < b < g, AC2001/3.1 searches a new support for f by starting

from g instead of from a. It turns out that introducing “smallest support” makes

AC2001/3.1 an optimal AC algorithm.

Theorem 6.1 ([12]). AC2001/3.1 has the optimal worst case time complexity O(ed2)

with space complexity O(ed), where e is the number of edges in the constraint graph

of the input binary CSP and d is the largest domain size.

6.4 A New Distributed Arc-Consistency Algorithm

In this section we extend AC2001/3.1 to a new distributed AC algorithm DisAC3.1.

In the distributed setting, agents pass messages to communicate with each other.

We follow the communication model of [128]:
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• Agents communicate by sending messages. Agent i can send messages to agent

j iff agent i knows the communication address of agent j. Agent i calls function

Send(i, j,msgType,msgContent) to send a message with content msgContent

and of type msgType to agent j.

• For each agent i, there is a message queue associated with it. Messages sent to

agent i are stored in the queue. Agent i calls function Receive() to receive

all messages stored in the queue. Once Receive() is called, agent i waits until

at least one message is received.

• The delay of delivering a message is finite. For the transmission between any

pair of agents, messages are received in the order in which they were sent.

Note that this model does not require a physical communication graph to be fully

connected (i.e., a complete graph). This model only assumes the existence of a reli-

able underlying communication structure and is independent of the implementation

of the physical communication graph.

Definition 6.1 (agent communication graph). Given a distributed binary CSP

M = 〈P , CX〉, an agent communication graph of M is a pair (A,EA), where

A = {1, 2, ..., p} is the set of agents in M, and EA is a set of undirected edges

over A: eij = {i, j} ∈ EA iff agents i and j know the communication address of

each other. An agent communication graph is called standard if it further satisfies

the condition that agents i and j know the communication address of each other iff

they share at least one external constraint.

In this chapter, we assume that a distributed binary CSP cannot be split into

two or more disjoint distributed binary CSPs; in other words, the standard agent

communication graph of a distributed binary CSP is connected. The standard agent

communication graph of the distributed binary CSP in Figure 1.2 is given in Fig-

ure 6.1.
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Figure 6.1 : The standard agent communication graph of the distributed binary
CSP in Figure 1.2.

In order to handle termination of our distributed AC algorithm, we select a

dedicated agent who decides when to terminate, and allow other agents to commu-

nicate with the dedicated agent through a path in the standard agent communication

graph. To this end, we build a spanning tree of the standard agent communication

graph by using the echo algorithm [22]. The root of the spanning tree becomes then

the dedicated agent, called the root agent. In the echo algorithm, no agent knows

the configuration or extent of the communication graph or the addresses of non-

neighboring agents, and thus, privacy is not violated. The algorithm runs in O(D̂)

time and O(p) space, and sends O(ê) messages, where D̂, p and ê are the diameter,

number of nodes and number of edges of the standard agent communication graph,

respectively.

Given the standard agent communication graph G of a distributed binary CSP

M, we call the spanning tree obtained by the echo algorithm the termination tree

or the T-tree of G. We can build a T-tree (cf. Figure 6.2) of the standard agent

communication graph in Figure 6.1. An agent can send messages to the root agent

via its path to the root agent, where agents in the middle of the path need to help

forwarding messages. For example, in Figure 6.2 agent k can send messages to agent

i via the path (k, p, i).



144

Figure 6.2 : A T-tree for the standard agent communication graph in Figure 6.1.

6.4.1 The Algorithm

The new distributed AC algorithm is presented as Algorithm 6.2. Given a dis-

tributed binary CSP M = 〈P , CX〉, each agent i takes its portion of M as an

input and runs its own copy of Algorithm 6.2 separately and concurrently. Agent

i’s portion of M includes:

• Ni = 〈Vi,Di, Ci〉.

• For each i’s neighbor agent j we have as inputs:

– a set Cij of all external constraints between i and j,

– a set V i
j of all variables of agent j that are related to i through an external

constraint in Cij, and

– a set Di
j of domains Di

w for each w ∈ V i
j , where each Di

w ∈ Di
j is a copy

of agent j’s domain Dw.

Example 6.1. In Figure 1.2 agent i’s portion of M is as follows:

• Ni = 〈Vi = {v1, v2},Di = {Dv1 , Dv2}, Ci = {R12}〉,

• V i
j = {v3, v4}, Di

j = {Di
v3
, Di

v4
}, Cij = {R23, R24},
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Algorithm 6.2: DisAC3.1
Input : Agent i’s portion of a distributed binary CSP M.

A: a map that assigns to each variable v ∈ Vi the set of all neighbor agents to
which v is related through an external constraint.

Output: Di or “inconsistent”.

1 Run the echo algorithm to build a T-tree.
2 if parent = i then
3 foreach k, j ∈ {1, 2, . . . , p} do
4 skj ← −∞, rkj ← −∞, isIdle[k] ← false

5 foreach j = 1, 2, . . . , p do rj ← −∞
6 Q ←

{
(v, w)

∣∣∣ v ∈ Vi, Rvw ∈ Ci ∪
⋃

j Cij , v 	= w
}

7 while true do
8 while Q 	= ∅ do
9 (v, w) ← Q.pop()

10 if Revise(v, w) then
11 if Dv = ∅ then
12 Send to all neighbors messages of type “inconsistent”.
13 return “inconsistent”

14 if A(v) 	= ∅ then
15 foreach j ∈ A(v) do
16 foreach u ∈ V i

j s.t. Ruv ∈ Cji do
17 if Revise(u, v) then
18 s ← CurrentTime()
19 Send(i, j, “domain update”, (v,Dv, s))
20 Send(i, parent, “message sent”, (i, j, s))
21 break

22 Q ← Q ∪ {(u, v) | u ∈ Vi s.t. Ruv ∈ Ci, u 	= v}

23 Send(i, parent, “up to date”, (i, (rj)j=1,...,p))

24 messages ← Receive()
25 while messages 	= ∅ do
26 (msgType,msgContent) ← messages.pop()
27 if msgType = “arc-consistent” then
28 Forward the message to all of its children.
29 return Di

30 else if msgType = “inconsistent” then
31 Forward the message to the neighbors.
32 return “inconsistent”

33 else if msgType = “domain update” then
34 (w,Di

w, rj) ← msgContent
35 Q ← Q ∪ {(v, w) | v ∈ Vi s.t. Rvw ∈ Cij , v 	= w}
36 else if parent = i then
37 if msgType = “message sent” then
38 (k, j, skj) ← msgContent
39 if skj > rjk then isIdle[j] ← false
40 if (s�j)�=1,...,p = (rj�)�=1,...,p then isIdle[j] ← true

41 if msgType = “up to date” then
42 (j, (rk)k=1,...,p) ← msgContent

43 if (rjk)k=1,...,p = (skj)k=1,...,p then isIdle[j] ← true

44 if isIdle[k] = true for all k = 1, . . . , p then
45 Send each of its children a message with type “arc-consistent”.
46 return Dk

47 else Forward the message to its parent.
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• V i
p = {v6}, Di

p = {Di
v6
}, Cip = {R26}.

In Algorithm 6.2, lines 2–4 and lines 36–46 are only run by the root agent,

who is the dedicated agent to handle the termination. (Note that in our algorithm

we distinguish the root agent from non-root agents by setting the parent of the

root agent to itself.) These extra codes are used for handling termination of the

algorithm, which are explained in details in Section 6.4.2.

In Algorithm 6.2, a queue Q is first initialized, which stores all arcs (v, w) with

Rvw ∈ Ci ∪
⋃

j Cij (line 6). The queue Q includes arcs (v, w) that correspond to

constraints Rvw ∈ Ci as is the case in AC2001/3.1. In addition, Q also includes arcs

(v, w) that correspond to external constraints Rvw ∈ Cij with v ∈ Vi; excluded in

the queue are arcs (w, v) that correspond to constraints Rwv ∈ Cji with w ∈ V i
j and

v ∈ Vi.

Example 6.2. Let the distributed binary CSP in Figure 1.2 be an input of DisAC3.1.

Then Q in line 6 includes arcs (v1, v2), (v2, v3), (v2, v4) and (v2, v6) but not arcs

(v3, v2), (v4, v2) and (v6, v2).

Then the agent iteratively takes an arc (v, w) from Q, and revises Dv to make

Rvw arc-consistent (lines 8–22). We will consider two cases: (i) If a domain Dv

becomes empty, then the agent broadcasts “inconsistent” to its neighbors, and then

returns “inconsistent” as its output (lines 11–13). Its neighbors will further broad-

cast “inconsistent” to their neighbors (in the standard agent communication graph)

who have not yet received an “inconsistent” message (lines 30–31) and so on, until

every agent has received an “inconsistent” message (c.f. Figure 6.4a). (ii) If a do-

main Dv is revised but is not empty, then there are arcs (u, v) that are potentially

affected by the revision of Dv so that Ruv is no longer arc-consistent. Therefore, arcs

(u, v) with u ∈ Vi are added to Q (line 22), if they were not included already in Q.

