
Less-Expensive Pricing and
Hedging of Extreme-Maturity

Interest Rate Derivatives
and Equity Index Options

under the Real-World Measure

Kevin John Fergusson

A thesis submitted for the degree of

Doctor of Philosophy

Finance Discipline Group in the UTS Business School

University of Technology Sydney.

28th February 2018





Production Note:
Signature removed
prior to publication.



ii



Notation

The following list provides the meaning of symbols and notation used throughout
this thesis.

Symbol Meaning
At Information available at time t written as a σ-algebra
A Filtration or evolution of the flow of information over

time
A+

T̄ ,K
(t, U) Price of an asset binary call option on an underlying

asset having price process U with expiry time T̄ and
strike price K

A−
T̄ ,K

(t, U) Price of an asset binary put option on an underlying
asset having price process U with expiry time T̄ and
strike price K

AIC Akaike Information Criterion
ᾱ0 Initial drift of the discounted GOP
ᾱt Drift of the discounted GOP
B+

T̄ ,K
(t, U) Price of a bond binary call option on an underlying asset

having price process U with expiry time T̄ and strike
price K

B−
T̄ ,K

(t, U) Price of a bond binary put option on an underlying asset
having price process U with expiry time T̄ and strike
price K

Bt Value of savings account at time t
BA Benchmark approach
BS Black-Scholes
cT̄ ,K(t, U) Price of a call option on an underlying asset having price

process U with expiry time T̄ and strike price K
capT ,K(t) Price of a cap in respect of a start date and subsequent

payment dates in the set T = {T0, T1, . . . , Tn}
capletT̄ ,T,K(t) Price of a caplet with start time T̄ and end time T

iii
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Symbol Meaning
CEV Constant elasticity of variance
CIR Cox-Ingersoll-Ross
δ∗ Strategy associated with the growth optimal portfolio
E(U) Expectation of a random variable U
E(U |At) Expectation of a random variable U given information

available at time t
fT (t) Instantaneous T -forward rate at time t
f∞(t) Asymptotic forward rate as at time t
FT̄ ,T (t) Discrete [T̄ , T ]-forward rate at time t
floorT ,K(t) Price of a floor in respect of a start date and subsequent

payment dates in the set T = {T0, T1, . . . , Tn}
floorletT̄ ,T,K(t) Price of a floorlet with start time T̄ and end time T
FT (t, U) T -Forward price of an asset having price process U
FRA Forward rate agreement
GOP Growth optimal portfolio
gT (t) Contribution of the short rate to the instantaneous T -

forward rate at time t
g∞(t) Contribution of the short rate to the asymptotic instan-

taneous forward rate as at time t
GT (t) Contribution of the short rate to the T -maturity zero-

coupon bond price
G(α, γ) Gamma distribution with shape parameter α and scale

parameter γ
G(x;α, γ) Cumulative distribution function of the gamma distri-

bution
GBM Geometric Brownian motion
GIG Generalised inverse Gaussian
GMMM Generalised minimal market model
Γ(x) Gamma function of x given by

∫∞
0

ux−1e−u du
hT (t) Contribution of the short rate to the T -maturity zero-

coupon bond yield at time t
h∞(t) Contribution of the short rate to the long zero-coupon

bond yield as at time t
1X Indicator function, equalling 1 if the statement X is true

and 0 otherwise
I Fisher’s information matrix
Iν(x) Modified Bessel function of the first kind with index ν
η Net market growth rate of the GOP
κ Speed of mean reversion associated with a short rate

model
K Strike price of an option
Kλ(ω) Modified Bessel function of the third kind with index λ



v

Symbol Meaning
�(Θ) Logarithm of likelihood function of model parameters Θ
L(Θ) Likelihood function of model parameters Θ
LHS Left hand side
LN(μ, σ) Lognormal distribution with location parameter μ and

scale parameter σ
LN(x;μ, σ) Cumulative distribution function of the lognormal dis-

tribution
mT (t) Contribution of the discounted GOP to the T -forward

rate at time t
MT (t) Contribution of the discounted GOP to the T -maturity

zero-coupon bond price
M(α, γ, z) Confluent hypergeometric function
MGF Moment generating function
MGFX(t) Moment generating function of the random variable X
MLE Maximum likelihood estimate
MMM Minimal market model
MSCI Morgan Stanley Capital International
n(x) Probability density function for the standard normal dis-

tribution
N(x) Cumulative distribution function for the standard nor-

mal distribution
N(μ, σ2) Normal distribution having mean μ and variance σ2

nT (t) Contribution of the discounted GOP to the T -maturity
zero-coupon bond yield at time t

NCG(α, γ, λ) Non-central gamma distribution having scale parameter
γ, shape parameter α and non-centrality parameter λ

NCG(x;α, γ, λ) Cumulative distribution function of the non-central
gamma distribution

OTC Over the counter
pT̄ ,K(t, U) Price of a put option on an underlying asset having price

process U with expiry time T̄ and strike price K
P (t, T ) Price of T -maturity zero-coupon bond at time t
PT ,c(t) Price at time t of a coupon bond having unit notional,

coupon rate c and most recent coupon payment date
and subsequent coupon payment dates in the set T =
{T0, T1, . . . , Tn}

payerswaptionT ,K,N(t) Price at time t of a payer swaption having strike rate
K and underlying swap with notional N and start date
(same as expiry date of swaption) and subsequent pay-
ment dates in the set T = {T0, T1, . . . , Tn}

PDE Partial differential equation
Poi(λ) Poisson distribution having rate parameter λ
QV Quadratic variation
[X]t Quadratic variation of a stochastic process X
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Symbol Meaning
r Short rate
r̄ Level of mean reversion associated with a short rate

model
receiverswaptionT ,K,N(t) Price at time t of a receiver swaption having strike rate

K and underlying swap with notional N and start date
(same as expiry date of swaption) and subsequent pay-
ment dates in the set T = {T0, T1, . . . , Tn}

IR Real numbers
RHS Right hand side
swaprateT (t) Swap rate at time t in respect of a start date and sub-

sequent payment dates in the set T = {T0, T1, . . . , Tn}
s, t Time
σ Diffusion parameter of a short rate process

Sδ∗
t Value of the growth optimal portfolio at time t

S̄δ∗
t Discounted value of the growth optimal portfolio at time

t
S&P 500 Standard and Poor’s 500 equity index
SDE Stochastic differential equation
SGH Symmetric generalised hyperbolic
Skew(U) Skew of a random variable U
SE(p̂) Standard error of an estimate of the parameter p
T , T̄ Time of option expiry or bond maturity
θ Volatility of the discounted GOP
USD United States Dollar
Var(U) Variance of a random variable U
Var(U |At) Variance of a random variable U given information avail-

able at time t
VaR Value at risk
W Wiener process driving the discounted GOP
WSI Diversified world stock index
χ2
ν Chi-squared distribution with ν degrees of freedom

χ2
ν(x) Cumulative distribution function for the chi-squared dis-

tribution with ν degrees of freedom
χ2
ν,λ Non-central chi-squared distribution with ν degrees of

freedom and non-centrality parameter λ
χ2
ν,λ(x) Cumulative distribution function for the non-central chi-

squared distribution with ν degrees of freedom and non-
centrality parameter λ

yT (t) Continuously compounded T -maturity zero-coupon
bond yield at time t

y∞(t) Continuously compounded long zero-coupon bond yield
as at time t
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Symbol Meaning
Z Wiener process driving the short rate
ZCB Zero-coupon bond
zcbcallT̄ ,T,K Price of T̄ -expiry call option on a T -maturity zero-

coupon bond with strike price K
zcbputT̄ ,T,K Price of T̄ -expiry put option on a T -maturity zero-

coupon bond with strike price K
(x)n Pockhammer function which is shorthand for the prod-

uct x (x + 1) (x + 2) . . . (x + n − 1), where n is a non-
negative integer and we use the convention that the
empty product is one
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Abstract

This thesis is practically oriented towards the pricing and hedging of long-dated
interest rate derivatives and equity index options under Platen’s benchmark ap-
proach. It aims to be self-contained for convenience of the reader, including all
proofs. Among leading banks and insurance companies there does not appear to
exist a generally accepted methodology of accurately pricing and hedging such
over-the-counter derivatives. This remains the case, despite significant efforts by
academics and market practitioners since the early 1990s. This thesis revisits this
problem in the light of empirical evidence in a much wider modelling framework
than that provided by the classical risk neutral approach.

The models considered in this thesis are specified by stochastic differential equa-
tions that describe the real-world dynamics of two market variables, namely the
short rate and the volatility of the growth optimal portfolio (GOP). The latter is
essentially a diversified equity index.

This thesis assesses for these models their ability to generate reasonably accurate
prices and hedges of typical interest rate term structure derivatives and equity
index options. When the discounted GOP is modelled as a time-transformed
squared Bessel process, fair prices differ from classical risk neutral prices, resulting
in lower prices and lower values-at-risk of long-dated derivatives. Also, such
models reflect well empirical market features, such as leptokurtic returns, the
leverage effect and a stochastic, yet stationary, volatility structure of the equity
index.

The results of this analysis, which are contained in this thesis, have been supple-
mented by the publications of Fergusson and Platen [2006], Fergusson and Platen
[2014a], Fergusson and Platen [2015b], Fergusson [2017a] and Fergusson [2017b]
and the research reports of Fergusson and Platen [2013], Fergusson and Platen
[2014b] and Fergusson and Platen [2015a]. In addition, as by-products of the
work done in this thesis, the following papers have been published: Thompson
et al. [2017], Calderin et al. [2017] and the following have been submitted to jour-
nals for publication: Fergusson and Platen [2014c], Fergusson and Platen [2017].
Finally, the following working papers are to be submitted to journals shortly:
Fergusson [2017c], Fergusson [2017d], Fergusson [2017e].

This thesis is practically oriented towards the pricing and hedging of long-dated
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interest rate derivatives and equity index options under Platen’s benchmark ap-
proach. Among leading banks and insurance companies there does not appear to
exist a generally accepted methodology of accurately pricing and hedging such
over-the-counter derivatives. This thesis revisits this problem in the light of em-
pirical evidence in a much wider modelling framework than that provided by the
classical risk neutral approach. The models considered in this thesis are specified
by stochastic differential equations that describe the real-world dynamics of two
market variables, namely the short rate and the volatility of the growth optimal
portfolio (GOP). The latter is essentially a diversified equity index. This thesis
assesses for these models their ability to generate reasonably accurate prices and
hedges of typical interest rate term structure derivatives and equity index options.
When the discounted GOP is modelled as a time-transformed squared Bessel pro-
cess, fair prices differ from classical risk neutral prices, resulting in lower prices
and lower values-at-risk of long-dated derivatives. Also, such models reflect well
empirical market features, such as leptokurtic returns, the leverage effect and a
stochastic, yet stationary, volatility structure of the equity index.



Chapter 1

Brief Outline of the Thesis

The aim of this thesis is to assess the performance of hedging interest rate deriva-
tives and equity index options entirely under the real-world probability measure
for a variety of models in a much wider modelling framework than that provided
by classical theories. The thesis aims also to derive all formulae employed, using
new or alternative proofs.

The pricing of interest rate derivatives is performed under the benchmark ap-
proach, where the growth optimal portfolio (GOP) plays a central role. The
GOP is the strictly positive portfolio that maximises expected logarithmic utility
of terminal wealth. It is approximated in this thesis by large, well-diversified
portfolios such as a world stock index (WSI).

The short rate is the continuously compounded annualised rate of interest earned
on cash deposited for an infinitesimally small period of time. The cash account
is the accumulation of cash continuously reinvested at the short rate of interest.
The discounted GOP is the ratio of the GOP to the cash account.

The models considered in this thesis are described via stochastic differential equa-
tions (SDEs) for the discounted GOP and the short rate.

The benchmark approach (BA) to pricing derivative securities provides a method-
ology more general than that of risk neutral pricing in complete markets, used by
most participants in the market today. A challenging problem is the pricing and
hedging of extreme-maturity fixed income derivatives. In this regard, this thesis
will document that prices and replicating portfolios can be established under the
BA that are considerably less expensive than those currently suggested under the
prevailing theories and practices.

For instance, over the last ten years there has been increasing demand for fifty
year bonds by pension funds. This thesis points the way to hedging longer dated
derivatives in practice. It shows that the existing market prices for extreme-
maturity derivatives are potentially overpriced. Based on our assumptions we
infer prices for extreme-maturity derivatives in a manner which we aim to make
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transparent to both academics and market practitioners.

The key to our less-expensive valuation is that a diversified equity market index,
interpreted as a proxy for the GOP, is growing faster on average in the very long
term than the savings account. This is a stylised empirical fact, well documented,
for instance, in the equity risk premium literature. The hedging of extreme-
maturity derivatives exploits as much as possible the higher growth of the index
rather than the lesser growth of the savings account. The latter is, in principle,
currently used as the reference asset for the market.

Our main question that we would like to answer is the following: When using
historical data for the underlying assets, is the hedging of long term fixed income
market instruments aligned more to the risk neutral pricing paradigm than to
the general paradigm offered under the benchmark approach?

Part of the above purpose is to marry historical estimation of model parameters to
realistic theoretical prices and hedges of important fixed income derivatives. This
is to say, in this thesis, we use retrospective statistical estimates to fit interest
rate term structure models under the real-world probability measure with the
aim that the resulting derivative prices can be reasonably hedged in reality.

In this thesis we deliberately avoid assuming that extreme-maturity and other
derivative prices are correctly priced in the market already, and instead rely on
real-world pricing within the benchmark paradigm to assess their possibly low
values.

Chapter 2 of this thesis introduces in detail Platen’s benchmark approach (BA)
and how it is applied to the pricing and hedging of European interest rate deriva-
tives. The central building block of the BA is the growth optimal portfolio (GOP),
which is the portfolio having maximal expected logarithmic utility from terminal
wealth. The GOP satisfies in the given continuous market a very particular SDE,
where the risk premium is the square of the volatility.

The GOP will be used as the numéraire portfolio (see Long [1990]) and bench-
mark. Prices expressed in units of the GOP are called benchmarked prices. All
benchmarked nonnegative portfolios are supermartingales, which means that they
trend, in the long run, downwards or have no (upward) trend.

Using the martingale property of benchmarked fair prices of derivatives, we com-
pute general formulae for forward rate agreements, interest rate swaps, interest
rate caps, interest rate swaptions, bond options and options on the GOP under
various models. The resulting interest rate derivatives are then discussed in the
light of historical market data. One way that we exploit is the use of hedge sim-
ulations of interest rate derivatives. A given market model, which consists of an
interest rate model and an associated model of the discounted GOP, induces a
pricing formula for an interest rate derivative and also induces a related dynamic
hedging strategy. A hedging strategy is assessed by looking at the cost of hedging
the derivative: the lower the cost of hedging, and the greater the accuracy, the
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better the hedging strategy. We can, therefore, compare various financial mar-
ket models with regard to the performance of their induced prices and hedging
strategies.

In Chapter 3, three models of the short rate are described, ranging in simplic-
ity from the Vasicek model, to the more complicated Cox-Ingersoll-Ross and
3/2 interest rate models. In Chapter 4, two models of the discounted GOP are
described, geometric Brownian motion and a time transformed squared Bessel
process.

In Chapter 5 we investigate several market models which combine the short rate
models of Chapter 3 with the models of the discounted GOP in Chapter 4. The
particular combinations of models for the discounted GOP and the short rate are
the following:

For the discounted GOP we consider the Black-Scholes (BS) model and the min-
imal market model (MMM). For the short rate we study the deterministic short
rate model, Vasicek model, CIR model and 3/2 model. The parameters of these
short rate models are deliberately chosen without any time dependency. The
parameter estimation methods for the short rate models have been published
in Fergusson and Platen [2015b]. For each model we compute pricing formulae of
major interest rate derivatives and equity index options. The pricing formulae of
interest rate swaptions under the two-factor market model are original, published
in Fergusson and Platen [2014a]. The pricing formulae of equity index options
when interest rates are stochastic are original and the corresponding approxi-
mate pricing formulae are developed which allow rapid calculation of the prices
of equity index options, reported in Fergusson and Platen [2015a].

In Chapter 6 we describe stylised features of each model with regard to yield curve
shapes, interest rate volatility term structure and GOP volatility. These findings
have been published in Fergusson and Platen [2006] and reported in Fergusson
and Platen [2014b].

In Chapter 7 we compare each model’s performance in hedging zero-coupon
bonds of various terms to maturity. Chapter 8 presents a comparison of each
model’s performance in hedging swaptions. These comparisons have been pub-
lished in Fergusson and Platen [2014a]. Chapter 9 involves a comparison of each
model’s performance in hedging options on the GOP, reported in Fergusson and
Platen [2015a].

Chapter 10 concludes with the narrowing down of our search for the best market
model, this being a model which exhibits many of the stylised features observed
in the market. In particular, it is the model under which all the regimes of the
yield curve, namely steepening, inverse and humped shapes, are attainable, the
volatility term structure of forward rates exhibits stylised features of the cap
and swaption markets and the leverage effect is realistically reflected. We find
that extreme-maturity fixed income derivatives are less expensive under MMM
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discounted GOP models than under BS discounted GOP models. Also, hedge
simulations of long-dated and extreme-maturity derivatives within the paradigm
of MMM discounted GOP models demonstrate significantly lower Values-at-Risk
than those within the paradigm of BS discounted GOP models. Finally, we
indicate a way of generalising the market models in this thesis to multi-currency
models, which can be used to price and hedge more exotic long-dated interest
rate and FX derivatives.



Chapter 2

Derivatives Pricing

2.1 Introduction

We describe in this chapter the pricing of derivatives using the GOP as numéraire
and the real-world probability measure as pricing measure, as done in the earlier
work of Platen [2002b], Platen [2004], Platen and Heath [2006] and Miller [2007].
We commence describing primary security accounts as the building blocks of our
portfolios. Of all possible non-negative portfolios that can be constructed, we
explain the idea of a growth optimal portfolio (GOP). We define a benchmarked
portfolio as a non-negative portfolio denominated in terms of the GOP.

In Platen [2002b] it is proven that in a continuous time jump diffusion market a
benchmarked self-financing portfolio process is a local martingale, and when the
portfolio is non-negative it is also a supermartingale. The supermartingale prop-
erty of portfolios ensures that the portfolios do not permit strong arbitrage in the
sense described in Platen and Heath [2006], see Definition 2.5.1. The minimal
supermartingale that replicates a given benchmarked payoff is the corresponding
martingale. This is why we will use martingales to determine derivative prices
choosing the GOP as numéraire. Now the pricing measure is the probability mea-
sure associated with the real-world dynamics of the market and its benchmarked
portfolios. In our setting a contingent claim is a payoff at a given time whose
value depends on the values of the underlying assets. By computing the expecta-
tion of a benchmarked contingent claim with respect to the real-world probability
measure, we obtain the fair (or real-world) price for the benchmarked contingent
claim, and hence a fair price process for the contingent claim. This price process
is minimal in the set of possible replicating portfolio processes. The minimal
prices when valuing contingent claims are those that follow via real-world pricing
under the benchmark approach.

Of course, when given a model we can calculate associated sensitivities of the price
of the contingent claim to changes in prices of underlying assets. In this manner
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we can develop a dynamic trading strategy involving the underlying assets, which
hedges the contingent claim to its expiry date.

The benchmark approach to hedging a contingent claim is described later in
this chapter including several results on derivative contracts, which differ from
classical risk neutral prices.

2.2 Financial Market

Our market consists of d + 1 primary assets, which are continuously traded and
whose randomness is modelled by d independent standard Wiener processesW k =
{W k

t , t ∈ [0, T ]}, k ∈ {1, 2, . . . , d}. These processes are defined on a filtered
probability space (Ω,AT ,A, P ) with finite time horizon T ∈ (0,∞), fulfilling the
usual conditions, namely that the probability space (Ω,AT , P ) is complete, the
σ-algebras At contain all the sets in AT of zero probability and the filtration
A = {A : t ∈ [0, T ]} is right-continuous, as given in Protter [2004]. Here the
filtration A = {A : t ∈ [0, T ]} models the evolution of market information over
time, while At describes the information available at time t ∈ [0, T ]. P is the
real-world probability measure. For unexplained notions and definitions, we refer
to Platen and Heath [2006].

2.2.1 Primary Security Accounts

We introduce d + 1 primary assets, d ∈ {1, 2, . . .}, where the 0-th primary asset
is the domestic currency and where the other primary assets are, for example,
stocks, currencies, bonds and commodities. Associated to each primary asset is
an income, or carrying cost, derived from holding the asset. For example, the
income earned from holding US dollars is interest calculated at the US deposit
rate and the income earned from holding stocks is the paid dividends.

The j-th primary asset, j ∈ {0, 1, . . . , d}, when measured in units of the domestic
currency, is modelled via the primary security account process Sj = {Sj

t , t ∈
[0, T ]}. Each primary security account represents the accumulation of all income,
carrying costs plus capital gains or losses achieved while holding the underlying
primary asset. For example, the IBM stock has its primary security account
consisting of the initial share held at time t = 0 plus all dividends reinvested
into the stock since the initial time t = 0, with the total value of these holdings
expressed in units of the domestic currency, which is in this thesis usually US
dollars (USD). We also assume that the units of primary assets are infinitely
divisible such that it is possible for trading to be both continuous and frictionless,
that is to say, without transaction costs.

We assume that Sj
t is the unique solution of the stochastic differential equation
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(SDE)

dSj
t = ajt S

j
t dt+ Sj

t

d∑
k=1

bj,kt dW k
t (2.2.1)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d} with finite initial value Sj
0 > 0. The j-th

appreciation rate aj = {ajt , t ∈ [0, T ]} is the expected return of holding the j-
th primary security in units of the domestic currency. The (j, k)-th volatility
bj,k = {bj,kt , t ∈ [0, T ]} expresses the fluctuations generated by the k-th Wiener
process W k, k ∈ {1, 2, . . . , d} of the return of the j-th primary security when
denominated in the domestic currency. The appreciation rates and the volatilities
are assumed to be finite predictable processes.

Assumption 2.2.1 We assume that the volatility matrix bt = [bj,kt ]dj,k=1 exists
and is for Lebesgue-almost-every t, invertible, hence (bt)

−1 < ∞ for t ∈ [0, T ].

This ensures that market prices of risk for the given currency denomination are
uniquely determined. In this study we only consider the case where there exists a
unique market price of risk for every source of uncertainty that is generated by the
Wiener processes W k, k ∈ {1, 2, . . . , d}, in the domestic currency denomination.

2.2.2 Savings Account

We consider the 0-th primary asset and form an accumulation account in units
of this security. We refer to such an account as the domestic savings account
process B = {Bt, t ∈ [0, T ]} for the 0-th primary security. It is locally riskless
in the sense as for domestic cash holdings in a bank account denominated in the
domestic currency. The growth rate of the domestic savings account at time t is
referred to as the domestic short rate rt. We assume that the domestic savings
account Bt satisfies the equation

Bt = B0 exp

(∫ t

0

rs ds

)
(2.2.2)

for t ∈ [0, T ], where we set B0 = 1 without loss of generality. Comparing (2.2.1)
and (2.2.2) we observe that a0t = rt and b0,kt = 0 for k ∈ {1, . . . , d} and t ∈ [0, T ].

Also note that the domestic savings account process B = {Bt, t ∈ [0, T ]} and the
domestic short rate process r = {rt, t ∈ [0, T ]} provide equivalent characterisa-
tions of the time value of the domestic currency. We will later see that the savings
account can be interpreted as the limit of a sequence of roll-over short-term bond
accounts.

If we introduce the appreciation rate vector at = (a1t , . . . , a
d
t )

� in the domestic
currency denomination and the unit vector 1 = (1, . . . , 1)�, then by Assump-
tion 2.2.1 we obtain the market price of risk vector for the domestic currency
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denomination as

θt = (θ1t , θ
2
t , . . . , θ

d
t )

� = (bt)
−1
(
at − rt × 1

)
(2.2.3)

for t ∈ [0, T ]. Using (2.2.3), we can rewrite the SDE (2.2.1) in the form

dSj
t = Sj

t

(
rt +

d∑
k=1

bj,kt θkt

)
dt+ Sj

t

d∑
k=1

bj,kt dW k
t (2.2.4)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. Let S = {St = (S0
t , S

1
t , . . . , S

d
t )

�, t ∈ [0, T ]}
denote the vector process of the primary security accounts. Also note that, thus
far, no major restrictions have been placed on the dynamics of the primary secu-
rity accounts.

2.2.3 Trading Strategies and Portfolios

We can now construct a portfolio of d + 1 primary security accounts. We say
that a stochastic process δ = {δt = (δ0t , . . . , δ

d
t )

�, t ∈ [0, T ]} is a strategy, if δ is
A-predictable and S-integrable, as defined in Protter [2004]. The j-th component
of the strategy at time t is denoted δjt ∈ (−∞,∞) and represents the number of
units of the j-th primary security account that are held in the portfolio at time
t ∈ [0, T ] for all j ∈ {0, 1, . . . , d}.
For a given strategy δ we introduce the corresponding wealth process as Sδ =
{Sδ

t , t ∈ [0, T ]}, which is determined as

Sδ
t =

d∑
j=0

δjt S
j
t (2.2.5)

for t ∈ [0, T ].

Definition 2.2.2 A strategy δ and the corresponding wealth process Sδ are called
self-financing if

dSδ
t =

d∑
j=0

δjt dS
j
t (2.2.6)

for t ∈ [0, T ].

In economic terms, self-financing strategies infer that there are no inflows or
outflows of funds to the corresponding wealth process Sδ and that all changes in
value are due to gains from trade. We only consider self-financing strategies and
wealth processes in the remainder of the thesis.
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Definition 2.2.3 A strategy δ is called admissible with respect to the domestic
currency if it is self-financing and its corresponding wealth process Sδ is non-
negative.

For a given strategy δ and portfolio value Sδ
t > 0, let πj,δ

t equal the proportion of
the value of the portfolio, that is invested in the j-th primary security account
at time t, which is calculated as

πj,δ
t =

δjt S
j
t

Sδ
t

(2.2.7)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. Note from (2.2.5) and (2.2.7) that these
proportions must sum to unity, that is

d∑
j=0

πj,δ
t = 1 (2.2.8)

for all t ∈ [0, T ]. For the strategy δ the corresponding wealth process Sδ
t satisfies

the SDE

dSδ
t = Sδ

t

(
rt +

d∑
k=1

d∑
j=0

πj,δ
t bj,kt θkt

)
dt+ Sδ

t

d∑
k=1

d∑
j=0

πj,δ
t bj,kt dW k

t (2.2.9)

for all t ∈ [0, T ].

2.3 Growth Optimal Portfolio

It is our aim to construct a benchmark, that can be used as a numéraire (or ref-
erence unit). The benchmark approach uses the growth optimal portfolio (GOP)
as benchmark, see Platen and Heath [2006]. Therefore, we seek the uniquely de-
termined GOP of the above described market. The GOP achieves the maximum
possible expected growth rate at any time, and also the maximum growth in the
long run, as shown in Platen [2004]. Furthermore, when used as benchmark, each
benchmarked non-negative portfolio is a supermartingale. As such, the GOP is
the best performing portfolio in this sense. It has been studied previously, for
example in Kelly [1956], Long [1990], Karatzas and Shreve [1998], Platen [2002b]
and by many other authors.

We can conveniently determine the GOP by calculating the maximum of the drift
of the logarithm of all strictly positive portfolios. Hence from (2.2.9) and the Itô
formula we find

d log(Sδ
t ) = gδt dt+

d∑
k=1

d∑
j=0

πj,δ
t bj,kt dW k

t (2.3.1)
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for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}, with the resulting portfolio growth rate gδt
as at time t. The optimal strategy δ∗ = {δ∗(t) = (δ0∗(t), . . . , δ

d
∗(t))

�, t ∈ [0, T ]}
follows from solving the first order conditions of the corresponding quadratic
maximisation problem for gδt , as shown in Platen [2002b]. This optimal strategy
translates into the optimal proportions

πδ∗
t = (π1,δ∗

t , . . . , πd,δ∗
t )� = [(bt)

−1]�θt (2.3.2)

for t ∈ [0, T ]. Therefore, substitution of the optimal proportions (2.3.2) into
(2.2.9) uniquely forms the GOP Sδ∗

t at time t, satisfying the SDE

dSδ∗
t = Sδ∗

t

(
rt +

d∑
k=1

(θkt )
2

)
dt+ Sδ∗

t

d∑
k=1

θkt dW
k
t (2.3.3)

for t ∈ [0, T ] with a given strictly positive initial value Sδ∗
0 > 0. By (2.2.9), (2.3.1)

and (2.3.3) we obtain the optimal growth rate gδ∗t of the GOP at time t in the
form

gδ∗t = rt +
1

2

d∑
k=1

(θkt )
2 (2.3.4)

for t ∈ [0, T ]. The two terms of (2.3.4), these being the short rate and half the
sum of squares of the GOP volatilities, are also the key ingredients that need to
be specified in an interest rate term structure model, as we will see later and also
as employed in Long [1990] and Karatzas and Shreve [1998].

The squared total market price of risk, which is the risk premium of the GOP in
(2.3.3), equates to the expression

|θt|2 = (θt)
� θt =

d∑
k=1

(θkt )
2 (2.3.5)

at time t ∈ [0, T ]. It is also observed as the square of the GOP volatility. Hence
we can rewrite (2.3.3) as the SDE

dSδ∗
t = Sδ∗

t

(
rt + |θt|2

)
dt+ Sδ∗

t |θt| dŴt (2.3.6)

for t ∈ [0, T ]. Here the Wiener process Ŵ = {Ŵt, t ∈ [0, T ]} has the stochastic
differential

dŴt =
1

|θt|

d∑
k=1

θkt dW
k
t (2.3.7)

for t ∈ [0, T ].

The following remark highlights one of the most important practical features of
the benchmark approach, namely the possibility to use a diversified market index
to approximate the GOP.
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Remark 2.3.1 Platen [2005b] and Platen and Rendek [2012a] prove that ap-
propriately defined diversified portfolios also represent approximate GOPs. This
result implies that appropriately defined diversified portfolios exhibit similar be-
haviour. Therefore, a number of commonly used, well-diversified stock market
indices can be used to approximate the GOP, including but not limited to the
following: the Standard and Poor’s 500 Index (S&P 500) and the Russell 2000
Index for the US market and the MSCI Growth World Stock Index (MSCI) for
global modelling.

Furthermore, inputs used in models discussed in later chapters can be based
on market observable indices. As an example, the volatility of the GOP can
be reasonably approximated by the volatility of the S&P 500 or the MSCI. By
using this approach, model inputs will be independent of investor preferences.
Additionally, parameters, probabilities and expectations are estimated and taken
with respect to the real-world probability measure, as discussed in the following
subsection.

An example of a well-diversified index that approximates the GOP is the World
Stock Index (WSI) provided by Global Financial Data. This long-term time
series is a careful reconstruction of an accumulated world stock index weighted by
market capitalisation beginning in 1920. A similar World Stock Index is studied
by Dimson et al. [2002], where the USD WSI discounted by the savings account
achieves an average net growth rate of 4.9% per annum over the previous century.
We have sourced data for the S&P Composite Index, which also approximates
the GOP, from Shiller [1989]. In Figure 2.1 we plot the logarithm of the S&P
Composite Index denominated in United States dollars (USD) for the period from
January 1871 to September 2014. By assuming that the GOP is approximated
by the market portfolio, Figure 2.1 can be interpreted as the logarithm of a
historical sample path for the GOP over the same period. We will later use the
S&P Composite Index covering the period from 1871 until 2014 to highlight the
effects on extreme-maturity term structure derivatives.

Note that the GOP dynamics are completely characterized by the short rate rt and
the market prices of risk θkt for k ∈ {1, . . . , d} and t ∈ [0, T ]. We can separate these
two effects by considering the discounted GOP process S̄δ∗ = {S̄δ∗

t , t ∈ [0, T ]},
given by

S̄δ∗
t =

Sδ∗
t

Bt

(2.3.8)

satisfying the SDE

dS̄δ∗
t = S̄δ∗

t |θt|2 dt+ S̄δ∗
t |θt| dŴt (2.3.9)

for t ∈ [0, T ]. Thus, discounting provides a natural way to separate the corre-
sponding short rate and the market price of risk component of the GOP.
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Figure 2.1: Logarithm of the WSI in USD from January 1871 to September 2014.
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2.4 Benchmarked Prices

Investment managers benchmark their performance against that of the market
index. Hence, the market index acts as a benchmark. According to Remark 2.3.1
a WSI, such as the MSCI, is a reasonable proxy for the GOP. Therefore, we can
infer that investors who use market indices to benchmark their performance are
actually comparing their performance against a proxy of the GOP. As we will see
below, in pricing derivatives we should simply compare the performance of the
derivative price against the best performing portfolio, which is in many ways the
GOP.

As explained in Geman et al. [1995], many strictly positive numéraires can be
selected as a reference unit. Traditionally in derivative pricing, an equivalent
pricing probability measure is assumed to exist based on the choice of the savings
account as numéraire. In the following, we select the GOP as the numéraire and
refer to prices expressed in units of the GOP as benchmarked prices. Long [1990]
showed under classical assumptions that when pricing securities in a complete
market with the GOP as numéraire, it is not necessary to perform a measure
transformation and it suffices to have the real-world probability as the pricing
measure. Therefore, the GOP as numéraire under real-world pricing plays a
similar role to a savings account for risk neutral pricing or a zero-coupon bond
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under forward-adjusted pricing. We will see that under certain conditions the
resulting derivative prices coincide.

For any non-negative portfolio Sδ, the corresponding benchmarked portfolio pro-
cess Ŝδ = {Ŝδ

t , t ∈ [0, T ]} is defined as

Ŝδ
t =

Sδ
t

Sδ∗
t

(2.4.1)

for any t ∈ [0, T ].

Application of the Itô formula together with (2.2.9), (2.3.3) and (2.4.1) results in
the value of the benchmarked portfolio Ŝδ

t at time t satisfying the SDE

dŜδ
t = −

d∑
k=1

d∑
j=0

δjt Ŝ
j
t

(
θkt − bj,kt

)
dW k

t = −
d∑

k=1

d∑
j=0

δjt Ŝ
j
t σ

j,k
t dW k

t (2.4.2)

for t ∈ [0, T ]. Note that σj,k
t = θkt − bj,kt for all t ∈ [0, T ], j ∈ {0, 1, . . . , d} and

k ∈ {1, . . . , d}, as shown in Platen [2001]. This leads to the following corollary
found in Platen [2002b].

Corollary 2.4.1 Any self-financing benchmarked wealth process Ŝδ is an (A, P )-
local martingale. If the corresponding portfolio is non-negative and its strategy δ is
predictable, then its benchmarked wealth process is also an (A, P )-supermartingale.

Consider the j-th benchmarked primary security account process Ŝj = {Ŝj
t , t ∈

[0, T ]}, which is obtained by

Ŝj
t =

Sj
t

Sδ∗
t

(2.4.3)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. Using (2.2.4), (2.3.3) and (2.4.3) and with the
Itô formula we find that Ŝj

t satisfies the SDE

dŜj
t = −Ŝj

t

d∑
k=1

(
θkt − bj,kt

)
dW k

t = −Ŝj
t

d∑
k=1

σj,k
t dW k

t (2.4.4)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. We observe that the right-hand-side of (2.4.4)
is driftless and, therefore, the benchmarked primary security account process Ŝj

is an (A, P )-local martingale. Additionally, since Ŝj is non-negative, it is also an
(A, P )-supermartingale (see Karatzas and Shreve [1991] ).
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2.5 Strong Arbitrage

As we will show, some of the models studied in this thesis do not fit under the stan-
dard risk neutral framework. Therefore, we use the benchmark approach with
its associated concept of real-world or fair pricing, outlined in Platen [2002b]
and Platen and Heath [2006]. As mentioned above, the choice of the GOP as
numéraire leads us to price benchmarked securities by using conditional expec-
tations with respect to the real-world probability measure P . In contrast, under
the widely known risk neutral approach, a change to an assumed equivalent risk
neutral probability measure is necessary for pricing. This restricts the range of
stochastic dynamics available for modelling financial quantities to processes that
exist under an equivalent risk neutral probability measure transformation. Actu-
ally, in a complete market the corresponding Radon-Nikodym derivative process
needs to be a martingale under the real-world probability measure, as discussed
in Karatzas and Shreve [1998] and Platen and Heath [2006]. For example, sim-
ple models such as the Black-Scholes model for the GOP, driven by geometric
Brownian motion, satisfies the necessary restrictions. However, more compli-
cated models, which reflect empirical features found in financial data, may not.
For instance, a number of difficulties are encountered for the well-known con-
stant elasticity of variance (CEV) model, as discussed in Delbaen and Shirakawa
[2002], Heath and Platen [2003] and Heston et al. [2007]. More generally, com-
plications exist for several classes of stochastic volatility models, discussed in Sin
[1998] and Lewis [2000]. However, since these models exist under the real-world
probability measure, and potentially provide a good fit to market data, the wider
selection of stochastic processes that becomes available for modelling under the
benchmark approach has significant benefits. In each model, a benchmarked port-
folio satisfies a driftless SDE and, therefore, will form an (A, P )-local martingale.
From Karatzas and Shreve [1991] we know that all continuous non-negative lo-
cal martingales are (A, P )-supermartingales, and, thus, from Corollary 2.4.1 all
non-negative benchmarked price processes are (A, P )-supermartingales. This su-
permartingale property is used in Platen [2002b] to show that the resulting price
system of securities does not permit a form of strong arbitrage. In words, the
definition of strong arbitrage used is that strictly positive profits cannot be gen-
erated under limited liability with strictly positive probability from zero initial
wealth. The precise mathematical definition of strong arbitrage underlying this
thesis is that described within Platen and Heath [2006].

Definition 2.5.1 A strong arbitrage for an admissible trading strategy δ is the
corresponding associated non-negative wealth process Sδ beginning with zero initial
wealth, hence Sδ

t = 0 almost-surely, and satisfying the relationships

P (Sδ
T̄ ≥ 0

∣∣At) = 1 (2.5.1)

and
P (Sδ

T̄ > 0
∣∣At) > 0 (2.5.2)
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for all t ∈ [0, T̄ ] and i ∈ {0, 1, . . . , d}, where T̄ is a stopping time taking values
in [0, T ].

This means that one has strong arbitrage if one can generate under limited li-
ability strictly positive wealth from zero initial capital. We have already noted
in Corollary 2.4.1 that non-negative benchmarked wealth processes are (A, P )-
supermartingales. Platen [2002b] proves that if the initial value of a non-negative
wealth process is zero, then it must remain zero indefinitely. Therefore, strong
arbitrage, as per Definition 2.5.1, is excluded in the given continuous market.
This also means that pricing by excluding strong arbitrage does not make much
sense. We will price later by the reasoning used to obtain the minimal possible
price.

It is also interesting to distinguish between the type of strong arbitrage we have
defined here and the kind of classical arbitrage discussed in the existing classical
literature. Usually the absence of classical arbitrage opportunities is defined
in terms of the existence of an equivalent risk neutral martingale probability
measure, starting with Harrison and Kreps [1979] and Harrison and Pliska [1981]
and culminating with the no-free-lunch-with-vanishing-risk (NFLVR) condition in
Delbaen and Schachermayer [1994], in their fundamental theorem of asset pricing.
This means that in our framework there exist some models that exclude the strong
arbitrage of Definition 2.5.1, yet may not satisfy the NFLVR condition. We argue
in this thesis that the NFLVR condition is most likely too restrictive since the
existence of an equivalent risk neutral probability measure is not necessary to
capture the essence of no-arbitrage in the real market. There is typically a need
to show collateral when fully aiming to exploit a classical arbitrage that is not a
strong arbitrage.

2.6 Real-World Pricing

Next we introduce an important notion from Platen [2002b] that is required to
explain the mechanism of real-world pricing.

Definition 2.6.1 A price process U = {Ut, t ∈ [0, T ]}, denominated in the

domestic currency, with E
(

|Ut|
Sδ∗
t

)
< ∞ for t ∈ [0, T ], is called fair if the cor-

responding benchmarked price process Û = {Ût = Ut/S
δ∗
t , t ∈ [0, T ]} forms an

(A, P )-martingale, that is

Ût = E
(
ÛT̄

∣∣At

)
(2.6.1)

for all 0 ≤ t ≤ T̄ ≤ T .

The (A, P )-martingale property of a fair price process means that its last observed
benchmarked value is the best forecast for any of its future benchmarked values.
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Various definitions can be found in the literature for contingent claims and related
derivative securities, usually in the form given in Baxter and Rennie [1996] or Hull
[1997]. The latter provides the definition of a derivative as “a financial instrument
whose value depends on the value of other, more basic underlying variables”. We
provide in this thesis the following definition.

Definition 2.6.2 We define a contingent claim HT̄ , denominated in the domes-
tic currency, that matures at a stopping time T̄ ∈ [0, T ] as an AT̄ -measurable,
non-negative payoff with

E

(
HT̄

Sδ∗
T̄

∣∣∣∣At

)
< ∞ (2.6.2)

for all t ∈ [0, T̄ ].

Henceforth, we refer to a derivative as a contract that has a contingent claim
as its payoff. In Platen and Heath [2006] it is shown that the minimal portfolio
price process that hedges a replicable contingent claim is the fair price process
that matches the payoff at maturity. This comes from the fact that the minimal
non-negative supermartingale that matches a given payoff is the corresponding
martingale. Under this rationale we will see that we generalise the classical risk
neutral no-arbitrage pricing by fair pricing, which provides the minimal possible
replicating hedge portfolios. Furthermore, Platen and Heath [2006] also show
that the price process resulting from the utility indifference pricing approach of
Davis [1997], is again a fair price process, even for the case of an incomplete
market when contingent claims are priced that are not replicable. It is, therefore,
reasonable in this thesis to make the following assumption.

Assumption 2.6.3 All derivative price processes are fair.

We remark that in Du and Platen [2016] the concept of benchmarked risk minimi-
sation has been introduced, which yields also for not fully replicable contingent
claims fair derivative price processes for a competitive liquid market. To calculate
the fair value U

HT̄
t at time t ∈ [0, T̄ ] for the contingent claim HT̄ , in the domestic

currency, the corresponding price process UHT̄ = {UHT̄
t , t ∈ [0, T̄ ]} is assumed to

satisfy the replication condition

U
HT̄

T̄
= HT̄ (2.6.3)

at the stopping time T̄ , P -almost surely. By Assumption 2.6.3 the derivative
price process UHT̄ must be fair and by Definition 2.6.1 the benchmarked price

process Û ĤT̄ must then be an (A, P )-martingale. Thus Û
ĤT̄
t = E(ĤT̄ | At), see

(2.6.1). This yields the following result, which can be found in Platen [2002b].
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Theorem 2.6.4 (Platen) The fair value of the derivative price U
HT̄
t in the do-

mestic currency can be obtained at time t by the real-world pricing formula

U
HT̄
t = E

(
Sδ∗
t

Sδ∗
T̄

HT̄

∣∣∣∣At

)
(2.6.4)

for t ∈ [0, T̄ ].

We emphasise that while it is possible that other self-financing price processes
may replicate the contingent claim HT̄ , the fair price process is the minimal
replicating price process. This follows since a martingale is the unique minimal
replicating non-negative supermartingale, see for example Du and Platen [2016].

2.7 Link to Risk Neutral Pricing

We now show that the real-world pricing methodology generalises the classical
risk neutral pricing framework in a complete market.

Recall from Karatzas and Shreve [1998] that in a complete market the candidate
Radon-Nikodym derivative process Λθ = {Λθ

t , t ∈ [0, T ]} for the putative risk
neutral measure Pθ with

Λθ
t =

dPθ

dP

∣∣∣∣
At

=
Bt

Sδ∗
t

Sδ∗
0

B0

=
B̂t

B̂0

=
S̄δ∗
0

S̄δ∗
t

(2.7.1)

equals, up to a constant normalisation factor, the benchmarked savings account
or inverse of the discounted GOP, with initial value Λθ

0 = 1. Recall that the
candidate Radon-Nikodym derivative can be interpreted as the inverse of the
discounted stock market index.

Under the assumption that Λθ is an (A, P )-martingale, the application of Gir-
sanov’s Theorem (see for example Heath and Platen [2006]) to the GOP (2.3.6)
allows us to obtain the SDE

dSδ∗
t = rt S

δ∗
t dt+ |θt|Sδ∗

t dŴ θ
t , (2.7.2)

where
dŴ θ

t = |θt| dt+ dŴt (2.7.3)

for t ∈ [0, T ]. Here Ŵ θ is a Wiener process under the assumed risk neutral
probability measure Pθ. The existence of Pθ follows when Λθ is a martingale. In
the case when Λθ is not a martingale the risk neutral pricing methodology is not
applicable.

Let us now try to understand whether this martingale assumption is a realistic
assumption. Using the data underlying the WSI in Figure 2.1 and corresponding
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Figure 2.2: Radon-Nikodym derivative for USD from 1871 to 2014.
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USD short rate data, we can construct a plot of the candidate Radon-Nikodym
derivative (2.7.1) for USD from 1871 to 2014, as illustrated in Figure 2.2. Notice
that the candidate Radon-Nikodym derivative process declines systematically on
average. Its long-term downward trend makes it unlikely to represent the trajec-
tory of a true martingale. The consistent average decline of the candidate Radon-
Nikodym derivative, displayed in Figure 2.2, is not surprising from an economic
perspective, given the evidence that average returns on long-term investments in
the stock market are consistently greater than the short rate, as demonstrated
in Dimson et al. [2002]. An important implication of this observation is that
the key assumption of risk neutral pricing, which postulates that the candidate
Radon-Nikodym derivative process is an (A, P )-martingale, is questionable. This
assumption is crucially required for the application of Girsanov’s Theorem and
should, therefore, be avoided, as first suggested in Platen [2002b]. In particu-
lar, one has to be careful when aiming to apply the risk neutral approach for
long-term derivatives.

The candidate Radon-Nikodym derivative is found from (2.3.9) and (2.7.1) to
equal

Λθ
t = exp

(
−1

2

∫ t

0

|θs|2 ds−
∫ t

0

|θs| dŴs

)
(2.7.4)

for t ∈ [0, T ]. This representation for the candidate Radon-Nikodym derivative
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process Λθ in (2.7.4) is sometimes described as state-price density or deflator, see
for instance Duffie [2001] or Karatzas and Shreve [1998]. Similarly, the inverse of
the GOP can be used as the stochastic discount factor in the stochastic discount
factor approach, see for example Cochrane [2001]. In the context of the work
of Loewenstein and Willard [2000] or in Platen [2002b], Λθ need not necessarily
be a martingale, and thus may not correspond to an equivalent change of prob-
ability measure. For the special case, when Λθ is strictly positive on [0, T ] and
E
(
Λθ

T

∣∣A0

)
= Λθ

0 = 1, then Λθ is indeed a state-price density or deflator. How-
ever, as we have just observed in Figure 2.2 the empirical data indicate that the
candidate Radon-Nikodym derivative process is realistically described by a strict
(A, P )-supermartingale. This translates into the relation E

(
Λθ

T

∣∣A0

)
< 1, for

T ∈ (0,∞). We emphasise that real-world pricing, as outlined in Section 2.6 and
suggested in Platen [2002b], makes no assumptions for the process Λθ, because it
does not form part of the real-world pricing methodology.

One can obtain the SDE for the candidate Radon-Nikodym derivative from either
(2.7.4) or by using (2.3.9) and (2.7.1) with the Itô formula as

dΛθ
t = −Λθ

t |θt| dŴt (2.7.5)

for t ∈ [0, T ], which is an (A, P )-local martingale. Whether the SDE (2.7.5)
describes a martingale will depend upon the nature of the volatility |θt| of the
GOP. The SDE will be that of a true martingale if the Novikov condition or other
similar sufficient conditions are met which can be found in the literature, see for
instance, Revuz and Yor [1999], Heath and Platen [2006] or Hulley and Platen
[2012].