Arcs (u, v) with u ∈ V i
j for an agent j are dealt with slightly differently: since the
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Figure 6.3 : The relevant parts of variable v2 of the distributed binary CSP in
Figure 1.2.

domain Du of u is maintained by agent j in this case, agent i reports to its neighbor

agent j about the revision of Dv so that agent j can revise Du only when necessary

(lines 14–19).1 Here agent i sends for each revised domain at most one message to

agent j, because there is no need to report to agent j about the same revision more

than once (cf. line 21). The following example illustrates the ideas mentioned in

this paragraph.

Example 6.3. We consider the variable v2 as well as other variables, domains and

relations that are relevant to v2, of the distributed binary CSP in Figure 1.2, which

is illustrated in Figure 6.3. Let Dv2 = {a, b}, Dv3 = {c}, Dv4 = {d}, Dv6 = {e}

and R23 = {(a, c)}, R24 = {(a, d)}, R26 = {(a, e), (b, e)}. Then if a is removed

from Dv2, agent i will add arc (v1, v2) to Q if arc (v1, v2) was not already in Q,

because constraint R12 may be no longer arc-consistent. Also, constraints R32, R42

and R62 may be no longer arc-consistent. So agent i will notify the revision of Dv2

to agents j and p when necessary. Suppose i first checks whether it should inform p

about the revision of Dv2 by calling Revise(v6, v2). Recall that i owns a copy Di
v6

of the original domain Dv6 of v6. In this case, Di
v6

= Dv6 = {e}. We know that

1This technique was first introduced in [52].
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Revise(v6, v2) will return false, because although a is removed from Dv2, we can still

find another support b for e on R62. In the process of running Revise(v6, v2), the

algorithm only changes e’s smallest support on R62 from a to b. In other words, if

Revise(v6, v2) returns false, we know that every element in Di
v6

is still supported

on R62. Thus, R62 is arc-consistent w.r.t. Di
v6

and Dv2. Since we always have

Di
v6

⊇ Dv6 (cf. Lemma 6.2), we also have that R62 is arc-consistent w.r.t. Dv6

and Dv2. Therefore, i finds that there is no need to notify the revision of Dv2 to p.

However, with a similar analysis, i will find that R32 is not arc-consistent w.r.t. D
i
v3

and Dv2, and R42 is not arc-consistent w.r.t. Di
v4

and Dv2, so i needs to notify the

revision of Dv2 to the owners of v3 and v4. Because both Dv3 and Dv4 are owned by

j, i only needs to inform the revision of Dv2 to j once.

The root agent uses the T-tree to collect timestamps of each message that the

sender and the recipient report. If an agent i sends a “domain update” message to

one of its neighbors j, i will notify the root agent that a message was sent to agent

j. To this end, agent i will first send a “message sent” message to its parent, and

then the parent will forward the message to its parent (line 47) and so on, until the

message is received by the root agent.1 Note that in both of the messages to agent j

and the root agent, we add the same timestamp s to the messages, which serves as

a means for the root agent to confirm later that the message from agent i is received

and processed by agent j.

Example 6.4. Suppose that we have the T-tree in Figure 6.2 for the standard agent

communication graph in Figure 6.1. Suppose that k sends a “domain update” mes-

sage mkj to j at time s. Then k sends a message (k, p, “message sent”, (k, j, s))

(line 20) with timestamp s to p and p will forward the message to its parent i by

1Note that the sender’s “id” remains in the forwarded message, but this “id” does not need to
be the real id of the sender, it can be a code name (cf. [79]), e.g., a randomly generated character
string. In this case, two neighbours need to exchange their code names with each other before
running the algorithm.
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sending another message (p, i, “message sent”, (k, j, s)) (line 47). See Figure 6.4c

for an illustration.

Once agent i is done with adding new arcs to Q and sending messages to other

agents, it repeats the whole process with the updated Q until there are no more arcs

in Q (lines 8–22), i.e., Q is empty.

When there are no more arcs in Q to be processed, agent i reports to the root

agent that its state is up to date (line 23), which is forwarded by the ancestors of

agent i (cf. line 47), and shares with the root agent the latest timestamps (rij)j=1,...,p

of all incoming messages of its neighbor agents j; these timestamps allow the root

agent to determine whether the last message agent i received from agent j is the

one that agent j reported to the root agent about.

Afterwards, agent i processes the messages that have been waiting to be pro-

cessed in its message queue one by one in a FIFO manner (line 24). If the type of

a message is “arc-consistent” or “inconsistent”, then i will forward the message to

relevant neighbors and then the algorithm terminates and returns Di or the value

“inconsistent”, respectively (lines 27–32). If the type of a message is “domain up-

date” sent from another agent j, which prompts agent i to update a domain Di
w

when w ∈ V i
j , then agent i updates Di

w and adds all arcs (v, w) that are potentially

affected by the update to Q (lines 33–35).

When there are no more messages to be processed, then the algorithm repeats

again with processing the arcs in the queue Q (line 8–22).

6.4.2 Handling Termination

A distributed algorithm should terminate when there are no messages in transit

and all agents are waiting for new messages (i.e., idle). In fact, this is a well studied

problem in the field of distributed systems, called distributed termination detection
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(a) Agent k is broad-
casting inconsistency.

(b) The root agent
is broadcasting arc-
consistency.

(c) Conformation of a
“domain update” mes-
sage mkj : msent

kj is the
“message sent” message
and mutd

ji is the “up to
date” message.

Figure 6.4 : Illustrations of messages flow.

(DTD) [107]. DTD is a difficult problem as there is no simple way of gathering global

knowledge of the distributed system. A number of algorithms to solve the DTD

problem have been proposed in the literature (cf. [95]). These algorithms can be

categorized based on eight features: algorithm type (wave, parental responsibility,

credit-recovery, or ad-hoc), required topology of the agent communication graph,

algorithm symmetry, required process knowledge (e.g., upper bound on the diameter

of the agent communication graph or identity of the central agent), communication

protocol (synchronous or asynchronous), communication channel behavior (first-in

first-out (FIFO) or non-FIFO), message optimality, and fault tolerance [95].

Most DTD algorithms, like the one by Chandy and Misra [20], are wave algo-

rithms and typically repetitive. These wave algorithms send wave after wave until

termination is detected, which causes it to send up to O(M × p) control messages,

whereM is the number of basic messages and p is the number of agents. This repet-

itive property makes it unattractive for implementation. The algorithm proposed

by Shavit and Francez [110] combines the algorithm of Dijkstra and Scholten [42]

with a cycle-based repetitive wave algorithm.
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One may integrate one of these DTD algorithms into DisAC3.1 to handle the its

termination, but there are several aspects we need to bear in mind.

• Requirement on the topology of the agent communication graph and process

knowledge should not be too strict. For example, we cannot require the agent

communication graph to be a Hamiltonian cycle agent network (such as Di-

jkstra et al. [41], Shavit and Francez [110] and Mayo and Kearns [97]), or

require agents to know the upper bound on agent network diameter (such as

Skyum and Eriksen [43]), or require agents to know which one is the central

agent (i.e., initiator and/or detector) (such as Huang [56]).

• Concerning performance, we would not consider algorithms that have very

high message complexity (such as the repetitive wave algorithms [119, 20, 96]

which require a large number of messages in the worst case) and algorithms

that have high memory requirement (such as [121]).

In this chapter, we choose to develop a customized termination handling ap-

proach for algorithm DisAC3.1, which is not a wave algorithm, not parental respon-

sible or credit-recovery. In our approach, agents report timestamps of both sent

and received “domain update” messages to the root agent (lines 20 and 23). See

Figure 6.5 for an illustration. The root agent runs additional codes (lines 2–4 and

lines 36–43) to handle these timestamps.

There are two conditions to determine the termination of a distributed AC al-

gorithm:

1. For each agent i = 1, . . . , p all “domain update” messages sent from other

agents to agent i are received and processed by agent i and agent i is waiting

for new messages;

2. An agent sent “inconsistent” messages to its neighbors, which indicates that
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Figure 6.5 : Time lines of sending and receiving messages, where circles stand for the
time points that agent i sends “domain update” messages to agent j, squares stand
for the time points that agent j reports the latest received time stamps of “domain
update” messages to the root agent via “up to date” messages, and triangles stand
for the time points that the root agent receives “up to date” messages from agent j.

some local domain has become empty and the distributed CSP is thus incon-

sistent.

It is straightforward to check the satisfiability of the second condition. Once an

agent finds out that one of its variable domains is empty, it sends an “inconsistent”

message to each of its neighbors (line 12) and then other agents will help to broadcast

inconsistency (lines 30–31). See Figure 6.4a for an example.

To check the satisfiability of the first condition, the root agent receives for each

“domain update” message mij from sender i to recipient j two reports—one from

the sender and one from the recipient, where the sender’s report has type “message

sent” and includes the same timestamp of mij and the recipient’s report has type

“up to date” and includes a timestamp not earlier than that of mij.
1 The root

agent stores the timestamp reported by the sender i in variable sij (line 38) and the

timestamp reported by the recipient j is stored in variable rji (line 42).