It is possible to write the real-world pricing formula (2.6.4) with the aid of (2.7.1)
as

U
HT̄
t = E

(
Λθ

T̄

Λθ
t

Bt

BT̄

HT̄

∣∣∣∣At

)
(2.7.6)

for t ∈ [0, T̄ ]. For models where the candidate risk neutral measure Pθ and the
real-world measure P are equivalent, see Heath and Platen [2006], and the Radon-
Nikodym derivative process Λθ is an (A, P )-martingale, the relation (2.7.6) reverts
via the Bayes rule to the standard risk neutral pricing formula

U
HT̄
t = Eθ

(
Bt

BT̄

HT̄

∣∣∣∣At

)
(2.7.7)

for t ∈ [0, T̄ ], see Heath and Platen [2006]. Here Eθ denotes conditional expecta-
tion with respect to the risk neutral probability measure Pθ. However, it should
be noted that there are realistic models, such as some of those discussed in later
chapters, where the real-world and candidate risk neutral probability measures
are not equivalent because the Radon-Nikodym derivative process Λθ is not an
(A, P )-martingale. In these cases, the assumptions underlying the risk neutral
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pricing formula are not satisfied and, thus, (2.7.7) cannot be used. In contrast,
the real-world pricing formula (2.6.4) still remains applicable under these circum-
stances.

2.8 Forward Adjusted Pricing

Zero-coupon bonds are fundamental securities in financial markets. With the
aid of the real-world pricing formula (2.6.4) we can formally define zero-coupon
bonds under the benchmark framework.

Definition 2.8.1 The real-world price of a zero-coupon bond P (t, T̄ ) at time t
with fixed maturity T̄ ∈ [0, T ] is defined as the fair value at time t of a payoff of
one unit of the domestic currency, and is given by

P (t, T̄ ) = E

(
Sδ∗
t

Sδ∗
T̄

∣∣∣∣At

)
(2.8.1)

for t ∈ [0, T̄ ].

Note that P (T̄ , T̄ ) = 1. Throughout this thesis we will find it convenient to make
the following assumption.

Assumption 2.8.2 We assume that the driving processes of the short rate pro-
cess r and the discounted GOP S̄δ∗ are independent.

This assumption can be relaxed if requested. It allows us to characterise the
real-world zero-coupon bond price P (t, T̄ ) in the following multiplicative way:

Theorem 2.8.3 A zero-coupon bond with price P (t, T̄ ) as at time t and maturing
at time T̄ satisfies the formula

P (t, T̄ ) = E

(
S̄δ∗
t

S̄δ∗
T̄

Bt

BT̄

∣∣∣∣At

)
= MT̄ (t)GT̄ (t), (2.8.2)

where the discounted GOP contribution to the zero-coupon bond price is defined
by

MT̄ (t) = E

(
S̄δ∗
t

S̄δ∗
T̄

∣∣∣∣At

)
= E

(
Λθ

T̄

Λθ
t

∣∣∣∣At

)
(2.8.3)

and the short rate contribution to the bond price is given as

GT̄ (t) = E

(
Bt

BT̄

∣∣∣∣At

)
(2.8.4)

for t ∈ [0, T̄ ].
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Proof . The result follows if we introduce the sigma-algebra Ar
t generated by At

and the entire path of the short rate r until time T̄ . That is Ar
t = σ{rs, s ∈

[0, T̄ ]} ∪ At, noting that At ⊆ Ar
t . Then using the independence of the driving

processes for the short rate r and the discounted GOP S̄δ∗ , given in (2.8.1) and
(2.3.9) and assumed in Assumption 2.8.2, the real-world price of a zero-coupon
bond is found to equal

P (t, T̄ ) = E

(
Bt

BT̄

S̄δ∗
t

S̄δ∗
T̄

∣∣∣∣At

)

= E

(
Bt

BT̄

E

(
S̄δ∗
t

S̄δ∗
T̄

∣∣∣∣Ar
t

) ∣∣∣∣At

)

= E

(
Bt

BT̄

MT̄ (t)

∣∣∣∣At

)

= E

(
Bt

BT̄

∣∣∣∣At

)
MT̄ (t) (2.8.5)

for t ∈ [0, T̄ ], which proves (2.8.2). Q.E.D.

An example, where the driving processes of the discounted GOP and the short
rate are assumed to be independent, is studied in Miller and Platen [2005]. An-
other example is when the short rate is assumed to be deterministic, as appears
regularly in the literature on options in equity markets.

Remark 2.8.4 The expression in (2.8.3), referred to as the discounted GOP con-
tribution to the zero-coupon bond price, is one of the most important quantities
we encounter in this thesis. The second equality in (2.8.3) reminds us that it can
also be interpreted as the expected value of either the Radon-Nikodym derivative
for the candidate risk neutral measure, or equivalently, the potential state-price
density. An equivalent risk neutral probability measure will exist if and only if
Λθ is an (A, P )-martingale and hence MT̄ (t) = 1 in (2.8.3) for all t ∈ [0, T̄ ].
This is the case for the Black-Scholes model that we consider in the next chapter.
Mathematically, this means that the underlying assumptions of Girsanov’s Theo-
rem, see Heath and Platen [2006], are satisfied for this specific model. However,
for the models of MMM type that will be discussed later on, the Radon-Nikodym
derivative Λθ forms an (A, P ) strict supermartingale, meaning that MT̄ (t) < 1
for all t ∈ [0, T̄ ). In this latter case, Girsanov’s Theorem is not applicable since
its assumptions are not satisfied.

Given zero-coupon bond prices, we can calculate the continuously compounded
yield to maturity yT̄ (t) at time t for the maturity date T̄ ∈ [0, T ], expressed as

yT̄ (t) = − 1

T̄ − t
log
(
P (t, T̄ )

)
(2.8.6)
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for all t ∈ [0, T̄ ]. Therefore, in the case when the zero-coupon bond price can be
written in the form of (2.8.2), then the yield to maturity (2.8.6) takes the form

yT̄ (t) = nT̄ (t) + hT̄ (t) (2.8.7)

where the discounted GOP contribution to the yield to maturity is

nT̄ (t) = − 1

T̄ − t
log
(
MT̄ (t)

)
(2.8.8)

and the short rate contribution to the yield to maturity is

hT̄ (t) = − 1

T̄ − t
log
(
GT̄ (t)

)
(2.8.9)

for t ∈ [0, T̄ ].

Given zero-coupon bond prices, we can also calculate the instantaneous forward
rate fT̄ (t) at time t for the maturity date T̄ ∈ [0, T ], expressed as

fT̄ (t) = − ∂

∂T̄
log
(
P (t, T̄ )

)
(2.8.10)

for all t ∈ [0, T̄ ]. Therefore, in the case when the zero-coupon bond price can be
written in the form of (2.8.2), then the forward rate (2.8.10) takes the form

fT̄ (t) = mT̄ (t) + gT̄ (t) (2.8.11)

where the discounted GOP contribution to the forward rate is

mT̄ (t) = − ∂

∂T̄
log
(
MT̄ (t)

)
(2.8.12)

and the short rate contribution to the forward rate is

gT̄ (t) = − ∂

∂T̄
log
(
GT̄ (t)

)
(2.8.13)

for t ∈ [0, T̄ ].

In forward-adjusted pricing a zero-coupon bond process P (·, T̄ ) with fixed ma-
turity T̄ is used as numéraire. The candidate measure for this numéraire is
referred to as the T̄ -forward risk-adjusted measure and sometimes more briefly
as T̄ -forward measure. For the domestic currency denomination, the T̄ -forward
measure is denoted by PT̄ and its related expectation is denoted ET̄ .

In the case of the T̄ -forward measure, the corresponding candidate Radon-Nikodym
derivative process ΛT̄ = {ΛT̄

t , t ∈ [0, T ]} equals

ΛT̄
t =

dPT̄

dP

∣∣∣∣
At

=
P̂ (t, T̄ )

P̂ (0, T̄ )
=

P (t, T̄ )Sδ∗
0

P (0, T̄ )Sδ∗
t

(2.8.14)
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with initial value ΛT̄
0 = 1. To derive the corresponding pricing formula, we can

rewrite the real-world pricing formula (2.6.4) using (2.8.14) to find

U
HT̄
t = E

(
ΛT̄

T̄

ΛT̄
t

P (t, T̄ )

P (T̄ , T̄ )
HT̄

∣∣∣∣At

)
(2.8.15)

for t ∈ [0, T̄ ]. The candidate Radon-Nikodym derivative process ΛT̄ is an (A, P )-
martingale, because according to our Assumption 2.6.3 the zero-coupon bond
price process is fair. This ensures the following result:

Corollary 2.8.5 Applying Bayes’ Rule (see Heath and Platen [2006]), the for-
mula (2.8.15) reduces to the forward-adjusted pricing formula

U
HT̄
t = P (t, T̄ ) ET̄

(
HT̄

∣∣At

)
(2.8.16)

for t ∈ [0, T̄ ].

Applications of (2.8.16) are discussed in detail, for instance, within Musiela and
Rutkowski [1997]. Hence, we have shown that real-world pricing generalises
forward-adjusted pricing. We emphasise that under real-world pricing there is
no need to assume that the candidate Radon-Nikodym derivative process ΛT̄

in (2.8.14) is an (A, P )-martingale, nor that the probability measures PT̄ and
P are equivalent. This is guaranteed by Assumption 2.6.3, according to which
benchmarked zero-coupon bonds are martingales. We do emphasise that there
may exist significant computational advantages when using the forward-adjusted
pricing formula, as will become clear later.

2.9 Forward Prices and Contract Valuation

In this section we examine forward prices and the valuation of forward contracts.
First, consider a forward contract on an underlying nonnegative price process
U = {Ut, t ∈ [0, T ]} that pays UT̄ at maturity date T̄ for the fixed delivery price
K0, set at time 0.

2.9.1 Long Position in a Forward Contract

For a long position in a forward contract the net payoff at the maturity date is
given by

HT̄ = UT̄ −K0. (2.9.1)



24 CHAPTER 2. DERIVATIVES PRICING

For this payoff, we calculate the time t = 0 fair value VT̄ ,K0
(0, U) of such a

contract using the real-world pricing formula (2.6.4) and (2.9.1) to obtain

VT̄ ,K0
(0, U) = E

(
Sδ∗
0

Sδ∗
T̄

(UT̄ −K0)

∣∣∣∣A0

)

= Sδ∗
0 E

(
UT̄

Sδ∗
T̄

∣∣∣∣A0

)
−K0 E

(
Sδ∗
0

Sδ∗
T

∣∣∣∣A0

)

= Sδ∗
0 Û0 −K0 P (0, T̄ ), (2.9.2)

where

Û0 = E

(
UT̄

Sδ∗
T̄

∣∣∣∣A0

)
(2.9.3)

for t ∈ [0, T̄ ]. We also make use of the real-world zero-coupon bond pricing
formula (2.8.1). Note that if the process U is fair, as per Definition 2.6.1, then
(2.9.2) simplifies to

VT̄ ,K0
(0, U) = U0 −K0 P (0, T̄ ) (2.9.4)

for t ∈ [0, T̄ ].

It is well known that the forward contract must have zero value at inception.
Therefore, at the initiation of the forward contract, the delivery price is set
equal to the currently observed forward price. This means that the forward price
FT̄ (0, U) associated with the forward contract written at time t = 0, is obtained
as a substitution for the delivery price K0 when the forward contract value (2.9.2)
is set to zero. That is, FT̄ (0, U) = K0 when VT̄ ,K0

(0, U) = 0. A rearrangement of
(2.9.2) results in the formula

FT̄ (0, U) =
Sδ∗
0 Û0

P (0, T̄ )
(2.9.5)

for maturity time T̄ ∈ [0, T ].

2.9.2 Long Position in a Forward Contract after Inception

We can generalise the relationship in (2.9.2) to the value of a forward contract
VT̄ ,Kt

(t, U) on the price process U paying the identical cashflow UT̄ at maturity
time T̄ for the time t delivery price Kt. The fair value of such a contract at time
t is found as

VT̄ ,Kt
(t, U) = E

(
Sδ∗
t

Sδ∗
T̄

(UT̄ −Kt)

∣∣∣∣At

)
= Sδ∗

t Ût −Kt P (t, T̄ ), (2.9.6)

where

Ût = E

(
UT̄

Sδ∗
T̄

∣∣∣∣At

)
(2.9.7)
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for all t ∈ [0, T̄ ]. The time t forward price FT̄ (t, U) corresponding to (2.9.5) is
found once more as a substitution for the time t delivery price Kt when the value
of the forward contract is set to zero. Therefore, using (2.9.6) and (2.9.7), we
obtain

FT̄ (t, U) = Kt =
Sδ∗
t Ût

P (t, T̄ )
(2.9.8)

for t ∈ [0, T̄ ]. In the case when the underlying price process U is fair, then the
forward price at time t in (2.9.8) reduces to

FT̄ (t, U) =
Ut

P (t, T̄ )
(2.9.9)

for t ∈ [0, T̄ ], which recovers the classical forward price formula, as we will discuss
in Subsection 2.9.4.

2.9.3 Offsetting Short Position in a Forward Contract

Next consider a long position in a forward contract on a price process U that
pays UT̄ at maturity time T̄ , originally transacted at time t = 0 with the delivery
price K0. In order to offset this original long position at the intermediate time
t, one needs to sell a new forward contract with the same payout UT̄ at maturity
time T̄ , but at a new time t fixed delivery price Kt. The net payoff for such a
portfolio of forward contracts at the maturity time T̄ is

HT̄ = (UT̄ −K0)− (UT̄ −Kt) = Kt −K0 (2.9.10)

for t ∈ [0, T̄ ]. Thus, the fair value at time t of this portfolio of forward contracts
is determined by the real-world pricing formula (2.6.4) for the payoff (2.9.10),
and is found to be

VT̄ ,K0
(t, U)− VT̄ ,Kt

(t, U) = E

(
Sδ∗
t

Sδ∗
T̄

(Kt −K0)

∣∣∣∣At

)

= (Kt −K0) P (t, T̄ ) (2.9.11)

for t ∈ [0, T̄ ]. The above analysis shows that for a forward contract entered at
time t = 0, its subsequent value at time t prior to maturity T̄ , will always be
known with certainty. To see this, first recall that the delivery price at inception
K0 must equal the original forward price FT̄ (0, U). Next, note that the value of
the time t forward contract VT̄ ,Kt

(t, U) is zero when its delivery priceKt equals the
time t forward price. That is, VT̄ ,Kt

(t, U) = 0 when Kt = FT̄ (t, U). Substituting
this information into (2.9.11) we observe that

VT̄ ,K0
(t, U) = (FT̄ (t, U)− FT̄ (0, U)) P (t, T̄ ) (2.9.12)
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for t ∈ [0, T̄ ]. Intuitively, expressions (2.9.11) and (2.9.12), state that at time
t, the value of a forward contract originally written at time t = 0, is simply
the change in the market forward price, discounted by the appropriate fair zero-
coupon bond. This result applies to all types of forward contracts.

2.9.4 Comparison with Classical Pricing of Forwards

For comparison, we discuss the classical approach to the pricing of forward con-
tracts, described for instance in Cox et al. [1981]. These authors give, in Proposi-
tion 1 of their paper, the forward price FT̄ (t, U), written at time t, as the value of
a contract on an underlying price process U = {Ut, t ∈ [0, T ]} that has a payoff
at the maturity time T̄ of

HT̄ =
UT̄

P (t, T̄ )
(2.9.13)

for t ∈ [0, T̄ ]. Application of the real-world pricing formula (2.6.4) to the payoff
(2.9.13) results in the relation

FT̄ (t, U) = E

(
Sδ∗
t

Sδ∗
T̄

UT̄

P (t, T̄ )

∣∣∣∣At

)
=

Sδ∗
t Ût

P (t, T̄ )
(2.9.14)

for t ∈ [0, T̄ ], which by (2.9.7) shows that (2.9.14) is equivalent to (2.9.8). The
only difference between (2.9.8) and (2.9.14) is the path taken to derive the result.
In the former derivation (2.9.6)−(2.9.8), we examined the payoff of a forward
contract net of the underlying price process at maturity. In the latter derivation
(2.9.13)−(2.9.14), we calculated the fair value of the payoff for the corresponding
forward price.

An important distinction is the case when the underlying price process U is fair,
as defined in Definition 2.6.1. Then the forward price (2.9.14) simplifies to

FT̄ (t, U) =
Ut

P (t, T̄ )
(2.9.15)

for t ∈ [0, T̄ ]. Otherwise, if the price process U is not fair, then we deduce from
(2.9.7) and (2.9.14) that

FT̄ (t, U) ≤ Ut

P (t, T̄ )
(2.9.16)

for t ∈ [0, T̄ ]. The equality in (2.9.15) is the typical representation given in the
standard finance literature. However, it is important to recognise that (2.9.15)
contains the fair zero-coupon bond price and not the classical risk neutral zero-
coupon bond price, as used, for instance, in Hull [1997] or Ritchken [1996]. The
inequality in (2.9.16) illustrates the difference between underlying price processes



2.9. FORWARD PRICES AND CONTRACT VALUATION 27

that are fair and those that are not. It stems from the fact that any admissible
benchmarked non-negative wealth process is an (A, P )-supermartingale, as stated
in Corollary 2.4.1. Therefore, when the price process is not fair, the forward
price should be calculated according to formula (2.9.14), and not by the classical
formula of the form given in (2.9.15), which by (2.9.16) may lead to a more
expensive price.

2.9.5 Forward Contracts on Primary Security Accounts

We now calculate forward prices using (2.9.14) for each of the primary security
account processes discussed thus far and for zero-coupon bonds. To begin, we
consider the calculation of a forward price FT̄ (t, S

j) at time t for a primary
security account value Sj

T̄
with maturity time T̄ , which is found using (2.8.3) and

(2.9.14) to be

FT̄ (t, S
j) =

Sδ∗
t

P (t, T̄ )
E

(
Sj

T̄

Sδ∗
T̄

∣∣∣∣At

)

=
Sj
t

P (t, T̄ )
E

(
Sδ∗
t

Sδ∗
T̄

Sj

T̄

Sj
t

∣∣∣∣At

)

=
Sj
t

P (t, T̄ )
E

(
Ŝj

T̄

Ŝj
t

∣∣∣∣At

)

= Sj
t

M j

T̄
(t)

P (t, T̄ )
, (2.9.17)

where

M j

T̄
(t) = E

(
Ŝj

T̄

Ŝj
t

∣∣∣∣At

)
(2.9.18)

for t ∈ [0, T̄ ] and j ∈ {0, 1, . . . , d}. The expression M j

T̄
(t) in (2.9.17) and (2.9.18)

equals 1 if Sj is fair. As can be seen from (2.9.17), M j

T̄
(t) arises naturally in

the context of calculating the forward price on a primary security account. In
contrast, the discounted GOP contribution MT̄ (t) = M0

T̄
(t) only appears in fair

zero-coupon bond pricing under the assumption of independence between the
driving processes of the discounted GOP and the short rate.

Furthermore, the appearance of the expression M j

T̄
(t) within (2.9.17) is quite

general in the sense that we have not specified a model so far. In the case when
Sj is an (A, P )-martingale we have M j

T̄
(t) = 1 for all t ∈ [0, T̄ ]. From another

perspective, when the term M j

T̄
(t) does not equal unity, this will represent an

explicit difference between the fair forward price of a primary security account
calculated using real-world pricing and that obtained using formally classical risk
neutral pricing. Hence these forward prices can be materially different depending
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on pricing methodology. Examples of models for which this happens will be
provided later within this thesis.

2.9.6 Forward Contracts on a Portfolio

A more complex example is the forward contract on an arbitrary nonnegative
portfolio process Sδ. Denoting the time t forward price of a contract that pays at
maturity time T̄ the portfolio value Sδ

T̄
as FT̄ (t, S

δ), then we obtain via (2.9.14)
the result

FT̄ (t, S
δ) =

Sδ∗
t

P (t, T̄ )
E

(
Sδ
T̄

Sδ∗
T̄

∣∣∣∣At

)
≤ Sδ

t

P (t, T̄ )
(2.9.19)

for t ∈ [0, T̄ ]. The inequality in (2.9.19) is a consequence of Sδ not necessarily
being a fair price process as given by Definition 2.6.1. An example where the
portfolio price process may not be fair is the case of the savings account, evident
from the graph of the savings account denominated by the GOP in Figure 2.2.
However, when the portfolio price process is fair, as is the case for any derivative
under Assumption 2.6.3, then equality holds for the second relation in (2.9.19).

Now we consider a forward contract on the GOP itself. The time t forward price
FT̄ (t, S

δ∗) with maturity T̄ is calculated using (2.9.14) to give

FT̄ (t, S
δ∗) =

Sδ∗
t

P (t, T̄ )
E

(
Sδ∗
T̄

Sδ∗
T̄

∣∣∣∣At

)
=

Sδ∗
t

P (t, T̄ )
(2.9.20)

for t ∈ [0, T̄ ]. This result is consistent with the classical result of (2.9.15) because
the benchmarked GOP is an (A, P )-martingale, since Ŝδ∗

t = 1 for all t ∈ [0, T ].
By Definition 2.6.1 the GOP is a fair price process.

2.9.7 Forward Contract on a Zero-Coupon Bond

The last forward price we consider is denoted as FT̄ (t, P (·, T )). It represents the
time t price associated with a forward contract, where the underlying security
is the zero-coupon bond P (T̄ , T ). Hence the expiry of the forward contract is
T̄ while the maturity of the zero-coupon bond, paying one unit of the domestic
currency, is the time T > T̄ . We determine by (2.8.1), (2.9.14) and the law of
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Table 2.1: Notation and payoffs of various European options

Option Type Payoff at Expiry Notation
First order asset binary call option UT̄1UT̄>K A+

T̄ ,K
(t, U)

First order asset binary put option UT̄1UT̄≤K A−
T̄ ,K

(t, U)

First order bond binary call option 1UT̄>K B+
T̄ ,K

(t, U)

First order bond binary put option 1UT̄≤K B−
T̄ ,K

(t, U)

European call option (UT̄ −K)+ cT̄ ,K(t, U)
European put option (K − UT̄ )

+ pT̄ ,K(t, U)

iterated expectations that

FT̄ (t, P (·, T )) = Sδ∗
t

P (t, T̄ )
E

(
P (T̄ , T )

Sδ∗
T̄

∣∣∣∣At

)

=
1

P (t, T̄ )
E

(
Sδ∗
t

Sδ∗
T̄

E

(
Sδ∗
T̄

Sδ∗
T

∣∣∣∣AT̄

) ∣∣∣∣At

)

=
1

P (t, T̄ )
E

(
Sδ∗
t

Sδ∗
T

∣∣∣∣At

)

=
P (t, T )

P (t, T̄ )
(2.9.21)

for 0 ≤ t ≤ T̄ ≤ T . In Section 2.10.3 we discuss a transformation of the above
result, known as a forward rate agreement (FRA), which is traded in interest rate
markets.

2.10 European Option Pricing and Hedging

In this section we will consider a variety of European style derivatives including
call and put options, binaries and other related derivatives. We use the notation
in Table 2.1, similar to that of Buchen [2001] and Buchen [2004]. The options are
on an underlying asset U and each option has strike price K and expiry date T̄ .

In particular, binary options on the underlying asset are referred to as first order
asset binary options. Rubinstein and Reiner [1991] used the term “asset-or-
nothing” options. Binary options on a cash payout are referred to as first order
bond binaries. These were termed “cash-or-nothing” options by Rubinstein and
Reiner [1991].
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2.10.1 First Order Binary Options

Let us denote by U = {Ut, t ∈ [0, T̄ ]} the price process of an underlying security.
Also, let us denote by s ∈ {+,−} the sign indicator corresponding to the direction
of the underlying security price relative to the strike price in which the binary
option has a nonzero payoff. The price V s

T̄ ,K
(t, U) of a general first order binary

option on U is a derivative contract with non-negative strike price K and fixed
expiry date T̄ ≥ t with the payoff

HT̄ = f(UT̄ )1{sUT̄ ≥ sK}. (2.10.1)

Here f(·) is an appropriately defined function such that the conditional expecta-
tions below are defined, and s = + and s = − are the sign indicators for call and
put binary options, respectively.

We can price first order binary options using the real-world pricing formula (2.6.4)
as

V s
T̄ ,K(t, U) = E

(
Sδ∗
t

Sδ∗
T̄

f(UT̄ )1{sUT̄ ≥ sK}

∣∣∣∣At

)
(2.10.2)

for t ∈ [0, T̄ ].

A first order asset binary is obtained by the selection f(UT̄ ) = UT̄ in the payoff
(2.10.1). Thus, it represents an option on one unit of the underlying asset at
expiry. The price A s

T̄ ,K
(t, U) of a first order asset binary option simplifies from

(2.10.2) to

A s
T̄ ,K(t, U) = E

(
Sδ∗
t

Sδ∗
T̄

UT̄ 1{sUT̄ ≥ sK}

∣∣∣∣At

)
(2.10.3)

for t ∈ [0, T̄ ].

On the other hand, a first order bond binary option is given by the selection of
f(UT̄ ) = 1 in (2.10.1), representing an option on one unit of the domestic currency
at expiry. Hence the price B s

T̄ ,K
(t, U) of a first order bond binary option becomes

B s
T̄ ,K(t, U) = E

(
Sδ∗
t

Sδ∗
T̄

1{sUT̄ ≥ sK}

∣∣∣∣At

)
(2.10.4)

for t ∈ [0, T̄ ].

We can also derive parity relationships for first order binary options. Note that
for a given strike price K we can express any arbitrary payoff function f(UT̄ ) as

f(UT̄ ) = f(UT̄ )1{UT̄ >K} + f(UT̄ )1{UT̄ ≤K} (2.10.5)

for t ∈ [0, T̄ ]. If we express the price of a European option that pays f(UT̄ ) at
expiry time T̄ by VT̄ (t, U), then it follows from (2.10.5) that

VT̄ (t, U) = V +
T̄ ,K

(t, U) + V −
T̄ ,K

(t, U) (2.10.6)
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for t ∈ [0, T̄ ]. For simplicity, we assume that the event UT̄ = K has zero prob-
ability. Irrespective of the dynamics for the underlying price process U , it is
straightforward to verify that the following parity relationships are satisfied by
first order binary options

A+
T̄ ,K

(t, U) + A−
T̄ ,K

(t, U) = Sδ∗
t Ût (2.10.7)

B +
T̄ ,K

(t, U) +B −
T̄ ,K

(t, U) = P (t, T̄ ) (2.10.8)

for t ∈ [0, T̄ ] with (2.9.7). Note that the asset binary parity relationship (2.10.7)
simplifies to

A+
T̄ ,K

(t, U) + A−
T̄ ,K

(t, U) = Ut (2.10.9)

when U is a fair price process as per Definition 2.6.1.

2.10.2 Call and Put Options

First order binary options can be thought of as basic building blocks for European
derivatives. If we let cT̄ ,K(t, U) denote the price of a standard European call
option with strike price K and expiry date T̄ ≥ t, then using the real-world
pricing formula (2.6.4), (2.10.3) and (2.10.4), one obtains

cT̄ ,K(t, U) = E

(
Sδ∗
t

Sδ∗
T̄

(UT̄ −K)+
∣∣∣∣At

)

= E

(
Sδ∗
t

Sδ∗
T̄

UT̄ 1{UT̄ >K}

∣∣∣∣At

)
−K E

(
Sδ∗
t

Sδ∗
T̄

1{UT̄ >K}

∣∣∣∣At

)

= A+
T̄ ,K

(t, U)−K B +
T̄ ,K

(t, U) (2.10.10)

for t ∈ [0, T̄ ]. Similarly, if we let pT̄ ,K(t, U) denote the price of a standard
European put option with strike price K and expiry date T̄ ≥ t, then we obtain

pT̄ ,K(t, U) = −A−
T̄ ,K

(t, U) +K B −
T̄ ,K

(t, U) (2.10.11)

for t ∈ [0, T̄ ].

The well-known form of the put-call parity relationship is recovered from (2.10.7),
(2.10.8), (2.10.10), (2.10.11) as

cT̄ ,K(t, U) +K P (t, T̄ ) = pT̄ ,K(t, U) + Sδ∗
t Ût (2.10.12)

for t ∈ [0, T̄ ], where Ût is defined in (2.9.7). This put-call parity relationship is
general. We emphasise in (2.10.12) the use of the fair zero-coupon bond price and
not the ratio of savings account values, even in the case of a deterministic short
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rate. This reflects the underlying economic spirit of put-call parity, whereby a
portfolio comprising a long call option plus the discounted value of the strike price,
equals a portfolio of a long position in a put option and the discounted value of
the underlying from the option expiry back to the transaction date. Hence there
are two important differences between the put-call parity relationship derived
under the benchmark approach above and that which results from traditional
risk neutral pricing rules: The first is that under the benchmark approach the
discounted value of the underlying cannot be simplified beyond the representation
given by the last term in relation (2.10.12) above. This is because, in general, we
do not know whether the underlying price process is fair. The second difference
is that it is essential that put-call parity be expressed using the fair zero-coupon
bond price (2.8.1), as it was for generic forward pricing in (2.9.14)−(2.9.16). We
emphasise that the ratio of savings accounts, even for a deterministic short rate,
could lead to results indicating that put-call parity does not hold, as has been
argued in Cox and Hobson [2005], Li [2005] and Heston et al. [2007].

Now we consider the application of the put-call parity relationship to the financial
quantities discussed previously. Starting with the GOP itself, by using (2.9.7) and
(2.10.12) it is elementary to show that

cT̄ ,K(t, S
δ∗) +K P (t, T̄ ) = pT̄ ,K(t, S

δ∗) + Sδ∗
t (2.10.13)

for t ∈ [0, T̄ ], as expected.

Finally, for now, we provide the result for put-call parity relating to primary
security accounts, which itself requires (2.2.2), (2.9.18), (2.9.7) and (2.10.12) to
compute

cT̄ ,K(t, S
j) +K P (t, T̄ ) = pT̄ ,K(t, S

j) + Sj
t M

j

T̄
(t) (2.10.14)

for t ∈ [0, T̄ ] and j ∈ {0, 1, . . . , d}, where M j

T̄
(t) is as in (2.9.18). Once more, we

have obtained a result for a primary security account that includes the quantity
M j

T̄
(t), defined in (2.9.18). Thus, similar considerations to the primary security

account forward price (2.9.17) apply here.

2.10.3 Interest Rate Derivatives

Let us also introduce the necessary relationships for pricing basic over-the-counter
(OTC) interest rate derivatives, including interest rate caps and floors and swap-
tions.

Under the benchmark approach, all interest rate sensitive financial quantities are
dependent on both the discounted GOP S̄δ∗

t and the short rate rt for t ∈ [0, T ].
Following the zero-coupon bond decomposition in (2.8.2), it is usually possible
to obtain certain simplifications that make fair pricing of interest rate derivatives
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feasible. However, in order to define these instruments, we must first provide
definitions for the more basic quantities of discrete forward rates and forward
rate agreements (FRAs).

Discrete forward rates, as opposed to instantaneous forward rates defined by
(2.8.10), are one of the fundamental financial quantities in interest rate markets.
We introduce a simply-compounded discrete forward rate F̃T̄ ,T (t) representing
the interest rate that can be obtained at time t for the forward period defined
from the expiry time T̄ > t to the maturity time T > T̄ . The most commonly
used discrete forward rate is the LIBOR rate. The simple-compounding property
of discrete forward rates means that the forward bond price FT̄ (t, P (·, T )), the
corresponding traded instrument, previously calculated in (2.9.21), is priced in
the market as a discount instrument, and hence

FT̄ (t, P (·, T )) = 1

1 + F̃T̄ ,T (t) (T − T̄ )
(2.10.15)

for 0 ≤ t ≤ T̄ < T . By re-arranging (2.10.15) in terms of the discrete forward
rate F̃T̄ ,T (t) with the aid of (2.9.21) we obtain

F̃T̄ ,T (t) =
1

T − T̄

(
P (t, T̄ )

P (t, T )
− 1

)
(2.10.16)

for 0 ≤ t ≤ T̄ < T . This discrete forward rate (2.10.16) is the fixed interest rate
in a forward rate agreement (FRA) that sets the FRA contract value equal to
zero at inception.

Also note that by using smoothness properties of zero-coupon bonds, the instan-
taneous forward rate (2.8.10) can be shown to be the limit of the discrete forward
rate (2.10.16) as the maturity approaches the expiry date, that is

fT̄ (t) = lim
T→T̄+

F̃T̄ ,T (t) (2.10.17)

almost-surely.

We continue with the following definition of options on zero-coupon bonds.

Definition 2.10.1 The fair prices of call and put options on a zero-coupon bond
at time t with expiry T̄ , bond maturity T ≥ T̄ and strike price K are defined as

zcbcallT̄ , T,K(t) = E

(
Sδ∗
t

Sδ∗
T̄

(
P (T̄ , T )−K

)+ ∣∣∣∣At

)
(2.10.18)

zcbputT̄ , T,K(t) = E

(
Sδ∗
t

Sδ∗
T̄

(
K − P (T̄ , T )

)+ ∣∣∣∣At

)
(2.10.19)

for 0 ≤ t ≤ T̄ ≤ T .
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Also, we can determine the put-call relationship for options on zero-coupon bonds
using (2.10.12) and Definition 2.10.1 as

zcbcallT̄ , T,K(t) +K P (t, T̄ ) = zcbputT̄ , T,K(t) + P (t, T ) (2.10.20)

for 0 ≤ t ≤ T̄ ≤ T .

We note here the price of options on zero-coupon bonds under the assumptions
that an equivalent risk neutral probability measure exists and that the short rate
is constant, hence rt = r, for t ∈ [0, T ]. In this case, we trivially obtain

zcbcallT̄ , T,K(t) =
(
+ exp{−r (T − t)} −K exp{−r (T̄ − t)}

)+
(2.10.21)

zcbputT̄ , T,K(t) =
(
− exp{−r (T − t)}+K exp{−r (T̄ − t)}

)+
(2.10.22)

for 0 ≤ t ≤ T̄ ≤ T . Of course, both call and put options will be zero when K =
GT (T̄ ) = exp{−r (T−T̄ )}. This special case is included here, for comparison with
the corresponding results we will derive for each model considered in subsequent
chapters of this thesis.

We also note here the price of options on zero-coupon bonds under Assump-
tion 2.8.2, namely when there is independence of the noise processes driving the
short rate and the discounted GOP. In this case we obtain the formulae in the
following lemma.

Theorem 2.10.2 Suppose the short rate rt and the discounted GOP S̄δ∗
t satisfy

Assumption 2.8.2. Then the fair prices of a call option and a put option on a
zero-coupon bond are given respectively by

zcbcallT̄ , T,K(t) = E

(
S̄δ∗
t

S̄δ∗
T̄

MT (T̄ ) cT̄ ,K/MT (T̄ )(t, GT (·), S̄δ∗
T̄
)

∣∣∣∣At

)
(2.10.23)

zcbputT̄ , T,K(t) = E

(
S̄δ∗
t

S̄δ∗
T̄

MT (T̄ ) pT̄ ,K/MT (T̄ )(t, GT (·), S̄δ∗
T̄
)

∣∣∣∣At

)
, (2.10.24)

where 0 ≤ t ≤ T̄ ≤ T < ∞,

cT̄ ,K/MT (T̄ )(t, GT , S̄
δ∗
T̄
) = E

(
Bt

BT̄

(GT (T̄ )−K/MT (T̄ ))
+

∣∣∣∣S̄δ∗
T̄
, At

)
(2.10.25)

pT̄ ,K/MT (T̄ )(t, GT , S̄
δ∗
T̄
) = E

(
Bt

BT̄

(K/MT (T̄ )−GT (T̄ ))
+

∣∣∣∣S̄δ∗
T̄
, At

)

and GT (·) is the process (GT (s))t≤s≤T , with GT (s) defined in (2.8.4).

Proof . We only prove the formula for the call option (2.10.23) on the zero-coupon
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bond. The proof for the put option formula (2.10.24) is similar: We have

zcbcallT̄ , T,K(t) = E

(
Sδ∗
t

Sδ∗
T̄

(P (T̄ , T )−K)+
∣∣∣∣At

)
(2.10.26)

= E

(
S̄δ∗
t

S̄δ∗
T̄

E

(
Bt

BT̄

(P (T̄ , T )−K)+
∣∣∣∣S̄δ∗

T̄

) ∣∣∣∣At

)

= E

(
S̄δ∗
t

S̄δ∗
T̄

E

(
Bt

BT̄

(MT (T̄ )GT (T̄ )−K)+
∣∣∣∣S̄δ∗

T̄

) ∣∣∣∣At

)

= E

(
S̄δ∗
t

S̄δ∗
T̄

MT (T̄ )E

(
Bt

BT̄

(GT (T̄ )−K/MT (T̄ ))
+

∣∣∣∣S̄δ∗
T̄

) ∣∣∣∣At

)

= E

(
S̄δ∗
t

S̄δ∗
T̄

MT (T̄ ) cT̄ ,K/MT (T̄ )(t, GT (·), S̄δ∗
T̄
)

∣∣∣∣At

)
,

which is the call option pricing formula (2.10.23). Q.E.D.

This lemma is useful for pricing options on ZCBs when the expectations in (2.10.25)
are closed form expressions. This is because the expectations in (2.10.23) and
(2.10.24) can be readily evaluated when the probability density function of S̄δ∗

T̄
,

given the starting value S̄δ∗
t , is known.

In the particular case, where the discounted GOP obeys a Black-Scholes model,
we have MT (t) = 1 and the pricing formulae (2.10.23) and (2.10.24) simplify to

cT̄ ,K(t, GT (·)) = E

(
Bt

BT̄

(GT (T̄ )−K)+
∣∣∣∣At

)
(2.10.27)

pT̄ ,K(t, GT (·)) = E

(
Bt

BT̄

(K −GT (T̄ ))
+

∣∣∣∣At

)
.

2.10.4 Caps and Floors

As mentioned in standard texts such as in Baxter and Rennie [1996], Hull [1997],
or Brigo and Mercurio [2006], interest rate caps and floors are introduced as simple
transformations of put and call options on zero-coupon bonds, respectively. An
interest rate cap can be decomposed into a portfolio of individual caplets. Each
caplet itself is equivalent to a put option on a zero-coupon bond with adjustments
to the strike rate and notional principal. Analogously, an interest rate floor
comprises a portfolio of floorlets, and each floorlet is equivalent to a call option
on a zero-coupon bond with adjustments to the strike rate and notional principal.

Let us denote an interest rate cap contract by capT ,K,N(t) at time t ≤ T0 with
strike rate K, notional principal N and the set of dates T = {T0, T1, . . . , Tn}. The
�-th individual caplet capletT�−1, T�,K

(t) relates to the �-th zero-coupon bond put
option for � ∈ {1, . . . , n} as in the following theorem.
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Theorem 2.10.3 Suppose the short rate rt and the discounted GOP S̄δ∗
t satisfy

Assumption 2.8.2. Then the fair price of the caplet with start time T̄ , end time
T > T̄ and strike rate K is

capletT̄ ,T,K(t) = (1 +K(T − T̄ ))zcbputT̄ ,T,1/(1+(T−T̄ )K)(t) (2.10.28)

and the fair price of the floorlet with the same parameters is

floorletT̄ ,T,K(t) = (1 +K(T − T̄ ))zcbcallT̄ ,T,1/(1+(T−T̄ )K)(t). (2.10.29)

Proof . The payoff of the caplet with start time T̄ , end time T ≥ T̄ and strike
rate K is

HT̄ = (T − T̄ )(F̃T̄ ,T (T̄ )−K)+ (2.10.30)

and using Theorem 2.6.4 we have

capletT̄ ,T,K(t) = E

(
Sδ∗
t

Sδ∗
T

(T − T̄ )(F̃T̄ ,T (T̄ )−K)+
∣∣∣∣At

)
(2.10.31)

= E

(
Sδ∗
t

Sδ∗
T

(1 + (T − T̄ )F̃T̄ ,T (T̄ )− 1− (T − T̄ )K)+
∣∣∣∣At

)

= E

(
Sδ∗
t

Sδ∗
T̄

(1− (1 + (T − T̄ )K)P (T̄ , T ))+
∣∣∣∣At

)

= (1 + (T − T̄ )K)E

(
Sδ∗
t

Sδ∗
T̄

(1/(1 + (T − T̄ )K)− P (T̄ , T ))+
∣∣∣∣At

)

= (1 + (T − T̄ )K)zcbputT̄ ,T,1/(1+(T−T̄ )K)(t),

which verifies the caplet formula. The floorlet formula is derived in a similar
manner. Q.E.D.

Consequently, we can write the price of the cap as

capT ,K,N(t) =
n∑

�=1

capletT�−1, T�,K,N(t)

= N

n∑
�=1

(T� − T�−1) E

(
Sδ∗
t

Sδ∗
T�

(
FT�−1, T�

(T�−1)−K
)+ ∣∣∣∣At

)

=
n∑

�=1

N ′
� zcbputT�−1, T�,K

′
�
(t), (2.10.32)

where

N ′
� = N (1 +K (T� − T�−1)) and K ′

� =
1

1 +K (T� − T�−1)
(2.10.33)
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for 0 ≤ t ≤ T0 < . . . < Tn.

We also provide the analogous result for an interest rate floor contract floorT ,K,N(t)
valued at time t ≤ T0. The �-th individual floorlet floorletT�−1, T�,K(t) relates to
the �-th zero-coupon bond call option for � ∈ {1, . . . , n} as in Theorem 2.10.3.
Therefore, we can write the price of a floor as

floorT ,K,N(t) =
n∑

�=1

floorletT�−1, T�,K,N(t)

= N
n∑

�=1

(T� − T�−1) E

(
Sδ∗
t

Sδ∗
T�

(
K − FT�−1, T�

(T�−1)
)+ ∣∣∣∣At

)

=
n∑

�=1

N ′
� zcbcallT�−1, T�,K

′
�
(t) (2.10.34)

for 0 ≤ t ≤ T0 < . . . < Tn with adjusted strikes and notional principal values as
per (2.10.33).

2.10.5 Options on Coupon Bonds

A coupon bond is a security which pays a series of coupons at regular times over
the life of the bond in addition to a return of principal, otherwise termed the face
value of the bond, at the maturity date. The coupon payment is typically calcu-
lated as the product of the principal amount, the annualised coupon rate and the
fraction of the year elapsed since the previous coupon payment, mathematically
written as

COUPON(Tk) = N × c× (Tk − Tk−1), (2.10.35)

where Tk is the coupon payment date, Tk−1 is the previous coupon payment date,
c is the annualised coupon rate and N is the principal value of the bond.

Let T be the set consisting of the accrual start time T0 along with the prescribed
coupon payment dates T1, ..., Tn, which satisfy the inequalities

T0 < T1 < . . . < Tn. (2.10.36)

Here, T0 is the date from which the first coupon payment accrues and where Tn

is the maturity date of the bond.

Then the price at time t < T1 of the coupon bond having face value N and coupon
rate c is given by the formula

PT ,c,N(t) = E

(
c×N ×

n∑
k=1

(Tk − Tk−1)
Sδ∗
t

Sδ∗
Tk

+N × Sδ∗
t

Sδ∗
Tn

∣∣∣∣At

)
(2.10.37)

= c×N ×
n∑

k=1

(Tk − Tk−1)P (t, Tk) +N × P (t, Tn).
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When the face value of the coupon bond is one domestic currency unit, that is
N = 1, we write

PT ,c(t) = PT ,c,1(t) (2.10.38)

and, therefore, for any value of N we have

PT ,c,N(t) = N × PT ,c(t). (2.10.39)

Pricing formulae and efficient pricing algorithms for options on coupon bonds
under a variety of short rate models have been supplied by many authors, in-
cluding Jamshidian [1989], Longstaff [1993], Singleton and Umantsev [2002] and
Schrager and Pelsser [2005].

Singleton and Umantsev [2002] provide a numerically accurate and computa-
tionally fast approximation to the prices of European options on coupon bonds
under all affine term structure models, namely those models of the short rate rt
describable by the system of SDEs

rt = a+ b�Yt (2.10.40)

Yt = K(θ − Yt)dt+ Σ
√
StdWt

St = diag(ci + d�i Yt),

where Wt is n-dimensional Brownian motion, Yt is an n-dimensional stochastic
process, K is an n × n matrix, Σ is an n × n covariance matrix, St is an n × n
diagonal matrix, b is an n-dimensional column vector and θ is an n-dimensional
column vector.

For affine term structure models, Schrager and Pelsser [2005] approximate the
price of options on coupon bonds by deriving approximate dynamics in which the
relevant swap rate obeys a square root process.

Jamshidian [1989] provides a closed form pricing formula for a European option
on a portfolio of zero-coupon bonds under the assumption of a mean reverting
Gaussian interest rate model as in Vasicek [1977]. The derivation of the formula
relies on the observation that the monotonicity of the zero-coupon bond price as
a function of the short rate implies that the exercise short rate of the portfolio
of ZCBs is the same as each of the exercise short rates of the options on the
component ZCBs.

Following the work of Jamshidian, there is a semi-closed-form formula for Euro-
pean options on a portfolio of GT̄i

(t), i = 1, 2, . . . , n, when there is monotonicity
in the value of GT̄ (t) as a function of the short rate rt at time t. We state with-
out proof Jamshidian’s proposition that the price of a call option on a portfolio
of GT̄i

(t) is equal to the sum of the prices of call options on constituent GT̄i
(t)

with specific strike price Ki, under the assumption of a mean-reverting Gaussian
interest rate model. Denote by P (r, t, T ) the price at time t of a ZCB maturing
at time T for rt = r, and by C(r, t, T, s,K) the price at time t of a call option on
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the s-maturity ZCB with exercise price K and expiry time T , where T < s and
rt = r.

Proposition 2.10.4 (Jamshidian) The price Ca at time t and interest rate rt = r
of a European call option with exercise price K and expiration T on a portfolio of
n ZCBs, where the i-th ZCB has face value ai and maturity si for i ∈ {1, 2, . . . , n},
is given by

Ca = P (r, t, T )E
(
max{0, P̃a −K}

)
, (2.10.41)

where
P̃a =

∑
j:T<sj

ajP (Rr,t,T , T, sj) (2.10.42)

and Rr,t,T denotes the random interest rate at time T conditional on the interest
rate at time t being r. We also have the decomposition

max{0, P̃a −K} =
∑

aj max{0, P (Rr,t,T , T, sj)−Kj}, (2.10.43)

where Kj = P (r∗, t, sj) and r∗ is the solution to∑
j:T<sj

ajP (r∗, t, sj) = K. (2.10.44)

Hence,

Ca =
∑

ajC(r, t, T, sj, Kj), (2.10.45)

where C(r, t, T, s,K) is the price at time t, given that rt = r, of a call option on
the s-maturity pure discount bond with exercise price K and expiration T < s.

Employing this idea of Jamshidian we can calculate the price of an option on a
portfolio of contributions GT̄i

(t), i = 1, 2, . . . , n as the portfolio sum of options
on a single contributions GT̄i

(t), i = 1, 2, . . . , n.

Using the same observation, Longstaff [1993] derives simple closed form expres-
sions for European options on coupon bonds under the CIR short rate model,
see Cox et al. [1985].

In deriving the pricing formulae used in this thesis we make use of the assumed
independence of the short rate process and the discounted GOP process, and the
closed form expressions for coupon bond options given by Jamshidian [1989] and
Longstaff [1993] that emerge when the coupon bond option price is conditioned
on the state of the discounted GOP process at the option expiry date.

Now, suppose we have a European call option on a coupon bond with unit face
value, having strike price K and expiring at time T̄ , where T̄ < T1. Then the
payoff at expiry is

HT̄ =
(
PT ,c(T̄ )−K

)+
(2.10.46)
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We have the following theorem, which supplies the pricing formulae of European
options on a coupon bond when the short rate process is such that GT (t) can be
written in the form GT (t) = A(t, T ) exp(−rtB(t, T )).

Theorem 2.10.5 Suppose the short rate rt and the discounted GOP S̄δ∗
t satisfy

Assumption 2.8.2 and that GT (t) has the form A(t, T ) exp(−rtB(t, T )) for deter-
ministic functions A and B. Then the fair prices of a call option and put option
on a coupon bond are given by

cT̄ ,K(t, PT ,c) = E

(
S̄δ∗
t

S̄δ∗
T̄

n∑
i=1

(
(Ti − Ti−1)c+ 1i=n

)
MTi

(T̄ )cT̄ ,K′
i
(t, GTi

, S̄δ∗
T̄
)

∣∣∣∣At

)

(2.10.47)

pT̄ ,K(t, PT ,c) = E

(
S̄δ∗
t

S̄δ∗
T̄

n∑
i=1

(
(Ti − Ti−1)c+ 1i=n

)
MTi

(T̄ )pT̄ ,K′
i
(t, GTi

, S̄δ∗
T̄
)

∣∣∣∣At

)
,

(2.10.48)

respectively, where for i = 1, 2, . . . , n the modified strike price K ′
i(S̄

δ∗
T̄
) is given by

K ′
i(S̄

δ∗
T̄
) = A(T̄ , Ti) exp(−r∗(S̄δ∗

T̄
)B(T̄ , Ti)) (2.10.49)

and where r∗(S̄δ∗
T̄
) satisfies the equation

n∑
i=1

(
(Ti − Ti−1)c+ 1i=n

)
MTi

(T̄ )A(T̄ , Ti) exp(−r∗(S̄δ∗
T̄
)B(T̄ , Ti)) = K. (2.10.50)

Proof . We have that with HT̄ as in (2.10.46) the fair price of the call option is

cT̄ ,K(t, PT ,c(·)) = E

(
Sδ∗
t

Sδ∗
T̄

HT̄

∣∣∣∣At

)
(2.10.51)

= E

(
S̄δ∗
t

S̄δ∗
T̄

Bt

BT̄

HT̄

∣∣∣∣At

)

= E

(
S̄δ∗
t

S̄δ∗
T̄

E

(
Bt

BT̄

HT̄

∣∣∣∣S̄δ∗
T̄

) ∣∣∣∣At

)

= E

(
S̄δ∗
t

S̄δ∗
T̄

E

(
Bt

BT̄

n∑
i=1

H
(i)

T̄
(S̄δ∗

T̄
)

∣∣∣∣S̄δ∗
T̄

)∣∣∣∣At

)
,

where

H
(i)

T̄
(S̄δ∗

T̄
) =

((
(Ti − Ti−1)c+ 1i=n

)
P (T̄ , Ti)−Ki(S̄

δ∗
T̄
)

)+

(2.10.52)

=

((
(Ti − Ti−1)c+ 1i=n

)
MTi

(T̄ )GTi
(T̄ )−Ki(S̄

δ∗
T̄
)

)+

,



2.10. EUROPEAN OPTION PRICING AND HEDGING 41

and where Ki(S̄
δ∗
T̄
) is given by

Ki(S̄
δ∗
T̄
) =
(
(Ti−Ti−1)c+1i=n

)
MTi

(T̄ )A(T̄ , Ti) exp(−r∗(S̄δ∗
T̄
)B(T̄ , Ti)), (2.10.53)

with r∗(S̄δ∗
T̄
) satisfying the equation

n∑
i=1

(
(Ti − Ti−1)c+ 1i=n

)
MTi

(T̄ )A(T̄ , Ti) exp(−r∗(S̄δ∗
T̄
)B(T̄ , Ti)) = K. (2.10.54)

It follows from (2.10.51) that

cT̄ ,K(t, PT ,c(·)) (2.10.55)

= E

(
S̄δ∗
t

S̄δ∗
T̄

n∑
i=1

E

(
Bt

BT̄

H
(i)

T̄
(S̄δ∗

T̄
)

∣∣∣∣S̄δ∗
T̄

) ∣∣∣∣At

)

= E

(
S̄δ∗
t

S̄δ∗
T̄

n∑
i=1

(
(Ti − Ti−1)c+ 1i=n

)
MTi

(T̄ )cT̄ ,K′
i
(t, GTi

(·), S̄δ∗
T̄
)

∣∣∣∣At

)
,

where for i = 1, 2, . . . , n the modified strike price K ′
i(S̄

δ∗
T̄
) is given by

K ′
i(S̄

δ∗
T̄
) = A(T̄ , Ti) exp(−r∗(S̄δ∗

T̄
)B(T̄ , Ti)) (2.10.56)

and r∗(S̄δ∗
T̄
) as in (2.10.50). The proof of the put option formula follows a similar

line of reasoning. Q.E.D.

Thus Theorem 2.10.5 permits the computation of the price of a coupon bond
option by integrating a closed form expression over the probability density of the
value of the discounted GOP at option expiry. This leads to an efficient means
of computing coupon bond option prices and swaption prices as we will see in
Chapter 5.

2.10.6 Swaps

The holder of an interest rate payer swap receives variable interest payments and
pays fixed interest payments on a set of prescribed payment dates. The fixed
interest payment is called the swap rate, denoted swaprate, and the prescribed
set of payment dates T1, ..., Tn satisfy

T0 < T1 < . . . < Tn, (2.10.57)

where T0 is the swap’s start date from which the first interest payment accrues.

The T0-forward swap rate as at time t, in respect of a swap commencing at time
T0 with payment dates T1, . . . , Tn, is denoted by swaprateT (t), where T is the
set of dates {T0, T1, . . . , Tn}.



42 CHAPTER 2. DERIVATIVES PRICING

The T0-forward swap rate swaprateT (t) is determined as that rate at which the
value of the stream of fixed payments equates to the stream of floating payments.

Theorem 2.10.6 The swap rate can be calculated using the formula

swaprateT (t) =
P (t, T0)− P (t, Tn)∑n
k=1(Tk − Tk−1)P (t, Tk)

, (2.10.58)

where P (t, T ) is again the price of a T -maturity zero-coupon bond as at time t.

Proof . The equation defining the swap rate is

E

(
n∑

k=1

S
(δ∗)
t (Tk − Tk−1)swaprateT (t)

S
(δ∗)
Tk

∣∣∣∣∣At

)

= E

(
n∑

k=1

S
(δ∗)
t (Tk − Tk−1)FTk−1,Tk

(Tk−1)

S
(δ∗)
Tk

∣∣∣∣∣At

)
, (2.10.59)

where FT ′,T (t) is the T ′-starting, T -maturity interest rate (forward rate) as at
time t and is given by the formula

FT ′,T (t) =
1

T − T ′

(
P (t, T ′)

P (t, T )
− 1

)
. (2.10.60)

The left hand side (LHS) of (2.10.59) can be rewritten as

n∑
k=1

P (t, Tk)(Tk − Tk−1)swaprateT (t) (2.10.61)

and the right hand side (RHS) of (2.10.59) can be rewritten as

n∑
k=1

E

(
S
(δ∗)
t

S
(δ∗)
Tk

(
1

P (Tk−1, Tk)
− 1

) ∣∣∣∣∣At

)

=
n∑

k=1

(
E

(
S
(δ∗)
t

S
(δ∗)
Tk

1

P (Tk−1, Tk)

∣∣∣∣∣At

)
− P (t, Tk)

)
. (2.10.62)
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Now we note that
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= E
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S
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S
(δ∗)
Tk−1

1

P (Tk−1, Tk)
P (Tk−1, Tk)

∣∣∣∣∣At

)

= E

(
S
(δ∗)
t

S
(δ∗)
Tk−1

∣∣∣∣∣At

)

= P (t, Tk−1) (2.10.63)

and so (2.10.62) simplifies to
n∑

k=1

(P (t, Tk−1)− P (t, Tk)) = P (t, T0)− P (t, Tn). (2.10.64)

Equating (2.10.61) to (2.10.64) gives the result. Q.E.D.

2.10.7 Swaptions

In practice swaptions are rather common. As mentioned in standard texts such
as Baxter and Rennie [1996], Hull [1997] and Brigo and Mercurio [2006], a payer
interest rate swaption entitles the buyer to enter into a payer interest rate swap
at a specified strike rate. By a payer swap, we mean that the exerciser of the
payer swaption enters into a swap, where fixed rate payments at the strike rate
are paid to the counterparty and floating rate payments at the prevailing floating
rates are received by the exerciser.

Let us denote the price of a payer interest rate swaption contract by

payerswaptionT ,K,N(t) (2.10.65)

at time t ≤ T0 with strike rate K, notional principal N and the set of dates
T = {T0, T1, . . . , Tn}. The swaption will be exercised if the prevailing swap rate
at time T0 exceeds the strike rate K. At the �th coupon date T� the payoff is

N × (T� − T�−1)×
(
Sδ∗
t

Sδ∗
T�

(swaprateT (T0)−K)+
)

(2.10.66)
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for � ∈ {1, . . . , n}.
The formula for the payer swaption price is

payerswaptionT ,K,N(t) (2.10.67)

= N
n∑

�=1

(T� − T�−1) E

(
Sδ∗
t

Sδ∗
T�

(swaprateT (T0)−K)+
∣∣∣∣At

)
,

where swaprateT is as in (2.10.58).

Similarly a receiver interest rate swaption entitles the buyer to enter into a swap
receiving fixed rate payments at the strike rate and paying floating rate payments
at the prevailing floating rate.

The formula for the receiver swaption price is

receiverswaptionT ,K,N(t) (2.10.68)

= N
n∑

�=1

(T� − T�−1) E

(
Sδ∗
t

Sδ∗
T�

(K − swaprateT (T0))
+

∣∣∣∣At

)
,

where swaprateT is as in (2.10.58).

Employing the identity (x−K)+ − (K − x)+ = x−K we deduce from (2.10.67)
and (2.10.68) the put-call parity formula for swaptions as follows:

payerswaptionT ,K,N(t)− receiverswaptionT ,K,N(t) (2.10.69)

= (swaprateT (T0)−K)×N ×
n∑

�=1

(T� − T�−1)P (t, T�).

To price a swaption we use the pricing formula for a coupon bond option. We have
the following corollary to Theorem 2.10.5, which shows that the payer swaption
price is equal to a put option on a coupon bond.

Corollary 2.10.7 For a payer swaption with strike rate K, notional amount N
dollars and payment dates T the pricing formula is

payerswaptionT ,K,N(t) = N × pT0,1(t, PT ,K(·)), (2.10.70)

where PT ,K(t) is the price of a coupon bond as in (2.10.38) and pT0,1(t, PT ,K(·)) is
as in (2.10.48). Also, for a receiver swaption with the same strike rate, notional
amount and payment dates the pricing formula is

receiverswaptionT ,K,N(t) = N × cT0,1(t, PT ,K(·)), (2.10.71)

where cT0,1(t, PT ,K(·)) is as in (2.10.47).
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Proof . The right hand side of (2.10.67) can be simplified as follows:
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)
(2.10.72)
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)
.

The formula for the swap rate at time t = T0 is computed from (2.10.58) to be

swaprateT (T0) =
1− P (T0, Tn)∑n

k=1(Tk − Tk−1)P (T0, Tk)
(2.10.73)

and inserting into the last line of (2.10.72) gives

N E

(
Sδ∗
t

Sδ∗
T0

(
1− P (T0, Tn)−K

n∑
�=1

(T� − T�−1)P (T0, T�)

)+ ∣∣∣∣At

)
(2.10.74)

= N pT0,1(t, PT ,K(·)),

as required. The formula for the receiver swaption is similarly proven. Q.E.D.

Corollary 2.10.7 equips us with an efficient swaption pricing formula.

2.10.8 Hedging

Generally speaking, hedging a derivative security over a specified time period
involves buying a hedge portfolio of securities at the outset and then periodically
rebalancing its constituents according to a hedging strategy. The hedge universe
is the set of tradeable and investible securities permitted to be used in the hedge
portfolio. The hedge universe is chosen in a way that allows the hedge portfolio
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to replicate a desired exposure. For example, the hedge universe can be trivially
chosen to be the set of primary securities. Alternatively, the hedge universe can
be chosen as the cash account plus near dated futures contracts on each of the
non-cash primary securities.

Under the Benchmark Approach (BA) and within a market comprised of d + 1
primary securities the hedge portfolio at the outset is constructed such that its
value equates to the fair price of the derivative being hedged. The hedge strategy
that is adopted is typically delta hedging, whereby the dollar sensitivities of the
hedge portfolio to the non-cash primary security accounts at each rebalancing
time match the respective dollar sensitivities of the derivative to the non-cash
primary security accounts.

The market models considered in this thesis derive jointly from a model of the
short interest rate rt and a model of the discounted GOP S̄δ∗

t each of whose driv-
ing processes satisfy Assumption 2.8.2. Thus the market models considered in
this thesis have d = 1 or d = 2 according to whether the short rate is determinis-
tic or stochastic, respectively. For the case d = 1 the primary assets are the cash
account and the GOP account and for the case d = 2 a zero-coupon bond forms
the additional primary security account. Therefore, when d = 1 our only hedge-
able risk is that pertaining to the GOP account, whereas when d = 2 our only
hedgeable risks are those pertaining to the GOP account and the zero-coupon
bond account. The risk pertaining to the zero-coupon bond account can be cap-
tured by the short rate risk, and for this reason when d = 2 we can delta hedge
our derivative by maintaining an appropriate exposure in our hedge portfolio to
the GOP uncertainty and the short rate uncertainty.

Let our given derivative security V that we wish to hedge be European with
payoff H at expiry time T̄ ∈ [0, T ].

Our hedging strategy over a hedge period [0, T̄ ] involves buying a hedge portfolio
consisting of a quantity of units of the domestic savings account, a quantity
of units of the GOP account (and, for the case d = 2, a quantity of units of
the zero-coupon bond account) such that the risk sensitivities of the derivative
to the GOP (and, for the case d = 2, the short rate) equate to those of the
hedge portfolio. This is classical delta hedging, as discussed in Hull [1997] or in
Section 8.6 of Heath and Platen [2006]. Recall, Bt is the value of the savings
account at time t, Sδ∗

t is the value of the GOP account at time t, P (t, T ) is the
value of the T -maturity ZCB at time t and Vt is the value of derivative as at time
t. The cost of the hedging strategy is computed as the value of the derivative less
gains from trading the hedge portfolio, namely

Ct = Vt −
∫ t

0

(δ(0)s dBs + δ(1)s dSδ∗
s + δ(2)s dP (s, T )) (2.10.75)

for t ∈ [0, T ] with C0 = V0. Here δ
(0)
t is the number of units of the domestic
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savings account, δ
(1)
t is the number of units of the GOP account and, for the case

d = 2, δ
(2)
t is the number of units of the ZCB account. Equivalently the cost

series can be regarded as being equal to the initial value of the hedge portfolio
plus the amount required to purchase the derivative in the market in excess of
the prevailing value of the hedge portfolio.

The discounted cost of hedging is given by the SDE

C̄t =
Ct

Bt

=
Vt

Bt

−
∫ t

0

(δ(1)s dS̄δ∗
s + δ(2)s dP̄ (s, T )) (2.10.76)

for t ∈ [0, T̄ ].

For a perfect hedge we have complete replication of the derivative payoff at expiry
by the hedge portfolio, that is, VT̄ = V

(π)

T̄
under all market scenarios. Equivalently

stated, for a perfect hedge we have C̄T̄ = V̄
(π)
0 under all market scenarios.

We emphasise, under the BA there may be several self-financing portfolios π,
which replicate a given payoff. We are interested in the minimum replicating
portfolio whose benchmarked value V̂

(π)
t equates to the benchmarked value of the

derivative, which is obtained from the formula

V̂
(π)
t = V̂t = E(V̂T̄ |At). (2.10.77)

For this minimum replicating portfolio the cost of hedging is CT̄ = V
(π)
0 = V0

under all market scenarios.

In the case when the underlying processes are Markovian, which we will always
assume, the conditional expectation in (2.10.77) can be calculated by using the
Feynman-Kac formula, see Heath and Platen [2006]. The resulting benchmarked
pricing function is then a function of time and a number of Markovian factor
processes solving a related partial differential equation (PDE). For the models we
consider, this is possible.

2.10.9 Backtesting the Hedge Strategy

Given a fully specified model with known parameters, we can backtest hedging of
the derivative over the time interval [0, T̄ ] by setting the n− 1 rebalancing times

t1 < t2 < ... < tn−1

satisfying 0 = t0 < t1 and tn−1 < tn = T̄ .

The hedge portfolio V (π) is adjusted at the rebalancing times and is computed
iteratively using the formula

V
(π)
ti = δ

(0)
ti−1

Bti + δ
(1)
ti−1

Sδ∗
ti
+ δ

(2)
ti−1

P (ti, T ) (2.10.78)
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for i = 1, 2, . . . , n with initial condition

V
(π)
0 = V0, (2.10.79)

where, for i = 1, 2, . . . n− 1, the numbers of units held in the GOP account and
ZCB account at time ti are computed as

δ
(1)
ti =

∂

∂Sδ∗
s

V (rs, S
δ∗
s )
∣∣
s=ti

− δ
(2)
ti

∂

∂Sδ∗
s

P (s, T )
∣∣
s=ti

(2.10.80)

δ
(2)
ti =

∂

∂rs
Vs(rs, S

δ∗
s )
∣∣
s=ti

/
∂

∂rs
P (s, T )

∣∣
s=ti

and the number of units held in the cash account at time ti is computed as

δ
(0)
ti =

(
V

(π)
ti − δ

(1)
ti Sδ∗

ti
− δ

(2)
ti P (ti, T )

)
/Bti . (2.10.81)

Since trading is not continuous hedge errors arise, which are small for small time
step sizes and are neglected in the first instance.

Within this thesis we assess the performance of hedging strategies under partic-
ular market models in the following way:

We calculate the total benchmarked cost ĈT̄ from start date t = 0 to payoff date
t = T̄ . The smaller the value of ĈT̄ , the cheaper the dynamic hedge strategy
replicates the payoff. Because the fair price of the derivative has minimal initial
cost, the initial cost of hedging C0 will be the minimal one in cost among all
self-financing replicating portfolios. Also if the particular model is correct then
we expect that the cost of hedging will be minimal among competing models.
In this thesis we compare the costs of hedging zero-coupon bonds, equity index
options and swaptions under several market models using historical data which
forms the basis of our comparison of market models studied in this thesis. As
a result we expect to obtain a reasonable view about which model provides on
average the least expensive hedge portfolios, and whether such model goes beyond
the classical risk neutral setting. We emphasise that we do not study historical
fixed income data, which would be another task and is beyond the scope of the
thesis. In case the market uses risk neutral pricing for long-dated contracts and
one may be able to price and hedge those contracts less expensively under the
BA, one first has to verify this using the available historical data.

2.11 Conclusion

We have described the pricing of derivatives using the GOP as numéraire and
the real-world probability measure as pricing measure. We have seen how the
supermartingale property of portfolios ensures that the portfolios do not permit
strong arbitrage. Thus, by computing the expectation of a benchmarked con-
tingent claim with respect to the real-world probability measure, we obtain the
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fair or real-world price for the benchmarked contingent claim which gives a price
process that is minimal in the set of possible replicating portfolio processes. We
have shown how to develop a dynamic trading strategy involving the underly-
ing assets, which hedges the contingent claim to its expiry date. It is clear that
the benchmark approach to hedging contingent claims differs from classical risk
neutral approaches. In Chapters 7, 8 and 9 we illustrate the benefits of the bench-
mark approach in hedging long-dated zero-coupon bonds, swaptions and index
options.
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Chapter 3

Three Short Rate Models

3.1 Introduction

In actuarial science the short-term interest rate plays a central role in valuations
of future cashflows, particularly those pertaining to short-tail insurance policies.
A short rate model is a mathematical model of the instantaneous, continuously
compounded deposit rate for a specific currency. The most realistic proxy for the
short rate among investible securities is probably the overnight cash deposit rate,
expressed as a continuously compounded rate. Short rates are typically modelled
as stochastic processes and coverages of short rate models can be found, for
example, in Rebonato [1998] and Brigo and Mercurio [2006].

The short rate models considered in this chapter are specified by stochastic dif-
ferential equations (SDEs) with a single noise source and with time-dependent
coefficients. From an actuarial pricing perspective the availability of explicit pric-
ing formulae for calculations involving the short-term interest rate is of extreme
importance. The class of short rate dynamics where one can probably expect
the widest range of explicit valuation formulae is probably the Gaussian class.
They are convenient and also reasonably realistic for pricing future cash flows and
contingent claims. They have explicit closed-form formulae for their transition
density functions and also allow negative values. Of particular importance for
actuaries is the requirement that the long-term bond yield implied by the model
be a finite constant, which is guaranteed for the Vasicek model but not neces-
sarily for extended Vasicek models. Figure 3.1 illustrates the asymmetry of the
distribution of annual changes in the short rate for US cash rates, which corre-
sponds to the leverage effect in bond markets. While this effect is not captured
by extended Vasicek models, it is a short-term effect which is less pronounced
when analysing the asymptotic behaviour of bond yields and volatilities.

A particular example of a Gaussian short rate model is the well-known Vasicek
model, which is a linear mean reverting stochastic model, see Vasicek [1977]. This

51
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Figure 3.1: Comparison of empirical probability density function of annual change
in short rate with that of the fitted normal distribution (US 1Y cash rates 1871
- 2010).

0

5

10

15

20

25

30

35

40

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Pr
ob

ab
ili

ty
 D

en
si

ty

Annual Change in Short Rate

Empirical Density Fitted Normal Density (μ=-0.000414, σ=0.014854)

ensures that interest rates adhere to a long run reference level.

Working on a filtered probability space (Ω,A, (At)t≥0, P ), the SDE for the ex-
tended Vasicek short rate model or Hull-White extension is given as

drt = κt(r̄t − rt)dt+ σtdZt, (3.1.1)

where rt is the short rate at time t ≥ 0, Zt is a Wiener process adapted to the
filtration (At)t≥0 and r̄, κ and σ are positive deterministic functions of time. One
goal in this chapter is to provide for this type of model a wide range of valuation
formulae that are useful in actuarial valuations and, for suitable conditions on
the model parameters, to show that the implied long-term bond yield is finite1.

Another single-factor short rate model considered is the CIR model is a linear
mean reverting stochastic model, which avoids the possibility of negative interest
rates experienced in the Vasicek model.

Finally we examine the 3/2 model which also prohibits negative interest rates but
is not linear mean reverting. As we will see, its inverse is linear mean reverting
and, thus, adheres to a long run reference level.

1This work has been published in Fergusson [2017a].
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We examine each of the three short rate models and, in doing so, calculate the
transition density function, relevant contribution G to the ZCB price, relevant
contribution to the instantaneous forward rate and the option on the ZCB con-
tribution G. We go deliberately through all steps of the derivations, even though
some of these may be well-known under risk neutral assumptions, since our pric-
ing will be done under the real-world probability measure and not under some
assumed risk neutral measure.

The availability of explicit formulae for the transition density functions makes
possible the fitting of each model using maximum likelihood estimation. For es-
timating the drift parameters the length of the observation window is crucial.
Therefore, we fit each model to Shiller’s monthly data set comprised of US one-
year rates from 1871 to 2012. We retain the use of this particular data set
throughout the thesis because the fitted model parameters are used for backtest-
ing hedge strategies on this same data set. The use of the one-year deposit rate as
a proxy for the short rate is an assumption that is made here. The magnitude of
the biases of a short-term deposit rate in lieu of the unobservable short rate was
investigated in Chapman et al. [1999], where it was found not to be economically
significant.

Aside from fitting three short rate models to US cash rate data over more than a
century, this chapter provides convenient formulae, which are essential for pricing
zero-coupon bonds, options on zero-coupon bonds and options on the GOP. An
explicit formula for the fair price of a zero-coupon bond demands an explicit
formula for the short rate contribution G and this will be supplied in respect of
each of the three short rate models. Having explicit formulae for prices of options
on the short rate contribution G allows for a single dimensional integral formula
for the price of options on a zero-coupon bond. Finally, having formulae for the

moment generating function of
∫ T̄
t
rsds leads to pricing formulae for options on

the GOP.

3.2 Vasicek Short Rate Model and Extensions

The Vasicek model was proposed in Vasicek [1977], and extended in Hull and
White [1990] to the Hull-White model whose drift and diffusion parameters are
made time-dependent, which also became known as the extended Vasicek model.

This SDE (3.1.1) is the Ornstein-Uhlenbeck SDE whose explicit solution is ob-
tained by solving the SDE of qt = rtet with

et = exp

{∫ t

0

κs ds

}
, (3.2.1)

where
dqt = d(rt et) = κtetr̄tdt+ etσtdZt. (3.2.2)
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Vasicek’s model, which is a special case of (3.1.1) with κt, r̄t, σt constant, and
whose SDE is

drt = κ(r̄ − rt) dt+ σ dZt, (3.2.3)

was probably the first interest rate model to capture mean reversion, an essential
characteristic of the interest rate that sets it apart from simpler models. Thus,
under the real-world probability measure, as opposed to stock prices, for instance,
interest rates are not expected to rise indefinitely. This is because at very high
levels they would hamper economic activity, prompting a decrease in interest
rates. Similarly, interest rates are unlikely to decrease indefinitely. As a result,
interest rates move mainly in a range, showing a tendency to revert to a long run
value.

The drift factor κ(r̄ − rt) represents the expected instantaneous change in the
interest rate at time t. The parameter r̄ represents the long-run reference value
towards which the interest rate reverts. Indeed, in the absence of uncertainty, the
interest rate would remain constant when it has reached rt = r̄. The parameter
κ, governing the speed of adjustment, needs to be positive to ensure stability
around the long-term value. For example, when rt is below r̄, the drift term
κ(r̄ − rt) becomes positive for positive κ, generating a tendency for the interest
rate to move upwards.

The main disadvantage seemed that, under Vasicek’s model, it is theoretically
possible for the interest rate to become negative. In the previous academic lit-
erature this has been interpreted as an undesirable feature. However, on several
occasions the market generated in recent years negative interest rates, for exam-
ple in Switzerland and in Europe. The possibility of negative interest rates is
excluded in the Cox-Ingersoll-Ross model (see Cox et al. [1985]), the exponential
Vasicek model (see Brigo and Mercurio [2001]), the model of Black et al. [1990]
and the model of Black and Karasinski [1991], among many others. See Brigo
and Mercurio [2006] for further discussions.

Another disadvantage is that the Vasicek model does not capture stochastic
volatility, evident in the graph of the quadratic variation of the short rate in Fig-
ure 3.2. Therefore, a serious consideration of real-world dynamics would require
models whose stochastic differential equations of the short rate have stochastic
volatility, such as the Cox-Ingersoll-Ross model and the 3/2 model (see Platen
[1999]). However, owing to the mean reverting nature of stochastic volatility, this
will have less impact on the asymptotic behaviour of bond volatilities.

The Vasicek model was further extended in the Hull-White model (see Hull and
White [1990]), by allowing time dependence in the drift parameters. The Hull-
White model is specified by the SDE

drt = {θ(t) + a(t)(b− rt)}dt+ σ(t)dZt, (3.2.4)

where θ(t), a(t) and σ(t) are deterministic functions of t, satisfying a(t) > 0 and
σ(t) > 0 and b is a constant. When setting κt = a(t) and r̄t = b + θ(t)/a(t) in
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Figure 3.2: Quadratic variation of the short rate (monthly series of US 1Y cash
rates 1871 - 2012, see Data Set B in Section L.2 of Appendix).
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(3.1.1) we obtain (3.2.4). Further, in (3.2.4) when setting a(t) = 0 and σ(t) equal
to a positive constant σ we obtain

drt = θ(t) dt+ σdZt, (3.2.5)

which is implicitly what is employed in Ho and Lee [1986].

We now provide an explicit solution to each of the SDE (3.2.3) and the SDE
(3.2.4) from which we determine the associated transition density function.

3.2.1 Explicit Formula for the Short Rate

An explicit solution to the Ornstein-Uhlenbeck process is straightforwardly ob-
tained in the following theorem.

Proposition 3.2.1 The short rate rt satisfying the Vasicek SDE (3.2.3) has so-
lution

rt = rs exp(−κ(t− s))+ r̄(1− exp(−κ(t− s)))+σ

∫ t

s

exp(−κ(t−u))dZu (3.2.6)
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for times s and t with 0 ≤ s < t and for positive constants r̄, κ and σ. Here Z is
the Wiener process in (3.2.3).

Proof . Integrating both sides of (3.2.2) between times s and t gives

rt exp(κt)− rs exp(κs) = κr̄

∫ t

s

exp(κu)du+ σ

∫ t

s

exp(κu)dZu. (3.2.7)

Multiplying both sides by exp(−κt) and simplifying gives (3.2.6). Q.E.D.

The proof is similar for the solution to the Hull-White SDE in (3.2.4).

Proposition 3.2.2 The short rate rt satisfying the Hull-White SDE (3.2.4) has
solution

rt = rs exp

{
−
∫ t

s

a(τ) dτ

}
+

∫ t

s

exp

{
−
∫ t

u

a(τ) dτ

}{
θ(u) + a(u)b

}
du

(3.2.8)

+

∫ t

s

exp

{
−
∫ t

u

a(τ) dτ

}
σ(u)dZu

for times s and t with 0 ≤ s < t, for positive functions θ(u), a(u) and σ(u) and
for a constant b. Here Z is the Wiener process in (3.2.4).

3.2.2 Transition Density of the Short Rate

As is the case for the Ho-Lee model in (3.2.5) and the Hull-White model in
(3.2.4), the transition density function of the Vasicek short rate is that of a
normal distribution.

Corollary 3.2.3 For times s and t with 0 ≤ s < t ≤ T the transition density of
the short rate rt in (3.2.3) is given by

pr(s, rs, t, rt) =
1√

2πσ2 1−exp(−2κ(t−s))
2κ

(3.2.9)

× exp

⎛
⎝−1

2

⎛
⎝rt − rs exp(−κ(t− s))− r̄(1− exp(−κ(t− s)))√

σ2 1−exp(−2κ(t−s))
2κ

⎞
⎠

2⎞
⎠ .

Proof . From (3.2.6) we see that rt conditioned upon rs is normally distributed
and has expected value

E(rt|As) = rs exp(−κ(t− s)) + r̄(1− exp(−κ(t− s))) (3.2.10)
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Figure 3.3: Vasicek transition density function of US cash rates based at year
2000 and short rate 0.064.
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and variance

Var(rt|As) = σ2

∫ t

s

exp(−2κ(t−u))du = σ2(1−exp(−2κ(t−s)))/(2κ). (3.2.11)

The transition density function must, therefore, be given by (3.2.9). Q.E.D.

A graph of the transition density function is shown in Figure 3.3 for parameters
shown in (3.2.25).

As for other Gaussian short rate models such as the Ho-Lee model and the Hull-
White model, a potential disadvantage of the Vasicek model is the possibility of
negative interest rates.

A lemma, which can be deduced from Corollary 3.2.3 and which will be used
later, is as follows.

Lemma 3.2.4 For the Vasicek process in (3.2.3) and times s, t with s ≤ t let
the mean and variance of rt given rs be defined as

ms(t) = E(rt|As) (3.2.12)

vs(t) = Var(rt|As) = E((rt −ms(t))
2|As).
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Then we have the explicit formulae

ms(t) = r̄κB(s, t) + rs(1− κB(s, t)) (3.2.13)

vs(t) = σ2

(
B(s, t)− 1

2
κB(s, t)2

)
,

where

B(s, t) = (1− exp(−κ(t− s)))/κ. (3.2.14)

Proof . See Appendix A.

For the Hull-White model we have the following corollary.

Corollary 3.2.5 For times s and t with 0 ≤ s < t ≤ T the transition density of
the short rate rt in (3.2.4) is given by

pr(s, rs, t, rt) =
1√

2πvs(t)
(3.2.15)

× exp

⎛
⎝−1

2

(
rt −ms(t)√

vs(t)

)2
⎞
⎠ ,

where

ms(t) = rs exp

{
−
∫ t

s

a(τ) dτ

}
+

∫ t

s

exp

{
−
∫ t

u

a(τ) dτ

}{
θ(u) + a(u)b

}
du

(3.2.16)

vs(t) =

∫ t

s

exp

{
− 2

∫ t

u

a(τ) dτ

}
σ(u)2du.

3.2.3 Fitting the Vasicek Model

Estimating the parameters of the Vasicek model is achieved using maximum like-
lihood estimation. To avoid any potential confusion we derive the estimators
showing all steps. Because the transition density function of the Vasicek short
rate is normal it suffices to have formulae for the conditional mean and variance,
which are given in Lemma 3.2.4, and therefore our log-likelihood function under
the Vasicek model for the set of observed short rates rti , for i = 0, 2, . . . , n is

�(r̄, κ, σ) = −1

2

n∑
i=1

(
log(2πvti−1

(ti)) +
(rti −mti−1

(ti))
2

vti−1
(ti)

)
(3.2.17)
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where

mti−1
(ti) = r̄κB(ti−1, ti) + rti−1

(1− κB(ti−1, ti)) (3.2.18)

vti−1
(ti) = σ2

(
B(ti−1, ti)−

1

2
κB(ti−1, ti)

2

)

and B(s, t) is as in (3.2.14).

The following theorem provides explicit maximum likelihood estimates (MLEs)
of r̄, κ and σ for a fixed value of r̄.

Theorem 3.2.6 Assume that the times t0 < t1 < . . . < tn are equidistant with
spacing Δ. Then the MLEs of r̄, κ and σ are given by

r̄ =
S1S00 − S0S01

S0S1 − S2
0 − S01 + S00

(3.2.19)

κ =
1

Δ
log

S0 − r̄

S1 − r̄

σ2 =
1

nβ(1− 1
2
κβ)

n∑
i=1

(rti −mti−1
(ti))

2

where

S0 =
1

n

n∑
i=1

rti−1
(3.2.20)

S1 =
1

n

n∑
i=1

rti

S00 =
1

n

n∑
i=1

rti−1
rti−1

S01 =
1

n

n∑
i=1

rti−1
rti

and β = 1
κ
(1− exp(−κΔ)).

Proof . See Appendix A.

As a result, Theorem 3.2.6 supplies the explicit MLEs (ˆ̄r, κ̂, σ̂).

To provide standard errors of these MLEs, we note that their variances satisfy
the Cramér-Rao inequality

Var((ˆ̄r, κ̂, σ̂)) ≥ 1

I(r̄, κ, σ) , (3.2.21)
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where I(r̄, κ, σ) is the Fisher information matrix. As the number of observations
approaches infinity the variance is asymptotic to the lower bound. Also the Fisher
information matrix is approximated by the observed Fisher information matrix

I(r̄, κ, σ) ≈ I(ˆ̄r, κ̂, σ̂) = −∇2�(ˆ̄r, κ̂, σ̂). (3.2.22)

The following theorem supplies the observed Fisher information matrix in respect
of MLEs of the Vasicek model.

Theorem 3.2.7 The observed Fisher information matrix in respect of the MLEs
in Theorem 3.2.6 is given by⎛
⎜⎝

nκ2β

σ2(1− 1
2
κβ)

mr̄

v
Δ exp(−κΔ)(r̄ − S0) 0

mr̄

v
Δ exp(−κΔ)(r̄ − S0)

n
v

(
Δ exp(−κΔ)

)2
(r̄2 − 2r̄S0 + S00)− n

2v2
v2κ

1
2
vσvκ

n
v2

0 1
2
vσvκ

n
v2

2n
σ2

⎞
⎟⎠

(3.2.23)
where

β =
1

κ
(1− exp(−κΔ)) (3.2.24)

v = σ2β(1− 1

2
κβ)

mr̄ = 1− exp(−κΔ)

vσ =
2v

σ

vκ = −1

κ
v + 2Δ v +

σ2

κ
Δ

and we have assumed that the times t0 < t1 < . . . < tn are equidistant with
spacing Δ.

Proof . See Appendix A.

We fit the Vasicek model to the annual series of one-year deposit rates from 1871
to 2012, referred to as Data Set A in Section L.1 of Appendix L. We obtain the
MLEs, with standard errors shown in brackets,

r̄ = 0.042994 (0.0080023) (3.2.25)

κ = 0.162953 (0.053703)

σ = 0.015384 (0.00099592).

Remark 3.2.8 Fitting the Vasicek model to the monthly series of one-year de-
posit rates from 1871 to 2017, referred to as Data Set C in Section L.3 of Ap-
pendix L, we obtain the MLEs, with standard errors shown in brackets,
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Figure 3.4: Actual short rate and fitted Vasicek mean reverting level for US cash
rates.
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r̄ = 0.043285 (0.008696) (3.2.26)

κ = 0.148315 (0.045877)

σ = 0.015537 (0.000234).

Thus, we see good agreement between the respective estimates based on annual
and monthly data in (3.2.25) and (3.2.26).

We show the parameter estimate for the mean reverting level r̄ alongside the
historical short rates in Figure 3.4. We note that for the periods after 1930 a time-
dependent reference level may be appropriate but we deliberately keep constant
parameters in this thesis to clarify firstly this case for the different models2.

One way of assessing the goodness of fit of the parameter estimates for σ and κ
in a graphical fashion is to compare the theoretical quadratic variation of qt =
rt exp(κt) with the observed quadratic variation.

2Time dependency in the reference level has been addressed in Fergusson [2017a] and Fer-
gusson [2018] for the Vasicek and CIR models respectively.
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Figure 3.5: Logarithm of quadratic variation of exp(κt)rt.
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From the SDE (3.2.2) the theoretical quadratic variation of qt = rt exp(κt) is

[q]t = σ2

∫ t

0

exp(2κs)ds = σ2 exp(2κt)− 1

2κ
(3.2.27)

and the observed quadratic variation of q is computed using the formula

[q]t ≈
∑
j:tj≤t

(rtj exp(κtj)− rtj−1
exp(κtj−1))

2. (3.2.28)

The logarithm of the observed quadratic variation of qt = rt exp(κt) in (3.2.28) is
shown alongside the logarithm of the fitted quadratic variation function (3.2.27)
in Figure 3.5. We note that we have visually a good fit.

3.2.4 The Savings Account and its Transition Density

The savings account consists of the dollar wealth accumulated continuously at
the short rate, given an initial deposit of one dollar at time zero. The value of
the savings account at time t is given in (2.2.2). The following lemma leads to
the formula for the savings account value under the Vasicek model.
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Lemma 3.2.9 Let rt satisfy the Vasicek SDE (3.2.3). Then

∫ T̄

t

rsds = rtB(t, T̄ ) + r̄(T̄ − t− B(t, T̄ )) + σ

∫ T̄

t

B(u, T̄ )dZu, (3.2.29)

where

B(t, T̄ ) =
1

κ
(1− exp(−κ(T̄ − t))). (3.2.30)

Proof . From (3.2.6) we have for s ∈ [t, T̄ ]

rs = rt exp(−κ(s−t))+ r̄(1−exp(−κ(s−t)))+σ

∫ s

t

exp(−κ(s−u))dZu. (3.2.31)

Integrating both sides with respect to s between t and T̄ gives

∫ T̄

t

rsds (3.2.32)

=

∫ T̄

t

(
rt exp(−κ(s− t)) + r̄(1− exp(−κ(s− t)))

+ σ

∫ s

t

exp(−κ(s− u))dZu

)
ds

=

∫ T̄

t

rt exp(−κ(s− t))ds+ r̄(T̄ − t) + r̄
1

κ
(exp(−κ(T̄ − t))− 1)

+ σ

∫ T̄

t

∫ s

t

exp(−κ(s− u))dZu ds

= rt
1

κ
(1− exp(−κ(T̄ − t))) + r̄(T̄ − t− 1

κ
(1− exp(−κ(T̄ − t)))

+ σ
1

κ

∫ T̄

t

(1− exp(−κ(T̄ − u)))dZu

which completes the proof. Q.E.D.

A similar lemma applies to the Hull-White model.

Lemma 3.2.10 Let rt satisfy the Hull-White SDE (3.2.4). Then

∫ T̄

t

rsds = rtB(t, T̄ ) +

∫ T̄

t

B(u, T̄ )
{
θ(u) + a(u)b

}
du

∫ T̄

t

B(u, T̄ )σ(u)dZu,

(3.2.33)
where

B(t, T̄ ) =

∫ T̄

t

exp

{
−
∫ s

t

a(τ) dτ

}
ds. (3.2.34)
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The following proposition provides the formula for the savings account under the
Vasicek short rate model.

Proposition 3.2.11 Let rt satisfy the Vasicek SDE (3.2.3). Then the SDE

dBt = rtBtdt (3.2.35)

of the savings account Bt has the solution

BT̄ = Bt exp

(
rtB(t, T̄ ) + r̄(T̄ − t− B(t, T̄ )) + σ

∫ T̄

t

B(u, T̄ )dZu

)
(3.2.36)

where B(t, T̄ ) is as in (3.2.30).

Proof . Combining (3.2.29) and (2.2.2) gives the formula for the savings account
as

BT̄ = Bt exp

(∫ T̄

t

rsds

)
(3.2.37)

= Bt exp

(
rtB(t, T̄ ) + r̄(T̄ − t− B(t, T̄ )) + σ

∫ T̄

t

B(u, T̄ )dZu

)
,

which completes the proof. Q.E.D.

From (3.2.36) we immediately see that the transition density function

pB(t, Bt, T̄ , BT̄ ) (3.2.38)

of the savings account value is a lognormal density function.

Proposition 3.2.12 Let rt satisfy the Vasicek SDE (3.2.3). Then the transition
density function of the savings account value BT̄ is

pB(t, Bt, T̄ , BT̄ ) =
1

BT̄

√
2πv(t, T̄ )

exp

(
− 1

2

(
log(BT̄/Bt)−m(t, T̄ )

)2

/v(t, T̄ )

)
,

(3.2.39)
where

m(t, T̄ ) = rtB(t, T̄ ) + r̄(T̄ − t− B(t, T̄ )) (3.2.40)

v(t, T̄ ) =
σ2

κ2

(
T̄ − t− B(t, T̄ )− 1

2
κB(t, T̄ )2

)
.
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Proof . From (3.2.36) we can write

BT̄ = Bt exp

(
m(t, T̄ ) +

√
v(t, T̄ )Z

)
, (3.2.41)

where

m(t, T̄ ) = rtB(t, T̄ ) + r̄(T̄ − t− B(t, T̄ )) (3.2.42)

v(t, T̄ ) = σ2

∫ T̄

t

B(u, T̄ )2du

and Z is a standard normal random variable. We can simplify the squared volatil-
ity v(t, T̄ ) as follows

v(t, T̄ ) = σ2

∫ T̄

t

1

κ2
(1− exp(−κ(T̄ − u)))2du (3.2.43)

=
σ2

κ2

(
(T̄ − t)− 2

1− exp(−κ(T̄ − t))

κ
+

1− exp(−2κ(T̄ − t))

2κ

)

=
σ2

κ2

(
(T̄ − t)− 2B(t, T̄ ) +

1− (1− κB(t, T̄ ))2

2κ

)

=
σ2

κ2

(
T̄ − t− B(t, T̄ )− 1

2
κB(t, T̄ )2

)
and we have the result. Q.E.D.

Therefore, we can write the conditional distribution of the savings account value
as

logBT̄ ∼ N

(
logBt +m(t, T̄ ), v(t, T̄ )

)
(3.2.44)

given Bt for m(t, T̄ ) and v(t, T̄ ) as in (3.2.40), where N(m, v) denotes the Gaus-
sian distribution with mean m and variance v.

Analogously, for the Hull-White model we can write the conditional distribution
of the savings account value as

logBT̄ ∼ N

(
logBt +m(t, T̄ ), v(t, T̄ )

)
(3.2.45)

given Bt, where m(t, T̄ ) and v(t, T̄ ) are given by

m(t, T̄ ) = rt

∫ T̄

t

exp

{
−
∫ s

t

a(τ) dτ

}
ds (3.2.46)

+

∫ T̄

t

[ ∫ s

t

exp

{
−
∫ s

u

a(τ) dτ

}(
θ(u) + a(u)b

)
du

]
ds

v(t, T̄ ) =

∫ T̄

t

[ ∫ T̄

u

exp

{
−
∫ s

u

a(τ) dτ

}
ds

]2
σ(u)2 du.

The transition density of the savings account allows us to calculate the contribu-
tion of the short rate to the zero-coupon bond price in the following section.
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3.2.5 Short Rate Contribution to ZCB Price

In the following lemma we calculate the contribution GT̄ (t) to the zero-coupon
bond price which is due to the short rate.

Lemma 3.2.13 For time t ∈ [0, T̄ ] the short rate contribution to the ZCB price
is

GT̄ (t) = A(t, T̄ ) exp(−rtB(t, T̄ )), (3.2.47)

where

B(t, T̄ ) =
1− exp(−κ(T̄ − t))

κ
(3.2.48)

and

A(t, T̄ ) = exp

(
(r̄ − σ2

2κ2
)(B(t, T̄ )− T̄ + t)− σ2

4κ
B(t, T̄ )2

)
. (3.2.49)

Proof . From (3.2.44)

logBT̄ ∼ N(logBt +m(t, T̄ ), v(t, T̄ )) (3.2.50)

given Bt and using (2.8.4) we have

GT̄ (t) = E

(
Bt

BT̄

∣∣∣∣At

)
(3.2.51)

= BtE

(
exp(− logBT̄ )

∣∣∣∣At

)

= Bt exp(−E(logBT̄ |At) +
1

2
Var(BT̄ |At))

= Bt exp(− logBt −m(t, T̄ ) +
1

2
v(t, T̄ ))

= exp(−m(t, T̄ ) +
1

2
v(t, T̄ ))

= exp

(
− rtB(t, T̄ )− r̄(T̄ − t− B(t, T̄ ))

+
σ2

2κ2

(
T̄ − t− B(t, T̄ )− 1

2
κB(t, T̄ )2

))

= exp(−rtB(t, T̄ )) exp

(
(−r̄ +

σ2

2κ2
)(T̄ − t− B(t, T̄ ))− σ2

4κ
B(t, T̄ )2

)

which is the result. Q.E.D.

A similar result can be proven for the Hull-White short rate model.
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Lemma 3.2.14 Let rt satisfy the Hull-White SDE (3.2.4). Then for time t ∈
[0, T̄ ] the T̄ -maturity ZCB price is

GT̄ (t) = A(t, T̄ ) exp(−rtB(t, T̄ )), (3.2.52)

where

B(t, T̄ ) =

∫ T̄

t

exp

{
−
∫ s

t

a(τ) dτ

}
ds (3.2.53)

and

A(t, T̄ ) = exp

(
−
∫ T̄

t

[ ∫ s

t

exp

{
−
∫ s

u

a(τ) dτ

}(
θ(u) + a(u)b

)
du

]
ds (3.2.54)

+
1

2

∫ T̄

t

B(u, T̄ )2σ(u)2 du

)
.

3.2.6 Short Rate Contribution to Bond Yields
and Forward Rates

We investigate the asymptotic level of the yield curve under the Vasicek model.
As a corollary of Lemma 3.2.13 we calculate the T̄ -maturity ZCB yield hT̄ (t), as
given in

hT̄ (t) = − 1

T̄ − t
logGT̄ (t), (3.2.55)

as T̄ → ∞, which we call the long ZCB yield.

Corollary 3.2.15 Let rt satisfy the Vasicek SDE (3.2.3). Then the long ZCB
yield is

h∞(t) = r̄ − σ2

2κ2
. (3.2.56)

Proof . From (3.2.55), the ZCB yield is given by the formula

h∞(t) = − lim
T̄→∞

1

T̄ − t
logGT̄ (t) (3.2.57)

= lim
T̄→∞

1

T̄ − t
(− logA(t, T̄ ) + rtB(t, T̄ ))

= lim
T̄→∞

rt
B(t, T̄ )

T̄ − t
− (r̄ − σ2

2κ2
)
B(t, T̄ )− T̄ + t

T̄ − t
+

σ2

4κ(T̄ − t)
B(t, T̄ )2.

But limT̄→∞ B(t, T̄ ) = 1
κ
and, therefore, the long ZCB yield simplifies to r̄ −

σ2

2κ2 . Q.E.D.
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Figure 3.6: Zero coupon yield curve under the Vasicek model based at 1871.
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In Figure 3.6 the continuously compounded yield curve is plotted as at the time
of 1871. We have an inverted yield curve and this portends an economic recession
because decreasing forward rates indicate expectations of low inflation and low
economic growth, as discussed in Harvey [1991].