In what follows, we write msent
ij for the corresponding “message sent” message

sent from agent i to the root agent which bears the same timestamp as mij; and

1This is because when several messages from agent i are received, the “up to date” message
will only bear the timestamp of the latest one.
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write mutd
ij for the first “up to date” message sent from agent j to the root agent

after it has received and processed mij.

For a message mij of type “domain update” we say mij is confirmed by the root

agent, if (cf. Figure 6.4c)

• the root agent has received msent
ij (of type “message sent”) from i;

• the root agent has received mutd
ij (of type “up to date”) sent from j.

When confirming a message we have to consider two cases. Since the communi-

cation speeds may be different among different pair of agents, msent
ij from agent i to

the root agent may arrive earlier or later than mutd
ij from agent j to the root agent.

It is also worth reminding that every agent processes the messages that have been

waiting to be processed in its message queue one by one in a FIFO manner.

Given a “domain update” message mij sent from agent i to agent j, if msent
ij

arrives earlier at root agent than mutd
ij , then the confirmation of message mij is

accomplished when the root agent receives mutd
ij (lines 41–43). On the other hand,

if msent
ij arrives later at root agent than mutd

ij , then the confirmation of message mij

is accomplished when the root agent receives msent
ij (lines 37–40).

Whenever all messages sent to an agent i have been confirmed by the root agent

(i.e., sji = rij for all 1 ≤ j ≤ p), then variable isIdle[i] is set to true (lines 40

and 43). When isIdle[i] = true for all agents i, then the root agent sends “arc-

consistent” messages to all of its children (lines 44–45) and other agents further help

broadcast the arc-consistent messages (lines 27–28). See Figure 6.4b for an example.
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6.5 Analysis of DisAC3.1

6.5.1 Privacy of Individual Agents

For a distributed algorithm it is desirable that the algorithm does not give away

the privacy of the involved agents, i.e., information of an individual agent is shared

with other agents only when it is necessary to achieve a common goal. In the case

of distributed binary CSPs such information could include information about the

variables, domains, constraints and the communication address of each agent.

In this chapter, we assume that agents are honest, in the sense that no agent

reveals its and/or its neighbors’ private information (e.g., its variables, domains, con-

straints, or communication addresses) to irrelevant agents. With this assumption,

in this subsection we show that DisAC3.1 leaks less private information of agents

than existing distributed arc-consistency algorithms.

The following notion of semi-private information is adapted from [79].

Definition 6.2 (semi-private information). A piece of information about a DisCSP

is regarded as semi-private if one agent or several agents might consider it private,

but it can be leaked to irrelevant agents by their local knowledge of the AC-closure

of the DisCSP.

In this chapter, the semi-private information of a DisCSP concerns mainly about

privacy of one agent (e.g., its variables, domains, and constraints) that can be in-

ferred by another agent (or several agents jointly) by comparing the change of do-

mains they know before and after enforcing a distributed arc-consistency algorithm.

Example 6.5. Consider a DisCSP which has three variables x, y, z and two agents

A,B such that A owns x, y and B owns z. Suppose there is a shared constraint Rxz

that is AC in the beginning. Note that A knows the domain of z and B knows the

domain of x, but it does not know the existence of y (let alone its domain) in the
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beginning. After enforcing AC, if Dz is changed, then B can infer from this change

that A must own another variable which is connected to x. The information that “A

has another variable which is connected to x” is thus a piece of semi-private infor-

mation. This information will be leaked to B inevitably (even if we use encryption).

Theorem 6.2. Let M = 〈P , CX〉 be an input to Algorithm 6.2 and Ni the local

binary CSP of agent i. Algorithm 6.2 satisfies the following conditions modulo semi-

private information:1

1. The existence of a variable v of agent i and its domain are only known to

agents who share the variable.

2. An external constraint of agent i is only known to another agent who shares

the constraint with agent i.

3. The communication address of agent i is only known to its neighbor agents.

4. Private variables and their domains, and private constraints are all hidden to

other agents.

Proof. In Algorithm 6.2, information about shared variables and external constraints

is only shared by agents that are involved in the external constraints, thus condi-

tions 1–2 are satisfied modulo semi-private information. Furthermore, Algorithm 6.2

only requires the standard agent communication graph, i.e., two agents know the

communication address of each other iff they share at least one external constraint,

thus condition 3 is satisfied. Since no other information is revealed to other agents,

condition 4 is satisfied modulo semi-private information.

The four conditions in Theorem 6.2 are closely related to three types of privacy

proposed by Léauté and Faltings [79], namely, agent privacy, topology privacy and

1Here by ‘modulo semi-private information’, we mean that we do not consider leak of semi-
private information as privacy loss.
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constraint privacy and the type of domain privacy introduced by Grinshpoun [49].

Agent privacy relates to the identities of the participants. Topology privacy concerns

the existence of topological constructs in the constraint graph, such as nodes (i.e.,

variables) and edges (i.e., constraints). Constraint privacy corresponds to the nature

of a constraint and domain privacy concerns the content of the domain of a variable,

which could also be regarded as constraint privacy related to a unary constraint.

Clearly, condition 1 is related to both topology and domain privacy, condition 2

is related to constraint privacy, and condition 4 involves topology, domain, and

constraint privacy. As mentioned in [79], a particular consequence of the agent

privacy is that two agents should only be allowed to communicate directly if they

share a constraint. Therefore, condition 3 is related to the agent privacy.

However, we note that DisAC3.1as presented in Algorithm 2 does not strictly pro-

tect privacy of individual agents. First, constraint privacy is not strictly maintained

if we care about semi-private information. Because even though agents cannot learn

directly about constraint information, they can implicitly learn some information

regarding constraints due to values that disappear from the domains of their neigh-

bors. If such information is crucial in applications, one must apply some privacy

protection measure (such as encryption [131]) to address the issues.

Second, DisAC3.1 does not protect all information about the agent constraint

graph. Actually, before running DisAC3.1, we assume each agent only knows its

neighbors in the standard agent communication graph and its parent and children

in the T-tree, in particular, each agent knows whether it is the root agent. When

an “up to date” or “message sent” message is sent from an agent, passing through

internal agents, to the root agent, these internal agents and the root agent may learn

about partial topology information of the agent communication graph. Consider

the example in Figure 3. Suppose at time s agent k sends to j a “domain update”

message m and sends to its parent p (cf. Figure 5) a “message sent” message msent
kj .
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Then, since k is not the root, p will forward msent
kj to root i after receiving it. Note

that msent
kj carries the information (k, j, skj) (here we assume j, k are disguised in

their code names without leaking their identities) and thus both p and i know that

(i) k is a descendant and (ii) k and j share a constraint. In general, each agent will

know, in the extreme case and when the algorithm terminates, all its descendants

(disguised in their code names) in the T-tree and all neighbors of each of these

descendants in the standard agent communication graph. But this does not mean

it will know the whole agent communication graph: it is unlikely that, for example,

k knows that i is the root of the T-tree in Figure 5.

Note that leaking topology information of the agent communication graph to

intermediate agents can be avoided by encrypting the whole message such that only

the root agent can see the content, i.e., all the agents know the public key of the root

agent and encrypt the messages using that key and the root agent, once receiving

a message, decrypts the message by using its private key. No other intermediate

agents can read the messages’ content, as they do not have the private key of the

root agent.

Alternatively, we can also alleviate the second limitation by introducing a trust-

worthy system agent instead of using the root agent of a T-tree to detect termination.

The idea is to ask each agent to send their “message sent” and “up to date” mes-

sages directly to the system agent; if it detects that every agent is idle, then it

sends an “arc-consistent” message to each agent; and if there is an inconsistency de-

tected by an agent, it sends an “inconsistent” message directly to the system agent

and the latter forwards the message to all other agents. In this system-agent ver-

sion of DisAC3.1,1 only the system agent knows the standard agent communication

graph but it does not know the other private information (i.e., variables, domains,

and constraints information about the DisCSP). For all non-system agents, they

1In this chapter, unless otherwise stated, DisAC3.1 always refers to the original Algorithm 2.
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know only their neighbors in the standard agent communication graph. Another

advantage of the system-agent version is that it’s termination detection procedure

is also message optimal (see Corollary 6.1). The system-agent version of DisAC3.1

requires a trustworthy system agent connecting to all other agents, which is not

always available.

Unlike DisAC3.1, none of DisAC3, DisAC4 and DisAC6 satisfies conditions 1, 3, and

4 in Theorem 6.2 (modulo semi-private information). This is because they broad-

cast deleted values of variable domains to all agents, which reveals the existence of

agents’ variables and domains, and they assume a complete agent communication

graph, which reveals every agent’s communication address. DisAC9 does not satisfy

condition 3 either, because the termination protocol it employs also assumes a com-

plete agent communication graph. Therefore, we can conclude that DisAC3.1leaks

less information about individual agents’ communication addresses than all previous

distributed AC algorithms. Nevertheless, we note that privacy loss of a distributed

algorithm is difficult to evaluate outside the perspective of its integration with fi-

nal applications such as search [112]. Since we do not integrate our algorithm with

search in this chapter, we will not evaluate privacy loss of distributed AC algorithms.

Future research may use existing privacy measuring approaches such as [92, 109] to

measure privacy loss of distributed AC algorithms integrated with search.

6.5.2 Termination and Correctness

In this subsection, we prove that DisAC3.1 terminates and is correct. The proof

of the termination result uses the following lemma.

Lemma 6.1. The following conditions are equivalent:

1. isIdle[i] = true for all i = 1, . . . , p.

2. The root agent has received from all agents their first “up to date” messages
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(cf. line 23) and sij = rji for all i, j = 1, . . . , p.

3. All “domain update” messages are confirmed and no agent is running the first

inner while-loop (cf. lines 7-22).

Proof. See Appendix.

Theorem 6.3. Algorithm 6.2 terminates.

Proof. Let Ni = 〈Vi,Di, Ci〉 be agent i’s local binary CSP of an input distributed

binary CSP M = 〈P , CX〉. We note first that after a certain number of iterations

of the outer while-loop (lines 7–47) of Algorithm 6.2, either the algorithm exits and

returns a value (Di or “inconsistent”) or waits for new messages (line 24). The

outer while-loop cannot iterate forever, as this can only happen, if at each iteration:

(i) there exists a neighbor agent j who sends “domain update” messages to agent

i (line 33), i.e., the domain of some variable of j has been updated and its size

decreased; however, because all domains of M are finite, the number of “domain

update” messages is finite, or (ii) there exists some agent k sends “message sent”

messages to the root agent; however, because one “domain update” message induces

one “message sent” message, the number of “message sent” messages is also finite,

or (iii) there exists some agent k sends “up to date” messages to the root agent;

however, because one “domain update” message induces at most one “up to date”

message, the number of “up to date” messages is also finite. Analogously, the two

inner while-loops (lines 8–22 and lines 27–47) iterate only finitely many times.

Since i is chosen arbitrarily above, we can assume that all “domain update”

messages that were sent have been confirmed by the root agent and no agent is

running the first inner while-loop. Then, by Lemma 6.1, isIdle[i] = true for all

i = 1, . . . , p and the root agent sends “arc-consistent” messages to its children and

exits (lines 44–46), and agent i, on receiving the message, forwards the message and
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returns Di, and then Algorithm 6.2 terminates.

To prove the correctness of DisAC3.1, we need the following two lemmas.

Lemma 6.2. Let M = 〈P , CX〉 be an input distributed binary CSP for Algo-

rithm 6.2, and let v ∈ Vi and u ∈ Vj such that Ruv ∈ Cji for some agents i and j,

i 	= j. Then, the algorithm terminates with Di
u ⊇ Du.

Proof. See Appendix.

Lemma 6.3. Let M = 〈P , CX〉 be an input distributed binary CSP for Algo-

rithm 6.2. Then, each application of Revise does not change the AC-closure of

M.

Proof. When popping an arc (v, w) out of Q (line 9), the application of function

Revise(v, w) only removes values from Dv that have no supports w.r.t. Rvw. We

know that those values cannot be parts of the AC-closure [89]. Thus, each applica-

tion of Revise does not change the AC-closure of M.

Theorem 6.4. Given an input distributed binary CSP M = 〈P , CX〉, if Algo-

rithm 6.2 returns a new set of domains D′
i for i = 1, . . . , p, then M′ = 〈P ′, CX〉,

where P ′ = {N ′
1, . . . ,N ′

p} and N ′
i = 〈Vi,D′

i, Ci〉, is the AC-closure of M. If the

algorithm returns “inconsistent” then M is inconsistent.

Proof. Suppose Algorithm 6.2 returns D′
i for i = 1, . . . , p. It does so only if during

the execution of the distributed algorithm there was a time (or a state) tAC where

isIdle[i] = true for all i = 1, . . . , p (cf. Algorithm 6.2, lines 44–46). Thus to prove

the claim we need to show that at time tAC the outcome M′ = 〈P ′, CX〉 is AC. To

this end, we show that at time tAC for each agent i = 1, . . . , p and for each neighbor

agent j of agent i, any constraint Rv0w0 ∈ Ci ∪ Cij is AC.
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Suppose Rv0w0 is from Ci. Due to Lemma 6.1 we can assume that at time tAC all

“domain update” messages that were sent have been confirmed by the root agent

and no agent is running the first inner while-loop. We show inductively that Rv0w0

is AC.

1. After the algorithm initializing the queue Q (line 6), running the first inner

while-loop (lines 8–22) for the first time and waiting for new messages (line 24),

then Rv0w0 is AC. This is because all operations involved are exactly the same

as those in AC2001/3.1 except for the operations in lines 14–21, which however

do not affect the domains of v0 and w0.

2. After receiving new “domain update” messages (line 33), new pairs of variables

are added to Q. When the algorithm enters the first inner while-loop again

then the queue Q is processed as in AC2001/3.1 (except for the operations in

lines 14–21), establishing arc-consistency of Rv0w0 .

Thus, Rv0w0 is AC at time tAC.

Now suppose j is a neighbor agent of i and Rv0w0 is from Cij, i.e., variable w0

does not belong to agent i but to agent j. Looking at the algorithm from agent j’s

perspective, we have by Lemma 6.2 that Dj
v0

⊇ Dv0 at time tAC. We also observe

that due to line 17 at time tAC constraint Rv0w0 is AC w.r.t. Dj
v0

and Dw0 . Thus, at

time tAC for any a ∈ Dv0 ⊆ Dj
v0

there exists b ∈ Dw0 such that (a, b) ∈ Rv0w0 , i.e.,

Rv0w0 is AC at time tAC.

Thus M′ is an AC-subnetwork of M. By Lemma 6.3 it is also the AC-closure

of M.

If the algorithm returns “inconsistent”, then it follows by Lemma 6.3 that the

AC-closure of M has an empty domain. Thus, M is inconsistent.
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6.5.3 Time and Space Complexities

When analyzing the time complexity of a distributed algorithm, one usually

assumes that the delay of sending a message is zero.

Theorem 6.5. The time complexity of Algorithm 6.2 is O(ed2), where e is the

number of edges in the constraint graph of the input distributed binary CSP and d

is the largest domain size.

Proof. In the analysis of time complexity we are interested in the number of incre-

ment operations (lines 16–17 of Algorithm 6.2) on the elements of each domain as

this dominates all other numbers of operations. These increment operations take

place in lines 5 and 7 of Function Revise. To this end, we need to first determine the

number of calls to Revise. We first note that Revise is applied to a pair (v, w) of

variables only in one of the two cases: (i) the pair is from Q, in particular, the first

variable of the pair is from Vi (lines 9–10 of Algorithm 6.2) (ii) the first variable of

the pair is from V i
j , the set of all variables from agent j that are related to i through

an external constraint (lines 16–17 of Algorithm 6.2). In either of the mentioned two

cases, Revise is applied to a pair of variables, which was added to Q not because

of the initialization of Q in line 6, if and only if the domain of the second variable

was revised. Except the first revision, since each revision of a domain reduces its

size, each ordered pair of variables are revised at most d + 1 times. Let (v, w) be

a pair of variables and t� (1 ≤ � ≤ d + 1) be the number of increment operations

that takes place at the �th call to Revise(v, w). Then
∑d+1

1 t� ≤ d2, because for

each a ∈ Dv only d many increments of SSvw(a) is possible. Thus, for each agent i

there are altogether Ti = O((|Ci| + |Cij|) ·
∑d+1

1 t�) = O((|Ci| + |Cij|) · d2) number

of increment operations. In the worst case, DisAC3.1 proceeds with a sequential
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behavior and the time complexity of DisAC3.1 is

p∑
i=1

Ti =

p∑
i=1

O((|Ci|+ |Cij|) · d2) ≤ d2
p∑

i=1

O(|Ci|+ |Cij|)

≤ d2 ·O(|C|) = O(ed2).

Since running the echo algorithm to build a T-tree only takes O(D̂) time, where

D̂ ≤ p ≤ n is the diameter of the standard agent communicate graph, it does not

affect the time complexity of DisAC3.1.

Theorem 6.6. The space complexity of Algorithm 6.2 is O(ed).

Proof. For each variable w ∈ V i
j of some agent j, agent i keeps a copy of Dw, which

requires O(ed) space for all agents. Since the other used data structures of DisAC3.1

are the same as that of AC2001/3.1, the space complexity is the same as that of

AC2001/3.1, i.e., O(ed). Since the echo algorithm only takes O(p) space with p ≤ n,

it does not affect the space complexity of DisAC3.1.

Number of Message Passing Operations

We analyze the number of messages sent in DisAC3.1.