We calculate the forward rate gT̄ (t), given by

gT̄ (t) = − ∂

∂T̄
logGT̄ (t). (3.2.58)

Lemma 3.2.16 For time t ∈ [0, T̄ ] the forward rate is computed to be

gT̄ (t) = (rt − r̄) exp(−κ(T̄ − t)) + r̄ − σ2

2κ2

(
1− exp(−κ(T̄ − t))

)2

. (3.2.59)



3.2. VASICEK SHORT RATE MODEL AND EXTENSIONS 69

Proof . Using (3.2.58) and (3.2.47) we have

gT̄ (t) = − ∂

∂T̄
logGT̄ (t) (3.2.60)

= − ∂

∂T̄

{
− (rt − r̄)

(1− exp(−κ(T̄ − t)))

κ
− r̄(T̄ − t)

+
σ2

2κ2

(
(T̄ − t)− 2

1− exp(−κ(T̄ − t))

κ
+

1− exp(−2κ(T̄ − t))

2κ

)}
= (rt − r̄) exp(−κ(T̄ − t)) + r̄

− σ2

2κ2

(
1− 2 exp(−κ(T̄ − t)) + exp(−2κ(T̄ − t))

)

and simplifying gives the result. Q.E.D.

As a corollary of this lemma we calculate directly the asymptotic instantaneous
forward rate.

Corollary 3.2.17 For the Vasicek short rate model, the asymptotic instanta-
neous forward rate is

g∞(t) = r̄ − σ2

2κ2
. (3.2.61)

In Figure 3.6 the instantaneous forward rate gT̄ is plotted and can be seen to be
asymptotic to g∞(t) = 0.0385 based upon the parameters in (3.2.25).

3.2.7 Expectations Involving GT̄ (t)

Motivated by pricing call and put options on zero-coupon bonds in Chapter 5 we
seek formulae for the following expectations

f1(t, T,K, T̄ ) =E

(
exp

(
−
∫ T

t

rsds

)
GT̄ (T )1GT̄ (T )>K

∣∣∣∣At

)
(3.2.62)

f2(t, T,K, T̄ ) =E

(
exp

(
−
∫ T

t

rsds

)
GT̄ (T )1GT̄ (T )≤K

∣∣∣∣At

)

f3(t, T,K, T̄ ) =E

(
exp

(
−
∫ T

t

rsds

)
1GT̄ (T )>K

∣∣∣∣At

)

f4(t, T,K, T̄ ) =E

(
exp

(
−
∫ T

t

rsds

)
1GT̄ (T )≤K

∣∣∣∣At

)

f5(t, T,K, T̄ ) =E

(
exp

(
−
∫ T

t

rsds

)(
GT̄ (T )−K

)+∣∣∣∣At

)

f6(t, T,K, T̄ ) =E

(
exp

(
−
∫ T

t

rsds

)(
K −GT̄ (T )

)+∣∣∣∣At

)
,
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where 0 ≤ t < T < T̄ and K > 0. These expectations correspond to prices of
various call and put options on zero-coupon bonds under the Vasicek short rate
model.

It is well known that the Vasicek short rate model is an example of a Gaussian
interest rate model and that for such models the prices of call options on zero-
coupon bonds employ the Black-Scholes option pricing formula. It is this formula
that we establish here, employing the following three lemmas and subsequent
corollary.

Lemma 3.2.18 Let Y be a normally distributed random variable. Then for any
real number y we have

E(exp(Y )1Y≤y) = E(exp(Y ))× E(1Y≤y−Var(Y )) (3.2.63)

and
E(exp(Y )1Y >y) = E(exp(Y ))× E(1Y >y−Var(Y )). (3.2.64)

Proof . See Appendix B.

In the following lemma we state an extension of the above lemma which we prove
later in the thesis.

Lemma 3.2.19 Let Y1 and Y2 be normally distributed random variables. Then
for any real number y,

E(exp(Y1)1Y2≤y) = E(exp(Y1))× E(1Y2≤y−Cov(Y1,Y2)). (3.2.65)

Also we have

E(exp(Y1)1Y2>y) = E(exp(Y1))× E(1Y2>y−Cov(Y1,Y2)). (3.2.66)

Proof . See Appendix B.

We can readily prove the pricing formulae for ZCB call and put options using
Lemma 3.2.19 when the integral of the short rate is a normally distributed random
variable whose variance parameter is a deterministic function, that is when the
following condition holds:

Condition 3.2.20 The integral
∫ T
t
rsds is normally distributed, that is,∫ T

t

rsds ∼ N
(
m, v
)
, (3.2.67)

where the parameter v is a deterministic function involving the parameters r̄, κ,
σ, t and T .
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This condition is satisfied by the Ho-Lee short rate model, the Hull-White short
rate model and various extended versions of these. Therefore, our lemmas apply
to these models, which result in a proof of the Black-Scholes formula for options
on zero-coupon bonds under each of these models.

Lemma 3.2.21 Let rt be a process for the short rate which satisfies Condi-
tion 3.2.20 and let

GT̄ (T ) = E

(
exp

(
−
∫ T̄

T

rsds

)∣∣∣∣AT

)
. (3.2.68)

Then the random variable L conditional on information up to time t, given by

L = logGT̄ (T ), (3.2.69)

is normally distributed whose expected value satisfies

E(L|At) = logGT̄ (t)/GT (t) (3.2.70)

− 1

2
Var(L|At) + Cov

(
L,

∫ T

t

rsds

∣∣∣∣At

)

and whose variance Var(L|At) satisfies

Var(L|At) = Var

(
E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)
. (3.2.71)

Proof . See Appendix B.

Theorem 3.2.22 Let rt be a process for the short rate which satisfies Condi-
tion 3.2.20. Then the formulae for the expectations f1 and f2 in (3.2.62) are
given by

f1(t, T,K, T̄ ) = GT̄ (t)N(d1) (3.2.72)

f2(t, T,K, T̄ ) = GT̄ (t)(1−N(d1)),

where

d1 =
1

2
σG +

1

σG

log
GT̄ (t)

GT (t)K
(3.2.73)

σ2
G = Var

(
E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)
.

Proof . See Appendix B.
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Theorem 3.2.23 Let rt be a process for the short rate which satisfies Condi-
tion 3.2.20. Then the formulae for the expectations f3 and f4 in (3.2.62) are
given by

f3(t, T,K, T̄ ) = GT (t)N(d2) (3.2.74)

f4(t, T,K, T̄ ) = GT (t)(1−N(d2)),

where

d2 = −1

2
σG +

1

σG

log
GT̄ (t)

GT (t)K
(3.2.75)

σ2
G = Var

(
E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)
.

Proof . See Appendix B.

Theorem 3.2.24 Let rt be a process for the short rate which satisfies Condi-
tion 3.2.20. Then the formulae for the expectations f5 and f6 in (3.2.62) are
given by

f5(t, T,K, T̄ ) = GT̄ (t)N(d1)−KGT (t)N(d2) (3.2.76)

f6(t, T,K, T̄ ) = −GT̄ (t)(1−N(d1)) +KGT (t)(1−N(d2)),

where

d1 =
1

2
σG +

1

σG

log
GT̄ (t)

GT (t)K
(3.2.77)

d2 = −1

2
σG +

1

σG

log
GT̄ (t)

GT (t)K

σ2
G = Var

(
E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)
.

Proof . See Appendix B.

When the short rate obeys a Vasicek process, the pricing formulae for call and put
options on the ZCB contribution GT̄ follow as a corollary of the above theorem.

Corollary 3.2.25 Under the Vasicek model, for a strike price K and valuation
time t, the price of a T -expiry call option on a T̄ -maturity ZCB is

cT,K,GT̄
(t) = GT̄ (t)N(h)−KGT (t)N(h− σG) (3.2.78)

and the price of a T -expiry put option on a T̄ -maturity ZCB is

pT,K,GT̄
(t) = −GT̄ (t)N(−h) +KGT (t)N(−h+ σG), (3.2.79)
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where

h =
1

σG

log
GT̄ (t)

GT (t)K
+

1

2
σG (3.2.80)

σG = σB(T, T̄ )

√
1

2κ
(1− exp(−2κ(T − t))) (3.2.81)

and

B(t, T ) =

{
1
κ
(1− exp(−κ(T − t))), if κ > 0

T − t, if κ = 0
. (3.2.82)

Equation (3.2.78) agrees with the formula for the price of a call option on a
zero-coupon bond given in Jamshidian [1989]. However, Jamshidian has made an
assumption of risk neutral dynamics and has calculated expectations involving
lognormal ZCB prices, omitting many details of the proof, to arrive at the result,
whereas we have calculated expectations under the real-world measure, giving all
details of the proof.

When the short rate obeys a Hull-White process, as in (3.2.4), the pricing for-
mulae for call and put options on the T̄ -maturity ZCB follow as a corollary of
Theorem 3.2.24.

Theorem 3.2.26 Under the Hull-White model, for a strike price K and valua-
tion time t, the price of a T -expiry call option on a T̄ -maturity ZCB is

cT,K,GT̄
(t) = GT̄ (t)N(h)−KGT (t)N(h− σG) (3.2.83)

and the price of a T -expiry put option on a T̄ -maturity ZCB is

pT,K,GT̄
(t) = −GT̄ (t)N(−h) +KGT (t)N(−h+ σG), (3.2.84)

where

h =
1

σG

log
GT̄ (t)

GT (t)K
+

1

2
σG (3.2.85)

σG = B(T, T̄ )

√∫ T

t

exp

{
− 2

∫ T

u

a(τ) dτ

}
σ(u)2 du (3.2.86)

and

B(t, T ) =

∫ T

t

exp

{
−
∫ s

t

a(τ) dτ

}
ds. (3.2.87)

In Figure 3.7 the Black-Scholes implied volatilities of options on ten-year and
twenty-year ZCBs are shown, based upon the parameters in (3.2.25). There is
good agreement with the theoretical asymptotic formula of the Black-Scholes
implied volatility, obtained as

σBS =
σG√
T − t

→ σ̄√
2ā3 (T − t)

, (3.2.88)

as T̄ → ∞.
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Figure 3.7: Comparison of asymptotic formula with Black-Scholes implied option
volatilities of options on 10Y and 20Y zero-coupon bonds based at year 1871.
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3.3 Cox-Ingersoll-Ross Short Rate Model

The Cox-Ingersoll-Ross (CIR) model was introduced in 1985 by Cox et al. [1985]
as an alternative to the Vasicek model. A good explanation of the model is given
in Hull [1997]. The short rate is described by the SDE

drt = κ(r̄ − rt)dt+ σ
√
rtdZt (3.3.1)

for positively valued constants r̄, σ and κ. A zero valued short rate is avoided
because we set κr̄ > 1

2
σ2. The parameter κ denotes the speed of reversion of the

short rate rt to the mean reverting level r̄. As in the Ho-Lee, Hull-White and
Vasicek models, r̄ can be thought of as a smoothed average short rate which is
targeted by the central bank.

The case where mean reverting level r̄t and variation parameter σt are time vary-
ing deterministic functions is called the extended CIR model for which explicit
pricing formulae have been supplied by Maghsoodi [1996].

The CIR model has the property, different from the Ho-Lee, Hull-White and
Vasicek models, that for the above conditions on the parameters the interest
rates can never be negative.

We can remove the occurrence of rt in the drift term of (3.3.1) by means of the
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integrating factor exp(κt), giving the SDE for qt = rt exp(κt) in the form

dqt = κ exp(κt)r̄dt+ exp(κt/2)σ
√
qtdZt. (3.3.2)

We now remove the occurrence of qt in the diffusion coefficient by making the
transformation

√
qt for which we have the SDE

d
√
qt =

1

2
√
qt
dqt −

1

8
√
q3t
d[q]t (3.3.3)

=
σ2 exp(κt)

8
√
qt

(
4κr̄

σ2
− 1

)
dt+

1

2
exp(κt/2)σdZt.

We now provide an explicit solution to (3.3.1) which gives rise to a transition
density function of the short rate, later used for fitting the CIR model to data.

3.3.1 Explicit Formula for CIR Short Rate

We first state some lemmas which lead to a solution to the SDE (3.3.1), the proofs
of which can be found in Platen and Heath [2006].

Lemma 3.3.1 Let ν be a fixed integer, ν > 2 and for each j ∈ {1, 2, . . . , ν} let

Z(j) = (Z
(j)
t )t≥0 be a Wiener process, independent of the other Wiener processes

Z(k), k ∈ {1, 2, . . . , ν} {k}. Let the stochastic process X be defined by

Xt =
ν∑

j=1

(λ(j) + Z
(j)
t )2 (3.3.4)

for t ≥ 0 and λ(j) ∈ R. Then X has the SDE

dXt = νdt+ 2
√

Xt dZt (3.3.5)

with initial condition X0 =
∑ν

j=1(λ
(j))2 and where

dZt =
ν∑

k=1

(λ(k) + Z
(k)
t ) dZ

(k)
t√∑ν

j=1(λ
(j) + Z

(j)
t )2

(3.3.6)

is a Brownian motion.

Definition 3.3.2 A stochastic process X satisfying the SDE (3.3.5) is a squared
Bessel process of dimension ν.
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Lemma 3.3.3 Let Y be the process defined by

Yt = ztXϕt (3.3.7)

for t ≥ 0, where X is as in (3.3.5), zt = z0 exp(
∫ t
0
budu) and ϕt = ϕ0 +

1
4

∫ t
0
c2u/zu du, for deterministic functions b and c. Then Y has the SDE

dYt =

(
νc2t
4

+ btYt

)
dt+ ct

√
Yt dZt. (3.3.8)

Proof . See Appendix C.

In the following theorem we apply this lemma to solving (3.3.1).

Theorem 3.3.4 For the integer ν = 4κr̄
σ2 > 2 a solution to the SDE (3.3.1) is

rt = exp(−κt)
ν∑

i=1

(λ(i) + Z(i)
ϕt
)2 (3.3.9)

where λ(1), . . . , λ(ν) are chosen such that r0 =
∑ν

i=1(λ
(i))2,where ϕt = ϕ0 +

1
4
σ2(exp(κt)− 1)/κ, where Z(1), . . . , Z(ν) are independent Brownian motions and

Z = (Zt)t≥0 is given in (3.3.6).

Proof . See Appendix C.

3.3.2 Transition Density of CIR Short Rate

The transition density function of the CIR short rate model is that of the non-
central chi-square distribution. We demonstrate that this is the case by com-
mencing with the following definition.

Definition 3.3.5 The non-central chi-squared distribution with non-centrality
parameter λ and integer degrees of freedom parameter ν > 2 is the distribution of
a random variable Y equalling the sum of the squares of ν normally and indepen-
dently distributed random variables each having variance one and which have their
sum of squared means equalling λ. So we say that if X(1) ∼ N(μ(1), 1), . . . , X(ν) ∼
N(μ(ν), 1) with

λ =
ν∑

i=0

(μ(i))2 (3.3.10)

then the random variable

Y =
ν∑

i=0

(X(i))2 (3.3.11)

is distributed as χ2
ν,λ.
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Lemma 3.3.6 The moment generating function of the random variable Y in
(3.3.11) is

MGFY (t) = (1− 2t)−ν/2 exp(−1

2
λ) exp(

1

2
λ(1− 2t)−1). (3.3.12)

Proof . See Appendix D.

We state the definition of the chi-squared distribution, which will be of help in
identifying the probability density function of the non-central chi-squared distri-
bution.

Definition 3.3.7 The chi-squared distribution with integer degrees of freedom
parameter ν ≥ 0 is the distribution of a random variable X equalling the sum of
the squares of ν normally and independently distributed random variables each
having mean zero and variance one. So we say that if

X(1) ∼ N(0, 1), . . . , X(ν) ∼ N(0, 1) (3.3.13)

then the random variable

X =

{∑ν
i=1(X

(i))2 if ν > 0

1 if ν = 0
(3.3.14)

is distributed as χ2
ν. The probability density function of the chi-squared distribu-

tion is

fχ2
ν
(x) =

1

2ν/2Γ(ν/2)
xν/2−1 exp(−x/2) (3.3.15)

for ν > 0 and is equal to the Dirac delta function δ0(x) when ν = 0, where Γ(·)
is the gamma function.

Lemma 3.3.8 The probability density function of the non-central chi-squared
distribution is equal to a linear combination of probability density functions of
chi-squared distributions as prescribed by the formula

fχ2
ν,λ
(x) = exp(−λ/2)

∞∑
i=0

(λ/2)i

i!
fχ2

ν+2i
(x) (3.3.16)

for non-centrality parameter λ and degrees of freedom parameter ν.

Proof . See Appendix D.

Remark 3.3.9 We can see from (3.3.16) that if a random variable Y is defined
as

Y ∼ χ2
ν+2Z

where Z ∼ Poisson(λ/2), then Y is a χ2
ν,λ-distributed random variable.
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Corollary 3.3.10 The probability density function of the non-central chi-squared
distribution has the form

fχ2
ν,λ
(x) = exp(−λ/2) exp(−x/2)xν/2−1 1

2ν/2

∞∑
i=0

(λx/4)i

i!

1

Γ(i+ ν/2)
(3.3.17)

for non-centrality parameter λ and integer degrees of freedom parameter ν.

Proof . See Appendix D.

We now concern ourselves with characterising the distribution of the squared
Bessel process X defined in (3.3.5).

Lemma 3.3.11 For t > s and the process X defined in (3.3.5), the conditional
random variable

1

t− s
Xt (3.3.18)

given Xs has a non-central chi-squared distribution, namely

1

t− s
Xt ∼ χ2

ν,Xs/(t−s). (3.3.19)

The preceding lemma allows us to write down the formula for the transition
density function of the squared Bessel process X defined in (3.3.5).

Lemma 3.3.12 The transition density function for the squared Bessel process X
in (3.3.5) is

pX(s,Xs, t, Xt) =
1

2(t− s)

(
Xt

Xs

) 1
2
( ν
2
−1)

exp

(
−1

2

Xs +Xt

t− s

)
I ν

2
−1

(√
XsXt

t− s

)
(3.3.20)

where

Iν(x) =
∞∑
i=0

1

i!Γ(i+ ν + 1)

(x
2

)2i+ν

(3.3.21)

is the power series expansion of the modified Bessel function of the first kind.

Lemma 3.3.13 Let Y be the process defined by

Yt = ztXϕt (3.3.22)

for t ≥ 0, where X is as in (3.3.5), zt = z0 exp(
∫ t
0
budu) and ϕt = ϕ0 +

1
4

∫ t
0
c2u/zu du, for deterministic functions b and c. Then Y has the transition

density function

pY (s, Ys, t, Yt) =
1

2(ϕt − ϕs)zt

(
Yt/zt
Ys/zs

) 1
2
( ν
2
−1)

(3.3.23)

× exp

(
−1

2

Ys/zs + Yt/zt
ϕt − ϕs

)
I ν

2
−1

(√
YsYt/(zszt)

ϕt − ϕs

)
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Proof . From the definition of Y in (3.3.22) we know that the transition density
function of Y is

pY (s, Ys, t, Yt) =
1

zt
pX(ϕs, Ys/zs, ϕt, Yt/zt) (3.3.24)

and combining with (3.3.20) gives (3.3.23). Q.E.D.

This provides the following result.

Theorem 3.3.14 The transition density function of the short rate process in
(3.3.1) is

pr(s, rs, t, rt) =
1

2(ϕt − ϕs) exp(−κt)

(
rt exp(κt)

rs exp(κs)

) 1
2
( ν
2
−1)

(3.3.25)

× exp

(
−1

2

rs exp(κs) + rt exp(κt)

(ϕt − ϕs)

)
I ν

2
−1

(√
rsrt exp(κ(s+ t))

(ϕt − ϕs)

)
,

where ϕt = ϕ0 +
1
4
σ2(exp(κt)− 1)/κ and ν = 4κr̄

σ2 and where

Iν(x) =
∞∑
i=0

1

i!Γ(i+ ν + 1)

(x
2

)2i+ν

(3.3.26)

is the power series expansion of the modified Bessel function of the first kind.

Proof . Making the substitutions (C.7) in (3.3.23) provides the transition density
function for rt. Q.E.D.

Now, we can state directly the following result:

Corollary 3.3.15 For t > s and for the short rate process r defined in (3.3.1),
the conditional random variable

exp(κt)

ϕt − ϕs

rt (3.3.27)

given rs has a non-central chi-squared distribution with ν = 4κr̄/σ2 degrees of
freedom and non-centrality parameter λ = rs exp(κs)/(ϕt − ϕs), namely

exp(κt)

ϕt − ϕs

rt ∼ χ2
ν,rs exp(κs)/(ϕt−ϕs), (3.3.28)

where ϕt = ϕ0 +
1
4
σ2(exp(κt)− 1)/κ.
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3.3.3 Fitting the CIR Model

Estimating the parameters of the CIR model is achieved using the maximum
likelihood method. The log-likelihood function is given by

�(r̄, κ, σ) =
n∑

i=1

log pr(ti−1, rti−1
, ti, rti), (3.3.29)

where the transition density function pr is as in Theorem 3.3.14.

We fit the CIR model to the annual series of one-year deposit rates from 1871
to 2012, referred to as Data Set A in Section L.1 of Appendix L, obtaining the
maximum likelihood estimates

r̄ = 0.041078 (0.011421) (3.3.30)

κ = 0.092540 (0.038668)

σ = 0.064670 (0.0040761),

where the standard errors are shown in brackets.

In Figure 3.8 we plot the actual short rate versus the fitted mean reversion level.
We obtain a similar reference level as for the Vasicek model, see (3.2.25).

The logarithm of the empirically calculated quadratic variation of
√

rt exp(κt) is
shown alongside the logarithm of the theoretically computed quadratic variation
function, [

√
q]t =

1
4
σ2(exp(κt)−1)/κ, in Figure 3.9. We note visually a reasonable

long-term fit.

Remark 3.3.16 From Theorem 3.3.4 we have ν = 4κr̄
σ2 and substituting the values

for r̄, κ and σ in (3.3.30) gives ν = 4×0.041078×0.092540/(0.064670)2 = 3.6357,
which could be approximated by ν ≈ 4.

A graph of the transition density function is shown in Figure 3.10 in respect of
the fitted parameters in (3.3.30) and commencing at s = 2000.

Unlike the Vasicek model, under the CIR model there is no possibility of negative
interest rates, as demonstrated by (3.3.9) and as illustrated by comparing the CIR
density in Figure 3.10 with the Vasicek density in Figure 3.3. It is also evident
from Figures 3.3 and 3.10 that the CIR density is more peaked than the Vasicek
density.

3.3.4 Fitting the CIR Model using Log Normal Approxi-
mation

Poulsen [1999] shows that good estimates can be obtained by approximating
the transition density of the CIR process with a Gaussian distribution having the
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Figure 3.8: Actual short rate and fitted CIR mean reversion level for US cash
rates.
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same mean and variance as the transition density function. However, our fitting of
the CIR model to the data suggests that the Gaussian distribution is inadequate
as an approximation and further, we find that almost exact estimates can be
obtained with the lognormal approximation. This is not surprising given that the
lognormal distribution is positively skewed and is defined for positive values of the
random variable, as is the case for the non-central chi-squared distribution. We
have the following lemma which gives the mean and variance of the CIR transition
density function, using moment equations which are described in Section 7.3 of
Platen and Heath [2006].

Lemma 3.3.17 For the CIR process in (3.3.1) and times s, t with s ≤ t let the
mean and variance of rt given rs be defined as

ms(t) = E(rt|As) (3.3.31)

vs(t) = Var(rt|As).

Then we have the explicit formulae

ms(t) = r̄κB(s, t) + rs(1− κB(s, t)) (3.3.32)

vs(t) = σ2

(
1

2
κB(s, t)2r̄ + (B(s, t)− κB(s, t)2)rs

)
,
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Figure 3.9: Logarithm of quadratic variation of
√
exp(κt)rt for US cash rates.
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where
B(s, t) = (1− exp(−κ(t− s)))/κ. (3.3.33)

Proof . See Appendix C.

We approximate the transition density of the CIR process from time s to time t
by a lognormal distribution that matches the mean and variance. It is straight-
forward to show that the approximating lognormal distribution has parameters
μs(t)

(LN), σs(t)
(LN) given by

μs(t)
(LN) = logms(t)−

1

2
(σs(t)

(LN))2 (3.3.34)

(σs(t)
(LN))2 = log

(
1 +

vs(t)

ms(t)2

)

where

mti−1
(ti) = r̄κB(ti−1, ti) + rti−1

(1− κB(ti−1, ti)) (3.3.35)

vti−1
(ti) = σ2

(
1

2
κB(ti−1, ti)

2r̄ + (B(ti−1, ti)− κB(ti−1, ti)
2)rti−1

)

and B(s, t) is as in (3.3.33).
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Figure 3.10: CIR transition density function of US cash rates based at year 2000
and short rate 0.064.
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Therefore, our approximating log-likelihood function on the set of observed short
rates rti , for i = 0, 2, . . . , n is

�(r̄, κ, σ) = −1

2

n∑
i=1

(
log(2πvti−1

(ti)) + log rti +
(log rti − μti−1

(ti)
(LN))2

(σti−1
(ti)(LN))2

)
.

(3.3.36)
We fit the CIR model to the annual series of one-year deposit rates from 1871 to
2012, Data Set A in Section L.1 of Appendix L, obtaining the maximum likelihood
estimates

r̄ = 0.042470 (0.010935) (3.3.37)

κ = 0.102677 (0.041105)

σ = 0.070948 (0.0041198).

We note that these estimates are close to those in (3.3.30).

3.3.5 CIR Savings Account and Transition Density

The SDE of the savings account Bt is given by

dBt = rtBtdt, (3.3.38)
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for t ≥ 0 with B0 = 1, and we aim now to determine the transition density
function of the savings account Bt.

When the characteristic function of the random variable is known, many practi-
tioners, as mentioned in Carr and Madan [1999], employ inverse Fourier trans-
forms to retrieve the probability density function.

A related approach is to firstly determine the moment generating function of the
logarithm of appreciation factor of the savings account value, L = logBT/Bt, and
secondly compute the inverse Laplace transform. By virtue of the relationship

exp(sL) = (BT/Bt)
s (3.3.39)

calculating the MGF is equivalent to determining the expectation E((BT/Bt)
s|At),

which demands some preliminary results involving the expectation of a stochastic
exponential, given in Section 5.5 of Baldeaux and Platen [2013].

We now compute the expectation E((BT/Bt)
k|At) in the following lemma. We

note that letting L = log(BT/Bt), this lemma provides a formula for the moment
generating function of the random variable L.

Lemma 3.3.18 Let the short rate r obey the SDE (3.3.1) and let the savings
account B obey the SDE (3.3.38). Then for any number k and time T such that
T > t,

E

((
BT

Bt

)k∣∣∣∣At

)
=

(
h exp(1

2
κ(T − t))

κ sinh 1
2
(T − t)h+ h cosh 1

2
(T − t)h

)2κr̄/σ2

(3.3.40)

× exp

(
k

2 sinh 1
2
(T − t)h

κ sinh 1
2
(T − t)h+ h cosh 1

2
(T − t)h

rt

)
,

where h =
√
κ2 − 2kσ2.

Proof . See Appendix D.

We can apply the inverse Laplace transform formula, as given in Section 8.2 of
Marsden and Hoffman [1999], to give a formula for the transition density function
of the savings account.

Theorem 3.3.19 For a CIR short rate the transition density function of the
savings account is given by

pB(t, Bt, T, BT ) =
1

2π

Bt

BT

∫ ∞

−∞
exp
(
(c+ iu) log(BT/Bt)

)
FL(c+ iu)du (3.3.41)

where FL = MGFL(−s) and c is a constant greater than the real part of any
singularities of FL in the complex plane.
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Proof . Let f be the probability density function of the random variable L =
logBT/Bt. Because rt is always non-negative, BT/Bt is always at least one in
value and, therefore, L assumes values in the interval [0,∞). Thus the Laplace
transform of f can be written as

F (s) =

∫ ∞

0

exp(−sx)f(x)dx = E(exp(−sL)) (3.3.42)

and the inverse Laplace transform of F is

f(x) =
1

2πi

∫ c+i∞

c−i∞
exp(sx)F (s)ds, (3.3.43)

where the integration is performed along the line (z) = c in the complex plane,
with c being a constant such that F (s) has no singularities with the real part
exceeding the constant c. Making the change of variables s = c + iu in the
integral and the change of variables BT/Bt = exp(L) in the probability density
gives the result. Q.E.D.

The transition density function of the logarithm of the savings account is shown
in Figure 3.11. As will be shown in Chapter 5, the transition density function of
the logarithm of the savings account is useful in computing the price of an equity
index option.

3.3.6 Short Rate Contribution to ZCB Price

We calculate the contribution GT̄ (t) to the zero-coupon bond price that is due to
the short rate.

The following theorem is easily proven in the light of the results of the preceding
subsection. This result is also supplied in Cox et al. [1985], and the details of
that proof are omitted.

Theorem 3.3.20 For time t ∈ [0, T̄ ] the short rate contribution to the ZCB price
is computed to be

GT̄ (t) = A(t, T̄ ) exp(−B(t, T̄ )rt), (3.3.44)

where

A(t, T̄ ) =

(
h exp(1

2
κ(T̄ − t))

κ sinh 1
2
h(T̄ − t) + h cosh 1

2
h(T̄ − t)

)2κr̄/σ2

(3.3.45)

B(t, T̄ ) =
2 sinh 1

2
h(T̄ − t)

κ sinh 1
2
h(T̄ − t) + h cosh 1

2
h(T̄ − t)

(3.3.46)

and
h =

√
κ2 + 2σ2. (3.3.47)
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Figure 3.11: CIR transition density of the logarithm of savings account based at
year 2000.
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Proof . Using Lemma 3.3.18 gives the result. Q.E.D.

The following corollary is a result which agrees with the formula for the long
maturity yield R(rt, t,∞) = 2κr̄/(γ + κ + λ) given in Cox et al. [1985], when
λ = 0, where γ is given by

γ =
√
(κ+ λ)2 + 2σ2 (3.3.48)

and λ is the market price of risk.

Corollary 3.3.21 For the CIR short rate, the contribution of the short rate to
the long ZCB yield is

h∞(t) =
κr̄

σ2
(h− κ). (3.3.49)

Proof . See Appendix F.

In Figure 3.12 the short rate contribution to the continuously compounded yield
curve is plotted, viewed from 1871. It is an inverted yield curve and occurs when
the future economic growth is expected to be subdued. This is similar to the
yield curve shown in Figure 3.6.

3.3.7 Short Rate Contribution to the Forward Rate

We calculate the contribution gT̄ (t) to the forward rate that is due to the short
rate, which is a new explicit formula.

Lemma 3.3.22 For time t ∈ [0, T̄ ] the short rate contribution to the T̄ -forward
rate is computed to be

gT̄ (t) =
2κr̄

σ2

(
1

2
h coth(T̄ − t)h− 1

2
κ− h2

2 sinh 1
2
h(T̄ − t)C(t, T̄ )

)
+ rt

h2

C(t, T̄ )2
,

(3.3.50)

where C(t, T̄ ) is given by

C(t, T̄ ) = κ sinh
1

2
h(T̄ − t) + h cosh

1

2
h(T̄ − t) (3.3.51)

and h is as in (3.3.47).

Proof . See Appendix F.
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Figure 3.12: Short rate contribution to the zero coupon yield curve under the
Cox-Ingersoll-Ross model based at 1871.
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Corollary 3.3.23 For the CIR short rate, the short rate contribution to the in-
stantaneous forward rate has the asymptotic value

g∞(t) =
κr̄

σ2
(h− κ). (3.3.52)

Proof . From (3.3.50) it follows

g∞(t) = lim
T̄→∞

gT̄ (t) =
κr̄

σ2
(h− κ) (3.3.53)

as required. Q.E.D.

In Figure 3.12 the instantaneous forward rate is plotted and the asymptotic value
is seen to be g∞(t) = 0.03415.

3.3.8 Expectations Involving GT̄ (t)

In Cox et al. [1985] the formula for the price of a ZCB call option is supplied, but
there are no details of the proof. We supply here a proof of this result, formulated
in the following theorem.
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Theorem 3.3.24 Under a CIR short rate model, for a strike price K and valu-
ation time t, the price of a T -expiry call option on a T̄ -maturity ZCB is

cT,K,GT̄
(t) = GT̄ (t)χ

2
ν,ω

(
2r′(ρ+ ψ + B(T, T̄ ))

)
−KGT (t)χ

2
ν,ω′

(
2r′(ρ+ ψ)

)
(3.3.54)

and the price of a T -expiry put option on a T̄ -maturity ZCB is

pT,K,GT̄
(t) = −GT̄ (t)

(
1− χ2

ν,ω

(
2r′(ρ+ ψ + B(T, T̄ ))

))
(3.3.55)

+KGT (t)

(
1− χ2

ν,ω′

(
2r′(ρ+ ψ)

))

where

ν =
4κr̄

σ2
(3.3.56)

ω =
2ρ2rt exp(h(T − t))

ρ+ ψ + B(T, T̄ )
(3.3.57)

ω′ =
2ρ2rt exp(h(T − t))

ρ+ ψ
(3.3.58)

ρ =
2h

σ2(exp(h(T − t))− 1)
(3.3.59)

ψ =
κ+ h

σ2
(3.3.60)

r′ =
log(A(T, T̄ )/K)

B(T, T̄ )
(3.3.61)

h =
√
κ2 + 2σ2 (3.3.62)

B(t, T ) =
2 sinh 1

2
h(T − t)

κ sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

(3.3.63)

A(t, T ) =

(
h exp(1

2
κ(T − t))

κ sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

)2κr̄/σ2

(3.3.64)

We prove these call and put option formulae in this section by pricing the asset
binary call option on GT̄ (t) and the bond binary call option on GT̄ (t).

Firstly, we formulate a lemma which will be of use in determining the moment
generating function of the short rate under the T -forward measure.

Lemma 3.3.25 Let the short rate r obey the SDE (3.3.1). Then for any real
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number u and time T such that T > t,

E

(
exp

(
rTu−

∫ T

t

rsds

)∣∣∣∣At

)
(3.3.65)

=

(
h exp(1

2
κ(T − t))

(κ− σ2u) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

)2κr̄/σ2

× exp

(
hu cosh 1

2
h(T − t)− (κu+ 2) sinh 1

2
h(T − t)

(κ− σ2u) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

rt

)
.

The proof of this result can be found in Section 5.4 in Baldeaux and Platen [2013].

We can now prove the following theorem concerning asset binary options on a
zero-coupon bond.

Theorem 3.3.26 Given an expiry time T and a strike price K the price of the
asset binary call option on GT̄ (t) is

A+
T,K,GT̄

(t) = GT̄ (t)χ
2
ν,ω(R/γ), (3.3.66)

where

ν = 4κr̄/σ2 (3.3.67)

γ =
1

4
σ2B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

ω = rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)(
1− 2B(T, T̄ )γ

)
− rt

8

σ2
γ

R =
1

B(T, T̄ )
log

A(T, T̄ )

K
.

Also, the price of the asset binary put option on GT̄ (t) is

A−
T,K,GT̄

(t) = GT̄ (t)

(
1− χ2

ν,ω(R/γ)

)
. (3.3.68)

Proof . See Appendix E.

The formulae for the prices of the bond binary call and put options on a zero-
coupon bond are less complicated and appear in the following theorem.

Theorem 3.3.27 Given an expiry time T and a strike price K the price of the
bond binary call option on GT̄ (t) is

B+
T,K,GT̄

(t) = GT (t)χ
2
ν,ω′(R/γ′), (3.3.69)
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where

ν = 4κr̄/σ2 (3.3.70)

γ′ =
1

4
σ2B(t, T )

ω′ = rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)
− rt

8

σ2
γ′

R =
1

B(T, T̄ )
log

A(T, T̄ )

K
.

Also, the price of the bond binary put option on GT̄ (t) is

B−
T,K,GT̄

(t) = GT (t)

(
1− χ2

ν,ω′(R/γ′)

)
. (3.3.71)

We are now poised to supply formulae for the call and put options on zero-coupon
bonds under the CIR model, which follow from Theorems 3.3.26 and 3.3.27.

Corollary 3.3.28 Given an expiry time T and a strike price K the price of the
call option on GT̄ (t) is

cT,K,GT̄
(t) = GT̄ (t)χ

2
ν,ω(R/γ)−KGT (t)χ

2
ν,ω′(R/γ′), (3.3.72)

where

ν = 4κr̄/σ2 (3.3.73)

γ′ =
1

4
σ2B(t, T )

ω′ = rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)
− rt

8

σ2
γ′

γ =
1

4
σ2B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

ω = rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)(
1− 2B(T, T̄ )γ

)
− rt

8

σ2
γ

R =
1

B(T, T̄ )
log

A(T, T̄ )

K
.

Also, the price of the put option on GT̄ (t) is

pT,K,GT̄
(t) = KGT (t)

(
1− χ2

ν,ω′(R/γ′)

)
−GT̄ (t)

(
1− χ2

ν,ω(R/γ)

)
. (3.3.74)

This completes our coverage of the CIR short rate model, which is sufficient for
the calculation of zero-coupon bond prices and equity and interest rate derivatives
in Chapter 5. We now proceed to our discussion of the 3/2 short rate model.
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3.4 The 3/2 Short Rate Model

The 3/2 power law for the diffusion coefficient in a short rate model was shown
in Chan et al. [1992] to be the best fitting power law. Also the nonlinear drift
term of this model could not be rejected in Aı̈t-Sahalia [1996]. The 3/2 short
rate model was derived in Platen [1999] and studied by Ahn and Gao [1999], the
SDE of which is

drt = (prt + qr2t )dt+ σr
3/2
t dZt, (3.4.1)

where q < σ2/2 and σ > 0 so as to avoid explosive values of rt.

Setting Rt = 1/rt we obtain the SDE

dRt = (σ2 − q − pRt)dt− σ
√

RtdZt, (3.4.2)

which shows that Rt = 1/rt follows a square root process. This fact makes the
derivation of the transition density function of the 3/2 model straightforward.

3.4.1 Explicit Formula for 3/2 Short Rate

The following theorem provides the solution to the SDE of the 3/2 model.

Theorem 3.4.1 A solution to the SDE (3.4.1) is

rt = exp(pt)/
ν∑

i=1

(λ(i) + Z(i)
ϕt
)2 (3.4.3)

where ν is an integer such that ν = 4(σ2−q)
σ2 , λ(1), . . . , λ(ν) ∈ IR are chosen such

that r0 = 1/
∑ν

i=1(λ
(i))2, where ϕt = ϕ0 +

1
4
σ2(exp(pt) − 1)/p and Z(1), . . . , Z(ν)

are independent Brownian motions.

Proof . From (3.4.2) Rt = 1/rt follows a square root process and, therefore, from
Theorem 3.3.4 the explicit formula for Rt is

Rt = exp(−pt)
ν∑

i=1

(λ(i) + Z(i)
ϕt
)2, (3.4.4)

where λ(1), . . . , λ(ν) are chosen such that R0 =
∑ν

i=1(λ
(i))2 and where ϕt = ϕ0 +

1
4
σ2(exp(pt) − 1)/p and ν = 4(σ2−q)

σ2 . The formula for rt is simply the reciprocal
of (3.4.4). Q.E.D.
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3.4.2 Transition Density of 3/2 Short Rate

The transition density function of the 3/2 short rate model is easily deduced from
the transition density of the CIR short rate model as specified in Theorem 3.3.14
because the SDE of the reciprocal of a 3/2-process short rate obeys the CIR
SDE (3.3.1), as shown in (3.4.2).

Lemma 3.4.2 The transition density function of the short rate process in (3.4.1)
is

pr(s, rs, t, rt) =
r−2
t

2(ϕt − ϕs) exp(−pt)

(
r−1
t exp(pt)

r−1
s exp(ps)

) 1
2
( ν
2
−1)

(3.4.5)

× exp

(
−1

2

r−1
s exp(ps) + r−1

t exp(pt)

(ϕt − ϕs)

)

× I ν
2
−1

(√
r−1
s r−1

t exp(p(s+ t))

(ϕt − ϕs)

)

where ϕt = ϕ0 +
1
4
σ2(exp(pt)− 1)/p and ν = 4(1− q/σ2) and where

Iν(x) =
∞∑
i=0

1

i!Γ(i+ ν + 1)

(x
2

)2i+ν

(3.4.6)

is the power series expansion of the modified Bessel function of the first kind as
in (3.3.26).

Proof . From Theorem 3.3.14 we have that the transition density function of the
process Rt in (3.4.2) is

pR(s, Rs, t, Rt) =
1

2(ϕt − ϕs) exp(−κt)

(
Rt exp(κt)

Rs exp(κs)

) 1
2
( ν
2
−1)

(3.4.7)

× exp

(
−1

2

Rs exp(κs) +Rt exp(κt)

(ϕt − ϕs)

)
I ν

2
−1

(√
RsRt exp(κ(s+ t))

(ϕt − ϕs)

)

where ϕt = ϕ0 +
1
4
σ2(exp(κt)− 1)/κ and ν = 4κr̄

σ2 and where

Iν(x) =
∞∑
i=0

1

i!Γ(i+ ν + 1)

(x
2

)2i+ν

(3.4.8)

is the power series expansion of the modified Bessel function of the first kind as
in (3.3.26). Now comparing coefficients of (3.4.1) with those in (3.3.1) gives the
correspondences

r̄ ↔ σ2 − q

p
(3.4.9)

κ ↔ p

σ ↔ σ
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and making these substitutions in (3.4.7) gives

pR(s, Rs, t, Rt) =
1

2(ϕt − ϕs) exp(−pt)

(
Rt exp(pt)

Rs exp(ps)

) 1
2
( ν
2
−1)

(3.4.10)

× exp

(
−1

2

Rs exp(ps) +Rt exp(pt)

(ϕt − ϕs)

)

× I ν
2
−1

(√
RsRt exp(p(s+ t))

(ϕt − ϕs)

)
.

Finally, the transition density function of rt = 1/Rt is

pr(s, rs, t, rt) =
d

drt

∫ rt

0

pr(s, rs, t, w)dw (3.4.11)

=
d

drt

∫ ∞

Rt

pR(s, Rs, t, x)dx

= −dRt

drt
× pR(s, Rs, t, Rt)

= r−2
t pR(s, r

−1
s , t, r−1

t )

and using (3.4.10) gives the result. Q.E.D.

The following corollary explicitly gives the distribution of the reciprocal of the
3/2 short rate.

Corollary 3.4.3 For t > s and for the short rate process r defined in (3.4.1),
the conditional random variable

exp(pt)

rt(ϕt − ϕs)
(3.4.12)

given rs has a non-central chi-squared distribution with ν = 4(σ2 − q)/σ2 degrees
of freedom and non-centrality parameter λ = exp(ps)/(rs(ϕt − ϕs)), namely

exp(pt)

rt(ϕt − ϕs)
∼ χ2

ν,exp(ps)/(rs(ϕt−ϕs)), (3.4.13)

given rs, where ϕt = ϕ0 +
1
4
σ2(exp(pt)− 1)/p.

3.4.3 Fitting the 3/2 Model

For the annual series of one-year deposit rates from 1871 to 2012, Data Set A
in Section L.1 of Appendix L, the fitted parameters of the 3/2 model, using the
maximum likelihood method, are given by

p = 0.038506 (0.042284) (3.4.14)

q = 0.877908 (1.177853)

σ = 2.0681 (0.13241),
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Figure 3.13: 3/2 transition density of US cash rates.
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where the standard errors are shown in brackets.

In Figure 3.13 the transition density of the 3/2 model is plotted.

The mean reverting level of Rt = 1/rt in (3.4.2) is given by

σ2 − q

p
. (3.4.15)

The inverse of this level is not the mean reverting level of rt. The limiting
distribution of 1

4
σ2rt/p as t → ∞ is an inverse chi-squared distribution with ν

degrees of freedom and the mean of rt as t → ∞ is deduced to be

4p/σ2

ν − 2
=

4p

2σ2 − 4q
. (3.4.16)

In Figure 3.14 the graph of the short rate is shown along with the implied reverting
level, the mean, of 0.03054 of the 3/2 model. The dimension of the square root
process 1/rt is here estimated as ν = 4(σ2 − q)/σ2 ≈ 3.1790, which is reasonably
close to three.
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Figure 3.14: The fitted reverting level under the 3/2 model.
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3.4.4 Short Rate Contribution to ZCB Price

We calculate the contribution GT̄ (t) to the zero-coupon bond price which is due
to the short rate. The following lemma gives a formula for the Laplace transform
of the random variable

∫ T
t
rsds.

Lemma 3.4.4 The conditional Laplace transform of
∫ T

t
rsds satisfies

E

(
exp(−u

∫ T

t

rsds)

∣∣∣∣At

)
=

Γ(γu − αu)

Γ(γu)

(
2

σ2y(t, rt)

)αu

M(αu, γu,
−2

σ2y(t, rt)
)

(3.4.17)
where

y(t, rt) = rt

∫ T

t

exp((w − t)p)dw =
rt
p
(exp((T − t)p)− 1) (3.4.18)

αu = −
(
1

2
− q

σ2

)
+

√(
1

2
− q

σ2

)2

+
2u

σ2

γu = 2

(
αu + 1− q

σ2

)
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and M(α, γ, z) is the confluent hypergeometric function, given by

M(α, γ, z) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

exp(zu)uα−1(1− u)γ−α−1du (3.4.19)

or the alternative expression

M(α, γ, z) =
∞∑
n=0

(α)n
(γ)n

zn

n!
. (3.4.20)

Proof . A slight generalisation of this result is proven in Theorem 3 in Carr
and Sun [2007] and an adapted proof specifically for the 3/2 short rate model
is supplied in Appendix G. For proofs involving Lie symmetries of partial dif-
ferential equations, see Craddock and Lennox [2009] and Baldeaux and Platen
[2013]. Q.E.D.

Equivalently, we have that the moment generating function of the random variable
L =
∫ T
t
rsds is

MGFL(−u) =
Γ(γ − α)

Γ(γ)

(
2

σ2y(t, rt)

)α

M(α, γ,
−2

σ2y(t, rt)
), (3.4.21)

where the variables have their meaning in the above lemma.

The following corollary follows straightforwardly from the above lemma.

Corollary 3.4.5 For time t ∈ [0, T̄ ] the short rate contribution to the ZCB price
is

GT̄ (t) =
Γ(γ1 − α1)

Γ(γ1)

(
2

σ2y(t, rt)

)α1

M(α1, γ1,
−2

σ2y(t, rt)
), (3.4.22)

where

y(t, rt) =
rt
p
(exp((T − t)p)− 1) (3.4.23)

α1 = −
(
1

2
− q

σ2

)
+

√(
1

2
− q

σ2

)2

+
2

σ2

γ1 = 2

(
α1 + 1− q

σ2

)
.

Proof . Substituting u = 1 in Lemma 3.4.4 gives the result. Q.E.D.

The asymptotic value of the short rate contribution to the ZCB yield is given in
the following corollary.
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Figure 3.15: Short rate contribution to the zero coupon yield curve under the 3/2
model as at 1871.
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Corollary 3.4.6 For the 3/2 short rate, the contribution of the short rate to the
long ZCB yield is

h∞(t) = α1p, (3.4.24)

where

α1 = −
(
1

2
− q

σ2

)
+

√(
1

2
− q

σ2

)2

+
2

σ2
. (3.4.25)

Proof . See Appendix H.

In Figure 3.15 the continuously compounded yield curve as of January 1871 is
plotted corresponding to the base time in Figure 3.13. We have an inverted
yield curve, which portends an economic recession because decreasing forward
rates indicate expectations of low inflation and low economic growth, see for
example Harvey [1991].

3.4.5 Short Rate Contribution to the Forward Rate

We calculate the contribution gT̄ (t) to the forward rate that is due to the short
rate. This is a new result which has to date not appeared in the literature.
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Lemma 3.4.7 For time t ∈ [0, T̄ ] the short rate contribution to the forward rate
is computed to be

gT̄ (t) = α1p

(
1 +

1

exp(p(T̄ − t))− 1

)(
1− z

γ1

M(α1 + 1, γ1 + 1,−z)

M(α1, γ1,−z)

)
(3.4.26)

where z = 2
σ2y(t,rt)

.

Proof . See Appendix H.

The asymptotic value of the forward rate is given by the following lemma.

Corollary 3.4.8 For the 3/2 short rate model, the asymptotic instantaneous for-
ward rate is

g∞(t) = α1p (3.4.27)

where

α1 = −
(
1

2
− q

σ2

)
+

√(
1

2
− q

σ2

)2

+
2

σ2
. (3.4.28)

Proof . From (3.4.26) as T̄ → ∞

gT̄ (t) = α1p

(
1 + o(1)

)(
1 +O(z)

)
(3.4.29)

and because z → 0 as T̄ → ∞ we have the result. Q.E.D.

In Figure 3.15 the instantaneous forward rate gT̄ is plotted and can be seen to be
asymptotic to g∞(t) = 0.01732 based upon the parameters in (3.4.14).

This concludes our treatment of the 3/2 short rate model and we move on to a
comparison of the short rate models discussed in this chapter.

3.5 Comparison of Models

The three models considered in this chapter have explicit formulae for their tran-
sition density functions and this has allowed the fitting of parameters using max-
imum likelihood estimation. The Vasicek model is most easily fitted to the data
because it has closed form expressions for the parameter estimates. In contrast,
the CIR and 3/2 models each require three-dimensional grid searches to find the
best fitting parameters.
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Table 3.1: Values of the AIC in respect of various short rate models (US cash
rates, see Data Set A in Section L.1 of the Appendix).

Model Parameters Log Likelihood AIC

Vasicek 3 399.7019 -793.4038
CIR 3 427.8116 -849.6232
3/2 3 406.2713 -806.5426

In fitting the three models to the US cash rates we can identify which model
provides the best fit to the data by looking at the Akaike Information Criterion,
see Burnham and Anderson [2004] for example,

AIC(model) = 2p− 2 logL(model)(θ1, . . . , θp) (3.5.1)

where L(model) is the likelihood function and θj is the j-th parameter estimate
among a total of p parameters of the model. The AIC measures the loss of
information and, therefore, the best model is that which has the least loss of
information. The AIC value of each model is shown in Table 3.1, where the CIR
model appears to be the best fitting model.

To establish further whether the CIR model is a good fitting model we consider
Pearson’s goodness-of-fit chi-squared statistic, described in Kendall and Stuart
[1961], given by

S =
k∑

i=1

(Oi − Ei)
2/Ei, (3.5.2)

where Oi is the number of observations in category i and Ei is the corresponding
expected number of observations according to the hypothesised model. The test
statistic S is asymptotically distributed as χ2

ν , where ν equals the number of
categories k less the number of constraints and estimated parameters of the model.

Given a time series of interest rates {rtj : j = 1, 2, . . . , n} and given a hypothesised
transition density function with corresponding cumulative distribution function
F we compute the n − 1 quantiles qj = F (tj−1, rtj−1

, tj, rtj) for j = 2, 3, . . . , n.
Under the hypothesised model the quantiles qj are independent and uniformly
distributed. These quantiles are graphed against those of the uniform distribution
in Figure 3.16. One notes that the CIR model remains in some sense visually
closest over the [0, 1] interval.

A similar comparison is shown in Figure 3.17 for the monthly data series of one-
year US Treasury bond yields from January 1962 to June 2014, sourced from the
US Federal Reserve Bank website and referred to as Data Set D in Section L.4 of
the Appendix, where a similar conclusion follows.

For a fixed integer k satisfying 2 ≤ k ≤ (n − 1)/5 we partition the unit interval
into k equally sized subintervals. Hence we compute the number of observations
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Figure 3.16: Comparison of quantile-quantile plots of short rate models (Shiller
annual US data, see Data Set A in Section L.1 of the Appendix).
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Oi in the i-th subinterval ((i − 1)/k, i/k] for i = 1, 2, . . . , k. The corresponding
expected number of observations Ei in the i-th subinterval is (n− 1)/k. Our test
statistic is thus computed as

S = k
k∑

i=1

(Oi − (n− 1)/k)2/(n− 1), (3.5.3)

which is approximately chi-squared distributed with ν = k−1−nparameters degrees
of freedom.

The value of the Pearson’s chi-squared statistic and corresponding p-value for each
model and for a range of partition sizes is shown in Table 3.2. It is evident that
the 3/2 model and, for some partition sizes, the Vasicek model can be rejected
at the 1% level of significance and that the CIR model cannot be rejected at this
level of significance. We conclude that the CIR model cannot be rejected as a
valid model whereas we can reject the validity of the Vasicek model and the 3/2
model.

Another test of goodness-of-fit is the Kolmogorov-Smirnov test, as described
by Stephens [1974]. Under the null hypothesis that the set of n observations
u1, u2, . . . , un emanate from a uniform distribution, the Kolmogorov test statistic
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Figure 3.17: Comparison of quantile-quantile plots of short rate models (US
Federal Reserve monthly data, see Data Set D in Section L.4 of the Appendix).
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is

Dn = sup
x∈{u1,u2,...,un}

max
(
F (n)(x)− x, x− F (n)(x)− 1

n

)
(3.5.4)

and the modified test statistic Kn =
√
nDn has the limiting distribution function,

as n → ∞,

F (x) =

√
2π

x

∞∑
k=1

exp(−(2k − 1)2π2/(8x2)), (3.5.5)

where

F (n)(x) =
1

n

n∑
i=1

1ui≤x (3.5.6)

is the empirical cumulative distribution function. We compute the test statistics
in Table 3.3 where we see that only the 3/2 short rate model can be rejected at
the 1% level of significance.

Finally, another test of goodness-of-fit is the Anderson-Darling test, as described
in Stephens [1974]. Under the null hypothesis that the set of n observations
u1, u2, . . . , un emanate from a uniform distribution, the test statistic A is given
by

A =
√
−n− S, (3.5.7)
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Table 3.2: Pearson’s chi-squared statistic with p-values shown in brackets in
respect of various short rate models (US cash rates, see Data Set A in Section L.1
of the Appendix).

k ν Vasicek CIR 3/2

5 1 8.7143 (0.3157%) 0.5714 (44.9703%) 30.6429 (0.0000%)
10 6 13.7143 (3.2996%) 1.8571 (93.2361%) 35.5714 (0.0003%)
15 11 21.7857 (2.6087%) 10.2143 (51.1220%) 37.6429 (0.0090%)
20 16 34.0000 (0.5433%) 11.1429 (80.0580%) 42.5714 (0.0324%)
25 21 30.3571 (8.5044%) 18.9286 (58.9720%) 41.7857 (0.4476%)

Table 3.3: Kolmogorov-Smirnov test statistics in respect of various short rate
models (US cash rates, see Data Set A in Section L.1 of the Appendix).

Vasicek CIR 3/2

Dn 0.08468 0.04526 0.17092
n 141 141 141
Kn 1.00556 0.53749 2.02958
F (Kn) 0.73592 0.06518 0.99947
p-value 0.26408 0.93482 0.00053

where

S =
n∑

i=1

2i− 1

n

(
log ui + log(1− un+1−i)

)
. (3.5.8)

We compute the test statistics in Table 3.4 where, as for the Kolmogorov-Smirnov
test, we see that only the 3/2 short rate model can be rejected at the 1% level of
significance. The p-values of the test statistic A in Table 3.4 were estimated using
sample Anderson-Darling statistics of 1000 simulations of sets of 141 uniformly
distributed observations.

Table 3.4: Anderson-Darling test statistics in respect of various short rate models
(US cash rates, see Data Set A in Section L.1 of the Appendix).

Vasicek CIR 3/2
S -142.50533 -141.28374 -146.21838
n 141 141 141
A2 = −n− S 1.50533 0.28374 5.21838
A 1.22692 0.53267 2.28438
p-value 0.1898 0.9546 0.0015
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3.6 Conclusions

In this chapter we have provided explicit formulae for transition densities, contri-
butions to the ZCB prices, contributions to the forward rates and contributions
to the prices of options on ZCBs under the three short rate models. The proofs
of formulae for expectations involving the short rate contribution G, which lead
to explicit formulae for Vasicek and CIR bond option prices, are original. Fur-
thermore, we have adjudicated on the goodness of fits of the short rate models to
US data, where it is evident that the CIR short rate model provides the best fit.



Chapter 4

Two Discounted GOP Models

4.1 Introduction

A discounted equity index is computed as the ratio of an equity index to the
accumulated savings account denominated in the same currency. In this way, dis-
counting provides a natural way of separating the modelling of the short rate from
the market price of risk component of the equity index. In this vein, we investi-
gate the applicability of maximum likelihood estimation to stochastic models of
a discounted equity index, providing explicit formulae for parameter estimates1.
We restrict our consideration to two important index models, namely the Black-
Scholes model and the minimal market model of Platen, each having an explicit
formula for the transition density function. The first model is the standard con-
tinuous time market model under the classical risk neutral assumption, whereas
the second model is the standard model under the benchmark approach, discussed
in Platen and Heath [2006]. Explicit formulae for the estimates of model param-
eters and their standard errors are derived which then are used in fitting the two
models to US data. Further, we demonstrate the effect of the model choice on
the classical no-arbitrage assumption employed in risk neutral pricing.

The application of maximum likelihood estimation is well studied for stochastic
models of equity indices, starting from Mandelbrot [1963] and Fama [1963] and
summarised more recently in Behr and Pötter [2009]. However, in the current
article we are interested in the application to models of discounted equity indices,
also examined in Baldeaux et al. [2015]. Our motivation stems from the bench-
mark approach, introduced in Platen [2004], whereby a benchmark is constructed
as the “best” (in several ways) performing portfolio for use as a numéraire or ref-
erence unit. The benchmark approach uses the growth optimal portfolio (GOP)
as benchmark, as discussed in Platen and Heath [2006]. The GOP achieves
the maximum possible expected growth rate at any time, and also the almost

1This work has been published in Fergusson [2017b].
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surely maximum long-term growth rate, as shown in Platen [2004]. When used
as benchmark, each benchmarked non-negative portfolio can be shown to be a
supermartingale with its current benchmarked value greater than or equal to the
expected future benchmarked values. As such, the GOP is the “best” performing
portfolio in this sense. It has been studied and employed previously, for example
in Kelly [1956], Long [1990], Merton [1971], Karatzas and Shreve [1998], Platen
[2002b] and by many other authors.

We work on a filtered probability space (Ω,A, (At)t≥0, P ), where Ω is the sample
space, A is the set of events, (At)t≥0 is the filtration of events modelling the
evolution of information and P is the real-world probability measure. It is shown
in Platen [2004] that the GOP, denoted by Sδ∗

t at time t, for t ∈ [0, T ], satisfies
the SDE

dSδ∗
t = Sδ∗

t

(
rt + θ2t

)
dt+ Sδ∗

t θt dŴt, (4.1.1)

where rt is the short rate, θt is the market price of risk and Ŵ is a Wiener process.
In Platen [2005b] and Platen and Rendek [2012a] it is shown that appropriately
diversified portfolios represent approximate GOPs. Therefore, a number of com-
mon, well-diversified stock market indices can be used to approximate the GOP,
including but not limited to the following: the Standard and Poor’s 500 Index
(S&P 500) and the Russell 2000 Index for the US market and the MSCI Growth
World Stock Index (MSCI) for global modelling.

In Figure 4.1 we plot the logarithm of the S&P 500 denominated in United States
dollars (USD), and normalised to one at the start, over the period from January
1871 to March 2017, using data sourced from the website of Shiller [1989] (see
Data Set C in Section L.3 of Appendix L). By assuming that the GOP for the
US equity market is approximated by the S&P 500, Figure 4.1 can be interpreted
as the logarithm of a historical sample path for the GOP.

Note from (4.1.1) that the GOP dynamics are completely characterized by the
short rate rt and the market price of risk θt. Letting Bt denote the accumulated
value of the savings account, satisfying the SDE dBt = rtBtdt, with B0 = 1,
we can separate these two effects by considering the discounted GOP process
S̄δ∗ = {S̄δ∗

t , t ∈ [0, T ]}, given by

S̄δ∗
t =

Sδ∗
t

Bt

, (4.1.2)

satisfying the SDE

dS̄δ∗
t = S̄δ∗

t θ2t dt+ S̄δ∗
t θt dŴt, (4.1.3)

for t ∈ [0, T ].

From, for example, Karatzas and Shreve [1998], one notes that in a complete
market, the candidate Radon-Nikodym derivative process ΛQ = {ΛQ

t : t ∈ [0, T ]}
for the putative risk neutral measure Q is equal to the reciprocal of the discounted
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Figure 4.1: Logarithm of the S&P 500 in USD from January 1871 to March 2017.
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GOP. That is,

ΛQ
t =

dQ

dP

∣∣∣∣
At

=
Bt

Sδ∗
t

Sδ∗
0

B0

=
S̄δ∗
0

S̄δ∗
t

. (4.1.4)

A necessary condition for Q to be a probability measure is that

Q(Ω) = 1. (4.1.5)

Violation of Condition 4.1.5 implies that Q is not equivalent to P and, therefore,
an equivalent risk neutral probability measure does not exist in this case. The
Fundamental Theorem of Asset Pricing, as given in Delbaen and Schachermayer
[2006], states the classical no-arbitrage condition which is equivalent to the ex-
istence of an equivalent risk neutral probability measure. Therefore, violation
of Condition 4.1.5 means that the corresponding dynamics permit some form of
classical arbitrage. It is important to understand whether in reality one can sup-
port the classical no-arbitrage assumption or whether there is significant evidence
from historical data that favour a more general modelling framework where this
assumption is not imposed.

In this article we consider a complete market. Two models of the discounted
GOP S̄δ∗ are considered, these being the Black-Scholes (BS) model,

dS̄δ∗
t = S̄δ∗

t θ2t dt+ S̄δ∗
t θtdWt, (4.1.6)
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where θt = θ > 0, and the minimal market model (MMM),

dS̄δ∗
t = ᾱtdt+

√
S̄δ∗
t ᾱtdWt, (4.1.7)

where θt =
√

ᾱt/S̄
δ∗
t with ᾱt = ᾱ0 exp(ηt), η > 0.

The Black-Scholes model is the standard market model under classical no-arbitrage
assumptions. It derives its name from the geometric Brownian model assumed
in Black and Scholes [1973].

The MMM includes the discounted GOP process in (4.1.7) with the requirement
that the net GOP drift term ᾱt = S̄δ∗

t |θt|2 grows exponentially as ᾱt = ᾱ0 exp(ηt)
with the net growth rate η > 0 reflecting the long-term average growth rate of
S̄δ∗ and, thus, the economy. Each of these models has one key parameter, the
volatility θ for the BS model and the net growth rate η for the MMM.

We examine each of the two discounted GOP models and, in doing so, fit each
to historical data, calculate the relevant contribution M to the ZCB price, the
relevant contribution m to the instantaneous forward rate and the price of the
option on the ZCB contribution M .

4.2 Black-Scholes Model of Discounted GOP

From (4.1.3) we have the SDE that is assumed to be satisfied by the discounted
GOP under the BS model. By insisting that the market price of risk θt be a
constant θ, the SDE for the discounted GOP S̄δ∗

t becomes

dS̄δ∗
t = S̄δ∗

t (θ2dt+ θdWt). (4.2.1)

From (4.2.4) the theoretical quadratic variation of log
(
S̄δ∗
t

)
is

[log
(
S̄δ∗
)
]t =

∫ t

0

θ2ds = θ2t, (4.2.2)

which we show in Figure 4.2 alongside the actual empirical quadratic variation
of the logarithm of the discounted GOP, computed from Shiller’s monthly series
of discounted values of the S&P 500 over the period from 1871 to 2017, referred
to as Data Set C in Section L.3 of Appendix L.

Remark 4.2.1 It is evident from Figure 4.2 that the Black-Scholes model of the
discounted GOP fails to capture the stochastic nature of the market price of risk
θt since the slope of the quadratic variation of the logarithm of the discounted
stock index moves significantly over time.
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Figure 4.2: Quadratic variation of logarithm of discounted stock index.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Q
ua

dr
at
ic
Va

ria
tio

n
of

Lo
ga
rit
hm

of
Di
sc
ou

nt
ed

GP

Year

Empirical QV log disc GP Theoretical QV log disc GP (Slope 0.141 squ p.a.)

From (4.1.4) the Radon-Nikodym derivative of the risk neutral probability mea-
sure is equal to the reciprocal of the discounted GOP which, under the BS model,
is given by

ΛQ
t = exp(−1

2
θ2t− θWt). (4.2.3)

Remark 4.2.2 Risk neutral pricing of derivative contracts relies on the Radon-
Nikodym derivative ΛQ being a martingale with respect to the real-world prob-
ability measure P . This condition is indeed satisfied under the model because
E(ΛQ

t |As) = ΛQ
s for 0 ≤ s ≤ t < ∞.

We show in Figure 4.3 ΛQ
t = 1/S̄δ∗

t for the S&P 500, where we note that this
trajectory seems unlikely to be that of a true martingale.

In the following section we derive the transition density function of the discounted
GOP, used to fit the parameters to data.

4.2.1 Transition Density of Discounted GOP

The logarithm of the discounted GOP obeys the SDE

d log
(
S̄δ∗
t

)
=

1

2
θ2dt+ θdWt (4.2.4)
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Figure 4.3: Radon-Nikodym derivative ΛQ
t = 1/S̄δ∗

t of the putative risk neutral
probability measure.
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whose solution is immediately found to be log
(
S̄δ∗
t

)
= log

(
S̄δ∗
0

)
+ 1

2
θ2t+ θ(Wt −

W0). This gives rise to the following lemma.

Lemma 4.2.3 The transition density function of the logarithm of the discounted
GOP in (4.2.1) is

p
log
(
S̄δ∗
)(t, log(xt), T̄ , log(xT̄ )

)
(4.2.5)

=
1√

2π
√
(T̄ − t)θ2

exp

⎛
⎝−1

2

(
log
(xT̄

xt

)
− 1

2
(T̄ − t)θ2√

(T̄ − t)θ2

)2
⎞
⎠

and the transition density function of the discounted GOP is

pS̄δ∗ (t, xt, T̄ , xT̄ ) =
1

xT̄

√
2π
√
(T̄ − t)θ2

exp

⎛
⎝−1

2

(
log
(xT̄

xt

)
− 1

2
(T̄ − t)θ2√

(T̄ − t)θ2

)2
⎞
⎠ .

(4.2.6)

By virtue of this lemma we can write the conditional distribution of S̄δ∗
T̄

given

S̄δ∗
t as

log
(
S̄δ∗
T̄

)
∼ N

(
log S̄δ∗

t +
1

2
(T̄ − t)θ2, (T̄ − t)θ2

)
(4.2.7)
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Figure 4.4: Transition density function of logarithm of Black-Scholes discounted
GOP based at 1871 with trajectory of log discounted S&P 500 and theoretical
mean.

Below, we plot the transition density function of the logarithm of the discounted
GOP in Figure 4.4 for the fitted parameter θ when starting in January 1871 with
S̄δ∗
0 = 1. We also include in the graph the theoretical mean of the logarithm of

the index and the logarithm of the index.

4.2.2 Fitting the Black-Scholes Model of Discounted GOP

We use maximum likelihood estimation to fit the model (4.2.1) to Shiller’s monthly
series of discounted values of the S&P 500 over the period from 1871 to 2017,
referred to as Data Set C in Section L.3 of Appendix L.

For a time discretisation ti = iΔ, Δ > 0, our log-likelihood function is

�Δ(θ) = −1

2

n∑
i=1

{
log(2πθ2Δ) +

(
log
(
S̄δ∗
ti

)
− log

(
S̄δ∗
ti−1

)
− 1

2
θ2Δ
)2

θ2Δ

}
, (4.2.8)

and, although widely known (for example, see Chapter 8 of Rice [2007]), an
explicit formula for the maximum likelihood estimate of the parameter θ and its
standard error is supplied in the following theorem.

Theorem 4.2.4 The square of the maximum likelihood estimate θ̂Δ of θ in the
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SDE (4.2.1), with time step size Δ, is given by

θ̂2Δ =
−2 + 2

√
1 + 1

n

∑n
i=1(log S̄

δ∗
ti /S̄

δ∗
ti−1

)2

Δ
(4.2.9)

where there are n+1 observations of the discounted GOP S̄δ∗
ti , for i = 0, 1, 2, . . . , n.

Further, the standard error of the parameter estimate is given by

SE(θ̂Δ) =
1√

nΔ+ 2n

θ̂2Δ

. (4.2.10)

Proof . We rewrite (4.2.8) as

�(θ) = −1

2

n∑
i=1

{
log(2πΔ)+2 log(θ)+

(
log(S̄δ∗

ti /S̄
δ∗
ti−1

)
)2

θ2Δ
−log(S̄δ∗

ti
/S̄δ∗

ti−1
)+

1

4
θ2Δ

}
(4.2.11)

and differentiating with respect to θ gives

�′(θ) = −1

2

n∑
i=1

{
2

θ
−

2
(
log(S̄δ∗

ti /S̄
δ∗
ti−1

)
)2

θ3Δ
+

1

2
θΔ

}
. (4.2.12)

Rearranging (4.2.12) gives

�′(θ) = − 1

4θ3

n∑
i=1

{
4θ2 −

4
(
log(S̄δ∗

ti /S̄
δ∗
ti−1

)
)2

Δ
+ θ4Δ

}
(4.2.13)

= − 1

4θ3

(
nΔ θ4 + 4nθ2 −

n∑
i=1

4
(
log(S̄δ∗

ti /S̄
δ∗
ti−1

)
)2

Δ

)
.

The solution to the equation �′(θ) = 0 is given by the formula (4.2.9). To deter-
mine the standard error of the estimate of θ we take the second derivative of �,
giving

�′′(θ) = − 1

4θ4

(
nΔ θ4 − 4nθ2 + 3

n∑
i=1

4
(
log(S̄δ∗

ti /S̄
δ∗
ti−1

)
)2

Δ

)
. (4.2.14)

When θ = θ̂Δ the second derivative can be simplified to

�′′(θ) = − 1

4θ4

(
4nΔ θ4 + 8nθ2

)
(4.2.15)

= −
(
nΔ +

2n

θ2

)
.

The standard error is given by the reciprocal of the square root of the negative
of the second derivative, giving the result (4.2.10). Q.E.D.
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Figure 4.5: Graph showing how the estimates of θ vary with step size.
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From this theorem we compute the maximum likelihood estimate for various time
step sizes. In Table 4.3 we show the estimate θ̂ = 0.141002 (0.002380) with the
standard error shown in brackets.

In Figure 4.5 we plot the estimate with its 95% confidence interval in dependence
on the time step size. We note that for some larger time step sizes the confidence
intervals become unrealistic as the normality assumption of the standard error is
invalid.

4.2.3 Discounted GOP Contribution to the ZCB Price

The following lemma gives the contribution of the discounted GOP to the ZCB
price. We remark that the same contributions emerge for any model which has
a risk neutral probability measure and where the savings account and the dis-
counted GOP are independent.

Lemma 4.2.5 For S̄δ∗ satisfying (4.2.1) the discounted GOP contribution to the
ZCB price is

MT̄ (t) = 1 (4.2.16)
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Proof . From (2.8.3) we have

MT̄ (t) = E

(
S̄δ∗
t

S̄δ∗
T̄

∣∣∣∣At

)
(4.2.17)

=

∫ ∞

0

S̄δ∗
t

S̄δ∗
T̄

pS̄δ∗ (t, S̄
δ∗
t , T̄ , S̄δ∗

T̄
) dS̄δ∗

T̄

= 1,

which is the result. Q.E.D.

The following corollary is trivial.

Corollary 4.2.6 The discounted GOP contribution to the long ZCB yield is zero,
that is

n∞(t) = 0. (4.2.18)

We now consider the contribution of the discounted GOP to the forward rate.

4.2.4 Discounted GOP Contribution to the Forward Rate

The following lemma gives the contribution of the discounted GOP to the in-
stantaneous forward rate. As mentioned in the previous section, we remark that
the same contributions emerge for any model which has a risk neutral probability
measure and where the savings account and the discounted GOP are independent.

Lemma 4.2.7 For S̄δ∗ satisfying (4.2.1) the discounted GOP contribution to the
forward rate is

mT̄ (t) = 0 (4.2.19)

Proof . From (2.8.12) and (4.2.16) we have

mT̄ (t) =
∂

∂T̄
logMT̄ (t) =

∂

∂T̄
log 1 = 0 (4.2.20)

which is the result. Q.E.D.

The following section contains some integrals, which will be useful in calculating
option prices in Chapter 5.
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Table 4.1: Formulae for expectations involving a standard normal random vari-
able Z.
Expectation Integral Formula

E(exp(αZ)1Z>z)
∫∞
z

eαun(u)du exp(1
2
α2)
(
1−N(z − α)

)
E(exp(αZ)1Z≤z)

∫ z

−∞ eαun(u)du exp(1
2
α2)N(z − α)

E(exp(αZ))
∫∞
−∞ eαun(u)du exp(1

2
α2)

E(N(αZ + β))
∫∞
−∞ N(αu+ β)n(u)du N

(
β√

1+α2

)

E
(
exp(γZ)N(αZ + β)

) ∫∞
−∞ eγuN(αu+ β)n(u)du exp(1

2
γ2)N

(
αγ+β√
1+α2

)

4.2.5 Expectations Involving a Standard Normal Random
Variable

We provide formulae for expectations involving a standard normal random vari-
able Z in Table 4.1 which are used in pricing options on the discounted GOP
under the real-world measure. We employ the notation n and N where n(u) =
1√
2π

exp(−1
2
u2) is the probability density function of the standard normal dis-

tribution and N(z) =
∫ z
−∞ n(u)du is the cumulative probability function of the

standard normal distribution.

The following lemma proves the first three expectations in Table 4.1.

Lemma 4.2.8 We have

E(exp(αZ)) = exp(
1

2
α2) (4.2.21)

E(exp(αZ)1Z>z) = exp(
1

2
α2)
(
1−N(z − α)

)
E(exp(αZ)1Z≤z) = exp(

1

2
α2)N(z − α)

Proof . This is a particular case of Lemma 3.2.18 with Y = αZ. See Ap-
pendix J. Q.E.D.

The fourth expectation in Table 4.1 is proven in the following lemma.

Lemma 4.2.9

E(N(αZ + β)) = N

(
β√

1 + α2

)
(4.2.22)

Proof . See Appendix J.
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The following lemma validates the fifth expectation in Table 4.1.

Lemma 4.2.10

E(exp(γZ)N(αZ + β)) = exp(
1

2
γ2)N

(
αγ + β√
1 + α2

)
(4.2.23)

Proof . See Appendix J.

We have sufficient machinery developed for the Black-Scholes discounted GOP
model to price derivatives in Chapter 5 and so we now proceed with another
model of the discounted GOP.

4.3 Minimal Market Model of Discounted GOP

In this section we consider the minimal market model (MMM) originally proposed
in Platen [2001]. By making the assumption that the drift α̂t = θ2t S̄

δ∗
t of the

discounted GOP in (4.1.3) behaves exponentially we arrive at the SDE (4.1.7) for
the discounted GOP, where

ᾱt = ᾱ0 exp(ηt) (4.3.1)

and η is the net growth rate. Here the net growth rate η can be viewed as the
growth rate of the GOP in excess of the short rate.

The square root of the discounted GOP has SDE

d
(√

S̄δ∗
t

)
=

3

8
√
S̄δ∗
t

ᾱt dt+
1

2

√
ᾱt dWt. (4.3.2)

It follows that the discounted GOP drift can be observed as four times the first or-
der time derivative of the quadratic variation of the square root of the discounted
GOP, that is,

ᾱt = 4
d

dt
[
√

S̄δ∗ ]t. (4.3.3)

In Figure 4.8 the quadratic variation of the square root of the discounted stock
index is shown. It is clear that the exponential function ᾱt = ᾱ0 exp(ηt) provides
a good fit and thus confirms the assumptions for the net market trend in (4.3.1)
and constant growth rate η as being reasonable.

Under the MMM, Platen [2002b] showed that the discounted GOP obeys a time-
transformed squared Bessel process of dimension four.



4.3. MINIMAL MARKET MODEL OF DISCOUNTED GOP 117

We define the normalised discounted GOP process Yt as the ratio of the discounted
GOP to its net market trend. The SDE satisfied by Yt is

dYt = ᾱ−1
t dS̄δ∗

t − ᾱ−2
t S̄δ∗

t dᾱt (4.3.4)

= dt+

√
ᾱ−1
t S̄δ∗

t dWt − ᾱ−1
t Yt × ηᾱt

= (1− ηYt)dt+
√

YtdWt.

Making the substitutions ct = 1, ν = 4, bt = −η, z0 = ᾱ0 in Lemma 3.3.3 in
Chapter 3 we see that Yt = ᾱ0 exp(−ηt)Xϕt , where X is a squared Bessel process
of dimension four with X0 = S̄δ∗

0 and ϕt = (exp(ηt)− 1)/(4η).

We observe that the market price of risk θt =
√

ᾱt/S̄
δ∗
t = 1/

√
Yt is given as the

reciprocal of the square root of the normalised discounted GOP. Therefore, the
squared market price of risk vt = θ2t = 1/Yt obeys the SDE

dvt = d(Y −1
t ) (4.3.5)

= −Y −2
t dYt +

1

2
× 2Y −3

t d[Y ]t (4.3.6)

= −(Y −2
t − ηY −1

t )dt− Y
−3/2
t dWt + Y −2

t dt (4.3.7)

= ηvtdt− v
3/2
t dWt. (4.3.8)

This SDE is known as the 3/2 volatility model, proposed in Platen [1997]. The
leverage effect, as explained in Black [1976], pertains to the multiplied losses
associated with severely adverse movements in the stock index. The negative
correlation between the variable vt and the discounted GOP S̄δ∗

t shows how the
leverage effect is naturally incorporated into the MMM.

4.3.1 Transition Density of Discounted GOP

Before we give the transition density function of the discounted GOP we prove
that the time transformed discounted GOP is a squared Bessel process of dimen-
sion four.

Lemma 4.3.1 The discounted GOP process S̄δ∗ = {S̄δ∗
t , t ∈ [0, T ]} given by the

SDE (4.1.7) is a time-transformed squared Bessel process of dimension four.

Proof . Define the (A, P )-local martingale Ū = {Ūt, t ∈ [0, T ]} as a solution to
the SDE

dŪt =

√
ᾱt

4
dŴt (4.3.9)

for t ∈ [0, T ]. Applying the Dambis, Dubins-Schwarz (DDS) Theorem, for exam-
ple as given in Klebaner [1998], the DDS Wiener process is Ūt = W[Ū ]t = Wϕt ,
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where W = {Wϕ, ϕ ∈ [ϕ0, ϕT ]} is a standard Wiener process in ϕ-time. The
time change itself ϕ = {ϕt, t ∈ [ϕ0, ϕT ]} is defined as

ϕt = ϕ0 + [Ū ]t = ϕ0 +
1

4

∫ t

0

ᾱs ds, (4.3.10)

or equivalently

dϕt =
1

4
ᾱt dt (4.3.11)

for t ∈ [0, T ]. Therefore, the discounted GOP process X = {Xϕt , ϕt ∈ [ϕ0, ϕT ]}
with time transform of (4.3.10) is found by setting

Xϕt = S̄δ∗
t (4.3.12)

for t ∈ [0, T ] with the initial condition Xϕ0 = S̄δ∗
0 . Hence the SDE (4.1.7) can

now be written as
dXϕ = 4 dϕ+

√
4Xϕ dWϕ (4.3.13)

for ϕ ∈ [ϕ0, ϕT ]. It follows from Revuz and Yor [1999] that X is, in the trans-
formed ϕ-time (4.3.10), a squared Bessel process of dimension four. Q.E.D.

This lemma gives rise to the following lemma concerning the conditional distri-
bution of the discounted GOP.

Lemma 4.3.2 For the discounted GOP process S̄δ∗ satisfying (4.1.7) and ϕt

given by (4.3.10) we have for times T̄ > t and given S̄δ∗
t that

S̄δ∗
T̄

ϕT̄ − ϕt

(4.3.14)

is non-central chi-squared distributed with four degrees of freedom and with non-
centrality parameter λ = S̄δ∗

t /(ϕT̄ − ϕt), written as

S̄δ∗
T̄

ϕT̄ − ϕt

∼ χ2
4,S̄δ∗

t /(ϕT̄−ϕt)
. (4.3.15)

The transition density function of the discounted GOP is given explicitly in the
following lemma.

Lemma 4.3.3 Let t and T̄ be such that T̄ > t ≥ 0. The transition density
function of the discounted GOP in (4.1.7) is

pS̄δ∗ (t, xt, T̄ , xT̄ ) =
1

2(ϕT̄ − ϕt)

√
xT̄

xt

exp

(
− xt + xT̄

2(ϕT̄ − ϕt)

)
I1

( √
xtxT̄

ϕT̄ − ϕt

)
,

(4.3.16)

where Iν(z) =
∑∞

m=0

( 1
2
z)ν+2m

m!Γ(ν+m+1)
is the modified Bessel function of the first kind

with index ν and ϕt is the quadratic variation of
√

S̄δ∗
t as given by (4.3.10).
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Figure 4.6: Graphs of empirical, normal and Student-t stationary density func-
tions as well as the transition density of log returns of MMM discounted GOP
based at January 1871.
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Remark 4.3.4 From (4.1.7) the logarithm of the GOP has the SDE

d log
(
S̄δ∗
t

)
=

1

2
Ytdt+

√
1

Yt

dWt, (4.3.17)

where Yt obeys SDE (4.3.4). The stationary density p̄ of Yt is that of a scaled
chi-square distribution and is given by

p̄(y) =
(2η)2

Γ(2)
y exp(−2ηy), (4.3.18)

(see, for example, Chapter 4 of Platen and Heath [2006]). Therefore, under the
MMM, the distribution of log returns of the discounted GOP is Student-t with four
degrees of freedom. This contrasts with the corresponding distribution under the
BS model being Gaussian. These stationary densities are shown in Figure 4.6.
Also shown, is the transition density of log returns of MMM discounted GOP
based at January 1871 which demonstrates the ability of the MMM to capture
asymmetry in log returns.

The graph of the transition density function of the discounted GOP with param-
eter values ᾱ0 = 0.0068370 and η = 0.045486 is shown in Figure 4.7.
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Figure 4.7: Transition density function of MMM discounted GOP based at Jan-
uary 1871, with S&P 500 trajectory and theoretical mean.

4.3.2 Fitting the MMM Discounted GOP

Estimation of the parameters of the MMM discounted GOP is achieved using
maximum likelihood estimation.

The log-likelihood function in respect of the observed values of the discounted
GOP S̄δ∗

ti , i = 0, 1, 2, . . . , n, is

�(ᾱ0, η) =
n∑

i=1

log

[
1

2(ϕti − ϕti−1
)

√
S̄δ∗
ti

S̄δ∗
ti−1

(4.3.19)

× exp

{
− 1

2

S̄δ∗
ti + S̄δ∗

ti−1

ϕti − ϕti−1

}
I1
(√

S̄δ∗
ti S̄

δ∗
ti−1

/(ϕti − ϕti−1
)
)]
,

where ϕt =
1
4
ᾱ0(exp(ηt)− 1)/η.

The following theorem supplies an accurate approximation to the maximum like-
lihood estimates as well as an explicit formula for the standard errors of the
parameter estimates.

Theorem 4.3.5 Assume that the series(
log

[{√
S̄δ∗
ti −
√

S̄δ∗
ti−1

}2])n

i=1

(4.3.20)
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is approximately linear in ti, for i = 1, 2, . . . , n, and that the resulting residuals
εi of the linear fit have sufficiently small moments, that is

1

n

n∑
i=1

(
exp(εi)− εi − 1

)
≤ K3

n
, (4.3.21)

where

εi = log

[{√
S̄δ∗
ti −
√

S̄δ∗
ti−1

}2]
−K1 −K2ti (4.3.22)

and where K1, K2 and K3 are positive constants independent of n. The maximum
likelihood estimates ˆ̄α0,Δ and η̂Δ of ᾱ0 and η respectively in the SDE (4.1.7) with
time step size Δ are given by

ˆ̄α0,Δ ≈ 1

n

n∑
i=1

(√
S̄δ∗
ti −
√

S̄δ∗
ti−1

)2

1
4η

(
exp(ηΔ)− 1) exp(η(i− 1)Δ)

(4.3.23)

η̂Δ ≈ 6

Δ(n+ 1)

[
1(
n
2

)∑
i∈K

(i− 1) log

{(√
S̄δ∗
ti −
√

S̄δ∗
ti−1

)2}

− 1

n

∑
i∈K

log

{(√
S̄δ∗
ti −
√

S̄δ∗
ti−1

)2}]
,

where summation is over the set K = {i = 1, 2, . . . , n : S̄δ∗
ti �= S̄δ∗

ti−1
} and where

there are n + 1 observations of the discounted GOP S̄δ∗
t , for i = 0, 1, 2, . . . , n.

Further, the standard errors of the parameter estimates are approximately given
by

SE(ˆ̄α0,Δ) ≈ 2ˆ̄α0,Δ

√
2n− 1

n(n+ 1)
(4.3.24)

SE(η̂Δ) ≈
√

24

n(n2 − 1)Δ2
.

Proof . Firstly, we rewrite the log likelihood function in (4.3.19) in terms of η
and a new parameter a = 1

4η
ᾱ0(exp(ηΔ)− 1), giving

�(a, η) = −n log 2− n log a− η

(
n

2

)
+

1

2
log

{
S̄δ∗
tn

S̄δ∗
t0

}
(4.3.25)

− 1

2

n∑
i=1

yi +
n∑

i=1

f(zi),
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where we have used the notation

yi =

{√
S̄δ∗
ti −
√

S̄δ∗
ti−1

}2

ϕti − ϕti−1

=

{√
S̄δ∗
ti −
√

S̄δ∗
ti−1

}2

a exp(η(i− 1)Δ)
(4.3.26)

zi =

√
S̄δ∗
ti S̄

δ∗
ti−1

ϕti − ϕti−1

=

√
S̄δ∗
ti S̄

δ∗
ti−1

a exp(η(i− 1)Δ)

and where the function f is defined as

f(x) = log{exp(−x)I1(x)}, (4.3.27)

which has convenient asymptotic properties as x → ∞, demonstrated in Ap-
pendix N. We straightforwardly obtain the following first order partial derivatives
with respect to the parameters a and η, that is,

∂�

∂a
= −n

a
+

1

2a

n∑
i=1

yi −
1

a

n∑
i=1

f ′(zi) zi (4.3.28)

∂�

∂η
= −
(
n

2

)
Δ+

Δ

2

n∑
i=1

yi (i− 1)−Δ
n∑

i=1

f ′(zi) zi (i− 1)

from which we obtain the second order partial derivatives

∂2�

∂a2
=

n

a2
− 1

a2

n∑
i=1

yi +
1

a2

n∑
i=1

{
2f ′(zi) zi + f ′′(zi) z

2
i

}
(4.3.29)

∂2�

∂η∂a
= −Δ

2a

n∑
i=1

yi (i− 1) +
Δ

a

n∑
i=1

{
f ′(zi) zi (i− 1) + f ′′(zi) z

2
i (i− 1)

}
∂2�

∂η2
= −Δ2

2

n∑
i=1

yi (i− 1)2 +Δ2

n∑
i=1

{
f ′(zi) zi (i− 1)2 + f ′′(zi) z

2
i (i− 1)2

}
.

Note that, from Appendix N, we have as y → ∞

yf ′(y) = −1

2
+

3

8y
+O

(
1

y2

)
(4.3.30)

y2f ′′(y) =
1

2
− 3

4y
+O

(
1

y2

)
.
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Inserting these asymptotic estimates into (4.3.28) we obtain

a

n

∂�

∂a
= −1 +

1

2n

n∑
i=1

yi −
1

n

n∑
i=1

{
− 1

2
+O

(
1

zi

)}
(4.3.31)

= −1

2
+

1

2n

n∑
i=1

yi +O(Δ)

1(
n
2

)
Δ

∂�

∂η
= −1 +

1

2
(
n
2

) n∑
i=1

yi (i− 1)− 1(
n
2

) n∑
i=1

{
− 1

2
+O

(
1

zi

)}
(i− 1)

= −1

2
+

1

2
(
n
2

) n∑
i=1

yi (i− 1) +O(Δ).

Here we have employed the two approximations S̄δ∗
ti ≈ ᾱ0 exp(ηiΔ) and

zi ≈
ᾱ0 exp(η(i− 1/2)Δ)

1
4η
ᾱ0(exp(ηΔ)− 1) exp(η(i− 1)Δ)

(4.3.32)

≈ 4η exp(ηΔ/2)

ηΔ+O((ηΔ)2)

≈ 4

Δ
(1 +O(Δ))

to arrive at 1/zi = O(Δ). Our maximum likelihood equations become

1

n

n∑
i=1

yi = 1 +O(Δ) (4.3.33)

1(
n
2

) n∑
i=1

yi (i− 1) = 1 +O(Δ).

The solutions to these equations are close to the exact ones by virtue of the
smallness of Δ for large values of n. If the series (yi)

n
i=1 is nearly constant, as per

our assumption, Jensen’s inequality E[logX] ≤ logE[X] is nearly strict so that
we have the approximations

1

n

∑
i∈K

log(yi) ≈ log(1 +O(Δ)) (4.3.34)

1(
n
2

)∑
i∈K

log(yi) (i− 1) ≈ log(1 +O(Δ)),

where summation is over those i in the set K = {i : yi > 0}. The solutions to
these equations are straightforwardly shown to be those given in (4.3.23). Using
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the approximations (4.3.31) in (4.3.29) we obtain the simplified expressions

a2

n

∂2�

∂a2
≈ −1

2
+O(Δ) (4.3.35)

a(
n
2

)
Δ

∂2�

∂η∂a
≈ −1

2
+O(Δ)

1
1
6
n(n− 1)(2n− 1)Δ2

∂2�

∂η2
≈ −1

2
+O(Δ).

Fisher’s information matrix is computed to be

−
( ∂2�

∂a2
∂2�
∂η∂a

∂2�
∂η∂a

∂2�
∂η2

)−1

=
24a2

n2(n2 − 1)Δ2

(
n(n−1)(2n−1)Δ

24
−
(
n
2

)
Δ
a

−
(
n
2

)
Δ
a

n
a2

)
(4.3.36)

and the standard errors of â and η̂ are

SE(â) ≈ 2â

√
2n− 1

n(n+ 1)
(4.3.37)

SE(η̂Δ) ≈
√

24

n(n2 − 1)Δ2
.

Because a = 1
4η
ᾱ0(exp(ηΔ)− 1) ≈ Δ

4
ᾱ0(1 +O(Δ)) we have

SE(ˆ̄α0,Δ) ≈
4

Δ
SE(â) ≈ 8â

Δ

√
2n− 1

n(n+ 1)
≈ 2ˆ̄α0,Δ

√
2n− 1

n(n+ 1)
. (4.3.38)

Q.E.D.

We remark that the assumptions (4.3.21) and (4.3.22) underlying the maximum
likelihood estimation in Theorem 4.3.5 are likely to be satisfied in empirical ap-
plications where the quadratic variation of the square root of elements of the time
series has approximate logarithmic growth, as posited for the MMM discounted
GOP, and where this approximation is sufficiently good, as specified in (4.3.21).
For an arbitrary series, a suitable transformation may need to be applied so that
the transformed series satisfies the assumptions (4.3.21) and (4.3.22).

For Shiller’s monthly data set of US one-year deposit rates and stock index values
from 1871 to 2017, referred to as Data Set C in Section L.3 of Appendix L, the
following estimates are obtained by applying the Newton-Raphson root-finding
method to the first-order partial derivatives of the log-likelihood function,

ᾱ0 = 0.006837 (0.000462), (4.3.39)

η = 0.045486 (0.000800),
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Figure 4.8: Logarithm of quadratic variation of square root of discounted GOP
(monthly US data, see Data Set B in Section L.2 of the Appendix).
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where the standard errors are shown in brackets.

We note that the estimate of the net growth rate η is close to the empirical finding
of η ≈ 0.06 derived from the estimates 10.1% and 4.1% of annualised returns for
the last century of equities and short-dated treasury bills respectively, given in
Chapter 16 of Dimson et al. [2002].

The quadratic variation of
√
S̄δ∗
t is

ϕt − ϕ0 = [
√

S̄δ∗ ·]t =
1

4

∫ t

0

ᾱsds =
1

4η
ᾱ0(exp(ηt)− 1), (4.3.40)

where ϕ0 = 1
4η
ᾱ0. We can visually assess the accuracy of the two parameters

ᾱ0 and η by comparing the theoretical quadratic variation of the square root of
the discounted GOP, namely 1

4η
ᾱ0(exp(ηt) − 1), with the quadratic variation of√

S̄δ∗
t . The graphs are shown in Figure 4.8.

Remark 4.3.6 Similar to the parameter estimation method employed in Section
4 of Hulley and Platen [2012], a crude estimate of ᾱ0 and η can be obtained
by solving the two equations ϕtn − ϕt0 = ᾱ0(exp(ηtn) − 1)/(4η) = QVtn and
ϕtn/2

− ϕt0 = ᾱ0(exp(ηtn/2) − 1)/(4η) = QVtn/2
for η, giving exp(η 1

2
nΔ) + 1 =
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QVtn/QVtn/2
and hence η̂ = 0.041917, with log-likelihood −957.907584. The

estimate of η provided by Theorem 4.3.5 is η̂ = 0.046020, with log-likelihood
−943.885294, which is very close to the optimum in (4.3.39).

4.3.3 Fitting the MMM Discounted GOP using a
Lognormal Approximation

We will see that good estimates of the parameters of the MMM discounted GOP
can be obtained by approximating the non-central chi-squared distribution by a
lognormal distribution having the same mean and variance. The following lemma
supplies formulae for the conditional mean and variance of the discounted GOP.

Lemma 4.3.7 For the discounted GOP obeying the SDE (4.1.7) and for times
s, t such that s < t we have

ms(t) = E(S̄δ∗
t |As) = S̄δ∗

s +
ᾱ0

η

(
exp(ηt)− exp(ηs)

)
(4.3.41)

vs(t) = Var(S̄δ∗
t |As) = S̄δ∗

s

ᾱ0

η

(
exp(ηt)− exp(ηs)

)
+

ᾱ2
0

2η2
(
exp(ηt)− exp(ηs)

)2
.

Proof . Integrating the SDE (4.1.7) from time s to time t and taking expectations
conditional on S̄δ∗

s gives

E(S̄δ∗
t |As) = S̄δ∗

s +

∫ t

s

ᾱudu (4.3.42)

= S̄δ∗
s + ᾱ0

∫ t

s

exp(ηu)du

= S̄δ∗
s +

ᾱ0

η

(
exp(ηt)− exp(ηs)

)
,

which is the first equation. The SDE for (S̄δ∗
u )2 is, by Ito’s Lemma,

d(S̄δ∗
u )2 = 2S̄δ∗

u dS̄δ∗
u +

1

2
× 2× d[S̄δ∗ ]u (4.3.43)

= 2S̄δ∗
u ᾱudu+ 2

√
ᾱu(S̄δ∗

u )3dWu + ᾱuS̄
δ∗
u du

= 3S̄δ∗
u ᾱudu+ 2

√
ᾱu(S̄δ∗

u )3dWu.

As done for S̄δ∗
u , we integrate this SDE for (S̄δ∗

u )2 from time s to time t and take
expectations conditional on S̄δ∗

s . By noticing that the integral with respect to the
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Wiener process is a martingale, we obtain

E((S̄δ∗
t )2|As) = (S̄δ∗

s )2 +

∫ t

s

3ᾱuE(S̄
δ∗
u |As)du (4.3.44)

= (S̄δ∗
s )2 +

∫ t

s

3ᾱuS̄
δ∗
s du+

∫ t

s

3ᾱu
ᾱ0

η

(
exp(ηu)− exp(ηs)

)
du

= (S̄δ∗
s )2 + (3S̄δ∗

s − 3
ᾱ0

η
exp(ηs))

∫ t

s

ᾱudu+ 3
ᾱ0

η

∫ t

s

ᾱu exp(ηu)du

= (S̄δ∗
s )2 + (3S̄δ∗

s − 3
ᾱ0

η
exp(ηs))

ᾱ0

η

(
exp(ηt)− exp(ηs)

)
+ 3

ᾱ2
0

2η2
(
exp(2ηt)− exp(2ηs)

)
= (S̄δ∗

s )2 + 3S̄δ∗
s

ᾱ0

η

(
exp(ηt)− exp(ηs)

)
+ 3

ᾱ2
0

2η2
(
exp(ηt)− exp(ηs)

)2
.