Theorem 6.7. Let M be a distributed binary CSP. Then, on input M, DisAC3.1

sends at most O(ndαh) messages, where α is the largest vertex degree of the standard

agent communication graph G of M and h is the height of the T-tree of G.

Proof. DisAC3.1 send at most ndα “domain update” messages, because there are at

most nd domain elements in total and each deletion of the elements in a domain

leads to the dispatch of at most α “domain update” messages. Each dispatch of a

“domain update” message is followed by the dispatch of a “message sent” message

as well as of at most one “up to date” message. Because a “message sent” or an “up
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to date” message may need to be forwarded at most h times until it reaches the root

agent, there are at most O(ndαh) messages that Algorithm 6.2 sends. Since the

echo algorithm sends O(ê) messages, where ê ≤ e ≤ nα is the number of edges of

the standard agent communication graph, it does not affect the message complexity

of DisAC3.1.

Consider the system-agent version of DisAC3.1. For each distributed binary CSP

M, after introducing a system agent A0, the standard communication graph of G

of M has a T-tree with height 1, in which the root is A0 and all regular agents

are children of A0. By Theorem 6.7, the system-agent version of DisAC3.1 sends

at most O(ndα) messages on input M. Regarding “domain update” messages as

basic messages and “message sent’ and “up to date” messages as control messages,

from the proof of Theorem 6.7, it is easy to see that the system-agent version of

DisAC3.1 sends at most O(M) control messages in total, where M is the number

of basic messages it sends. Because the number of control messages to detect the

termination of a distributed system is at leastM [21], the following corollary follows

directly from Theorem 6.7.

Corollary 6.1. The termination detection procedure of the system-agent version of

DisAC3.1 is message optimal.

6.6 Non-binary Constraints

In this section we extend our results to k-ary CSPs.

6.6.1 Generalized Arc-Consistency

Definition 6.3 (generalized arc-consistency [100]). Let N = 〈V,D,C〉 be a k-ary

CSP. Let (s, R) be a constraint of C with s = (v1, . . . , v�). Given a value a ∈ Dvi

with 1 ≤ i ≤ �, a tuple t = (t[v1], . . . , t[v�]) ∈ R is called a candidate support
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v1 v2 v3
a c e
a c f
b d f

Figure 6.6 : A ternary constraint (s, R), where s = (v1, v2, v3) and R =
{(a, c, e), (a, c, f), (b, d, f)}.

of a on R, if t[vi] = a. If t is a candidate support of a on R and additionally

t ∈ Dv1 × . . .×Dv� then we call t a support of a on R.

A constraint (s, R) is said to be generalized arc-consistent (GAC) iff for each

variable v in s every value a ∈ Dv has a support on R. CSP N = 〈V,D,C〉 is called

GAC iff every constraint of C is GAC.

We note that for binary CSPs GAC coincides with AC.

Definition 6.4 (GAC-closure). Given a network N = 〈V,D,C〉, let N ′ = 〈V,D′, C ′〉

be a subnetwork of N . We call N ′ an GAC-subnetwork of N , if C ′ = C and N ′

is generalized arc-consistent and not empty. We call N ′ the GAC-closure of N , if

N ′ is the largest GAC-subnetwork of N that is equivalent to N , in the sense that

every other GAC-subnetwork N ′′ = 〈V,D′′, C〉 of N that is equivalent to N is a

subnetwork of N ′.

Every k-ary constraint (s, R) can be represented as a table, where entries of the

table are the tuples of R. We use ≺R to denote the ordering of entries of the table

representation of R. For each constraint (s, R) and for each variable v ∈ s and each

value a ∈ Dv, the smallest support of a on R w.r.t. ≺R is stored in SSR(a).

Example 6.6. A ternary constraint (s, R) is represented as a table in Figure 6.6.

Suppose Dv1 = {a, b}, Dv2 = {c, d} and Dv3 = {e, f, g}. Then the tuple (a, c, e) is

the smallest support of a ∈ Dv1 on R. However, g ∈ Dv3 has no support on R, so

this constraint is not GAC.
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In [12], algorithm AC2001/3.1 is extended to a generalized arc-consistency (GAC)

algorithm, called GAC2001/3.1. The main change is the extension of function Re-

vise to n-ary constraints. In this extended Revise, finding a support for a ∈ Dvi

on a given constraint (s, R) is realized by checking for each t ∈ Dv1 × . . .×Dv� first

whether t[vi] = a and then whether t ∈ R. This requires to check O(dk−1) tuples,

where d is the maximum number of elements in a domain and k is the arity of R.

In the following we present function GRevise, which is a modification of the

extended Revise. Here, we check first whether t ∈ R following the ordering ≺R and

then check whether t[vi] = a and t[vj] ∈ Dvj for all vj ∈ s \ {vi}. Since membership

queries can be done in O(1) using hash-tables, this modification allows for reduced

number of checks when R is sparse.

Function GRevise(v, s, R)

1 revised ← false

2 foreach a ∈ Dv do
3 t← SSR(a)
4 if ∃v′ ∈ s with t[v′] 	∈ Dv′ then
5 t← NextTuple(t, R)
6 while t 	= NIL and (t[v] 	= a or ∃v′ ∈ s with t[v′] 	∈ Dv′) do
7 t← NextTuple(t, R)

8 if t 	= NIL then
9 SSR(a) ← t

10 else
11 delete a from Dv

12 revised ← true

13 return revised

Next we present a GAC algorithm as Algorithm 6.3, called GAC2001/3.1∗. It

is different from AC2001/3.1 in that it stores in Q triples (v, s, R). It is also dif-

ferent from GAC2001/3.1 in that it calls the modified function GRevise (line 4).

GAC2001/3.1∗ shares the nice property with AC2001/3.1, i.e., for each value a ∈ Dv

and each constraint (s, R) with v ∈ s, a tuple t ∈ R is only visited once.
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Algorithm 6.3: GAC2001/3.1∗
Input : A CSP N = 〈V,D,C〉.
Output: The GAC-closure of N , or “inconsistent”.

1 Q← {(v, s, R) | (s, R) ∈ C, v ∈ s}
2 while Q 	= ∅ do
3 (v, s, R) ← Q.pop()
4 if GRevise(v, s, R) then
5 if Dv = ∅ then
6 return “inconsistent”

7 Q← Q ∪ {(w, s,R) | (s, R) ∈ C, v, w ∈ s, w 	= v}

8 return N

Theorem 6.8. The time complexity of algorithm GAC2001/3.1∗ is O(ek2dβ) where

e is the number of constraints of the input CSP, k is the arity of the network, d is

the largest domain size and β is the largest number of candidate supports of a value

on a relation.

Proof. We first analyze the cost of enforcing GAC on a single constraint (s, R). For

any variable v ∈ s and any value a ∈ Dv, there are at most β candidate supports

needed to be confirmed (line 6 of Function GRevise). Confirming a candidate costs

O(k − 1) time. Because there are rd values needed to be processed per constraint,

enforcing GAC on a single constraint costs O(rd ·β · (k−1)) = O(k2dβ). Since there

are at most e constraints, the time complexity of GAC2001/3.1∗ is O(ek2dβ).

Note that we must have β ≤ dk−1, so in the worst case the time complexity of

GAC2001/3.1∗ is O(ek2dk), which is the same as that of GAC2001/3.1.

6.6.2 A Distributed Generalized Arc-Consistency Algorithm

We now extend GAC2001/3.1∗ to a distributed generalized arc-consistency algo-

rithm, called DisGAC3.1.
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Definition 6.5 (distributed k-ary CSP). A distributed k-ary CSP (DisCSP) is

defined as a pair 〈P , CX〉, where

• P = {N1, . . . ,Np} is a set of k-ary CSPs with Ni = 〈Vi,Di, Ci〉 (1 ≤ i ≤ p);

• CX is a set of external constraints, where each (s, R) ∈ CX is shared by at

least two different agents, i.e., there exist two different variables v, w ∈ s s.t.

v ∈ Vi, w ∈ Vj, i 	= j.

The definitions of (standard) agent communication graphs of distributed binary

CSPs (cf. Definition 6.1), GAC (cf. Definition 6.3) and GAC-closure (cf. Defini-

tion 6.4) naturally carry over to distributed k-ary CSPs.

The distributed GAC algorithm is presented as Algorithm 6.4. Given a DisCSP

M = 〈P , CX〉 (1 ≤ i ≤ p) each agent i takes its portion of M as an input and runs

its own copy of Algorithm 6.4 separately and concurrently. Agent i’s portion of M

includes:

• Ni = 〈Vi,Di, Ci〉,

• CX(Vi) =
{
(s, R) ∈ CX

∣∣ s ∩ Vi 	= ∅
}
,

• a set Di of Di
w, where D

i
w is a copy Dw and w belongs to a neighbor agent

j 	= i, i.e., there is an external constraint (s, R) ∈ C(Vi) such that w is in

scope s.