The formula for the variance is straightforwardly given by

Var(S̄δ∗
t |As) = E((S̄δ∗

t )2|As)− (E(S̄δ∗
t |As))

2 (4.3.45)

= S̄δ∗
s

ᾱ0

η

(
exp(ηt)− exp(ηs)

)
+

ᾱ2
0

2η2
(
exp(ηt)− exp(ηs)

)2
,

which is the second equation. Q.E.D.

We approximate the transition density of the square root process from time ti−1

to time ti by a lognormal distribution that matches the mean and variance. The
lognormal distribution for the exponential of a Gaussian random walk with mean
μ and variance σ2 has mean

m = exp(μ+
1

2
σ2) (4.3.46)

and variance
v = exp(2μ+ σ2)

(
exp(σ2)− 1

)
. (4.3.47)

It is straightforward to show that the approximating lognormal distribution has,
according to (4.3.46) and (4.3.47), parameters μ

(LN)
ti , σ

(LN)
ti given by

μ
(LN)
ti = log

(
mti−1

(ti)
)
− 1

2
(σ

(LN)
ti )2 (4.3.48)

(σ
(LN)
ti )2 = log

(
1 +

vti−1
(ti)

mti−1
(ti)2

)
,
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respectively, where

mti−1
(ti) = S̄δ∗

ti−1
+

ᾱ0

η

(
exp(ηti)− exp(ηti−1)

)
(4.3.49)

vti−1
(ti) = S̄δ∗

ti−1

ᾱ0

η

(
exp(ηti)− exp(ηti−1)

)
+

ᾱ2
0

2η2
(
exp(ηti)− exp(ηti−1)

)2
.

Therefore, our approximating log-likelihood function on the set of observed values
of the discounted GOP S̄δ∗

ti , for i = 0, 2, . . . , n is

�(ᾱ0, η) = −1

2

n∑
i=1

{
log
(
2π(σ

(LN)
ti )2

)
+ 2 log

(
S̄δ∗
ti

)
+

(
log(S̄δ∗

ti )− μ
(LN)
ti

)2
(σ

(LN)
ti )2

}
.

(4.3.50)

Remark 4.3.8 Because the skew of the lognormal distribution is

mti−1
(ti)

3
(
exp((σ

(LN)
ti )2)− 1

)2(
exp((σ

(LN)
ti )2) + 2

)
(4.3.51)

≈ 16(ϕti − ϕti−1
)2mti−1

(ti)
(
1 +O((ϕti − ϕti−1

)/mti−1
(ti))
)

and the skew of the noncentral chi-squared distribution is

−64(ϕti − ϕti−1
)3 + 24(ϕti − ϕti−1

)2mti−1
(ti) (4.3.52)

≈ 24(ϕti − ϕti−1
)2mti−1

(ti)
(
1 +O((ϕti − ϕti−1

)/mti−1
(ti))
)

we see that the lognormal approximation accounts for roughly two-thirds of the
skew present in the noncentral chi-squared distribution which is not captured by
the normal approximation, for example.

We fit the MMM to the monthly discounted GOP series derived from Shiller’s
data set, referred to as Data Set C in Section L.3 of Appendix L, obtaining the
maximum likelihood estimates

ᾱ0 = 0.006904 (0.000466) (4.3.53)

η = 0.045555 (0.000800).

We note that the estimates for ᾱ0 and η are in close agreement with those in
(4.3.39).

4.3.4 Discounted GOP Contribution to the ZCB Price

We state and prove two lemmas concerning expectations of Poisson and Gamma
random variables before stating and proving a lemma to be used later. The



4.3. MINIMAL MARKET MODEL OF DISCOUNTED GOP 129

motivation for this approach stems from the representation of the non-central
chi-squared distribution as a chi-squared distribution having a random number
of degrees of freedom. As far as can be established from the literature, this is a
new approach to proving the expectation of the reciprocal of the MMM discounted
GOP and expectations of discounted payoffs of options for a MMM discounted
GOP.

Lemma 4.3.9 Let Z be a Poisson(λ) distributed random variable. Then

E

(
1

Z + 1

)
=

1− exp(−λ)

λ
. (4.3.54)

Proof . We have straightforwardly

E

(
1

Z + 1

)
=

∞∑
i=0

λi

i!
exp(−λ)

1

i+ 1
(4.3.55)

=
∞∑
i=0

λi

(i+ 1)!
exp(−λ)

=
1

λ

∞∑
i=0

λi+1

(i+ 1)!
exp(−λ)

=
1

λ

(
− exp(−λ) +

∞∑
i=0

λi

i!
exp(−λ)

)

=
1

λ
(− exp(−λ) + 1) ,

which is the result. Q.E.D.

The following lemma is useful in determining the expectation of the inverse of
the square root process, over the long term, in (3.4.16).

Lemma 4.3.10 Let X be a Gamma(α, λ)-distributed random variable. Then

E(X−1) = λ/(α− 1). (4.3.56)

Proof . The probability density function of the Gamma(α, λ) distribution is

f(x) =
λα

Γ(α)
xα−1 exp(−x/λ) (4.3.57)
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and so

E(X−1) =

∫ ∞

0

x−1f(x)dx (4.3.58)

=

∫ ∞

0

x−1 λα

Γ(α)
xα−1 exp(−x/λ)dx

=

∫ ∞

0

λα

Γ(α)
xα−2 exp(−x/λ)dx

=
λα

Γ(α)

Γ(α− 1)

λα−1

∫ ∞

0

λα−1

Γ(α− 1)
xα−2 exp(−x/λ)dx

=
λ

α− 1

∫ ∞

0

λα−1

Γ(α− 1)
xα−2 exp(−x/λ)dx

=
λ

α− 1
,

which is the result. Q.E.D.

Corollary 4.3.11 Let X be a χ2
ν-distributed random variable for ν > 2. Then

E(X−1) = 1/(ν − 2). (4.3.59)

Proof . Because a χ2
ν-distributed random variable is also a Gamma(ν/2, 1/2)-

distributed random variable, using Lemma 4.3.10 gives the result. Q.E.D.

The following lemma concerns the expected value of the reciprocal of a χ2
ν,λ-

distributed random variable when ν = 4.

Lemma 4.3.12 Suppose the random variable Y is distributed as χ2
ν,λ for ν = 4

and λ > 0. Then

E(Y −1) =
1− exp(−λ/2)

λ
. (4.3.60)

Proof . From Remark 3.3.9 we can write, for a Poisson(λ/2)-distributed random
variable Z,

E(Y −1) = E

(
1

χ2
ν+2Z

)
(4.3.61)

= E

(
E

(
1

χ2
ν+2Z

∣∣∣∣Z
))

.

Now the expectation of the conditional random variable

1

χ2
ν+2Z
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given Z is computed from Corollary 4.3.11 to be

E

(
1

χ2
ν+2Z

∣∣∣∣Z
)

=
1

ν + 2Z − 2
(4.3.62)

and so

E(Y −1) = E

(
1

ν + 2Z − 2

)
. (4.3.63)

When ν = 4 this simplifies to

E(Y −1) = E

(
1

2Z + 2

)
. (4.3.64)

By virtue of Lemma 4.3.9 this can be simplified as follows

E(Y −1) =
1

2
E

(
1

Z + 1

)
(4.3.65)

=
1

2

1− exp(−λ/2)

λ/2

=
1− exp(−λ/2)

λ
,

which is the result. Q.E.D.

Lemma 4.3.13 Let t and T̄ be times such that T̄ > t ≥ 0. For S̄δ∗
t satisfying

(4.1.7) and ϕt as in (4.3.10) the discounted GOP contribution to the ZCB price
is

MT̄ (t) = 1− exp

(
− S̄δ∗

t

2(ϕT̄ − ϕt)

)
. (4.3.66)

Proof . This is proven in Chapter 13 Section 3 of Platen and Heath [2006]. From
(2.8.3) and (4.3.16) we have

MT̄ (t) = E

(
S̄δ∗
t

S̄δ∗
T̄

∣∣∣∣At

)
(4.3.67)

=

∫ ∞

0

S̄δ∗
t

S̄δ∗
T̄

pS̄δ∗ (t, S̄
δ∗
t , T̄ , S̄δ∗

T̄
) dS̄δ∗

T̄

=

∫ ∞

0

λ

u

1

2

√
u

λ
exp(−1

2
(u+ λ))I1(

√
uλ) du,

where we have used the transformation of variables

u = S̄δ∗
T̄
/(ϕT̄ − ϕt) (4.3.68)

λ = S̄δ∗
t /(ϕT̄ − ϕt)
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By virtue of Lemma 4.3.2 we can interpret the above integral as the expectation
of the reciprocal of a χ2

4,λ-random variable U . Using Lemma 4.3.12 we now have

MT̄ (t) = λE(U−1) (4.3.69)

= 1− exp

(
−1

2
λ

)

= 1− exp

(
−1

2
S̄δ∗
t /(ϕT̄ − ϕt)

)

which is the result. Q.E.D.

We have the following corollary.

Corollary 4.3.14 The discounted GOP contribution to the long ZCB yield is η,
that is

n∞(t) = η. (4.3.70)

4.3.5 Discounted GOP Contribution to the Forward Rate

Under the MMM we compute the discounted GOP contribution to the forward
rate as in the following lemma.

Lemma 4.3.15 Let t and T̄ be times such that T̄ > t ≥ 0. For S̄δ∗
t satisfying

(4.1.7) and ϕt as in (4.3.10) the discounted GOP contribution to the forward rate
is

mT̄ (t) =
1

MT̄ (t)
exp

(
− S̄δ∗

t

2(ϕT̄ − ϕt)

)
× S̄δ∗

t

2(ϕT̄ − ϕt)2
× ϕ′

T̄ . (4.3.71)

Proof . From (2.8.12) and (4.3.66) we have

mT̄ (t) =
∂

∂T̄
logMT̄ (t) =

∂

∂T̄
log

(
1− exp(−1

2
S̄δ∗
t /(ϕT̄ − ϕt))

)
(4.3.72)

which leads to the result. Q.E.D.

The following corollary provides an estimate of this contribution to the forward
rate at the long end of the yield curve.

Corollary 4.3.16 As T̄ → ∞ the discounted GOP contribution to the forward
rate is η.
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Proof . The intrinsic time has first derivative

ϕ′
T̄ =

1

4
ᾱ0 exp(ηT̄ ) = ηϕT̄ +

1

4
ᾱ0. (4.3.73)

Define the variable xT̄ as

xT̄ =
S̄δ∗
t

2(ϕT̄ − ϕt)
(4.3.74)

so that we can write

ϕT̄ = ϕt +
S̄δ∗
t

2xT̄

(4.3.75)

and

ϕ′
T̄ = η

S̄δ∗
t

2xT̄

+ ηϕt +
1

4
ᾱ0. (4.3.76)

We have from (4.3.66) that

MT̄ (t) = 1− exp(−xT̄ ) (4.3.77)

and we can rewrite (4.3.71) in terms of xT̄ as

mT̄ (t) =
1

1− exp(−xT̄ )
exp(−xT̄ )×

2

S̄δ∗
t

x2
T̄ ×
(
η
S̄δ∗
t

2xT̄

+ ηϕt +
1

4
ᾱ0

)
(4.3.78)

=
xT̄

exp(xT̄ )− 1
×
(
η + xT̄

2

S̄δ∗
t

(ηϕt +
1

4
ᾱ0)
)
.

L’Hospital’s Rule gives

lim
xT̄→0

xT̄

exp(xT̄ )− 1
= lim

xT̄→0

1

exp(xT̄ )
= 1 (4.3.79)

and therefore

lim
T̄→∞

mT̄ (t) = lim
xT̄→0

xT̄

exp(xT̄ )− 1
×
(
η + xT̄

2

S̄δ∗
t

(ηϕt +
1

4
ᾱ0)
)

(4.3.80)

= η,

which is the result. Q.E.D.

4.3.6 Expectations Involving a Non-Central Chi-Squared
Random Variable

We provide the formulae of the expectations in Table 4.2, where U is distributed
as non-central chi-squared with four degrees of freedom and non-centrality pa-
rameter λ and where x is a positive real number. The proofs are supplied in
Appendix K.

We first state two lemmas which provide straightforward proofs of the above
formulae.
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Table 4.2: Table of formulae of expectations involving a non-central chi-squared
random variable U having four degrees of freedom and non-centrality parameter
λ.

Expectation Formula

E( λ
U
1U≤x) χ2

0,λ(x)− exp(−λ/2)
E( λ

U
1U>x) 1− χ2

0,λ(x)
E( λ

U
) 1− exp(−λ/2)

E( λ
U
exp(−τU)1U≤x) e−

τ
2τ+1

λχ2
0,λ/(2τ+1)((2τ + 1)x)− e−

1
2
λ

E( λ
U
exp(−τU)1U>x) e−

τ
2τ+1

λ{1− χ2
0,λ/(2τ+1)((2τ + 1)x)}

E( λ
U
exp(−τU)) e−

τ
2τ+1

λ − e−
1
2
λ

Lemma 4.3.17 Let Z ∼ Poisson(μ) be a Poisson random variable. Then

E

(
1

Z + 1
f(Z)

)
=

1

μ
E

(
f(Z − 1)

)
− 1

μ
exp(−μ)f(−1) (4.3.81)

for a real valued function f on the non-negative integers.

Proof . See Appendix K.

Lemma 4.3.18 Let X ∼ χ2
ν be a chi-squared random variable. Then

E

(
1

X
1X≤x

)
=

1

ν − 2
E

(
1Y≤x

)
(4.3.82)

for any non-negative real number x, where Y ∼ χ2
ν−2 is also chi-squared dis-

tributed with ν − 2 degrees of freedom.

Proof . See Appendix K.

We are ready to formulate the first, second and third expectations in Table 4.2
in the following lemma.

Lemma 4.3.19 Let U ∼ χ2
4,λ be a non-central chi-squared random variable.

Then

E

(
λ

U
1U≤x

)
= χ2

0,λ(x)− exp(−λ/2) (4.3.83)

E

(
λ

U
1U>x

)
= 1− χ2

0,λ(x)

E

(
λ

U

)
= 1− exp(−λ/2)

for a non-negative real number λ.
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Proof . See Appendix K.

To prove the fourth, fifth and sixth expectations in Table 4.2 we require the
following two lemmas.

Lemma 4.3.20 Let Z ∼ Poisson(μ) be a Poisson random variable. Then for a
real valued function f on the non-negative integers

E

(
1

Z + 1
γZf(Z)

)
=

1

μγ
exp(−μ(1− γ))E

(
f(W − 1)

)
− 1

μγ
exp(−μ)f(−1)

(4.3.84)
where W ∼ Poisson(μγ) is a Poisson random variable.

Proof . See Appendix K.

Lemma 4.3.21 Let X ∼ χ2
ν be a chi-squared random variable. Then

E

(
1

X
exp(−τX)1X≤x

)
=

1

ν − 2

1

(2τ + 1)ν/2−1
E

(
1Y≤(2τ+1)x

)
(4.3.85)

E

(
1

X
exp(−τX)1X>x

)
=

1

ν − 2

1

(2τ + 1)ν/2−1
E

(
1Y >(2τ+1)x

)

for any non-negative real number x, where Y ∼ χ2
ν−2 is also chi-squared dis-

tributed but with ν − 2 degrees of freedom.

Proof . See Appendix K.

We now proceed with the formulation of the remaining expectations in Table 4.2.

Lemma 4.3.22 Let U ∼ χ2
4,λ be a non-central chi-squared random variable.

Then

E

(
λ

U
exp(−τU)1U≤x

)
= e−

τ
2τ+1

λχ2
0,λ/(2τ+1)((2τ + 1)x)− exp(−λ/2) (4.3.86)

E

(
λ

U
exp(−τU)1U>x

)
= e−

τ
2τ+1

λ(1− χ2
0,λ/(2τ+1)((2τ + 1)x))

E

(
λ

U
exp(−τU)

)
= e−

τ
2τ+1

λ − exp(−λ/2)

for a non-negative real number λ.

Proof . See Appendix K.
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Table 4.3: Values of the AIC in respect of the discounted GOP models (Shiller’s
monthly US data set, see Data Set C in Section L.3 of the Appendix).

Model Parameters Log Likelihood AIC
Black-Scholes θ = 0.141002 −1060.320193 2122.640385

SE(θ) = 0.002380
MMM ᾱ0 = 0.006837 −943.670030 1891.340059

SE(ᾱ0) = 0.000462
η = 0.045486
SE(η) = 0.000800

4.4 Comparison of Models

The two models considered in this chapter have explicit formulae for their tran-
sition density functions and this has allowed the fitting of parameters using max-
imum likelihood estimation. The Black-Scholes model is most easily fitted to
the data because it has a closed form expression for its parameter estimate. In
contrast, the MMM requires two-dimensional grid searches to find the best fitting
parameters.

In fitting the two models to the US discounted GOP data we can identify which
model provides the best fit to the data by looking at the Akaike Information
Criterion, shown in Table 4.3, where the MMM appears to be the best fitting
model2.

To establish whether the MMM is a good fitting model we consider Pearson’s
goodness-of-fit chi-squared statistic, described in Kendall and Stuart [1961].

Given a time series of discounted GOP values {S̄δ∗
tj : j = 1, 2, . . . , n} and given

a hypothesised transition density function with corresponding cumulative distri-
bution function F we compute the n − 1 quantiles qj = F (tj−1, S̄

δ∗
tj−1

, tj, S̄
δ∗
tj ) for

j = 2, 3, . . . , n. Under the hypothesised model the quantiles qj are independent
and uniformly distributed. These quantiles are graphed against those of the uni-
form distribution in Figure 4.9. One notes that the MMM model remains in some
sense visually closest over the [0, 1] interval.

A similar comparison is shown in Figure 4.10 for the daily data series of the S&P
500 total return index values and Federal Funds Rates from January 1970 to May
2017, sourced from the Bloomberg data services and referred to as Data Set E in
Section L.5 of the Appendix, where a similar conclusion follows.

For a fixed integer k satisfying 2 ≤ k ≤ (n − 1)/5 we partition the unit interval
into k equally sized subintervals. Hence we compute the number of observations

2The Bayesian Information Criterion (BIC) values for the BS and MMM models are
2128.110040 and 1902.279368 respectively and, therefore, model selection based on the BIC
concurs with that based on the AIC.
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Figure 4.9: Comparison of quantile-quantile plots of discounted GOP models
(Shiller’s monthly US data set, see Data Set C in Section L.3 of the Appendix).
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Oi in the i-th subinterval ((i − 1)/k, i/k] for i = 1, 2, . . . , k. The corresponding
expected number of observations Ei in the i-th subinterval is (n− 1)/k. Our test
statistic is thus computed as

S = k

k∑
i=1

(Oi − (n− 1)/k)2/(n− 1) (4.4.1)

which is approximately chi-squared distributed with ν = k−1−nparameters degrees
of freedom.

The value of Pearson’s chi-squared statistic and corresponding p-value for each
model and for a range of partition sizes is shown in Table 4.4. It is evident that
both the BS model and MMM can be rejected at the 1% level of significance.

Another test of goodness-of-fit is the Kolmogorov-Smirnov test, as described
by Stephens [1974]. Under the null hypothesis that the set of n observations
u1, u2, . . . , un emanate from a uniform distribution, the Kolmogorov test statistic
is

Dn = sup
x∈{u1,u2,...,un}

max
(
F (n)(x)− x, x− F (n)(x)− 1

n

)
(4.4.2)

and the modified test statistic Kn =
√
nDn has the limiting distribution function,
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Figure 4.10: Comparison of quantile-quantile plots of discounted GOP models
(US daily data from Bloomberg, see Data Set E in Section L.5 in the Appendix).
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as n → ∞,

F (x) =

√
2π

x

∞∑
k=1

exp(−(2k − 1)2π2/(8x2)), (4.4.3)

where

F (n)(x) =
1

n

n∑
i=1

1ui≤x (4.4.4)

is the empirical cumulative distribution function. We compute the test statis-
tics in Table 4.5 where we see both models can be rejected at the 1% level of
significance.

Finally, another test of goodness-of-fit is the Anderson-Darling test, as described
in Stephens [1974]. Under the null hypothesis that the set of n observations
u1 ≤ u2 ≤ . . . ≤ un emanate from a uniform distribution, the test statistic A is
given by

A =
√
−n− S, (4.4.5)

where

S =
n∑

i=1

2i− 1

n

(
log(ui) + log(1− un+1−i)

)
. (4.4.6)
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Table 4.4: Pearson’s chi-squared statistics and p-values in respect of various dis-
counted GOP models (Shiller’s monthly US data set, see Data Set C in Section L.3
of the Appendix).

k BS ν p-value MMM ν p-value
5 128.9133 3 1.1768E-14 93.7822 2 1.5767E-10
10 147.8016 8 0.0000E0 113.7537 7 0.0000E0
15 165.1619 13 0.0000E0 116.1425 12 0.0000E0
20 179.3181 18 0.0000E0 130.9715 17 0.0000E0
25 180.7206 23 0.0000E0 130.4356 22 0.0000E0

Table 4.5: Kolmogorov-Smirnov test statistics in respect of various discounted
GOP models (Shiller’s monthly US data set, see Data Set C in Section L.3 of the
Appendix).

BS MMM
Dn 0.096819 0.084347
n 1754 1754
Kn 4.054863 3.532536
F (Kn) 1.000000 1.000000
p-value 1.0436E-14 2.8979E-11

We compute the test statistics in Table 4.6 where, as for the Kolmogorov-Smirnov
test, we see that both of the discounted GOP models can be rejected at the
1% level of significance. The p-values of the test statistic A in Table 4.6 were
estimated using sample Anderson-Darling statistics of 1,000,000 simulations of
sets of 1754 uniformly distributed observations.

4.5 Conclusions

In this chapter we have demonstrated the applicability of maximum likelihood es-
timation of parameters of discounted equity index models, giving explicit formulae

Table 4.6: Anderson-Darling test statistics in respect of various discounted GOP
models (Shiller’s monthly US data set, see Data Set C in Section L.3 of the
Appendix).

BS MMM
S -1783.440143 -1774.793996
n 1754 1754
A2 = −n− S 29.440143 20.793996
A 5.425877 4.560043
p-value 0.0000E0 5.0092E-10
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for maximum likelihood estimates of model parameters. The model parameters
fitted to the US data set have values consistent with estimates obtained by others,
for example Dimson et al. [2002]. Also, we have demonstrated several ways of
assessing the goodness-of-fits of the models.

As mentioned in Remark 4.2.2, the log-returns of the discounted GOP under
the Black-Scholes model are Gaussian with constant variance, whereas under
the MMM they are Student-t distributed. Empirical evidence in Chapter 6,
Fergusson and Platen [2006] and in Platen and Rendek [2008] indicates that the
log returns of discounted equity indices are Student-t distributed with four degrees
of freedom. This also shows that the MMM is a more realistic model that appears
to capture better the stochastic volatility and leptokurtic log-returns observed in
the market than the classical Black-Scholes model.

As mentioned in Remark 4.3.4, for the Black-Scholes model, the Radon-Nikodym
derivative is a martingale and therefore risk neutral pricing of contingent claims
is possible. Importantly, however, the Radon-Nikodym derivative pertaining to
the MMM is a strict supermartingale and therefore the MMM does not admit an
equivalent risk neutral probability measure. Thus, for the MMM we must resort
to another valuation framework, such as the Benchmark Approach, where some
arbitrage is permitted.

In addition to fitting the two models to data, this chapter has provided conve-
nient formulae which are essential for pricing zero-coupon bonds, options on zero-
coupon bonds and options on the GOP. Explicit formulae for the fair price of a
zero-coupon bond demands an explicit formula short rate contribution M and
this has been supplied in respect of each of the discounted GOP models. Hav-
ing explicit formulae for prices of options on the discounted GOP contribution
M allows for a single dimensional integral formula for the price of options on a
zero-coupon bond.



Chapter 5

Derivatives Pricing Formulae

5.1 Introduction

In this chapter we supply the derivatives pricing formulae under several market
models.

From (2.6.4) the fair price V
δHT
t of a derivative security with payoffHT at maturity

T satisfies the real-world pricing formula

V
δHT
t = E

(
Sδ∗
t

Sδ∗
T

HT

∣∣∣∣At

)
, (5.1.1)

where E(.|At) denotes the real-world conditional expectation under the real-world
probability measure given the information available at time t.

Applying the benchmark approach, we provide explicit pricing formulae for deriva-
tives under several market models each of which is composed of a previously
examined short rate model and discounted GOP model.

Taking all possible combinations of short rate and discounted GOP models gives
six market models and adding in the deterministic short rate model gives an extra
two market models.

Pricing formulae are provided in respect of the following derivative securities:
zero-coupon bond, option on GOP, option on ZCB, option on coupon bond,
caplet, floorlet, cap, floor and swaption. Most of these formulae are original and
have been published in Fergusson and Platen [2014a] and reported in Fergusson
and Platen [2015a].

From equation (2.8.2) we see that the zero-coupon bond price has contributions
from both the short rate and the discounted GOP. We combine the short rate
contributions of each of the three short rate models with the discounted GOP
contributions of each of the two discounted GOP models to calculate derivative
prices in respect of each of the six models.

141
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In Chapter 6 the behaviour of each derivative is examined under each market
model. In particular, we examine the shapes of yield curves and implied volatility
surfaces generated by each market model.

5.2 Fair Price of Zero-Coupon Bond

Under our considered market models the real-world pricing formula (5.1.1) and
(2.8.2) gives the price of a ZCB as

P (t, T ) = E

(
Bt

BT

∣∣∣∣At

)
E

(
S̄δ∗
t

S̄δ∗
T

∣∣∣∣At

)
. (5.2.1)

For the deterministic model of the short rate we have

E

(
Bt

BT

∣∣∣∣At

)
= exp

(
−
∫ T

t

r(s)ds

)
. (5.2.2)

For the Vasicek model of the short rate we have from Vasicek [1977]

E

(
Bt

BT

∣∣∣∣At

)
= A(t, T ) exp(−rtB(t, T )), (5.2.3)

where

B(t, T ) =
1− exp(−κ(T − t))

κ
(5.2.4)

and

A(t, T ) = exp

(
(r̄ − σ2

2κ2
)(B(t, T )− T + t)− σ2

4κ
B(t, T )2

)
. (5.2.5)

For the CIR model of the short rate we have from Cox et al. [1985]

E

(
Bt

BT

∣∣∣∣At

)
= A(t, T ) exp(−rtB(t, T )), (5.2.6)

where

A(t, T ) =

(
h exp(1

2
κ(T − t))

κ sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

)2κr̄/σ2

(5.2.7)

B(t, T ) =
2 sinh 1

2
h(T − t)

κ sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

(5.2.8)

and
h =

√
κ2 + 2σ2. (5.2.9)

For the 3/2 model of the short rate we have from Ahn and Gao [1999]

E

(
Bt

BT

∣∣∣∣At

)
=

Γ(γ1 − α1)

Γ(γ1)

(
2

σ2y(t, rt)

)α1

M(α1, γ1,
−2

σ2y(t, rt)
), (5.2.10)



5.3. OPTIONS ON GOP 143

where

y(t, rt) =
rt
p
(exp((T − t)p)− 1) (5.2.11)

αu = −
(
1

2
− q

σ2

)
+

√(
1

2
− q

σ2

)2

+
2u

σ2

γu = 2

(
αu + 1− q

σ2

)
.

Here M is the confluent hypergeometric function given by

M(α, γ, z) =
∞∑
n=0

(α)n
(γ)n

zn

n!
(5.2.12)

and Γ(x) =
∫∞
0

ux−1 exp(−u) du is the gamma function. For the Black-Scholes
discounted GOP we have

E

(
S̄δ∗
t

S̄δ∗
T

∣∣∣∣At

)
= 1, (5.2.13)

whereas for the MMM discounted GOP we have from Platen and Heath [2006]

E

(
S̄δ∗
t

S̄δ∗
T

∣∣∣∣At

)
= 1− exp

(
− 1

2
S̄δ∗
t /(ϕT − ϕt)

)
, (5.2.14)

where ϕt =
1
4
ᾱ0(exp(ηt) − 1)/η. Thus various combinations of (5.2.3), (5.2.6),

(5.2.10), (5.2.13) and (5.2.14) inserted into (5.2.1) give explicit formulae for the
real-world prices of ZCBs under each considered market model. We see that
because of the multiplier 1 − exp(−1

2
S̄δ∗
t /(ϕT̄ − ϕt)) the prices of ZCBs under

models with a MMM discounted GOP are lower than corresponding prices under
models with a BS discounted GOP. This translates into higher bond yields and
forward rates under models with a MMM discounted GOP.

5.3 Options on GOP

When the claim is HT = 1 the real-world pricing formula (5.1.1) gives at time t
the price P (t, T ) of a zero-coupon bond (ZCB). Further, when HT = (Sδ∗

T −K)+

formula (5.1.1) gives at time t the price cT,K(t, S
δ∗
t ) of an equity index call option

having strike price K, and when HT = (K−Sδ∗
T )+ formula (5.1.1) gives the price

pT,K(t, S
δ∗
t ) of an equity index put option having strike price K. Because of the

following relation between payoffs

(Sδ∗
T −K)+ = (K − Sδ∗

T )+ + Sδ∗
T −K (5.3.1)

the put-call parity relation

cT,K(t, S
δ∗
t ) = pT,K(t, S

δ∗
t ) + Sδ∗

t −KP (t, T ) (5.3.2)
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holds. Additionally, when HT = Sδ∗
T 1Sδ∗

T >K formula (5.1.1) gives at time t the

price A+
T,K(t, S

δ∗
t ) of an asset-or-nothing binary call option having strike price K

and when HT = Sδ∗
T 1Sδ∗

T ≤K formula (5.1.1) gives the price A−
T,K(t, S

δ∗
t ) of an asset-

or-nothing binary put option having strike price K. Finally, when HT = 1Sδ∗
T >K

formula (5.1.1) gives the price B+
T,K(t, S

δ∗
t ) of a cash-or-nothing binary call option

having strike price K and when HT = 1Sδ∗
T ≤K formula (5.1.1) gives the price

B−
T,K(t, S

δ∗
t ) of a cash-or-nothing binary put option having strike price K.

Under our considered market models (5.1.1) gives the price of a call option as

cT,K(t, S
δ∗) = E

(
Sδ∗
t

Sδ∗
T

(Sδ∗
T −K)+

∣∣∣∣At

)
(5.3.3)

and the price of a put option as

pT,K(t, S
δ∗) = E

(
Sδ∗
t

Sδ∗
T

(K − Sδ∗
T )+
∣∣∣∣At

)
. (5.3.4)

The prices of the respective asset-or-nothing and cash-or-nothing call and put
options are

A+
T,K(t, S

δ∗) = Sδ∗
t E

(
1Sδ∗

T >K

∣∣∣∣At

)
(5.3.5)

A−
T,K(t, S

δ∗) = Sδ∗
t E

(
1Sδ∗

T ≤K

∣∣∣∣At

)

B+
T,K(t, S

δ∗) = E

(
Sδ∗
t

Sδ∗
T

1Sδ∗
T >K

∣∣∣∣At

)

B−
T,K(t, S

δ∗) = E

(
Sδ∗
t

Sδ∗
T

1Sδ∗
T ≤K

∣∣∣∣At

)
.

Let fSδ∗
T
(x) denote the probability density function of the random variable Sδ∗

T ,

and define the random variable Rδ∗
T as being related to Sδ∗

T having the probability
density function

fRδ∗
T
(x) =

Sδ∗
t

x
fSδ∗

T
(x)

/
E

(
Sδ∗
t

Sδ∗
T

∣∣∣∣At

)
. (5.3.6)
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The pricing formulae of the various call and put options can then be shown to be

cT,K(t, S
δ∗) = Sδ∗

t

(
1− FSδ∗

T
(K)

)
− P (t, T )K

(
1− FRδ∗

T
(K)

)
(5.3.7)

pT,K(t, S
δ∗) = −Sδ∗

t FSδ∗
T
(K) + P (t, T )K FRδ∗

T
(K)

A+
T,K(t, S

δ∗) = Sδ∗
t

(
1− FSδ∗

T
(K)

)
A−

T,K(t, S
δ∗) = Sδ∗

t FSδ∗
T
(K)

B+
T,K(t, S

δ∗) = P (t, T )

(
1− FRδ∗

T
(K)

)
B−

T,K(t, S
δ∗) = P (t, T )FRδ∗

T
(K),

where FSδ∗
T
(x) and FRδ∗

T
(x) denote the cumulative distribution functions of the

random variables Sδ∗
T and Rδ∗

T , respectively.

The following two theorems give exact expressions for the cumulative distribution
functions FSδ∗

T
(K) and FRδ∗

T
(K) in terms of the cumulative distribution functions

of the lognormal distribution and the noncentral gamma distribution, a straight-
forward generalisation of the noncentral chi-squared distribution, these being

LN(y;μ, σ2) =

∫ y

0

1

x
√
2πσ2

exp

(
− 1

2σ2
(log x− μ)2

)
dx (5.3.8)

NCG(y;α, γ, λ) =

∫ y

0

γ

(
2γx

λ

)α/2−1/2

exp
(
− 1

2
(λ+ 2γx)

)
Iα−1(

√
2λγx) dx,

respectively, where Iν(x) is the modified Bessel function of the first kind with
index ν, given by

Iν(z) =

(
z

2

)ν ∞∑
j=0

1

j!Γ(j + ν + 1)

(
z2

4

)j

. (5.3.9)

In the proof of Theorem 5.3.2 we make use of an equivalent expression for the
cumulative distribution function of the noncentral gamma distribution as a Pois-
son mixture with a gamma distribution, analogous to the noncentral chi-squared
distribution being a Poisson mixture with a chi-squared distribution, namely

NCG(y;α, γ, λ) =
∞∑
j=0

(λ/2)j

j!
exp(−λ/2)G(y;α + j, γ), (5.3.10)

whereG(y;α, γ) is the cumulative distribution function of the gamma distribution

G(y;α, γ) =
γα

Γ(α)

∫ y

0

xα−1 exp(−γx) dx. (5.3.11)
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Because a lognormal random variable X ∼ LN(μ, σ2) is one for which its loga-
rithm is normally distributed, that is logX ∼ N(μ, σ2), we have that the cumu-
lative distribution function of the lognormal distribution satisfies LN(y;μ, σ2) =
N
(
(log y−μ)/σ

)
where N(x) denotes the cumulative distribution function of the

standard normal distribution. Also, because a noncentral gamma random variable
X ∼ NCG(α, γ, λ) is one for which the product with 2γ is noncentral chi-squared
distributed, that is 2γX ∼ χ2

2α,λ, we have that the cumulative distribution func-
tion of the noncentral gamma distribution satisfies NCG(y;α, γ, λ) = χ2

2α,λ(2γy)
where χ2

ν,λ(x) denotes the cumulative distribution function of the noncentral chi-
squared distribution having ν degrees of freedom and noncentrality parameter
λ.

Theorem 5.3.1 For the Black-Scholes discounted GOP S̄δ∗
T and random variable

L = log(BT/Bt) we have

FSδ∗
T
(K) = E

(
LN(K; logSδ∗

t + L+
1

2
θ2(T − t), θ2(T − t))

)
= E
(
N(−d1(L))

)
(5.3.12)

FRδ∗
T
(K) = E

(
exp(−L)LN(K; logSδ∗

t + L− 1

2
θ2(T − t), θ2(T − t))

)
/E
(
exp(−L)

)
=

E
(
exp(−L)N(−d2(L))

)
E
(
exp(−L)

)
where

d1(L) =
L+ 1

2
θ2(T − t) + log

Sδ∗
t

K√
θ2(T − t)

(5.3.13)

d2(L) = d1(L)−
√
θ2(T − t).

Proof . We know that under the Black-Scholes model of the discounted GOP S̄δ∗
T

is lognormally distributed, that is

S̄δ∗
T ∼ LN(log S̄δ∗

t +
1

2
θ2(T − t), θ2(T − t)), (5.3.14)

and, therefore, Sδ∗
T conditioned on the random variable L = log(BT/Bt) is also

lognormally distributed, that is

Sδ∗
T ∼ LN(logBT + log S̄δ∗

t +
1

2
θ2(T − t), θ2(T − t)), (5.3.15)

which can be rewritten as

Sδ∗
T ∼ LN(L+ log Sδ∗

t +
1

2
θ2(T − t), θ2(T − t)). (5.3.16)
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Hence

FSδ∗
T
(K) = E(1Sδ∗

T ≤K) (5.3.17)

= E
(
E(1Sδ∗

T ≤K |L)
)

= E
(
LN(K;L+ log Sδ∗

t +
1

2
θ2(T − t), θ2(T − t))

)
= E(N(−d1(L))).

Also the cumulative distribution function of the random variable Rδ∗
T is computed

to be

FRδ∗
T
(K) = E

(
E
(
Sδ∗
t (Sδ∗

T )−11Sδ∗
T ≤K |L

))
/E

(
E
(
Sδ∗
t (Sδ∗

T )−1|L
))

. (5.3.18)

But

E
(
Sδ∗
t (Sδ∗

T )−1|L
)
= Sδ∗

t E
(
(Sδ∗

T )−1|L
)

(5.3.19)

= Sδ∗
t exp

(
− (L+ log Sδ∗

t +
1

2
θ2(T − t)) +

1

2
θ2(T − t)

)
= exp(−L)

and

E
(
Sδ∗
t (Sδ∗

T )−11Sδ∗
T ≤K |L

)
(5.3.20)

= Sδ∗
t

∫ K

0

1

x
fSδ∗

T |L(x) dx

= Sδ∗
t

∫ K

0

exp(− log x)fSδ∗
T |L(x) dx.

Inserting the explicit expression for the lognormal density function fSδ∗
T |L(x) gives

E
(
Sδ∗
t (Sδ∗

T )−11Sδ∗
T ≤K |L

)
(5.3.21)

= Sδ∗
t

∫ K

0

1

x
√

2πθ2(T − t)

× exp

{
− 1

2θ2(T − t)

(
log x− (L+ log Sδ∗

t +
1

2
θ2(T − t))

)2
+ 2θ2(T − t) log x

}
dx
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and completing the square in the exponential in the integrand above gives

Sδ∗
t

∫ K

0

1

x
√

2πθ2(T − t)
× exp

{
− 1

2θ2(T − t)

(
log x (5.3.22)

− (L+ log Sδ∗
t − 1

2
θ2(T − t))

)2
+ 2(L+ log Sδ∗

t )θ2(T − t)

}
dx

= Sδ∗
t exp(−(L+ log Sδ∗

t ))

∫ K

0

1

x
√

2πθ2(T − t)

× exp

{
− 1

2θ2(T − t)

(
log x− (L+ log Sδ∗

t − 1

2
θ2(T − t))

)2}
dx

= exp(−L)LN
(
K;L+ log Sδ∗

t − 1

2
θ2(T − t), θ2(T − t)

)
.

Therefore,

FRδ∗
T
(K) (5.3.23)

= E

(
exp(−L)LN

(
K;L+ log Sδ∗

t − 1

2
θ2(T − t), θ2(T − t)

))
/E
(
exp(−L)

)
= E(exp(−L)N(−d2(L)))/E

(
exp(−L)

)
,

as required. Q.E.D.

Theorem 5.3.2 For the MMM discounted GOP S̄δ∗
T and the random variable

L = log(BT/Bt) we have

FSδ∗
T
(K) = E

(
NCG(K; 2, exp(−L)/(2(ϕT − ϕt)Bt), λ)

)
= E
(
χ2
4,λ(u(L))

)
(5.3.24)

FRδ∗
T
(K) =

E
(
exp(−L)(NCG(K; 0, exp(−L)/(2(ϕT − ϕt)Bt), λ)− exp(−λ/2))

)
(1− exp(−λ/2))E

(
exp(−L)

)
=

E
(
exp(−L)(χ2

0,λ(u(L))− exp(−λ/2))
)

(1− exp(−λ/2))E
(
exp(−L)

) ,

where

u(L) =
K

Bt(ϕT − ϕt) exp(L)
, (5.3.25)

ϕt =
1

4
ᾱ0(exp(ηt)− 1)/η (5.3.26)

and

λ =
S̄δ∗
T

ϕT − ϕt

. (5.3.27)
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Proof . We know that under the MMM, the discounted GOP S̄δ∗
T is noncentral

gamma distributed, that is

S̄δ∗
T ∼ NCG(2, 1/(2(ϕT − ϕt)), λ), (5.3.28)

and therefore Sδ∗
T conditioned on the random variable L = log(BT/Bt) is also

noncentral gamma distributed, that is

Sδ∗
T ∼ NCG(2, exp(−L)/(2Bt(ϕT − ϕt)), λ), (5.3.29)

which can be rewritten as

Sδ∗
T /(exp(L)Bt(ϕT − ϕt)) ∼ χ2

4,λ. (5.3.30)

Hence

FSδ∗
T
(K) = E(1Sδ∗

T ≤K) (5.3.31)

= E
(
E(1Sδ∗

T ≤K |L)
)

= E
(
NCG(K; 2, exp(−L)/(2Bt(ϕT − ϕt)), λ)

)
= E(χ2

4,λ(u(L))).

Also the cumulative distribution function of the random variable Rδ∗
T is computed

to be

FRδ∗
T
(K) = E

(
E
(
Sδ∗
t (Sδ∗

T )−11Sδ∗
T ≤K |L

))
/E

(
E
(
Sδ∗
t (Sδ∗

T )−1|L
))

. (5.3.32)

But

E
(
Sδ∗
t (Sδ∗

T )−1|L
)
= S̄δ∗

t exp(−L)E
(
(S̄δ∗

T )−1
)

(5.3.33)

= exp(−L)(1− exp(−λ/2))

and

E

(
Sδ∗
t

Sδ∗
T

1Sδ∗
T ≤K |L

)
(5.3.34)

= exp(−L)E

(
S̄δ∗
t

S̄δ∗
T

1S̄δ∗
T ≤K/BT

)

= exp(−L)E

(
λ

S̄δ∗
T /(ϕT − ϕt)

1S̄δ∗
T /(ϕT−ϕt)≤K exp(−L)/(Bt(ϕT−ϕt))

)

= exp(−L)

∫ K exp(−L)/(Bt(ϕT−ϕt))

0

λ

x
fS̄δ∗

T /(ϕT−ϕt)
(x) dx.

The random variable S̄δ∗
T /(ϕT − ϕt) is distributed as χ2

4,λ, which has probability
density function

f(x) =
∞∑
j=0

exp(−λ/2)
(λ/2)j

j!
fχ2

4+2j
(x), (5.3.35)
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where the probability density function of the chi-squared distribution having 4+2j
degrees of freedom has the formula

fχ2
4+2j

(x) =
(1/2)2+j

Γ(2 + j)
x1+j exp(−x/2). (5.3.36)

Therefore, the integrand in the RHS of (5.3.34) can be written as

λ

x
fS̄δ∗

T /(ϕT−ϕt)
(x) (5.3.37)

=
λ

x

∞∑
j=0

exp(−λ/2)
(λ/2)j

j!

(1/2)2+j

Γ(2 + j)
x1+j exp(−x/2)

= λ
∞∑
j=0

exp(−λ/2)
(λ/2)j

j!

(1/2)2+j

Γ(2 + j)
xj exp(−x/2)

= λ
∞∑
j=0

exp(−λ/2)
(λ/2)j

j!

(1/2)2+j

Γ(2 + j)

Γ(1 + j)

(1/2)1+j
fχ2

2+2j
(x)

= λ
∞∑
j=0

exp(−λ/2)
(λ/2)j

j!

1/2

1 + j
fχ2

2+2j
(x)

=
∞∑
j=1

exp(−λ/2)
(λ/2)j

j!
fχ2

2j
(x)

= fχ2
0,λ
(x)− exp(−λ/2)1x=0.

Hence (5.3.34) becomes

exp(−L)

∫ K exp(−L)/(Bt(ϕT−ϕt))

0

λ

x
fS̄δ∗

T /(ϕT−ϕt)
(x) dx (5.3.38)

= exp(−L)

(∫ K exp(−L)/(Bt(ϕT−ϕt))

0

fχ2
0,λ
(x) dx− exp(−λ/2)

)

= exp(−L)

(
χ2
0,λ

(
K exp(−L)/(Bt(ϕT − ϕt))

)
− exp(−λ/2)

)
,

which leads to the result. Q.E.D.

For a deterministic short rate the cumulative distribution functions FSδ∗
T
(x) and
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FRδ∗
T
(x) are readily computed to be, under the BS discounted GOP,

FSδ∗
T
(x) = LN(x; log Sδ∗

t +

∫ T

t

r(s)ds+
1

2
θ2(T − t), θ2(T − t)) (5.3.39)

= N

((
log

x/BT

Sδ∗
t /Bt

− 1

2
θ2(T − t)

)
/
√
θ2(T − t)

)
,

FRδ∗
T
(x) = LN(x; log Sδ∗

t +

∫ T

t

r(s)ds− 1

2
θ2(T − t), θ2(T − t))

= N

((
log

x/BT

Sδ∗
t /Bt

+
1

2
θ2(T − t)

)
/
√
θ2(T − t)

)

and, under the MMM discounted GOP,

FSδ∗
T
(x) =

(
NCG(x; 2, 1/(2(ϕT − ϕt)Bt exp(

∫ T

t

r(s)ds)), λ)
)

(5.3.40)

= χ2
4,λ

(
x/((ϕT − ϕt)BT )

)
,

FRδ∗
T
(x) =

NCG(x; 0, 1/(2(ϕT − ϕt)Bt exp(
∫ T
t
r(s)ds)), λ)− exp(−λ/2)

1− exp(−λ/2)

=
χ2
0,λ

(
x/((ϕT − ϕt)BT )

)
− exp(−λ/2)

1− exp(−λ/2)
.

This leads to the following two corollaries to Theorems 5.3.1 and 5.3.2. The first
corollary recovers the well-known Black-Scholes option pricing formulae in Black
and Scholes [1973].

Corollary 5.3.3 For a deterministic the short rate and BS discounted GOP, the
various call and put options in (5.3.7) have the following explicit formulae

cT,K(t, S
δ∗) = Sδ∗

t N(d1)−
Bt

BT

KN(d1 −
√
θ2(T − t)) (5.3.41)

pT,K(t, S
δ∗) = −Sδ∗

t N(−d1) +
Bt

BT

KN(−d1 +
√
θ2(T − t))

A+
T,K(t, S

δ∗) = Sδ∗
t N(d1)

A−
T,K(t, S

δ∗) = Sδ∗
t N(−d1)

B+
T,K(t, S

δ∗) =
Bt

BT

N(d1 −
√
θ2(T − t))

B−
T,K(t, S

δ∗) =
Bt

BT

N(−d1 +
√
θ2(T − t)),

where

d1 =
(
log

Sδ∗
t /Bt

K/BT

+
1

2
θ2(T − t)

)
/
√
θ2(T − t). (5.3.42)
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The second corollary recovers the formulae supplied in Hulley et al. [2005] and in
Section 13.3 of Platen and Heath [2006].

Corollary 5.3.4 For a deterministic the short rate and MMM discounted GOP,
the various call and put options in (5.3.7) have the following explicit formulae

cT,K(t, S
δ∗) = Sδ∗

t

(
1− χ2

4,λ

(
K/BT

ϕT − ϕt

))
− Bt

BT

K

(
1− χ2

0,λ

(
K/BT

ϕT − ϕt

))
(5.3.43)

pT,K(t, S
δ∗) = −Sδ∗

t χ2
4,λ

(
K/BT

ϕT − ϕt

)
+

Bt

BT

K

(
χ2
0,λ

(
K/BT

ϕT − ϕt

)
− exp(−λ/2)

)

A+
T,K(t, S

δ∗) = Sδ∗
t

(
1− χ2

4,λ

(
K/BT

ϕT − ϕt

))

A−
T,K(t, S

δ∗) = Sδ∗
t χ2

4,λ

(
K/BT

ϕT − ϕt

)

B+
T,K(t, S

δ∗) =
Bt

BT

(
1− χ2

0,λ

(
K/BT

ϕT − ϕt

))

B−
T,K(t, S

δ∗) =
Bt

BT

(
χ2
0,λ

(
K/BT

ϕT − ϕt

)
− exp(−λ/2)

)
.