Example 6.7. Suppose we have a DisCSP M = 〈P = {N1,N2}, CX〉, where N1 =

〈V1 = {v1},D1 = {Dv1}, C1 = ∅〉, N2 = 〈V2 = {v2, v3},D2 = {Dv2 , Dv3}, C2 = ∅〉

and CX = {(s1 = (v1, v2, v3), R1), (s2 = (v1, v2), R2)} as an input to Algorithm 6.4.

Agent 1’s portion of M includes:

• N1,
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• CX(V1) = {(s1, R1), (s2, R2)},

• D1 = {D1
v2

= Dv2 , D
1
v3

= Dv3}.

Algorithm 6.4 largely overlaps with Algorithm 6.2. Differences are highlighted

in light gray background. In Algorithm 6.4, a queue Q is first initialized to store all

the tuples (v, s, R) with (s, R) ∈ Ci ∪ CX and v ∈ s (line 7), and line 24 adds all

new tuples (w, s′, R′) to Q with w ∈ Vi, v, w ∈ s′ and w 	= v because of the revision

of Dv. Also, if a new domain Dw is received from some other agent, agent i will

add new tuples (v, s, R) to Q, where (s, R) is an external constraint, v ∈ Vi and

both v, w ∈ s (line 37). Lines 16, 18 and 20 are to guarantee that if a domain Dv is

revised, Dv is sent to relevant agents at most once, just like line 21 of Algorithm 6.2.

The correctness of DisGAC3.1 follows from the correctness of DisAC3.1 and GAC2001/3.1∗,

and we have the following:

Theorem 6.9. Given an input DisCSP M = 〈P , CX〉, Algorithm 6.4 terminates. If

Algorithm 6.4 returns a new set of domains D′
i for i = 1, . . . , p, then M′ = 〈P ′, CX〉,

where P ′ = {N1, . . . ,N ′
p} and N ′

i = 〈Vi,D′
i, Ci〉, is the GAC-closure of M. If the

algorithm returns “inconsistent” then M is inconsistent.

Theorem 6.10. The time and space complexities of algorithm DisGAC3.1 are O(ek2β)

and O(ndke), respectively, where e is the number of constraints of the input network,

k is the arity of the network, d is the largest domain size and β is the largest number

of candidate supports of a value on a relation.

Proof. In the worse case, algorithm DisGAC3.1 proceeds with a sequential behavior,

so constraints will be enforced GAC one by one and DisGAC3.1 has the same worse

case time complexity of algorithm GAC2001/3.1∗, which is O(ek2β).

Because every constraint can have a scope containing up to k variables, Q takes

O(ke) space. Since, in the worst case, each agent can share all the variables of other
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Algorithm 6.4: DisGAC3.1
Input : i’s portion of a DisCSP M.
Output: Di or “inconsistent”.

1 Run the echo algorithm to build a T-tree.
2 if parent = i then
3 foreach k, j ∈ {1, 2, . . . , p} do
4 skj ← −∞, rkj ← −∞
5 isIdle[k] ← false

6 foreach j = 1, 2, . . . , p do rj ← −∞
7 Q ←

{
(v, s, R)

∣∣ v ∈ Vi, (s,R) ∈ Ci ∪ CX , v ∈ s
}

8 while true do
9 while Q 	= ∅ do

10 (v, s, R) ← Q.pop()

11 if GRevise(v, s, R) then
12 if Dv = ∅ then
13 Send each of its neighbors a message with type “inconsistent”.
14 return “inconsistent”

15 if CX(v) 	= ∅ then

16 L ← ∅

17 foreach (s,R) ∈ CX(v) do

18 foreach u ∈ s s.t. u 	∈ Vi,Owner(u) 	∈ L do

19 if GRevise(u, s,R) then

20 L.append(Owner(u))
21 s ← CurrentTime()
22 Send(i, j, “domain update”, (v,Dv, s))
23 Send(i, parent, “message sent”, (i, j,s))

24 Q ← Q ∪
{
(w, s,R)

∣∣ w ∈ Vi, (s,R) ∈ Ci ∪ CX , v, w ∈ s, w 	= v
}

25 Send(i, parent, “up to date”, (i, (rj)j=1,...,p))
26 messages ← Receive()
27 while messages 	= ∅ do
28 (msgType,msgContent) ← messages.pop()
29 if msgType = “arc-consistent” then
30 Forward the message to all of its children.
31 return Di

32 else if msgType = “inconsistent” then
33 Forward the message to the neighbors.
34 return “inconsistent”

35 else if msgType = “domain update” then
36 (w,Di

w, rj) ← msgContent

37 Q ← Q ∪
{
(v, s, R)

∣∣ v ∈ Vi, (s,R) ∈ CX , v, w ∈ s
}

38 else if parent = i then
39 if msgType = “message sent” then
40 (j, skj) ← msgContent
41 if skj > rjk then isIdle[j] ← false
42 if (s�j)�=1,...,p = (rj�)�=1,...,p then isIdle[j] ← true

43 if msgType = “up to date” then
44 (j, (rk)k=1,...,p) ← msgContent
45 if (rjk)k=1,...,p = (skj)k=1,...,p then isIdle[j] ← true

46 if disIdle[k] = true for all k = 1, . . . , p then
47 Send each of its children a message with type “arc-consistent”.
48 return Dk

49 else Forward the message to its parent.
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agents by means of external constraints, copied domains Di, (i = 1, . . . , p) takes in

total O(ndp) space. The data structure SSR of Function GRevise associated with

a constraint (s, R) takes O(ndk) space, because there are at most O(nd) domain

values for a constraint (s, R) and we store for each value its smallest support, which

takes O(k) space. Since there are e constraints SS takes O(ndre) space. By adding

all this together we obtain O(ne+ ndp+ ndke) = O(nd(p+ ke)). Since we assume

that the standard agent communication graph is connected, for each agent there

is an external constraint (si, Ri) shared by at most ki − 1 other agents where ki is

the arity of (si, Ri) and we have p ≤ ∑e
i=1 ki ≤ ke. Thus O(ndke) is the space

complexity of DisGAC3.1.

Similar to the cases of DisAC3.1, running the echo algorithm does not affect the

time and space complexities of DisGAC3.1.

Since the termination handling mechanism of DisGAC3.1 is same as that of

DisAC3.1, we have the following result.

Theorem 6.11. Let M be an input DisCSP for DisGAC3.1. Then DisGAC3.1 send

at most O(ndαh) messages, where α is the largest vertex degree of the standard agent

communication graph G of M and h is the height of the T-tree of G.

Similar to the system-agent version of DisAC3.1 discussed before, we can also

introduce a system-agent version of DisGAC3.11, which sends at most O(ndα) mes-

sages.

6.7 Evaluation

In this section we experimentally compare DisAC3.1 against the state-of-the-art

distributed AC algorithm DisAC9. Comparison of theoretical time and space com-

plexities between DisAC3.1 and DisAC9 is also given in Table 6.1. We also evaluate

1In this chapter, unless otherwise stated, DisGAC3.1 always refers to the original Algorithm 4.
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(b) 〈n = 40, d = 20, ρ = 0.30〉
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Figure 6.7 : Performance comparisons between DisAC3.1 and DisAC9 on random
instances.
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Algorithm DisAC3.1 DisAC9
Time O(ed2) O(n2d3)
Space O(ed) O(n2d)

Table 6.1 : Comparison of time and space complexities between DisAC3.1 and
DisAC9.

our GAC algorithm DisGAC3.1 by comparing it against its centralized counterpart

GAC2001/3.1∗, owing to lack of other existing distributed GAC algorithm. All exper-

iments used an asynchronous simulator in which agents are simulated by processes

which communicate only through message passing. Two independent measures of

performance are commonly used for evaluating the performance of distributed algo-

rithms: (i) the number of non-concurrent constraint checks (#NCCCs) (cf. [14, 98])

and (ii) the total number of messages sent (#MSGs) (cf. [88]).1 All experiments

for distributed algorithms used an asynchronous simulator in which (i) agents are

simulated by processes which communicate only through message passing and (ii)

default communication latency is assumed to be zero. Our experiments were imple-

mented in Python 3.6 and carried out on a computer with an Intel Core i5 processor

with a 2.9 GHz frequency per CPU, 8 GB memory.

6.7.1 DisAC3.1 vs. DisAC9

To evaluate the two distributed AC algorithms, we consider both benchmark

problems and randomly generated binary CSPs whose AC-closures are not empty.

The random instances were generated by using the random model proposed in [57].

The generator involves four parameters: (1) the number of variables n, (2) the

largest domain size d, (3) the density ρ = 2|C|/n(n + 1) of the input binary CSP,

1Note that these two measures do not reflect the cost of the echo algorithm used in our dis-
tributed algorithms. However, since the number of agents are relatively small comparing to the
number of variables of the input and the time complexity of the echo algorithm is only O(D̂),
where D̂ ≤ p ≤ n is the diameter of the standard agent communication graph, the cost of the echo
algorithm is negligible.
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DisAC3.1 DisAC9

Instances 〈n, d,m, p〉 #NCCCs #Msgs #NCCCs #Msgs

〈1000, 10, 1000, 20〉 1.031e+4 964 2.137e+4 923
〈500, 100, 500, 25〉 3.013e+5 3027 5.854e+5 3078
〈300, 300, 300, 30〉 1.364e+6 7318 4.565e+6 7271

Table 6.2 : Performance comparisons between DisAC3.1 and DisAC9 on the DOMINO
problem. Note that m is the number of constraints and p is the number of agents
used by both the algorithms.

DisAC3.1 DisAC9

Instances 〈n, d,m, p〉 #NCCCs #Msgs #NCCCs #Msgs

SCEN#01 〈916, 44, 5548, 35〉 4.411e+5 5690 1.123e+6 5223
SCEN#11 〈680, 44, 4103, 30〉 2.762e+6 8703 2.292e+7 9132
GRAPH#09 〈916, 44, 5246, 35〉 4.735e+5 5350 1.391e+6 5378
GRAPH#10 〈680, 44, 3907, 30〉 7.156e+5 6467 2.007e+6 6718
GRAPH#14 〈916, 44, 4638, 35〉 4.094e+5 4779 1.227e+6 5137

Table 6.3 : Performance comparisons between DisAC3.1 and DisAC9 on the Radio
Link Frequency Assignment Problem. Note that m is the number of constraints and
p is the number of agents used by both the algorithms.

and (4) the tightness of constraints β = M/d2, where M is the number of allowed

tuples of a binary constraint.

Following the convention of [8, 12, 52, 98], experimental results with random in-

stances are presented as figures where the x-axis represents the constraint tightness.

The experiments presented here were performed on four groups of instances, where

group A has instances with n = 20, d = 10, ρ = 0.3, group B has instances with

n = 40, d = 20, ρ = 0.3, group C has instances with n = 20, d = 10, ρ = 0.6 and

group D has instances with d = 10, ρ = 0.3, β = 0.5. Note that we have conducted

the experiments on a large number of different classes of CSPs and the results were

similar. The results reported here present a summary of all the results we have

observed.
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Experimental results with groups A, B, C and D are summarized in Figure 6.7a,

Figure 6.7b, Figure 6.7c and Figure 6.7d, respectively, where every data point in each

graph is obtained by averaging the results of 20 instances. We can observe from the

figures that, if the number of agents is moderate (e.g. n/5), then DisAC3.1 only

requires approximately half #NCCCs of DisAC9, but DisAC3.1 sends slightly more

messages than DisAC9. We also notice that if too many agents are used (e.g. n),

performances of the distributed algorithms become worse. This phenomenon owes to

the fact that too many agents would cause overloaded inter-agent communications

and thus decrease the concurrency of the distributed algorithms.

In the results of groups A and B, we observe that #NCCCs and #Msgs phase

transitions happen at tightness = 0.7. When constraint tightness is larger than 0.8,

#Msgs drops down to zero, because with increasing constraint tightness the need

for deleting domain values when enforcing AC dramatically decreases, which results

in decrease of inter-agent communications.

We notice that the constraint tightness at which #NCCCs and #Msgs phase

transitions happen is lower for group C than groups A and B: In group C the phase

transitions are at tightness=0.6, whereas in groups A and B the phase transitions

are at tightness=0.7. This phenomenon owes to the fact that higher network den-

sity implies higher number of constraints, which in turn increases the number of

constraint checks and inter-agent communications. Therefore, when the network

density is higher as is the case of group C, then the distributed algorithms require

lower constraint tightness to reach the phase transitions.

Furthermore, we observe that the distributed algorithms require higher #NCCCs

and #Msgs for group B, which is not a surprise considering the networks in group

B have larger number of variables and domain size.

We now compare the scalability of DisAC3.1 with DisAC9 (cf. Figure 6.7d). From
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the left subfigure, we observe that both algorithms show a linear behaviour w.r.t.

#variables, but #NCCCs of DisAC3.1 grows slower than that of DisAC9. We also

evaluated Lai and Wu’s termination detection algorithm [77] for DisAC3.1, which

is based on Dijkstra-Scholten termination detector and has an optimal message

complexity.1 In order to compare the performance of our termination detection

method with Lai and Wu’s termination detection algorithm, we modified DisAC3.1

by replacing our termination detection procedure with Lai and Wu’s algorithm.2

Result shows that all three algorithms show a sub-linear behavior w.r.t. the number

of variables. The modified DisAC3.1 requires more agent messages than the other

two, and DisAC9 is the best.

The main factor that affects the performance of our termination detection method

is the height of spanning trees of agent communication graphs. We evaluated the

#Msgs of DisAC3.1 w.r.t. the height of spanning trees. In order to generate span-

1Note that Lai and Wu’s algorithm assumes fully-connected agent communication graphs, and
every agent knows the identifications of all agents in the system.

2Note that we do not compare #NCCCs between the modified DisAC3.1 and DisAC3.1, as
termination detector is superimposed on the underling computation, i.e., it cannot intervene in the
underling computation [42] and thus does not affect #NCCCs.
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Figure 6.9 : Speed-up vs. number of agents on benchmark problems.

ning trees with height that we need, we set ρ = 1 for all random generated CSP

instances, so that all agent communication graphs are complete. The result is shown

in Figure 6.8, where each data point is averaged over 20 random instances. As ex-

pected, the larger the height of spanning trees, the larger the #Msgs required by

the algorithm. If the root is fixed, distributed breadth-first search [1] can be used

to find the spanning trees with minimum height.

We also consider benchmark problems that are commonly used for the evaluating

AC algorithms, i.e., the DOMINO problem [12, 136], which is designed to study the

worst case performance of AC3 and the Radio Link Frequency Assignment Prob-

lem [11, 12]. 1 Results are summarized in Tables 6.2 and 6.3. In Table 6.2, we can

observe that DisAC3.1 only needs 43.2% of #NCCCs of DisAC9 on average, while

#Msgs of both algorithms are comparable. Similarly, in Table 6.3, we can observe

that DisAC3.1 only needs 30.9% of #NCCCs of DisAC9 on average, while #Msgs of

both algorithms are comparable.

1Website https://www.cril.univ-artois.fr/˜lecoutre/benchmarks.html
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6.7.2 DisGAC3.1 vs. GAC2001/3.1

To evaluate our DisGAC3.1 algorithm, we compare it with GAC2001/3.1 by using

benchmark problems from the fourth international constraint solver competition.1

We have extracted instances of the Renault Megane configuration problem (Renault)

and the traveling salesman problem (TSP) for experiments, where the Renault in-

stances have arity of 10 and the TSP instances have arity of 3. Results are presented

in Figure 6.9. Here, the performance of GAC2001/3.1 is chosen as the baseline (num-

ber of agents = 1) and the speed-up2 is measured relative to the baseline. As one can

expect DisGAC3.1 is more efficient than GAC2001/3.1 and we observe that it has a

linear speed-up in the number of agents. We can also conclude that the performance

of DisAC3.1 increases linearly in the number of agents, since DisAC3.1 is a special

case of DisGAC3.1.

6.8 Conclusion

In this chapter we have presented new distributed algorithms DisAC3.1 and

DisGAC3.1 for efficient AC and GAC propagations. These algorithms do not as-

sume a complete agent communication graph and release less private information

of individual agents when enforcing AC and GAC. More precisely, an agent i only

shares information about its communication address, its domain Du, and its external

constraint Ruv with another agent j, if the variable v is owned by j.

Our theoretical analysis shows that our algorithms are efficient in both time

and space. Our experiments on both randomly generated instances and benchmark

problems show that (i) DisAC3.1 requires significantly less number of non-concurrent

constraint checks than the state-of-the-art distributed AC algorithm DisAC9, and (ii)

1Website http://www.cril.univ-artois.fr/CSC09/
2In this experiment, we measured the performance of the algorithm using the simulated time

metric [116] where message latency is simulated by a random time from 0–10ms per message.
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the performance of DisGAC3.1 scales linearly in the number of agents, maximizing

the merit of the distributed setting.

As technological advancements allow for solving larger problems that are highly

interwoven and dependent on each other, efficiency and privacy have become critical

requirements. For problems that can be modelled as distributed CSPs, we have

shown that DisAC3.1 and DisGAC3.1 are efficient algorithms that can serve as good

candidates for search space pruning.

Methods developed in this chapter also can be adapted to solve the multiagent

STP (MaSTP) studied in Chapter 5.

Appendix

Proof of Lemma 6.1

Proof. (1) ⇒ (2): Given an agent i, the property isIdle[i] is set to true only in

line 40 and line 43. If isIdle[i] was set to true in line 40, then sji = rij for all

j = 1, . . . , p and there is an agent k who sent a “domain update” message mki with

timestamp ski to agent i, and the corresponding “message sent” message msent
ki from

agent k to the root agent has been received. Since ski = rik, the root agent has also

received the message mutd
ki , and thus, the root agent has received agent i’s first “up

to date” message.

The other case, i.e., isIdle[i] was set to true in line 43, immediately implies that

the root agent have received an “up to date” message from agent i and sji = rij for

all j = 1, . . . , p.