For a Vasicek model of the short rate

L ∼ N
(
m(t, T ), v(t, T )

)
(5.3.44)

where

m(t, T ) = (rt − r̄)B(t, T ) + r̄(T − t) (5.3.45)

v(t, T ) =
σ2

κ2
(T − t− B(t, T )− 1

2
κB(t, T )2)

and

B(t, T ) =
1− exp(−κ(T − t))

κ
. (5.3.46)

So for a Vasicek short rate and BS discounted GOP

Sδ∗
T ∼ LN

(
logSt +

1

2
θ2(T − t) +m(t, T ), θ2(T − t) + v(t, T )

)
(5.3.47)

Rδ∗
T ∼ LN

(
logSt −

1

2
θ2(T − t) +m(t, T )− v(t, T ), θ2(T − t) + v(t, T )

)
and the cumulative distribution functions FSδ∗

T
(x) and FRδ∗

T
(x) are readily com-

puted to be

FSδ∗
T
(x) = LN

(
x; log St +

1

2
θ2(T − t) +m(t, T ), θ2(T − t) + v(t, T )

)
(5.3.48)

FRδ∗
T
(x) = LN

(
x; log St −

1

2
θ2(T − t) +m(t, T )− v(t, T ), θ2(T − t) + v(t, T )

)
.
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Also for a Vasicek short rate and MMM discounted GOP

FSδ∗
T
(x) =

∫ ∞

−∞
χ2
4,λ(u(z))n(z)dz (5.3.49)

FRδ∗
T
(x) =

{∫ ∞

−∞
exp(−m(t, T )−

√
v(t, T )z)χ2

0,λ(u(z))n(z)dz

− exp(−λ/2) exp(−m(t, T ) +
1

2
v(t, T ))

}

×
{
(1− exp(−λ/2)) exp(−m(t, T ) +

1

2
v(t, T ))

}−1

,

where m(t, T ) and v(t, T ) are given in (5.3.45), u(z) is given in (5.3.25) and n(z)
is the probability density function of the standard normal distribution.

For the CIR short rate model and the 3/2 short rate model the probability den-
sity function of L is computed as the inverse Fourier transform of the moment
generating function (MGF), that is

fL(x) =

∫ ∞

−∞
exp(2πixs)MGFL(−2πis) ds. (5.3.50)

Here the MGF of L under the CIR short rate model is

MGFL(u) =

(
hu exp(

1
2
κ(T − t))

κ sinh 1
2
(T − t)hu + hu cosh

1
2
(T − t)hu

)2κr̄/σ2

(5.3.51)

× exp

(
u

2 sinh 1
2
(T − t)hu

κ sinh 1
2
(T − t)hu + hu cosh

1
2
(T − t)hu

rt

)
,

where hu =
√
κ2 − 2uσ2. From Theorem 3 of Carr and Sun [2007] the MGF of L

under the 3/2 short rate model is

MGFL(−u) =
Γ(γu − αu)

Γ(γu)

(
2

σ2y(t, rt)

)αu

M(αu, γu,
−2

σ2y(t, rt)
), (5.3.52)

where the variables are as in (5.2.11). The cumulative distribution functions
FSδ∗

T
(x) and FRδ∗

T
(x) under the BS discounted GOP become

FSδ∗
T
(x) =

∫ ∞

0

N(−d1(x))fL(x) dx (5.3.53)

FRδ∗
T
(x) =

∫∞
0

e−xN(−d2(x))fL(x) dx

MGFL(−1)

and, under the MMM discounted GOP, become

FSδ∗
T
(x) =

∫ ∞

0

χ2
4,λ(u(x))fL(x) dx (5.3.54)

FRδ∗
T
(x) =

∫∞
0

e−x(χ2
0,λ(u(x))− e−λ/2)fL(x) dx

MGFL(−1)
,
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where u(x) is given by

u(x) =
K

Bt exp(x)(ϕT̄ − ϕt)
, (5.3.55)

and ϕt = ϕ0 +
1
4
ᾱ0(exp(ηt)− 1)/η.

Thus we have demonstrated how the various cumulative distribution functions can
be computed and, combined with (5.3.7), how prices of various call, put, asset-or-
nothing and cash-or-nothing options can be computed. In Appendix I we provide
approximate formulae for the various cumulative distribution functions, which
lead to simplified and rapid computations.

5.4 Options on ZCBs

Pricing formulae for options on zero-coupon bonds are of paramount importance
for most interest rate options because they are the building blocks for these
securities. This is exemplified by the relationship of zero-coupon bond options to
interest rate caps and floors provided in (2.10.32)−(2.10.34) and we exploit this
in the following section on caps and floors.

In this section we provide formulae for the options on zero-coupon bonds for
market models involving deterministic, Vasicek and CIR short rates only. We
omit the cases involving the 3/2 short rate because a ZCB option formula is not
currently available in the literature, although a suggested approach is given by Lo
[2013].

Option pricing formulae under any market model considered in this thesis can be
calculated using Theorem 2.10.2.

When the discounted GOP obeys Black-Scholes dynamics the formulae for the
options on ZCBs are those obtained under classical risk neutral assumptions, as
the following lemma demonstrates.

Lemma 5.4.1 For a stochastic short rate rt and a BS discounted GOP as in
(4.2.1), the real-world price at time t of call and put options on a zero-coupon
bond with expiry T̄ , bond maturity T ≥ T̄ and strike price K are

zcbcallT̄ , T,K(t) = E

(
Bt

BT̄

(
GT (T̄ )−K

)+ ∣∣∣∣At

)
(5.4.1)

zcbputT̄ , T,K(t) = E

(
Bt

BT̄

(
K −GT (T̄ )

)+ ∣∣∣∣At

)
(5.4.2)

for 0 ≤ t ≤ T̄ ≤ T . Here GT (T̄ ) is the short rate contribution to the zero-coupon
bond price, as defined in (2.8.4).
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Proof . As in the proof of Theorem 2.8.3 for the price of a zero-coupon bond
we introduce the sigma-algebra Ar

t which is generated by At and the path of the
short rate r until time T , that is, Ar

t = σ{rs, s ∈ [0, T ]} ∪ At. Using (2.8.1)
and Theorem 2.8.3 and noting that At ⊆ Ar

t , the price of a call option on a
zero-coupon bond is

zcbcallT̄ , T,K(t) = E

(
Sδ∗
t

Sδ∗
T̄

(
P (T̄ , T )−K

)+ ∣∣∣∣At

)

= E

(
E

(
Sδ∗
t

Sδ∗
T̄

(
P (T̄ , T )−K

)+ ∣∣∣∣Ar
t

) ∣∣∣∣At

)

= E

(
E

(
S̄δ∗
t

S̄δ∗
T̄

Bt

BT̄

∣∣∣∣Ar
t

) (
GT (T̄ )−K

)+ ∣∣∣∣At

)

= E

(
Bt

BT̄

MT̄ (t)
(
GT (T̄ )−K

)+ ∣∣∣∣At

)

= E

(
Bt

BT̄

(
GT (T̄ )−K

)+ ∣∣∣∣At

)
(5.4.3)

for 0 ≤ t ≤ T̄ ≤ T . The formula for a put option on a zero-coupon bond
zcbputT̄ , T,K(t) is proven similarly. Q.E.D.

In respect of a deterministic short rate and a Black-Scholes discounted GOP we
state the following theorem whose proof is straightforward.

Theorem 5.4.2 Let our market model consist of a determinstic short rate and
a Black-Scholes discounted GOP. The fair price at time t of a first order asset
binary call (respectively put) option on a T -maturity zero-coupon bond with expiry
date T̄ and strike price K is

A+
T̄ ,K

(t, P (·, T )) = GT (t)1GT (T̄ )>K , (5.4.4)

A−
T̄ ,K

(t, P (·, T )) = GT (t)1GT (T̄ )≤K . (5.4.5)

The fair price at time t of a first order bond binary call (respectively put) option
on the GOP with expiry date T̄ and strike price K is

B+
T̄ ,K

(t, P (·, T )) = GT̄ (t)1GT (T̄ )>K , (5.4.6)

B−
T̄ ,K

(t, P (·, T )) = GT̄ (t)1GT (T̄ )≤K . (5.4.7)

The fair price at time t of a call (respectively put) option on the GOP with expiry
date T̄ and strike price K is

cT̄ ,K(t, P (·, T )) =
(
GT (t)−GT̄ (t)K

)
1GT (T̄ )>K , (5.4.8)

pT̄ ,K(t, P (·, T )) =
(
−GT (t) +GT̄ (t)K

)
1GT (T̄ )≤K . (5.4.9)
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In respect of a deterministic short rate and an MMM discounted GOP we have
the following theorem.

Theorem 5.4.3 Let our market model consist of a determinstic short rate and
a MMM discounted GOP. The fair price at time t of a first order asset binary
call (respectively put) option on a T -maturity zero-coupon bond with expiry date
T̄ and strike price K is

A+
T̄ ,K

(t, P (·, T )) = Bt

BT

(
1− χ2

0,λ(u
∗)
)

(5.4.10)

− Bt

BT

exp

(
− τ

1 + 2τ
λ

)(
1− χ2

0,λ/(1+2τ)((1 + 2τ)u∗)
)
,

A−
T̄ ,K

(t, P (·, T )) = Bt

BT

(
χ2
0,λ(u

∗)− exp

(
− τ

1 + 2τ
λ

)
χ2
0,λ/(1+2τ)

(
(1 + 2τ)u∗)) .

(5.4.11)

The fair price at time t of a first order bond binary call (respectively put) option
on the GOP with expiry date T̄ and strike price K is

B+
T̄ ,K

(t, P (·, T )) = Bt

BT̄

(
1− χ2

0,λ(u
∗)
)
, (5.4.12)

B−
T̄ ,K

(t, P (·, T )) = Bt

BT̄

(
χ2
0,λ(u

∗)− exp(−λ/2)
)
. (5.4.13)

The fair price at time t of a call (respectively put) option on the GOP with expiry
date T̄ and strike price K is

zcbcallT̄ ,T,K(t) = cT̄ ,K(t, P (·, T )) (5.4.14)

=
Bt

BT

(
1− χ2

0,λ(u
∗)
)

− Bt

BT

exp

(
− τ

1 + 2τ
λ

)(
1− χ2

0,λ/(1+2τ)((1 + 2τ)u∗)
)

−K
Bt

BT̄

(
1− χ2

0,λ(u
∗)
)
,

zcbputT̄ ,T,K(t)(t) = pT̄ ,K(t, P (·, T )) (5.4.15)

= − Bt

BT

(
χ2
0,λ(u

∗)− exp

(
− τ

1 + 2τ
λ

)
χ2
0,λ/(1+2τ)

(
(1 + 2τ)u∗))

+K
Bt

BT̄

(
χ2
0,λ(u

∗)− exp(−λ/2)
)
.
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Here

u∗ =

{
2ϕT−ϕT̄

ϕT̄−ϕt
log 1

1−KBT /BT̄
if 1 > KBT/BT̄ ;

∞ otherwise
(5.4.16)

λ =
S̄δ∗
t

ϕT̄ − ϕt

τ =
1

2

ϕT̄ − ϕt

ϕT − ϕT̄

.

Proof . Using the real-world pricing formula (2.6.4) we have

A+
T̄ ,K

(t, P (·, T )) = E

(
Sδ∗
t

Sδ∗
T̄

P (T̄ , T )1P (T̄ ,T )>K

∣∣∣∣At

)
(5.4.17)

=
Bt

BT

E

(
S̄δ∗
t

S̄δ∗
T̄

MT (T̄ )1MT (T̄ )>KBT /BT̄

∣∣∣∣At

)
.

Denoting by U the random variable

S̄δ∗
T̄

ϕT − ϕt

∣∣∣∣At (5.4.18)

and by λ the value
S̄δ∗
t

ϕT − ϕt

(5.4.19)

and noting that

MT (T̄ ) = 1− exp

(
− S̄δ∗

T̄

2(ϕT − ϕT̄ )

)
= 1− exp(−τU) (5.4.20)

and that MT (T̄ ) ≥ KBT/BT̄ is equivalent to

U ≥ 1

τ
log

1

1−K BT/BT̄

= u∗ (5.4.21)

we have

A+
T̄ ,K

(t, P (·, T )) = Bt

BT

E

(
λ

U

(
1− exp(−τU)

)
1U>u∗

)
(5.4.22)

=
Bt

BT

E

(
λ

U
1U>u∗

)

− Bt

BT

E

(
λ

U
exp(−τU)1U>u∗

)

=
Bt

BT

(
1− χ2

0,λ(u
∗)
)

− Bt

BT

exp

(
− τ

1 + 2τ
λ

)(
1− χ2

0,λ/(1+2τ)((1 + 2τ)u∗)
)
,
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where we have made use of Lemma 4.3.19 and Lemma 4.3.22 and where we have
the relations in (5.4.16).

To find the formula for the price of the asset binary put option on a ZCB we use
the real-world pricing formula (2.6.4), giving

A−
T̄ ,K

(t, P (·, T )) = E

(
Sδ∗
t

Sδ∗
T̄

P (T̄ , T )1P (T̄ ,T )≤K

∣∣∣∣At

)
(5.4.23)

=
Bt

BT

E

(
S̄δ∗
t

S̄δ∗
T̄

MT (T̄ )1MT (T̄ )≤KBT /BT̄

∣∣∣∣At

)
.

Using the same notation as for the asset binary call option on a ZCB and applying
Lemma 4.3.19 and Lemma 4.3.22 we have

A−
T̄ ,K

(t, P (·, T )) = Bt

BT

E

(
λ

U
(1− exp(−τU))1U≤u∗

)
(5.4.24)

=
Bt

BT

E

(
λ

U
1U≤u∗

)
− Bt

BT

E

(
λ

U
exp(−τU)1U≤u∗

)

=
Bt

BT

(
χ2
0,λ(u

∗)− exp(−λ/2)
)

− Bt

BT

(
exp

(
− τ

1 + 2τ
λ

)
χ2
0,λ/(1+2τ)((1 + 2τ)u∗)− exp(−λ/2)

)

=
Bt

BT

(
χ2
0,λ(u

∗)− exp

(
− τ

1 + 2τ
λ

)
χ2
0,λ/(1+2τ)

(
(1 + 2τ)u∗)) ,

where the parameters are as in (5.4.16).

Using the real-world pricing formula (2.6.4) and applying Lemma 4.3.19 we have

B+
T̄ ,K

(t, P (·, T )) = E

(
Sδ∗
t

Sδ∗
T̄

1P (T̄ ,T )>K

∣∣∣∣At

)
(5.4.25)

=
Bt

BT̄

E

(
S̄δ∗
t

S̄δ∗
T̄

1S̄δ∗̄
T

>K∗

∣∣∣∣At

)
.

Employing the same notation as above we have

B+
T̄ ,K

(t, P (·, T )) = Bt

BT̄

E

(
λ

U
1U>u∗

)
(5.4.26)

=
Bt

BT̄

(1− χ2
0,λ(u

∗))

which is the result for the first order bond binary call option. The formula for
the price of the bond binary put option on a ZCB follows analogously.

The formula (2.10.10) connects the price of a call option with the first order asset
binary call option and the first order bond binary call option. Combining this
with (5.4.10) and (5.4.12) gives the formula for the call option. Also combining
(2.10.11), (5.4.11) and (5.4.13) gives the formula for the put option. Q.E.D.
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From Lemma 5.4.1 and Corollary 3.2.25 we have the following theorem in respect
of a model involving a Vasicek short rate and a Black-Scholes discounted GOP.

Theorem 5.4.4 Let our market model consist of a Vasicek short rate and a
Black-Scholes discounted GOP. The fair price at time t of a first order asset
binary call (respectively put) option on a T -maturity zero-coupon bond with expiry
date T̄ and strike price K is

A+
T̄ ,K

(t, P (·, T )) = GT (t)N(d1), (5.4.27)

A−
T̄ ,K

(t, P (·, T )) = GT (t)N(−d1). (5.4.28)

The fair price at time t of a first order bond binary call (respectively put) option
on a T -maturity zero-coupon bond with expiry date T̄ and strike price K is

B+
T̄ ,K

(t, P (·, T )) = GT̄ (t)N(d1 − σG), (5.4.29)

B−
T̄ ,K

(t, P (·, T )) = GT̄ (t)N(−d1 + σG). (5.4.30)

The fair price at time t of a call (respectively put) option on a T -maturity zero-
coupon bond with expiry date T̄ and strike price K is

cT̄ ,K(t, P (·, T )) = GT (t)N(d1)−GT̄ (t)KN(d1 − σG), (5.4.31)

pT̄ ,K(t, P (·, T )) = −GT (t)N(−d1) +GT̄ (t)KN(−d1 + σG). (5.4.32)

Here d1 is given by

d1 =
log(GT (t)/(KGT̄ (t))) +

1
2
σ2
G

σG

, (5.4.33)

σG = σB(T̄ , T ) and B(T̄ , T ) is given in (3.2.82).

From Theorem 2.10.2 and Corollary 3.2.25 we have the following theorem in
respect of a model involving a Vasicek short rate and a MMM discounted GOP.

Theorem 5.4.5 Let our market model consist of a Vasicek short rate and a
MMM discounted GOP. The fair price at time t of a first order asset binary call
(respectively put) option on a T -maturity zero-coupon bond with expiry date T̄
and strike price K is

A+
T̄ ,K

(t, P (·, T )) = GT (t)

∫ ∞

0

λ

u
(1− e−τu)N(d1(u))fχ2

4,λ
(u) du, (5.4.34)

A−
T̄ ,K

(t, P (·, T )) = GT (t)

∫ ∞

0

λ

u
(1− e−τu)N(−d1(u))fχ2

4,λ
(u) du. (5.4.35)
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The fair price at time t of a first order bond binary call (respectively put) option
on a T -maturity zero-coupon bond with expiry date T̄ and strike price K is

B+
T̄ ,K

(t, P (·, T )) = GT̄ (t)

∫ ∞

0

λ

u
N(d1(u)− σG)fχ2

4,λ
(u) du, (5.4.36)

B−
T̄ ,K

(t, P (·, T )) = GT̄ (t)

∫ ∞

0

λ

u
N(−d1(u) + σG)fχ2

4,λ
(u) du. (5.4.37)

The fair price at time t of a call (respectively put) option on a T -maturity zero-
coupon bond with expiry date T̄ and strike price K is

cT̄ ,K(t, P (·, T )) = GT (t)

∫ ∞

0

λ

u
(1− e−τu)N(d1(u))fχ2

4,λ
(u) du (5.4.38)

−GT̄ (t)K

∫ ∞

0

λ

u
N(d1(u)− σG)fχ2

4,λ
(u) du,

pT̄ ,K(t, P (·, T )) = −GT (t)

∫ ∞

0

λ

u
(1− e−τu)N(−d1(u))fχ2

4,λ
(u) du (5.4.39)

+GT̄ (t)K

∫ ∞

0

λ

u
N(−d1(u) + σG)fχ2

4,λ
(u) du.

Here d1(u) is given by

d1(u) =
log(GT (t)/(Ku GT̄ (t))) +

1
2
σ2
G

σG

, (5.4.40)

Ku is given by

Ku =
K

1− exp(−τu)
, (5.4.41)

τ is given by

τ =
ϕT̄ − ϕt

2(ϕT − ϕT̄ )
, (5.4.42)

σG = σB(T̄ , T ) and B(T̄ , T ) is given in (3.2.82).

From Lemma 5.4.1 and Corollary 3.3.28 we have the following theorem in respect
of a model involving a CIR short rate and a Black-Scholes discounted GOP.

Theorem 5.4.6 Let our market model consist of a CIR short rate and a Black-
Scholes discounted GOP. The fair price at time t of a first order asset binary call
(respectively put) option on a T -maturity zero-coupon bond with expiry date T̄
and strike price K is

A+
T̄ ,K

(t, P (·, T )) = GT (t)χ
2
ν,ω(R/γ), (5.4.43)

A−
T̄ ,K

(t, P (·, T )) = GT (t)

(
1− χ2

ν,ω(R/γ)

)
. (5.4.44)
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The fair price at time t of a first order bond binary call (respectively put) option
on a T -maturity zero-coupon bond with expiry date T̄ and strike price K is

B+
T̄ ,K

(t, P (·, T )) = GT̄ (t)χ
2
ν,ω′(R/γ′), (5.4.45)

B−
T̄ ,K

(t, P (·, T )) = GT̄ (t)

(
1− χ2

ν,ω′(R/γ′)

)
. (5.4.46)

The fair price at time t of a call (respectively put) option on a T -maturity zero-
coupon bond with expiry date T̄ and strike price K is

cT̄ ,K(t, P (·, T )) = GT (t)χ
2
ν,ω(R/γ)−GT̄ (t)K χ2

ν,ω′(R/γ′), (5.4.47)

pT̄ ,K(t, P (·, T )) = −GT (t)

(
1− χ2

ν,ω(R/γ)

)
+GT̄ (t)K

(
1− χ2

ν,ω′(R/γ′)

)
.

(5.4.48)

Here we have

ν = 4κr̄/σ2 (5.4.49)

γ′ =
1

4
σ2B(t, T )

ω′ = rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)
− rt

8

σ2
γ′

γ =
1

4
σ2B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

ω = rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)(
1− 2B(T, T̄ )γ

)
− rt

8

σ2
γ

R =
1

B(T, T̄ )
log

A(T, T̄ )

K
.

From Theorem 2.10.2 and Corollary 3.3.28 we have the following theorem in
respect of a model involving a Vasicek short rate and a MMM discounted GOP.

Theorem 5.4.7 Let our market model consist of a CIR short rate and a MMM
discounted GOP. The fair price at time t of a first order asset binary call (re-
spectively put) option on a T -maturity zero-coupon bond with expiry date T̄ and
strike price K is

A+
T̄ ,K

(t, P (·, T )) = GT (t)

∫ ∞

0

λ

u
(1− e−τu)χ2

ν,ω(Ru/γ)fχ2
4,λ
(u) du, (5.4.50)

A−
T̄ ,K

(t, P (·, T )) = GT (t)

(
1− e−λτ/(1+2τ) −

∫ ∞

0

λ

u
(1− e−τu)χ2

ν,ω(Ru/γ)fχ2
4,λ
(u) du

)
.

(5.4.51)
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The fair price at time t of a first order bond binary call (respectively put) option
on a T -maturity zero-coupon bond with expiry date T̄ and strike price K is

B+
T̄ ,K

(t, P (·, T )) = GT̄ (t)

∫ ∞

0

λ

u
χ2
ν,ω′(Ru/γ

′)fχ2
4,λ
(u) du, (5.4.52)

B−
T̄ ,K

(t, P (·, T )) = GT̄ (t)

(
1− e−λ/2 −

∫ ∞

0

λ

u
χ2
ν,ω′(Ru/γ

′)fχ2
4,λ
(u) du

)
. (5.4.53)

The fair price at time t of a call (respectively put) option on a T -maturity zero-
coupon bond with expiry date T̄ and strike price K is

cT̄ ,K(t, P (·, T )) = GT (t)

∫ ∞

0

λ

u
(1− e−τu)χ2

ν,ω(Ru/γ)fχ2
4,λ
(u) du (5.4.54)

−GT̄ (t)K

∫ ∞

0

λ

u
χ2
ν,ω′(Ru/γ

′)fχ2
4,λ
(u) du,

pT̄ ,K(t, P (·, T )) = −GT (t)

(
1− e−λτ/(1+2τ) −

∫ ∞

0

λ

u
(1− e−τu)χ2

ν,ω(Ru/γ)fχ2
4,λ
(u) du

)
(5.4.55)

+GT̄ (t)K

(
1− e−λ/2 −

∫ ∞

0

λ

u
χ2
ν,ω′(Ru/γ

′)fχ2
4,λ
(u) du

)
.

Here we have

ν = 4κr̄/σ2 (5.4.56)

γ′ =
1

4
σ2B(t, T )

ω′ = rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)
− rt

8

σ2
γ′

γ =
1

4
σ2B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

ω = rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)(
1− 2B(T, T̄ )γ

)
− rt

8

σ2
γ

Ru =
1

B(T, T̄ )
log

A(T, T̄ )

Ku

Ku = K/(1− exp(−τu))

τ =
ϕT̄ − ϕt

2(ϕT − ϕT̄ )
.

We have provided explicit pricing formulae for options on zero-coupon bonds and
are now positioned to price caps, floors and swaptions in the following sections.

5.5 Caps and Floors

An interest rate cap provides compensation to the owner whenever the single pe-
riod interest rate exceeds a specified cap rate over any among a set of consecutive
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time periods. Therefore for someone with a floating rate liability, owning a cap
would in effect limit the interest rate liability to the level of the cap rate.

Similarly an interest rate floor provides compensation to the owner when the
single period interest rate falls below a specified floor rate over any among a set
of consecutive time periods. Therefore for some with a floating rate asset, owning
a floor would in effect guarantee a minimum interest rate equal to the specified
floor rate.

We restate the pricing formulae of caps and floors given in (2.10.32) and (2.10.34).
For a cap and a floor having a strike rate K and based upon a notional amount
N and a set of reset dates T = {T0, T1, . . . , Tn} the formulae for the prices are

capT ,K,N(t) =
n∑

�=1

capletT�−1, T�,K,N(t)

=
n∑

�=1

N ′
� zcbputT�−1, T�,K

′
�
(t), (5.5.1)

floorT ,K,N(t) =
n∑

�=1

floorletT�−1, T�,K,N(t)

=
n∑

�=1

N ′
� zcbcallT�−1, T�,K

′
�
(t) (5.5.2)

where, for � = 1, 2, . . . , n,

N ′
� = N (1 +K (T� − T�−1)) and K ′

� =
1

1 +K (T� − T�−1)
(5.5.3)

and 0 ≤ t ≤ T0 < . . . < Tn.

5.6 Swaptions

Swaptions are interest rate derivatives used to manage interest rate risk. Swap-
tions can be classified into two types: Payer swaptions and receiver swaptions.
Payer swaptions entitle the owner the right to enter into a swap in which he pays
fixed and receives floating interest rate payments. Receiver swaptions entitle the
owner the right to enter into a swap in which he receives fixed and pays floating
interest rate payments.

We restate the following payer swaption and receiver swaption formulae from
Corollary 2.10.7.

For a payer swaption with strike rate K, unit notional amount and payment dates
T the pricing formula is

payerswaptionT ,K,N=1(t) = pT0,1(t, PT ,K(·)) (5.6.1)
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whereas the corresponding receiver swaption pricing formula is

receiverswaptionT ,K,N=1(t) = cT0,1(t, PT ,K(·)) (5.6.2)

where PT ,K(t) is the price of a coupon bond as in (2.10.38), cT0,1(t, PT ,K(·)) is
the price of a call option as in (2.10.47) and pT0,1(t, PT ,K(·)) is the price of a put
option as in (2.10.48).

When the discounted GOP obeys Black-Scholes dynamics we can see from The-
orem 2.10.5 that the payer swaption and receiver swaption pricing formulae are
given in the following two corollaries.

Corollary 5.6.1 For a deterministic short rate rt and for a discounted GOP
obeying Black-Scholes dynamics the fair prices of a payer swaption and receiver
swaption are given by

payerswaptionT ,K,N=1(t) (5.6.3)

=

(
exp

{
−
∫ T0

t

rsds

}
−

n∑
i=1

(K (Ti − Ti−1) + 1i=n) exp

{
−
∫ Ti

t

rsds

})+

receiverswaptionT ,K,N=1(t)

=

( n∑
i=1

(K (Ti − Ti−1) + 1i=n) exp

{
−
∫ Ti

t

rsds

}
− exp

{
−
∫ T0

t

rsds

})+

.

Corollary 5.6.2 For a short rate rt obeying Vasicek or CIR dynamics and for a
discounted GOP obeying Black-Scholes dynamics the fair prices of a payer swap-
tion and receiver swaption, barring the particular case below, are given by

payerswaptionT ,K,N=1(t) (5.6.4)

=
n∑

i−1

(K (Ti − Ti−1) + 1i=n)zcbputT0,Ti,Ki
(t)

receiverswaptionT ,K,N=1(t)

=
n∑

i−1

(K (Ti − Ti−1) + 1i=n)zcbcallT0,Ti,Ki
(t),

where
Ki = A(T0, Ti) exp(−r∗B(T0, Ti)) (5.6.5)

and where r∗ solves the equation

n∑
i=1

(
(Ti − Ti−1)K + 1i=n

)
A(T0, Ti) exp(−r∗B(T0, Ti)) = 1. (5.6.6)

In the particular case when rt obeys CIR dynamics and

n∑
i=1

(
(Ti − Ti−1)K + 1i=n

)
A(T0, Ti) < 1 (5.6.7)



5.6. SWAPTIONS 165

we have

payerswaptionT ,K,N=1(t) = P (t, T0)−
n∑

i−1

(K (Ti − Ti−1) + 1i=n)P (t, Ti)

(5.6.8)

receiverswaptionT ,K,N=1(t) = 0.

When the discounted GOP obeys MMM dynamics we can see from Theorem 2.10.5
that the payer swaption and receiver swaption pricing formulae are given in the
following two corollaries.

Corollary 5.6.3 For a deterministic short rate rt and for a discounted GOP
obeying MMM dynamics the fair prices of a payer swaption and receiver swaption
are given by

payerswaptionT ,K,N=1(t) (5.6.9)

=
n∑

i=1

(K (Ti − Ti−1) + 1i=n)

(
− Bt

BTi

(
χ2
0,λ(x)− exp(−λ/2)

)

+
Bt

BTi

(
exp

(
− τi
1 + 2τi

λ

)
χ2
0,λ/(1+2τi)

((1 + 2τi)x)− exp(−λ/2)

)

+Ki
Bt

BT0

(
χ2
0,λ(x)− exp(−λ/2)

))
,

receiverswaptionT ,K,N=1(t)

=
n∑

i=1

(K (Ti − Ti−1) + 1i=n)

(
Bt

BTi

(
1− χ2

0,λ(x)
)

− Bt

BTi

(
exp

(
− τi
1 + 2τi

λ

)(
1− χ2

0,λ/(1+2τi)
((1 + 2τi)x)

))

−Ki
Bt

BT0

(
1− χ2

0,λ(x)
))

,

where, for i = 1, 2, . . . , n, Ki is given by

Ki =
BT0

BTi

(
1− exp(−xτi)

)
. (5.6.10)

Here x is the solution to the equation

1 =
n∑

i=1

(K (Ti − Ti−1) + 1i=n)
BT0

BTi

(
1− exp(−xτi)

)
(5.6.11)

when 1 <
∑n

i=1(K (Ti − Ti−1) + 1i=n)
BT0

BTi
and otherwise x is set to ∞.
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Corollary 5.6.4 For a short rate rt obeying Vasicek or CIR dynamics and for a
discounted GOP obeying MMM dynamics the fair prices of a payer swaption and
receiver swaption are given by

payerswaptionT ,K,N=1(t) (5.6.12)

=

∫ ∞

0

λ

u

n∑
i−1

(K (Ti − Ti−1) + 1i=n)
(
1− exp(−τiu)

)
V

(PUT )
t,i (u)fχ2

4,λ
(u) du

receiverswaptionT ,K,N=1(t)

=

∫ ∞

0

λ

u

n∑
i−1

(K (Ti − Ti−1) + 1i=n)
(
1− exp(−τiu)

)
V

(CALL)
t,i (u)fχ2

4,λ
(u) du,

where

V
(PUT )
t,i (u) = E

(
Bt

BT0

(
A(T0, Ti) exp(−r∗(u)B(T0, Ti))−GTi

(T0)
)+∣∣∣∣At

)
(5.6.13)

V
(CALL)
t,i (u) = E

(
Bt

BT0

(
GTi

(T0)− A(T0, Ti) exp(−r∗(u)B(T0, Ti))
)+∣∣∣∣At

)
.

Here r∗(u) solves the equation

n∑
i=1

(
(Ti − Ti−1)K + 1i=n

)
(1− exp(−τiu))A(T0, Ti) exp(−r∗(u)B(T0, Ti)) = 1,

(5.6.14)
with τi, for i = 1, 2, . . . , n, given by

τi =
ϕT0 − ϕt

2(ϕTi
− ϕT0)

. (5.6.15)

5.7 Conclusions

This chapter illustrates how the benchmark approach recovers results consistent
with the standard risk neutral approach based on geometric Brownian motion
and the initial work of Black and Scholes [1973] and Merton [1973]. Also this
chapter illustrates how these results can be extended to incorporate leptokurtic
stock market behaviour when the discounted GOP obeys a squared Bessel process
and interest rates are stochastic.

For example, in Section 5.3 we recovered the Black-Scholes formulae for pricing
European options on the GOP and in Sections 5.2 and 5.4 we recovered the
standard risk neutral short rate pricing of zero-coupon bonds and bond options
for stochastic short rates. This was made possible by the benchmark approach
and real-world pricing which generalise the risk neutral framework.
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Significantly, we have extended the pricing of options on the GOP, zero-coupon
bonds and bond options to richer classes of market models where the discounted
GOP obeys a squared Bessel process and the short rate is stochastic. Conse-
quently, caps and swaptions can be consistently priced within these market mod-
els which, as will be shown in Chapter 6, exhibit stylised facts such as volatility
humps and volatility skews.

The derivatives pricing formulae developed in this chapter permit us to backtest
derivatives hedging strategies in Chapters 7, 8 and 9.
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Chapter 6

Empirical Stylised Facts of
Equity Indices and Interest Rate
Term Structures

6.1 Introduction

In this chapter we describe the empirical stylised facts of equity indices1 and
interest rate term structures2. In summary we find that most likely equity indices
are Student-t distributed, swap rates are Student-t distributed, forward rates
are Student-t distributed, the volatility term structure of forward rates is often
humped and the dependency structure of interest rates is typically that of a
Student-t copula.

6.2 Discounted GOP Log-Returns

Commencing with papers Mandelbrot [1963] and Fama [1963] a vast number of
empirical studies on the distributions of log-returns of financial security prices
has ensued. Using a wide variety of statistical techniques the majority of authors
in the recent literature concludes that the assumption of normality of log-returns
of stocks and exchange rates has to be rejected. The most obvious empirical
feature that contradicts normality of log-returns is the large excess kurtosis that
is observed.

In the two papers Markowitz and Usmen [1996a] and Markowitz and Usmen
[1996b], S&P 500 Index log-returns over the twenty year period from 1963 to

1These findings have been published in Fergusson and Platen [2006].
2These findings have been reported in Fergusson and Platen [2014b] and submitted for

publication.

169
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1983 were analysed statistically in a Bayesian framework. Within the family of
Pearson distributions, see Stuart and Ord [1994], they identified the Student-t
distribution with about 4.5 degrees of freedom as the best fit to observed daily
log-returns. The Pearson family includes as special cases the normal, chi-square,
gamma, beta, Student-t, uniform, Pareto and exponential distributions.

It was demonstrated in Fergusson and Platen [2006] that log returns Lt of a glob-
ally diversified world stock index, for thirty four different currency denominations,
over the period 1970 to 2004 are leptokurtic, having a Student-t distribution with
approximately four degrees of freedom. The study was conducted within the class
of symmetric generalised hyperbolic (SGH) models as specified by the probability
density function

fL(x;μ, δ, ᾱ, λ) =
1

δKλ(ᾱ)

√
ᾱ

2π

(
1 +

(x− μ)2

δ2

) 1
2
(λ− 1

2
)

Kλ− 1
2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
(6.2.1)

for x ∈ (−∞,∞), location parameter μ ∈ (−∞,∞) and two shape parameters
λ ∈ (−∞,∞) and ᾱ = αδ ∈ [0,∞), defined so that they are invariant under scale
transformations. The scale parameter is δ ∈ [0,∞). The parameters α and δ are
such that ᾱ = αδ with α, δ ∈ [0,∞) and

δ > 0, α ≥ 0, if λ < 0, (6.2.2)

δ > 0, α > 0, if λ = 0, (6.2.3)

δ ≥ 0, α > 0, if λ > 0. (6.2.4)

Also

Kλ(ω) =
1

2

∫ ∞

0

uλ−1 exp(−1

2
ω(u+ u−1))du (6.2.5)

is the modified Bessel function of the third kind with index λ. In the particular
instance where λ = n+ 1

2
is a positive half-integer we have the closed formula

Kn+ 1
2
(ω) =

√
π

2ω
exp(−ω)

{
1 +

n∑
i=1

(n+ i)!

(n− i)!i!
(2ω)−i

}
. (6.2.6)

The mean of the SGH distribution is μ and the variance is

σ2 = δ2Kλ+1(ᾱ)/(ᾱKλ(ᾱ)). (6.2.7)

.

Special cases of the SGH(μ, σ, ᾱ, λ) distribution include the normal inverse Gaus-
sian (NIG) with λ = −1/2, the hyperbolic distribution with λ = 1, the Student-t
distribution with ν = −2λ degrees of freedom when ᾱ = 0 and δ > 0 and the
Variance Gamma distribution with δ = 0, α > 0 and λ > 0.
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The Generalised Inverse Gaussian distribution, denoted by GIG(α, δ, λ), has den-
sity function

fΔT (u;α, δ, λ) =
(α/δ)λ

2Kλ(αδ)
uλ−1 exp

(
− 1

2

(
δ2

u
+ α2u

))
, u > 0 (6.2.8)

with parameter domain given by

δ > 0, α ≥ 0, if λ < 0, (6.2.9)

δ > 0, α > 0, if λ = 0, (6.2.10)

δ ≥ 0, α > 0, if λ > 0. (6.2.11)

The SGH distribution is formed by mixing the GIG distribution with the normal
distribution by writing

Lt = μ+ΔWt (6.2.12)

where ΔT = T (t+ δt)− T (t) ∼ GIG(α, δ, λ). Note that ΔT has mean given by

E(ΔT ) =

{
δ2Kλ+1(αδ)

αδKλ(αδ)
if ᾱ > 0

2λ
α2 if ᾱ = 0

. (6.2.13)

Also, because the conditional distribution of ΔWt is normal, i.e. ΔWt

∣∣ΔT ∼
N(0,ΔT ), we can express the cumulative distribution function of Lt as

FL(x) =

∫ ∞

0

N

(
x− μ

u

)
fΔT (u)du (6.2.14)

and the probability density function as

fL(x) =

∫ ∞

0

1

u
n

(
x− μ

u

)
fΔT (u)du. (6.2.15)

Employing the maximum likelihood estimation algorithm in Appendix M we es-
timated the SGH parameters of the daily log returns of the discounted S&P 500
Index over the period 1971 to 2010. As shown in Figure 6.1 the set of MLE
parameters ᾱ = 0 and λ = −1.8 corresponds to the Student-t distribution with
3.6 degrees of freedom.

We note that for a squared Bessel process X of dimension ν described by the
SDE

dXt = νdt+ 2
√

XtdWt (6.2.16)

the log returns satisfy the SDE

d logXt =
ν − 2

Xt

dt+
2√
Xt

dWt (6.2.17)

and it is apparent that the distribution of log returns is a mixture of a nor-
mal distribution with a variance that is inverse gamma distributed, yielding the
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Figure 6.1: Contour plot of log likelihood function for daily log returns of the
discounted S&P 500 Index over the period 1971 to 2010.
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Student-t distribution with four degrees of freedom. This is precisely the SDE of
the normalised discounted GOP, Yt = S̄δ∗

t /ᾱt, prescribed in the MMM, that is

dYt = (1− ηYt)dt+
√
YtdWt. (6.2.18)

It has the stationary density function

p̄(y) =
(2η)2

Γ(2)
y exp(−2ηy), (6.2.19)

which is the density function of a scaled chi-squared distribution with four de-
grees of freedom, scaled by the factor 4η. Also, the squared volatility Vt of the
normalised discounted GOP is equal to its inverse, that is

Vt =

(√
Yt

Yt

)2

=
1

Yt

, (6.2.20)

and so Yt has squared volatility or variance which is inverse gamma distributed
with four degrees of freedom. Therefore, the Student-t distribution of the log
returns of the discounted equity index is captured by the MMM as a model for
the discounted GOP.
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6.3 The Yield Curve

The yield curve shows the relationship between the interest rate or borrowing cost
and the time to maturity of the debt for a given borrower in a given currency.
Yield curves are usually upward sloping asymptotically, whereby the longer the
maturity, the higher the yield, with diminishing marginal growth. In this sit-
uation the corresponding forward rate curve is decreasing. According to the
standard liquidity premium theory of interest rates, this stylised upward sloping
feature is explained by risk averse investors having higher demand for short-term
debt instruments than long-term debt instruments, see for example Chapter 6
of Mishkin [2010]. The benchmark approach, see Platen [2002b], Platen [2006b]
and Platen and Heath [2010], allows us to capture this stylised feature by in-
corporating the discounted stock index into the pricing of zero-coupon bonds
(ZCBs) which affects forward rates. In this chapter we examine, under a general
modelling framework, the interest rate term structure induced by various market
models each of which is driven by two independent factors corresponding to the
short rate and the discounted stock index.

Interest rate term structure models have sought to capture various stylised em-
pirical properties such as, for example, mean reversion of interest rates, attaining
normal yield curve and inverted yield curve shapes, humped volatility term struc-
tures of forward rates, imperfect correlations between adjacent forward rates,
leptokurtic distributions for both forward and swap rates and tail dependencies
between swap rates, see, for example, Rebonato [1998, 1999] and Brigo and Mer-
curio [2001].

Single-factor short rate models such as those of Vasicek [1977], Dothan [1978],
Rendleman and Bartter [1980], Cox et al. [1985], Black and Karasinski [1991],
Ahn and Gao [1999] are a starting point for modelling the term structure of in-
terest rates. However, these only allow for parallel shifts in the yield curve and
therefore attain a limited range of yield curve shapes. A related shortcoming of
single-factor models is their inability to consistently price both caps and swap-
tions caused by the single-factor imposing perfect correlations between adjacent
forward rates and, thereby, overpricing swaptions when model volatility parame-
ters are fitted to observed cap prices. Several two-factor short rate models, such
as those of Brennan and Schwartz [1979], Longstaff and Schwartz [1992] and Hull
and White [1994], and three-factor models, such as that of Chen [1996], seek to
improve the flexibility of attainable yield curve shapes and forward rate corre-
lations and yet still fall short, but not by as much as single-factor models, in
consistently pricing both caps and swaptions, as shown by Rebonato and Cooper
[1994], for example.

Within the framework of Heath et al. [1990], the Libor Market Model of Brace
et al. [1997] overcame several of these aforementioned deficiencies, modelling the
forward rates as being lognormally distributed. Analogously, the Swap Market
Model of Jamshidian [1997], modelling the forward swap rates as lognormally
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distributed, likewise overcame some of these deficiencies. However, these mul-
tifactor models still fail to capture the skew and smile features of caplets and
floorlets. This led to the idea of the SABR Libor Market Model of Rebonato
[2007], employing a stochastic volatility model of the forward rates.

The preceding approaches have priced derivatives under the assumption of the
existence of an equivalent risk neutral probability measure. By removing this
restrictive assumption the benchmark approach of Platen [2002b], described also
by Platen and Heath [2006], involves calculating prices of interest rate derivatives
as expected benchmarked payoffs under the real-world probability measure where
the benchmark portfolio employed is the numéraire portfolio which is the growth
optimal portfolio (GOP). The GOP is well approximated by a diversified stock
index, see Platen and Heath [2010]. We emphasise, since under the benchmark
approach there is no requirement that an equivalent risk neutral probability mea-
sure exists, we work in a much wider modelling world than that accessible under
the classical risk neutral approach.

The interest rate term structure under the benchmark approach was first analysed
in Platen [2002b], where he showed that the drift term of the SDE for the forward
rate under the real-world probability measure depends on volatilities of forward
rates, analogous to those discussed in Heath et al. [1992] under the risk neutral
measure.

The first model for the interest rate term structure under the benchmark ap-
proach was provided in Platen [2005a] for which he showed that the discounted
GOP contribution to the forward rate converges asymptotically to the net mar-
ket growth rate. Also it was noted that medium and long-term maturities of the
yield curve were impacted mainly by the discounted GOP dynamics, whereas the
short-term maturities were impacted mainly by the short rate, thereby providing
a natural segmentation of the yield curve. Intuitively, this is what is profferred by
the liquidity premium theory of interest rates, namely that long-term bond yields
incorporate a premium to compensate investors for the fluctuation in long-term
bond prices, whereas short-term bond yields are rather close to the short rate.

Viewing the yield curve as being tethered to the short rate rt at short-term ma-
turities and to the asymptotic equilibrium forward rate at long-term maturities,
the rates at intermediate maturities can vary according to supply and demand.

Also we would expect the forward rates, as well as the variance of the forward
rates, to be hump-shaped, which Platen [2005a] demonstrates and which are
supported by empirical research of, for example, Bouchaud et al. [1999], Bouchaud
and Matacz [2000] and Brown and Schaefer [2000].

A theorem of Dybvig et al. [1996] states that if long-term continuously com-
pounded rates are finite then they can never fall. Therefore, if one is using the
long-term continuously compounded rate as a factor of the model then only un-
der restricted dynamics of the long-term rate can a viable model result. This is
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borne out by many models having constant long-term forward rates, including
those models considered in this chapter. More recently, Brody and Hughston
[2013] developed a class of models for the purposes of discounting cash flows from
long-term projects carried out for the benefit of society, where the state vari-
able is the long-term simple rate and is assumed to be finite. A consequence
of this assumption is that the long-term continuously compounded rate is zero,
which differs to the resulting long-term continuously compounded rates of models
considered henceforth.

Aside from deriving long-term forward rates under various market models, the
current section illustrates the ability of the benchmark approach to explain the
empirical level of long-term bond yields when the market model has the dis-
counted GOP modelled by the minimal market model (MMM) of Platen and
Heath [2006]. The market models we consider are described in Section 5.1. In
Section 6.4 we describe the data employed in our empirical analysis and the
methodology of fitting the models. In Section 6.5 we obtain estimates of long-
term yields and forward rates. In Section 6.6 we describe the evolution of yield
curves. In Section 6.7 we investigate the volatility of forward rates. In Section 6.8
we demonstrate the ability of the MMM in explaining long-term swap rates and
examine the volatility of swap rates. In Section 6.9 we illustrate the leptokurtic
distribution of swap rates. In Section 6.10 we examine the historical correlation of
swap rates. In Section 6.11 we examine the dependency structure of swap rates.

6.4 Market Data and Fitting the Models

The US data set used for our empirical analysis is the annual series of US one-year
deposit rates, ten-year treasury bond yields and S&P Composite Stock Index from
1871 to 2012, shown in Chapter 26 of Shiller [1989] and subsequently updated on
http://aida.wss.yale.edu/ shiller/data/chapt26.xls (see Data Set A in Section L.1
of Appendix L). The 141 year length of this data series makes it a useful series
for analysing the interest rate term structure and index dynamics because many
different economic conditions have been experienced over that time. Also, because
in this data set there are ten-year bond yields accompanying the one-year deposit
rates and stock index values, we are able to compare actual with theoretical ten-
year bond yields. The maximum likelihood estimates of the parameters for all
models fitted to US data are shown in Table 6.1, where it is evident that the
CIR model is the best fitting short rate model and the MMM is the best fitting
discounted GOP model.

In Section 6.9 and subsequent sections the analyses of volatility and correlation
demanded the use of daily and monthly data and therefore swap rate data and
treasury bond data from the Federal Reserve Bank were used.
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Table 6.1: Maximum likelihood estimates of model parameters fitted to US data
1871-2012 (see Data Set A in Section L.1 of Appendix L).