(2) ⇒ (3): We prove this by contradiction.

First, suppose there is at least one “domain update” message that

has not been confirmed by the root agent and let mij be such a message (sent
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from agent i to agent j) which bears the earliest timestamp s and let msent
ij and mutd

ij

be the corresponding “message sent” message and “up to date” message, respectively

(cf. Section 6.4.2).

We first note that according to our assumption (2) the root agent already re-

ceived agent i’s first “up to date” message m0 and sik = rki for all k = 1, . . . , p.

Furthermore, because mij is the earliest message that has not been confirmed yet

and the root agent receives messages in FIFO manner, no other messages from agent

i to j sent later than mij have been confirmed by the root agent. Then it follows

that both msent
ij and mutd

ij have not been received by the root agent; otherwise, we

would have either sij > rji or sij < rji, contradicting our assumption.

Furthermore, agent i must have sent mij after sending m0 to the root agent;

otherwise, as the root agent receives messages from agent i in a FIFO manner, it

would have received msent
ij before receiving m0. Now that agent i sent mij after

sending m0, it must have sent mij when it re-entered the first inner while-loop, i.e.,

it received a “domain update” message mki from an agent k after sending m0. Note

that this message mki is not confirmed either, because the corresponding “up to

date” message mutd
ki from agent i to the root agent must be sent after msent

ij , but

msent
ij has not been received by the root agent. As mki bears an earlier timestamp

than mij, we have the contradiction that mij is an unconfirmed “domain update”

message with the earliest timestamp. Thus, we can assume that all “domain update”

messages have been confirmed.

Now suppose there is at least one agent running the first inner while-loop and let

i be such an agent. Then, since agent i sent already its first “up to date” message to

the root agent, agent i must have received a new message of type “domain update”

so that it could re-enter the first inner while-loop. Let this “domain update” message

mki be from an agent k. Then agent i has not yet sent the corresponding “up to
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date” messagemutd
ki to the root agent, as it has not finished the first inner while-loop.

Thus mki has not been confirmed. This is a contradiction to our assumption that

all “domain update” messages have been confirmed.

(3) ⇒ (1): We prove this by contradiction.

We note first that the state of isIdle[i] (i = 1, . . . , p) will remain fixed in the

future, because all “domain update” messages have been confirmed and no agent is

running the first inner while-loop, and thus, no new message of type “message sent”

or “up to date” will be received by the root agent in the future. Suppose there is

an agent i such that isIdle[i] = false. Then the agent must have received at least

one “domain update” message from an agent k, otherwise sji = rij = −∞ for all

j = 1, . . . , p and as a consequence isIdle[i] had to be set to true in line 43 after the

root agent received the last “up to date” message of agent i.

Now suppose that mki is the last message that agent i received, which was sent

from agent k, and let msent
ki and mutd

ki be the corresponding “message sent” message

and “up to date” message, respectively. Then, becausemki has been confirmed, both

msent
ki andmutd

ki must have been received by the root agent. Ifmsent
ki was received later,

then the root agent must set isIdle[i] to true in line 40, and if mutd
ki was received

later, the root agent must set isIdle[i] to true in line 43. Both cases contradict our

assumption that isIdle[i] = false. Hence, isIdle[i] = true for all i = 1, . . . , p.

Proof of Lemma 6.2

Proof. We note first that at the beginning of the algorithm we have vacuously Di
u ⊇

Du, as D
i
u is a copy of Du.

Now suppose Di
u ⊇ Du during the process of the algorithm. Then we note that

Di
u 	⊇ Du can only happen in line 17 of the algorithm, where there exists a variable

v ∈ Vi with Ruv ∈ Cji such that Revise(u, v) is true, i.e., there exists b ∈ Di
u for
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which no a ∈ Dv exists with (b, a) ∈ Ruv in which case we remove b from Di
u. Agent

i then prompts agent j to replace Dj
v with the content of Dv (line 19). Agent j—we

now switch the perspective and look at the algorithm from agent j’s point of view—

then replaces Dj
v with the content of Dv (line 34) and adds among other arcs (u, v)

to its queue (line 35), and applies function Revise to (u, v) (line 10). This deletes

b from Du, as there is no a ∈ Dj
v with (b, a) ∈ Ruv. Thus, we have Di

u ⊇ Du.
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Chapter 7

Conclusion

The research presented in this dissertation is focused on exploring local consistency

methods for solving constraint satisfaction problems (CSPs) in several directions.

In the first part we explored centralized local consistency algorithms to identify

more general tractable constraint classes and to solve tractable constraint classes

more efficiently. Most of our works are related to the class of connected row-convex

(CRC) constraints, which can model problems in domains such as temporal reason-

ing, VLSI design, geometric reasoning, scene labelling as well as logical filtering.

We first generalized the class of CRC constraints to the class of tree-preserving

constraints. We proved that enforcing strong PC decides the consistency of a

tree-preserving constraint network and, if no inconsistency is detected, transforms

the network into a globally consistent constraint network. As an application, we

showed that a large subclass of the scene labelling problem can be modelled as

tree-preserving constraint networks.

We then characterized CSPs that are solvable with directional PC. We showed

that DPC (the DPC enforcing algorithm of Dechter and Pearl) decides the con-

straint satisfaction problem (CSP) of a constraint language if it is complete and has

the variable elimination property (VEP). However, we also showed that no com-

plete VEP constraint language can have a domain with more than 2 values. We

then presented a simple variant of the DPC algorithm, called DPC∗, and showed

that the CSP of a constraint language can be decided by DPC∗ if it is closed under

a majority operation. In fact, DPC∗ is sufficient for guaranteeing backtrack-free
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search for such constraint networks.

In the second part we designed more efficient distributed local consistency al-

gorithms to solve tractable constraint classes and to filter inconsistent tuples for

distributed CSP solvers. We presented the first distributed deterministic algorithm

for connected row-convex (CRC) constraints. Our distributed partial path consis-

tency algorithm efficiently transforms a CRC constraint network into an equivalent

constraint network, where all constraints are minimal (i.e., they are the tightest

constraints) and generating all solutions can be done in a backtrack-free manner.

When compared with the state-of-the-art distributed algorithm for CRC constraints,

which is a randomized one, our algorithm guarantees to generate a solution for sat-

isfiable CRC constraint networks and it is applicable to solve large networks in

real distributed systems. The experimental evaluations showed that our algorithm

outperforms the state-of-the-art algorithm in both practice and theory.

We then considered the class of simple temporal constraints, which is closely

related to the class of CRC constraints and is widely used in temporal planning and

scheduling. In fact, discretized simple temporal constraints over finite domains are

exactly CRC constraints. We showed that the AC-based approach is sufficient for

solving both the simple temporal problem (STP) and Multiagent STP (MaSTP) and

provide efficient algorithms for them. As our AC-based approach does not impose

new constraints between agents, it does not violate the privacy of the agents and

is superior to the state-of-the-art approach to MaSTP. Empirical evaluations on

diverse benchmark datasets also showed that our AC-based algorithms for STP and

MaSTP are significantly more efficient than existing approaches.

Finally we proposed a new distributed arc-consistency algorithm, called DisAC3.1,

which leaks less private information of agents than existing distributed arc-consistency

algorithms. In particular, DisAC3.1 uses a novel termination determination mech-



185

anism, which allows the agents to share domains, constraints and communication

addresses only with relevant agents. We further extended DisAC3.1 to DisGAC3.1,

which is the first distributed algorithm that enforces generalized arc-consistency on

k-ary (k ≥ 2) constraint satisfaction problems. Theoretical analyses showed that

our algorithms are efficient in both time and space. Experiments also demonstrated

that DisAC3.1 outperforms the state-of-the-art distributed arc-consistency algorithm

and that DisGAC3.1’s performance scales linearly in the number of agents.

7.1 Directions for Future Research

The work presented here leaves room for additional improvements that can be

pursued in the future, some of which has been already mentioned in the respective

chapters.

Recently, Bulatov [16] and Zhuk [138] have confirmed the long-standing CSP

dichotomy conjecture, which was first proposed in [45]. The conjecture states that,

given any set of constraint relations Γ, the set of all possible CSPs defined over

Γ, CΓ, is either in P or NP-complete. It would be intriguing to develop efficient

methods to decide whether CΓ for a given set of relations Γ is in P, and if the answer

is positive, then develop efficient algorithms to solve all problems in CΓ.

Although Kozik had shown that singleton arc-consistency (SAC) algorithms solve

the same family of problems that are solvable with local consistency [71]. However,

it remains unclear whether backtrack-free search can be used to extract a solution

for such a problem after enforcing SAC. It would be interesting to see whether it

is possible to develop an algorithm which can extract a solution in a backtrack-free

manner.

It would be also interesting to see how the results in Chapter 5 can be used for

solving the general disjunctive temporal problems [115]. Potential extensions also
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include adapting our AC algorithms to incremental algorithms for the STP [105],

dynamic situations [102] and uncertainty [120].
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