Model Parameters Standard Errors Log Likelihood
Vasicek r̄ = 0.042994 0.0080023 399.7019

κ = 0.162953 0.053703
σ = 0.015384 0.00099592

CIR r̄ = 0.041078 0.011421 427.8116
κ = 0.092540 0.038668
σ = 0.064670 0.0040761

3/2 p = 0.038506 0.042284 406.2713
q = 0.877908 1.177853
σ = 2.0681 0.13241

Black-Scholes θ = 0.177297 0.059087 -267.4135
MMM ᾱ0 = 0.010028 0.0023389 -264.6433

η = 0.045486 0.000800

6.5 Asymptotic Long-Term Yields and Forward

Rates

In this section we derive formulae for the asymptotic long-term yield and the
asymptotic long-term forward rate of the yield curve under our market models.
As in Section 2.8, denote by yT (t) the continuously compounded yield to maturity
of a T -maturity ZCB as at time t, the formula of which is

yT (t) = − 1

T − t
logP (t, T ). (6.5.1)

From (2.8.7) we have
y∞(t) = h∞(t) + n∞(t). (6.5.2)

The asymptotic long-term instantaneous forward rate f∞(t) as at time t is com-
puted using the formula

f∞(t) = lim
T→∞

− ∂

∂T
logP (t, T ), (6.5.3)

and from (2.8.11) we have

f∞(t) = g∞(t) +m∞(t). (6.5.4)

When rt obeys the Vasicek short rate model one obtains from Corollary 3.2.15
and Corollary 3.2.17

g∞(t) = h∞(t) = r̄ − σ2

2κ2
. (6.5.5)
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Table 6.2: Contributions by the short rate and the discounted GOP to the asymp-
totic equilibrium forward rate.

Model Contribution to f∞(t) Value

Vasicek r̄ − σ2

2κ2 0.0385

CIR κr̄
σ2 (

√
κ2 + 2σ2 − κ) 0.03415

3/2 α1p 0.01732
Black-Scholes 0 0
MMM η 0.045486

When rt obeys the CIR short rate model one obtains from Corollary 3.3.21 and
Corollary 3.3.23

g∞(t) = h∞(t) =
κr̄

σ2
(
√
κ2 + 2σ2 − κ). (6.5.6)

When rt obeys the 3/2 short rate model one obtains from Corollary 3.4.6 and
Corollary 3.4.8

g∞(t) = h∞(t) = α1p, (6.5.7)

where α1 is defined in (3.4.23). Also, when S̄δ∗
t obeys the Black-Scholes dynamics

one obtains from Corollary 4.2.6 and Lemma 4.2.7

m∞(t) = n∞(t) = 0 (6.5.8)

and when S̄δ∗
t obeys the MMM dynamics one obtains from Corollary 4.3.14 and

Corollary 4.3.16
m∞(t) = n∞(t) = η. (6.5.9)

We see that under the MMM, the long-term equilibrium forward rate is, as shown
in Platen [2005a], the sum of the short rate contribution and the discounted GOP
contribution, as in (6.5.4). So from the parameter estimates given in Table 6.1
and the contributions to f∞(t) in Table 6.2 we have the asymptotic long-term
forward rates given in Table 6.3. This gives a highly sought answer to the ques-
tion of what the long-term bond yield is, as asked by actuaries and accountants
when performing market based valuations of long dated liabilities, see for exam-
ple Mulquiney and Miller [2014] and Hibbert [2012].

6.6 Evolution of Yield Curves under the Models

The rates at intermediate maturities, as given by a market model, are determined
by the mean reverting level of the short rate model, shown in Table 6.4. These
levels correspond to the values of r̄ given in Table 6.1 when the short rate obeys
a Vasicek or CIR process and to the value of 4p

2σ2−4q
, as given in (3.4.16), when

the short rate obeys a 3/2 model.
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Table 6.3: Asymptotic equilibrium forward rates for various models.

Model f∞(t)

Vasicek SR & BS DGOP 0.0385
CIR & BS DGOP 0.03415
3/2 & BS DGOP 0.01732
Vasicek SR & MMM DGOP 0.085341
CIR & MMM DGOP 0.080991
3/2 & MMM DGOP 0.064161

Table 6.4: Mean reverting levels of the short rate.

Model r̄

Vasicek 0.042994
CIR 0.041078
3/2 0.03054

We illustrate the possible shapes of the yield curve as at the times 1871, 1930
and 1970 in Figures 6.2, 6.3 and 6.4 respectively.

In 1871 inverted (downward sloping) yield curves arise from some of the models.
This is because the short rate r1871 is over 6% while the asymptotic equilibrium
forward rate is less than 4% for market models involving the Black-Scholes dis-
counted GOP.

In 1930 normal (upward sloping) yield curves arise from the models with an
MMM discounted GOP, whereas near flat yield curves arise for models having
a Black-Scholes discounted GOP. The 3/2 short rate model induces an inverted
yield curve because its contribution to the asymptotic forward rate is small, being
less than the level of short-term rates.

In 1970 inverted (downward sloping) yield curves arise from the models.

Clearly, flat yield curves are not attainable under any of the market models
considered here because of the uncertainty or volatility of the short rate.

6.7 Forward Rate Volatilities under the Models

To illustrate the distributional properties of forward rates under the considered
models the realised volatilities of three-month forward rates implied by each model
are shown in Table 6.5. It is clear that the hump-shaped feature of forward rates
is exhibited under models having a 3/2 short rate model whereas the other short
rate models do not exhibit this stylised fact.
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Figure 6.2: Zero-coupon yield curves for several models at 1871.
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Table 6.5: Realised volatilities of model-implied three-month forward rates for
various start times.

Short Rate Disc GOP 3M 6M 9M 1Y 15M 18M 21M 2Y
Deterministic BS 0.3152 0.3152 0.3152 0.3147 0.3147 0.3147 0.3147 0.3146
Deterministic MMM 0.3152 0.3152 0.3152 0.3147 0.3147 0.3146 0.3146 0.3143
Vasicek BS 0.2865 0.2712 0.2579 0.2459 0.2350 0.2249 0.2156 0.2069
Vasicek MMM 0.2865 0.2712 0.2579 0.2459 0.2350 0.2249 0.2156 0.2068
CIR BS 0.2984 0.2887 0.2798 0.2716 0.2639 0.2566 0.2498 0.2432
CIR MMM 0.2984 0.2887 0.2798 0.2716 0.2639 0.2566 0.2497 0.2431
3/2 BS 0.3194 0.3217 0.3229 0.3225 0.3205 0.3170 0.3124 0.3070
3/2 MMM 0.3194 0.3217 0.3229 0.3225 0.3205 0.3170 0.3123 0.3068

To appreciate how the yield movements are affected by the short rate, recall from
(6.5.1) that the T -maturity yield yT (t) is computed as

yT (t) = − 1

T − t
logP (t, T ) (6.7.1)

= − 1

T − t
logA(t, T ) +

B(t, T )

T − t
rt −

1

T − t
log(1− exp(

1

2
S̄δ∗
t /(ϕT − ϕt))),

which is an affine transformation of the short rate rt. So if the daily movement of
the short rate rt is normally distributed, then so will the daily movement of the
T -maturity yield. Further, if the daily movement of the short rate is Student-t
distributed with ν degrees of freedom, then so will the daily movement of the T -
maturity yield. Additionally, if the daily movement of the logarithm of the short
rate is Student-t distributed with ν degrees of freedom, then so will the daily
movement of the logarithm of the T -maturity yield. Of the considered models,
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Figure 6.3: Zero-coupon yield curves for several models at 1930.
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the 3/2-model, whose solution is the reciprocal of a squared-Bessel process, is
such that the movement in the logarithm of the short rate has a diffusion term,
which is nearly square-root inverse Gamma distributed and, therefore, mixing
this diffusion term with a Wiener process gives rise to an estimated distribution
which is nearly Student-t.

6.8 Ten-Year Swap Rates under the Models

Using the parameter estimates in Table 6.1 we graphically illustrate the evolution
of the 10-year semi-annual swap rate under each market model in Figure 6.5 and
compare with the empirical 10-year swap rates of the chosen data set.

The swap rate is calculated using the swap rate formula

swapT0,T1,...,Tn
(t) =

P (t, T0)− P (t, Tn)∑n
i=1(Ti − Ti−1)P (t, Ti)

, (6.8.1)

where P (t, T ) is calculated from the relevant ZCB pricing formula given in Sec-
tion 5.2.

The bias and root-mean-squared (RMS) error of each model-implied ten-year
swap rate are shown in Table 6.6. It is evident that the lowest RMS market
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Figure 6.4: Zero-coupon yield curves for several models at 1970.
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model is the one composed of the CIR short rate and MMM discounted GOP
and a comparison is shown in Figure 6.6. In Section 6.4 the CIR short rate model
was identified as having the best fit among candidate short rate models and the
MMM discounted GOP was identified as having the best fit among the candidate
discounted GOP models. In Table 6.6 we see that the best fitting component
models combine to produce the best fitting model of swap rates. Therefore, the
fair pricing of ZCBs appears to be vindicated by the results in Table 6.6.

We also calculated the model-implied realised volatilities of swap rates over the
period 1871 to 2012 of the chosen data set using each model’s fitted parameters,
the results of which are shown in Table 6.7. None of the models exhibits a volatil-
ity hump, which appears as a stylised fact in swaption markets. In forthcoming
work we will analyse a generalisation of the MMM, which has the potential to
explain volatility humps.

6.9 Leptokurtic Distribution of Swap Rates

Within the class of symmetric generalised hyperbolic distributions we estimated
the maximum likelihood parameters pertaining to the daily change in one, two,
three, four, five, seven, ten and thirty year swap rates using data over the pe-
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Figure 6.5: Comparison of actual ten-year swap rates with those implied by
models.
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riod from March 2001 to January 2013 obtained from the Federal Reserve Bank
website. These swap rates are the mid-market par swap rates given by the Inter-
national Swaps and Derivatives Association (ISDA). Rates are for a Fixed Rate
Payer in return for receiving three month LIBOR, and are based on rates col-
lected at 11:00 a.m. Eastern time by Garban Intercapital plc and published on
Reuters Page ISDAFIX1.

The historical series of swap rates is graphically shown in Figure 6.7.

The summary statistics of the daily changes in swap rates is shown in Table 6.8.

We observe that the standard deviations of swap rates increases up to the five-
year term to maturity, then decreases. This volatility hump of swap rates is a
stylised feature.

The parameter estimates are shown in Table 6.9. It is evident that daily moves
in swap rates are most likely distributed as a Student-t distribution with degrees
of freedom ν ranging from 3.2 at the one-year term to 6 at the thirty-year term
to maturity.
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Table 6.6: Comparison of model with actual ten-year swap rates.

Short Rate Model Discounted GOP Model Bias RMS Error
Deterministic BS -0.2099 1.7145
Deterministic MMM -0.0348 1.6275
Vasicek BS -0.2600 1.3370
Vasicek MMM -0.0904 1.3433
CIR BS -0.2979 1.2788
CIR MMM -0.1267 1.2522
3/2 BS -0.0829 1.4833
3/2 MMM 0.0911 1.4270

Table 6.7: Model-implied realised volatilities of swap rates.
Short Rate Discounted GOP 1Y 2Y 3Y 4Y 5Y 7Y 10Y 30Y
Deterministic BS 0.3184 0.2402 0.1921 0.1631 0.1416 0.1191 0.1040 0.0626
Deterministic MMM 0.3184 0.2402 0.1917 0.1618 0.1412 0.1301 0.1315 0.0793
Vasicek BS 0.2822 0.2567 0.2366 0.2202 0.2063 0.1840 0.1596 0.0974
Vasicek MMM 0.2822 0.2567 0.2365 0.2198 0.2061 0.1853 0.1617 0.0888
CIR BS 0.2968 0.2795 0.2650 0.2524 0.2413 0.2225 0.2004 0.1342
CIR MMM 0.2968 0.2795 0.2648 0.2519 0.2409 0.2233 0.2007 0.1142
3/2 BS 0.3235 0.3223 0.3151 0.3057 0.2958 0.2774 0.2546 0.1790
3/2 MMM 0.3235 0.3223 0.3149 0.3048 0.2946 0.2756 0.2457 0.1274

Table 6.8: Summary statistics of daily moves in US swap rates.
Tenor Min Max Mean Std Dev Skew Excess Kurtosis
1Y -0.41% 0.32% -0.0025% 0.0479% -0.7502 8.4153
2Y -0.40% 0.34% -0.0023% 0.0630% -0.0987 3.7128
3Y -0.35% 0.38% -0.0021% 0.0678% 0.0436 2.8718
4Y -0.40% 0.37% -0.0019% 0.0700% 0.0528 2.6665
5Y -0.44% 0.37% -0.0018% 0.0722% 0.0477 2.6438
7Y -0.48% 0.35% -0.0015% 0.0707% -0.0690 2.8103
10Y -0.50% 0.32% -0.0013% 0.0693% -0.1506 3.2234
30Y -0.49% 0.25% -0.0011% 0.0617% -0.1689 3.4677
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Figure 6.6: Comparison of actual ten-year swap rates with those under CIR short
rate and MMM discounted GOP.
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6.10 Correlation of Swap Rates

The graph of historical US swap rates in Figure 6.7 illustrates the comovements
in swap rates over the period from July 2000 to June 2014. Several features of
the graphs are worthy of articulation. The dot-com bubble had burst in March
2000 and in January 2001 America Online merged with Time Warner, at the time
the second biggest M&A deal in history. The period from 2006 to 2007 saw the
threat of inflation with high oil and metal prices and this is mirrored in the figure
by the consonant high levels of swap rates. Also we see that in September 2008
swap rates fall in concert and subsequent to the Lehman Brothers collapse there is
dispersion of swap rates. Finally, in August 2010 we see a concerted fall in swap
rates in response to the commencement of the second program of quantitative
easing by the US Federal Reserve Bank.

Also, under our one factor short rate models, combined with the Black-Scholes
model of the discounted GOP, the daily movements in yields of different maturi-
ties are fully correlated. This is not supported by the empirical stylised behaviour
of yield correlations, typically decreasing with the difference in term to maturity.
The correlation surface is shown in Figure 6.8.

To explicitly illustrate the relationships between yields under the considered mod-
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Table 6.9: MLEs of SGH parameters of daily moves in US swap rates.

Tenor ᾱ ν = −λ/2 Log Likelihood
1Y 0.0 3.2 16958
2Y 0.0 4.0 16037
3Y 0.0 5.0 15798
4Y 0.0 5.0 15697
5Y 0.0 5.0 15606
7Y 0.0 5.2 15657
10Y 0.0 5.4 15718
30Y 0.0 6.0 16028

Table 6.10: Correlation coefficients between one-year and ten-year swap rates
under the market models.

Short Rate Disc GOP 1Y-10Y Correlation
Determinstic BS 0.43605
Determinstic MMM 0.35886
Vasicek BS 0.9994
Vasicek MMM 0.97355
CIR BS 0.99955
CIR MMM 0.98218
3/2 BS 0.96275
3/2 MMM 0.94643

els the correlation coefficients of annual movements in one-year and ten-year swap
rates are shown in Table 6.10, where it is evident that the Black-Scholes dis-
counted GOP ensures nearly full correlation of one and ten-year swap rates for
the models having non-deterministic short rate models. The correlation between
actual one-year and ten-year swap rates is 0.83133, which is lower than any cor-
relation coefficient given in Table 6.10, aside from models involving deterministic
short rates. This could potentially indicate that the stochastic interest rates are
not fully independent.

6.11 Dependence Structure of Swap Rates

We examine the dependence structure of annual changes in swap rates implied by
models and the dependence structure of monthly changes in actual swap rates.
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Figure 6.7: Historical US swap rates (July 2000 to June 2014).
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6.11.1 Annual Changes in Swap Rates Implied by Models

Tables 6.12 and 6.13 show the fitted parameters in respect of a variety of de-
pendence structures for each of the market models. The Student-t copula has
the best fit for each market model, except for the deterministic short rate and
discounted GOP model where the Clayton copula has the best fit.

6.11.2 Changes in Actual Swap Rates

Various copulas are fitted to annual changes in actual 1Y, 5Y and 10Y treasury
bond (par) rates in Table 6.11. Here the Gaussian copula gives the best fit
according to the AIC.

Monthly swap rate data over the period from 2000 to 2014, sourced from the
Federal Reserve Bank, was examined. Copulas fitted to the monthly changes in
rates are shown in Table 6.14 where the Student-t copula gives the lowest AIC.

Furthermore, monthly treasury bond yield data over the period from 1962 to
2014, sourced from the Federal Reserve Bank, was examined. Copulas fitted to
the monthly changes in yields are shown in Table 6.15 where it is evident that
the Student-t copula has the lowest AIC.
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Table 6.11: Trivariate copulas fitted to annual changes in actual 1Y, 5Y and 10Y
par rates.

Copula MLEs
Clayton θ = 3.229

loglkhd = 71.8772
AIC = −141.7543

Frank θ = 9.8112
loglkhd = 44.1719
AIC = −86.3437

Gumbel θ = 2.891
loglkhd = 71.592
AIC = −141.184

Gauss θ1 = 0.497
θ2 = 0.1679
θ3 = 0.6229
loglkhd = 123.5103
AIC = −241.0205

Student’s t ν = 999
θ1 = 0.4971
θ2 = 0.168
θ3 = 0.6229
loglkhd = 123.4975
AIC = −238.9951

Table 6.12: Trivariate copulas fitted to annual changes in model 1Y, 5Y and 10Y
par rates.

Copula DSR BSDGOP DSR MMMDGOP VasicekSR BSDGOP VasicekSR MMMDGOP
Clayton θ = 1.0986 θ = 0.8542 θ = 47 θ = 12.0243

loglkhd = 65.3856 loglkhd = 48.3505 loglkhd = 854.4114 loglkhd = 454.0228
AIC = −128.7712 AIC = −94.701 AIC = −1706.8228 AIC = −906.0455

Frank θ = 1.6557 θ = 1.0091 θ = 37 θ = 37
loglkhd = 5.6146 loglkhd = 2.5667 loglkhd = 570.7317 loglkhd = 390.8922
AIC = −9.2292 AIC = −3.1334 AIC = −1139.4634 AIC = −779.7843

Gumbel θ = 1.5146 θ = 1.4312 θ = 47 θ = 10.4893
loglkhd = 45.1896 loglkhd = 35.7616 loglkhd = 1026.308 loglkhd = 537.4991
AIC = −88.3791 AIC = −69.5232 AIC = −2050.616 AIC = −1072.9982

Gaussian θ1 = 1.1393 θ1 = 1.1377 θ1 = 0.0076 θ1 = 0.0471
θ2 = 0.7167 θ2 = 0.8578 θ2 = 0.0401 θ2 = 0.1365
θ3 = 0.9738 θ3 = 0.9779 θ3 = 0.0082 θ3 = 0.1997
loglkhd = 67.7544 loglkhd = 48.6699 loglkhd = 1124.5854 loglkhd = 698.9416
AIC = −129.5088 AIC = −91.3399 AIC = −2243.1709 AIC = −1391.8832

Student-t ν = 4 ν = 11 ν = 1 ν = 1
θ1 = −1.1554 θ1 = 1.1192 θ1 = −0.01 θ1 = 0.0252
θ2 = 0.7193 θ2 = 0.8522 θ2 = 0.04 θ2 = 0.1581
θ3 = −1.0125 θ3 = 0.9686 θ3 = −0.1 θ3 = 0.0825
loglkhd = 72.6679 loglkhd = 49.7269 loglkhd = 1228.5991 loglkhd = 805.5994
AIC = −137.3358 AIC = −91.4539 AIC = −2449.1982 AIC = −1603.1988
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Table 6.13: Trivariate copulas fitted to annual changes in model 1Y, 5Y and 10Y
par rates.

Copula CIRSR BSDGOP CIRSR MMMDGOP 3/2SR BSDGOP 3/2SR MMMDGOP
Clayton θ = 47 θ = 14.1019 θ = 13.0915 θ = 9.2733

loglkhd = 855.0759 loglkhd = 490.3732 loglkhd = 470.0468 loglkhd = 403.5421
AIC = −1708.1518 AIC = −978.7465 AIC = −938.0936 AIC = −805.0843

Frank θ = 37 θ = 37 θ = 37 θ = 37
loglkhd = 570.9289 loglkhd = 424.4498 loglkhd = 516.5334 loglkhd = 405.3621
AIC = −1139.8579 AIC = −846.8997 AIC = −1031.0668 AIC = −808.7243

Gumbel θ = 47 θ = 12.0522 θ = 12.2471 θ = 8.3109
loglkhd = 1040.1886 loglkhd = 575.8707 loglkhd = 586.0822 loglkhd = 484.503
AIC = −2078.3771 AIC = −1149.7413 AIC = −1170.1644 AIC = −967.006

Gaussian θ1 = 0.0073 θ1 = 0.0452 θ1 = 0.1134 θ1 = 0.1222
θ2 = 0.0392 θ2 = 0.1229 θ2 = 0.0762 θ2 = 0.1531
θ3 = 0.0073 θ3 = 0.1746 θ3 = 0.1482 θ3 = 0.1953
loglkhd = 1133.7178 loglkhd = 719.3838 loglkhd = 657.3643 loglkhd = 549.7155
AIC = −2261.4357 AIC = −1432.7676 AIC = −1308.7287 AIC = −1093.431

Student-t ν = 1 ν = 1 ν = 1 ν = 1
θ1 = −0.01 θ1 = −0.0232 θ1 = −0.1218 θ1 = −0.1614
θ2 = 0.03 θ2 = 0.1336 θ2 = 0.0796 θ2 = 0.1699
θ3 = −0.06 θ3 = −0.0678 θ3 = −0.1563 θ3 = −0.2227
loglkhd = 1270.5773 loglkhd = 832.3876 loglkhd = 679.7185 loglkhd = 563.4594
AIC = −2533.1546 AIC = −1656.7753 AIC = −1351.4369 AIC = −1118.9189

Table 6.14: Trivariate copulas fitted to monthly changes in actual 1Y, 5Y and
10Y swap rates.

Copula MLEs
Clayton θ = 1.8162

loglkhd = 141.0854
AIC = −284.1708

Frank θ = 5.6891
loglkhd = 61.9667
AIC = −125.9334

Gumbel θ = 2.1144
loglkhd = 146.4812
AIC = −294.9624

Gaussian θ1 = 0.7643
θ2 = 0.2693
θ3 = 0.8960
loglkhd = 275.9155
AIC = −557.8310

Student-t ν = 7.0001
θ1 = 5.5122
θ2 = 3.4126
θ3 = 2.2403
loglkhd = 281.1129
AIC = −570.2258
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Table 6.15: Trivariate copulas fitted to monthly changes in actual 1Y, 5Y and
10Y US Treasury bond yields.

Copula MLEs
Clayton θ = 2.5326

loglkhd = 772.9970
AIC = −1547.9939

Frank θ = 8.9333
loglkhd = 501.1447
AIC = −1004.2893

Gumbel θ = 2.7699
loglkhd = 889.7526
AIC = −1781.5052

Gaussian θ1 = 0.5196
θ2 = 0.3243
θ3 = 0.6093
loglkhd = 1149.4969
AIC = −2304.9938

Student-t ν = 4.0000
θ1 = 0.5290
θ2 = 2.8414
θ3 = 3.7820
loglkhd = 1209.9819
AIC = −2427.9637
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Figure 6.8: Correlations between daily moves in US swap rates of various terms
(July 2000 to June 2014).
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6.12 Conclusions

Several key conclusions can be drawn from the preceding analysis. Firstly, the
market model composed of the CIR short rate and the MMM discounted GOP
appears to best fit the historical data and best explain the level of ten-year bond
yields3. Secondly, the long-term asymptotic forward rate is approximately 8.1%,
this being implied by the best fitting market model. Thirdly, the considered mar-
ket models give rise to leptokurtic forward rates and swap rates, a stylised feature
of the interest rate market. Lastly, the correlation and dependency structure of
forward rates and swap rates is modelled best by market models where the dis-
counted GOP is modelled under the MMM. Improvements in the correlation and
dependence structure of forward and swap rates under the market models could
be made by adding a third factor, whereby the mean reverting level is modelled
by a stochastic process such as the Ornstein-Uhlenbeck process, as done in mod-
els of Hull and White [1994] and Chen [1996]. Alternatively, Platen and Rendek
[2009] have included a market activity component to the discounted GOP, which
gives desired stylised features.

3By inspecting the parameter values and their corresponding standard errors in Table 6.1,
it is clear that the parameters are well determined in these specific models and, therefore, the
models are not employing parameters which result in overfitting the data.



Chapter 7

Hedging Zero-Coupon Bonds

7.1 Introduction

In this chapter we describe the hedging strategy used to replicate the payoffs
of interest rate derivatives at maturity, in particular payoffs corresponding to a
zero-coupon bond and a swaption. Crucially, we calculate the cost of purchasing
a hedge portfolio at the outset of hedging the zero-coupon bond (ZCB), which
ensures that the ZCB payoff is affordable by the hedge strategy with high prob-
ability. We compute the costs of hedging ZCBs across the considered market
models and all ZCB terms to maturity and identify the best performing models1.

Pricing and hedging of long-dated derivative payoffs remains a difficult and un-
solved problem in financial and actuarial industries. Previous work on hedging
long-dated zero-coupon bonds was published in Platen [2006a] and Bruti-Liberati
and Platen [2010] where they make use of the growth optimal portfolio (GOP)
which is maximising the logarithmic utility of expected terminal wealth. Platen
employs the minimal market model (MMM) stock index dynamics to obtain low
cost replicating hedge portfolios for zero-coupon bonds. The analysis in the cur-
rent chapter extends this strategy to market models with stochastic interest rates.
It is our intention to demonstrate that for market models employing the MMM
discounted GOP the costs of hedging are significantly cheaper than for those
employing the Black-Scholes form of the discounted GOP.

The market models examined here are specified by the stochastic differential
equation (SDE) of the short rate rt and the SDE of the discounted GOP S̄δ∗

t .
The short rate models considered are the deterministic short rate model, where
the short rate is known for all times,

rt = r(t), (7.1.1)

1The results have been published in Fergusson and Platen [2014a]

191
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the Vasicek short rate model described by Vasicek [1977],

drt = κ(r̄ − rt)dt+ σdZt, (7.1.2)

the Cox-Ingersoll-Ross (CIR) short rate model described by Cox et al. [1985],

drt = κ(r̄ − rt)dt+ σ
√
rtdZt (7.1.3)

and the 3/2 short rate model described by Ahn and Gao [1999],

drt = (prt + qr2t )dt+ σr
3/2
t dZt. (7.1.4)

The discounted GOP models which are considered are the Black-Scholes model,
equivalently the lognormal stock price model, employed by Black and Scholes
[1973]

dS̄δ∗
t = S̄δ∗

t θ2dt+ S̄δ∗
t θdWt, (7.1.5)

and the minimal market model described by Platen [2001]

dS̄δ∗
t = ᾱtdt+

√
ᾱtS̄

δ∗
t dWt, (7.1.6)

where ᾱt = ᾱ0 exp(ηt). Here Zt and Wt are independent Wiener processes, r(t)
is the realised value of the short rate at time t and r̄, κ, σ, p, q, θ, ᾱ0 and η are
constants.

The fair prices of ZCBs under each market model are given in Section 5.2.

7.2 Description of Methodology

In respect of a derivative security, a hedging strategy is a trading strategy in-
volving a portfolio of hedge securities whose value at a prescribed payoff date is
intended to replicate the value of the derivative security.

When the market values of securities are driven by a deterministic short rate and
stochastic discounted GOP then we have only one random factor in our market
and we can hedge a suitable derivative security using a managed self-financing
portfolio π of cash (the savings account) and the GOP. The value of the hedge
portfolio can be written as

V
(π)
t = δ

(0)
t Bt + δ

(1)
t Sδ∗

t , (7.2.1)

where δ
(0)
t is the number of units of the cash account and δ

(1)
t is the number of

units of the GOP account at time t ∈ [0, T ]. The respective fractions invested

at time t ≥ 0 are πt = (π
(0)
t , π

(1)
t ) with π

(0)
t = δ

(0)
t Bt/V

(π)
t and π

(1)
t = 1 − π

(0)
t =

δ
(1)
t Sδ∗

t /V
(π)
t . We have some flexibility in our choice of hedge securities and we

could have used instead the savings account and futures on the GOP, for example.
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When the market values of securities are driven by a stochastic short rate and a
stochastic discounted GOP then we have two random factors in our market and
we can hedge any derivative security using a managed portfolio of cash Bt, the
GOP index Sδ∗

t and, for instance, a (T − t)-year zero-coupon bond P (t, T ). The
value of the hedge portfolio π can be written as

V
(π)
t = δ

(0)
t Bt + δ

(1)
t Sδ∗

t + δ
(2)
t P (t, T ), (7.2.2)

where δ
(0)
t and δ

(1)
t describe numbers of units as before, and δ

(2)
t is the number of

units of the T -maturity zero-coupon bond at time t ∈ [0, T ].

The cost Ct at time t of hedging a derivative since initial time 0 is equal to the
cost of the derivative at time t less any gains from trading the hedge portfolio.
We write

Ct = V
δHT
t −

∫ t

0

δ(0)u dBu −
∫ t

0

δ(1)u dSδ∗
u = V

δHT
t −

∫ t

0

dV (π)
u (7.2.3)

where V
δHT
t is the value of the derivative at time t and V

(π)
t is the value of the

hedge portfolio at time t.

This equation can be rewritten as

Ct = V
δHT
t − (V

(π)
t − V

(π)
0 ) (7.2.4)

= V
(π)
0 + (V

δHT
t − V

(π)
t ) (7.2.5)

and we can see that the cost of hedging can be expressed alternatively as the
cost of the hedge portfolio at outset, namely V

(π)
0 , plus additional funds needed

at time t to purchase the derivative in excess of the value of the hedge portfolio.

At the payoff date T the cost of hedging is

CT = V
δHT
T −

∫ T

0

dV (π)
u . (7.2.6)

Because we are interested in the real-world price of hedging, as given in (5.1.1),
we consider the benchmarked cost of hedging, computed as

ĈT =
CT

Sδ∗
T

= V̂
δHT
T −

∫ T

t

dV̂ (π)
u = V̂

(π)
t + V̂

δHT
T − V̂

(π)
T . (7.2.7)

According to (5.1.1) the average of the benchmarked costs of hedging performed
over a large number of backtests ought to approximate the real-world price of the
derivative with payoff HT .

Given a fully specified model with known parameters, we backtest hedging of the
derivative over the time interval [0, T ] by setting the n− 1 rebalancing times

t1 < t2 < ... < tn−1
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satisfying 0 = t0 < t1 and tn−1 < tn = T . The hedge portfolio V (π) is adjusted at
the rebalancing times and is computed iteratively using the formula

V
(π)
ti = δ

(0)
ti−1

Bti + δ
(1)
ti−1

Sδ∗
ti
+ δ

(2)
ti−1

P (ti, T ) (7.2.8)

for i = 1, 2, . . . , n with initial condition

V
(π)
0 = V

δHT
0 , (7.2.9)

where, for i = 1, 2, . . . n− 1, the numbers of units held in the GOP and the ZCB
at time ti are computed as

δ
(1)
ti =

∂

∂Sδ∗
s

V
δHT
s (rs, S

δ∗
s )
∣∣
s=ti

− δ
(2)
ti

∂

∂Sδ∗
s

P (s, T )
∣∣
s=ti

(7.2.10)

δ
(2)
ti =

∂

∂rs
V

δHT
s (rs, S

δ∗
s )
∣∣
s=ti

/
∂

∂rs
P (s, T )

∣∣
s=ti

and the number of units held in the cash account at time ti is computed as

δ
(0)
ti =

(
V

(π)
ti − δ

(1)
ti Sδ∗

ti
− δ

(2)
ti P (ti, T )

)
/Bti . (7.2.11)

7.3 Assessing a Hedging Strategy

A perfect hedge strategy is one for which

Ct = V
(π)
0 (7.3.1)

for all times t ∈ [0, T ]. That is to say, the hedge portfolio replicates the value of
the derivative over the life of the hedging strategy.

However, perfect hedging is not possible for many reasons and we are interested
in strategies which generate the payoff at expiry date T , with “minimum” cost.

Therefore, for a given market model, a given data set and a given ZCB term to
maturity we compute the benchmarked costs of hedging a ZCB at maturity over
all possible periods within the data set. From this the p-th percentile of the set
of benchmarked costs is computed. The best hedge strategy is derived from the
market model which gives the minimum percentile benchmarked cost of hedging.
Consequently, our task in this article is to compare the percentile benchmarked
costs of hedging across all mentioned market models.

7.4 Hedge Securities

As stated earlier, when the market values of securities are driven by a stochastic
short rate and a stochastic discounted GOP, we have two random factors in
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our market and we can theoretically hedge a suitable derivative security using
a managed portfolio of cash, the GOP index and a ten year coupon bond, for
example. Because liquidity is essential for any hedge strategy we would choose
to hedge using a managed portfolio of cash, S&P 500 Index Futures and 10Y US
Treasury Bonds.

7.5 Market Data and Fitting the Models

The data set used for backtesting has been the annual series of US 1Y deposit
rates, 10Y treasury bond yields and S&P Composite Stock Index from 1871 to
2012, shown in Chapter 26 of Shiller [1989] and subsequently updated on Shiller’s
website http://aida.wss.yale.edu/ shiller/data/chapt26.xls (see Data Set A in Sec-
tion L.1 of Appendix L). The 141 year length of this data series makes it a most
useful series for analysing the hedging of long-dated ZCBs because we are able
to backtest any given hedge strategy over the large term to maturity of the ZCB.
Also, because there are 10Y bond yields accompanying the 1Y deposit rates and
stock index values we are able to construct and backtest a hedge portfolio which
immunises against movements in both the stock index and short rate. The MLEs
of the parameters of all models fitted to US data are shown in Table 6.1.

The backtests of the hedging strategies were performed using in-sample estimation
of parameters. Of course in reality one would backtest a hedge strategy using out-
of-sample parameter estimates but by employing in-sample estimates any poorly
performing model is readily falsified.

7.6 Hedging Costs under a Deterministic Short

Rate

We present the costs of hedging ZCBs under deterministic short rate models.

In Table 7.1 the percentile benchmarked costs of hedging ZCBs of various terms
to maturity and percentiles are shown for the deterministic short rate and Black-
Scholes discounted GOP model.

In Table 7.2 the percentile benchmarked costs of hedging ZCBs of various terms
to maturity and percentiles are shown for the deterministic short rate and MMM
discounted GOP model.

For hedging ZCBs with terms to maturity shorter than 10 years the BS discounted
GOP model and the MMM discounted GOP model perform similarly. At or
beyond a 10 year term to maturity the MMM discounted GOP model significantly
outperforms the BS discounted GOP model. For example, hedging a 50Y ZCB at
the 99-th percentile incurs a cost of 0.068859 under the MMM discounted GOP
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model, which is about a quarter of the corresponding cost of 0.24457 under the
BS discounted GOP model.

7.7 Hedging Costs under a Vasicek Short Rate

We present the costs of hedging ZCBs under Vasicek short rate models.

In Table 7.3 the percentile benchmarked costs of hedging ZCBs of various terms to
maturity and percentiles are shown for the Vasicek short rate and Black-Scholes
discounted GOP model.

In Table 7.4 the percentile benchmarked costs of hedging ZCBs of various terms
to maturity and percentiles are shown for the Vasicek short rate and MMM
discounted GOP model.

For hedging ZCBs with terms to maturity at or shorter than 15 years the BS
discounted GOP model and the MMM discounted GOP model perform similarly.
However, beyond a 15 year term to maturity the MMM discounted GOP model
significantly outperforms the BS discounted GOP model. In particular, the cost of
hedging a 50Y ZCB at the 99-th percentile is 0.12039 under the MMM discounted
GOP model, which is about two-thirds of the corresponding cost of 0.17771 under
the BS discounted GOP model.

7.8 Hedging Costs under a CIR Short Rate

We present the costs of hedging ZCBs under CIR short rate models.

In Table 7.5 the percentile benchmarked costs of hedging ZCBs of various terms
to maturity and percentiles are shown for the CIR short rate and Black-Scholes
discounted GOP model.

In Table 7.6 the percentile benchmarked costs of hedging ZCBs of various terms to
maturity and percentiles are shown for the CIR short rate and MMM discounted
GOP model.

For terms to maturity shorter than 15 years the BS discounted GOP model and
the MMM discounted GOP model provide similar costs of hedging ZCBs. How-
ever, at or beyond a 15 year term to maturity the MMM discounted GOP model
significantly outperforms the BS discounted GOP model. For example, the cost
of hedging a ZCB is significantly reduced for a 50 year term to maturity at the
99-th percentile, the cost being 0.13086 under the MMM discounted GOP model,
which is about a half of the corresponding cost of 0.23041 under the BS discounted
GOP model.
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7.9 Hedging Costs under a 3/2 Short Rate

We present the costs of hedging ZCBs under 3/2 short rate models.

In Table 7.7 the percentile benchmarked costs of hedging ZCBs of various terms
to maturity and percentiles are shown for the 3/2 short rate and Black-Scholes
discounted GOP model.

In Table 7.8 the percentile benchmarked costs of hedging ZCBs of various terms to
maturity and percentiles are shown for the 3/2 short rate and MMM discounted
GOP model.

For ZCB terms to maturity at or shorter than 10 years the BS discounted GOP
model and the MMM discounted GOP model provide similar costs of hedging
ZCBs. But beyond a term to maturity of 10 years the MMM discounted GOP
model significantly outperforms the BS discounted GOP model. For example, the
cost of hedging a 50Y ZCB at the 99-th percentile is 0.14498 under the MMM
discounted GOP model, which is roughly a quarter of the corresponding cost of
0.51234 under the BS discounted GOP model.

7.10 Conclusions on Hedging ZCBs

In Figure 7.1 the 99-th percentile costs of hedging ZCBs of varying terms to
maturity are graphed. Each model for which the discounted GOP is modelled
by the MMM has significantly lower costs of hedging long-dated ZCBs, that is,
ZCBs with maturities beyond 15 years. In particular, we find that among the
considered market models having a stochastic short rate, the Vasicek short rate
and MMM discounted GOP model provides the cheapest hedging strategy for
long-dated ZCBs. In Chapter 8, Sections 8.2, 8.3 and 8.4 we compare model
performances on hedging swaptions.
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Figure 7.1: Percentile costs of hedging ZCBs of varying terms to maturity.
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Term to Maturity of ZCB (Years) 

Deterministic-SR & BS-DGOP Deterministic-SR & MMM-DGOP
Vasicek-SR & BS-DGOP Vasicek-SR & MMM-DGOP
CIR-SR & BS-DGOP CIR-SR & MMM-DGOP
3/2-SR & BS-DGOP 3/2-SR & MMM-DGOP

Table 7.1: Percentile costs of hedging ZCBs under a deterministic short rate &
Black-Scholes discounted GOP based on US data 1871 - 2012.

Term to Maturity 99-th 95-th 90-th 85-th 80-th
of ZCB Percentile Percentile Percentile Percentile Percentile

1Y 0.99473 0.99256 0.99 0.98445 0.97523
2Y 0.98889 0.98546 0.97681 0.96485 0.95167
3Y 0.983 0.97716 0.96162 0.94172 0.92744
4Y 0.97626 0.96988 0.94909 0.92018 0.89415
5Y 0.96928 0.96266 0.94193 0.89956 0.86139
7Y 0.95547 0.94773 0.91388 0.86023 0.81143
10Y 0.93309 0.92335 0.86542 0.80451 0.75071
15Y 0.88791 0.85433 0.79846 0.71259 0.65539
20Y 0.80645 0.78216 0.7149 0.65548 0.58733
25Y 0.71779 0.67893 0.64009 0.58695 0.49921
30Y 0.60825 0.59331 0.5553 0.50713 0.43517
40Y 0.40573 0.39554 0.3682 0.34926 0.32832
50Y 0.24457 0.2396 0.23292 0.23088 0.21696
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Table 7.2: Percentile costs of hedging ZCBs under a deterministic short rate &
MMM discounted GOP based on US data 1871 - 2012.

Term to Maturity 99-th 95-th 90-th 85-th 80-th
of ZCB Percentile Percentile Percentile Percentile Percentile

1Y 0.99473 0.99256 0.99 0.98445 0.97523
2Y 0.98889 0.98546 0.97681 0.96485 0.95167
3Y 0.98302 0.97716 0.96162 0.94172 0.92744
4Y 0.97649 0.96952 0.94906 0.92013 0.89414
5Y 0.96964 0.95494 0.92906 0.89953 0.86139
7Y 0.9499 0.91168 0.88088 0.84826 0.81098
10Y 0.89031 0.83149 0.79108 0.75737 0.73169
15Y 0.74213 0.67106 0.61237 0.57877 0.56427
20Y 0.64319 0.49652 0.4638 0.41004 0.38913
25Y 0.52576 0.3897 0.31444 0.29971 0.29182
30Y 0.38523 0.29224 0.22849 0.22021 0.21614
40Y 0.16308 0.12845 0.11989 0.11917 0.11351
50Y 0.068659 0.065715 0.05967 0.057967 0.054139

Table 7.3: Percentile costs of hedging ZCBs under a Vasicek short rate & Black-
Scholes discounted GOP based on US data 1871 - 2012.

Term to Maturity 99-th 95-th 90-th 85-th 80-th
of ZCB Percentile Percentile Percentile Percentile Percentile

1Y 1.0013 0.98871 0.98544 0.98271 0.97847
2Y 0.99264 0.9739 0.96921 0.9637 0.9467
3Y 0.97404 0.95791 0.94726 0.93674 0.9253
4Y 0.96205 0.93717 0.92472 0.91721 0.90395
5Y 0.9355 0.91767 0.90768 0.89717 0.87567
7Y 0.88889 0.87213 0.86141 0.83933 0.82671
10Y 0.8127 0.79847 0.78845 0.77038 0.74663
15Y 0.67968 0.67295 0.66559 0.649 0.63895
20Y 0.56756 0.55927 0.55355 0.54078 0.52354
25Y 0.46926 0.46426 0.4608 0.44949 0.43604
30Y 0.38976 0.38519 0.38057 0.37245 0.36232
40Y 0.26676 0.2641 0.26108 0.25494 0.24617
50Y 0.17771 0.17666 0.17453 0.17411 0.16753
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Table 7.4: Percentile costs of hedging ZCBs under a Vasicek short rate & MMM
discounted GOP based on US data 1871 - 2012.

Term to Maturity 99-th 95-th 90-th 85-th 80-th
of ZCB Percentile Percentile Percentile Percentile Percentile

1Y 1.0051 0.99447 0.9874 0.98391 0.97682
2Y 1.0014 0.98466 0.97472 0.96521 0.94847
3Y 0.99603 0.96746 0.95574 0.93713 0.92878
4Y 0.98577 0.95668 0.93736 0.92271 0.9063
5Y 0.95988 0.94028 0.92605 0.91038 0.88276
7Y 0.91948 0.89163 0.88089 0.85599 0.83274
10Y 0.87379 0.81513 0.77244 0.75994 0.7546
15Y 0.6831 0.65907 0.64572 0.63447 0.6218
20Y 0.54225 0.529 0.51811 0.50842 0.49915
25Y 0.42601 0.41738 0.40556 0.39134 0.38235
30Y 0.3573 0.33452 0.3185 0.29529 0.2832
40Y 0.22491 0.18573 0.17552 0.16199 0.14944
50Y 0.12039 0.1056 0.090466 0.084736 0.076245

Table 7.5: Percentile costs of hedging ZCBs under a CIR short rate & Black-
Scholes discounted GOP based on US data 1871 - 2012.

Term to Maturity 99-th 95-th 90-th 85-th 80-th
of ZCB Percentile Percentile Percentile Percentile Percentile

1Y 1.0001 0.98956 0.98631 0.98302 0.97828
2Y 0.99272 0.97622 0.97054 0.9648 0.94575
3Y 0.97723 0.96202 0.95097 0.93704 0.92666
4Y 0.96774 0.94217 0.93011 0.92037 0.90335
5Y 0.9425 0.92712 0.91128 0.90274 0.87842
7Y 0.90316 0.88562 0.86989 0.84718 0.82948
10Y 0.83723 0.82484 0.80931 0.78952 0.75835
15Y 0.72898 0.72066 0.70421 0.67551 0.65364
20Y 0.62868 0.61946 0.60705 0.58503 0.56702
25Y 0.53487 0.52786 0.5194 0.50455 0.47967
30Y 0.45474 0.44968 0.44021 0.42824 0.40364
40Y 0.32668 0.32162 0.31693 0.30465 0.29126
50Y 0.23041 0.22724 0.22549 0.22036 0.20748
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Table 7.6: Percentile costs of hedging ZCBs under a CIR short rate & MMM
discounted GOP based on US data 1871 - 2012.

Term to Maturity 99-th 95-th 90-th 85-th 80-th
of ZCB Percentile Percentile Percentile Percentile Percentile

1Y 1.0033 0.99453 0.98864 0.98375 0.97739
2Y 1.0006 0.98628 0.97576 0.96508 0.94935
3Y 0.99508 0.971 0.95914 0.93814 0.92994
4Y 0.9886 0.96117 0.94117 0.92378 0.90995
5Y 0.96787 0.94869 0.93089 0.90962 0.88337
7Y 0.93207 0.90247 0.89243 0.86901 0.83723
10Y 0.8765 0.82884 0.79637 0.7777 0.75824
15Y 0.68994 0.67036 0.65193 0.6415 0.62889
20Y 0.55194 0.53916 0.52856 0.5136 0.50601
25Y 0.43752 0.42795 0.41449 0.40905 0.39516
30Y 0.3682 0.34461 0.33042 0.30899 0.29755
40Y 0.23746 0.19375 0.17902 0.17116 0.16419
50Y 0.13086 0.11298 0.099064 0.093498 0.083863

Table 7.7: Percentile costs of hedging ZCBs under a 3/2 short rate & Black-
Scholes discounted GOP based on US data 1871 - 2012.

Term to Maturity 99-th 95-th 90-th 85-th 80-th
of ZCB Percentile Percentile Percentile Percentile Percentile

1Y 0.99498 0.99158 0.98821 0.98359 0.97967
2Y 0.98935 0.98128 0.97437 0.96548 0.94832
3Y 0.98466 0.96941 0.96053 0.94512 0.92963
4Y 0.97618 0.95459 0.94238 0.93253 0.91251
5Y 0.96757 0.94845 0.93463 0.91505 0.88228
7Y 0.93604 0.91496 0.89838 0.86453 0.83134
10Y 0.89952 0.88432 0.84687 0.81012 0.78084
15Y 0.85513 0.83077 0.77158 0.71565 0.67678
20Y 0.81023 0.77288 0.71775 0.6346 0.58291
25Y 0.76106 0.71113 0.6639 0.57766 0.51403
30Y 0.70388 0.65474 0.60165 0.52649 0.45337
40Y 0.59249 0.54902 0.50104 0.44657 0.37547
50Y 0.51234 0.47976 0.44259 0.39518 0.33001
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Table 7.8: Percentile costs of hedging ZCBs under a 3/2 short rate & MMM
discounted GOP based on US data 1871 - 2012.

Term to Maturity 99-th 95-th 90-th 85-th 80-th
of ZCB Percentile Percentile Percentile Percentile Percentile

1Y 0.99785 0.99392 0.98956 0.98369 0.97805
2Y 0.995 0.98708 0.97712 0.96662 0.94873
3Y 0.99639 0.97634 0.96354 0.94541 0.93078
4Y 0.98765 0.96792 0.95093 0.93281 0.91262
5Y 0.9722 0.95564 0.94524 0.92132 0.89381
7Y 0.95036 0.92299 0.90941 0.86955 0.83559
10Y 0.88323 0.86718 0.82947 0.80948 0.77803
15Y 0.7512 0.71025 0.68236 0.67631 0.65572
20Y 0.59172 0.55556 0.54667 0.53749 0.52085
25Y 0.47171 0.44381 0.43052 0.41659 0.4072
30Y 0.37711 0.35252 0.34447 0.32434 0.3118
40Y 0.24959 0.20988 0.20229 0.19247 0.1888
50Y 0.14498 0.12691 0.12073 0.11236 0.10697



Chapter 8

Hedging Swaptions

8.1 Introduction

Swaptions are interest rate derivatives which protect the owner of such an asset
against a rise or fall in swap rates and are therefore used by many pension funds
and life insurers seeking to hedge their exposure to interest rates. For example,
low interest rates may be bad for some life insurers because it becomes expensive
to invest in fixed income products which match their bond-like liabilities.

In this chapter we describe the hedging strategy used to replicate the payoff
of a 3%-strike payer swaption at expiry having an underlying semi-annual ten-
year swap and unit notional amount. As in Section 7.1 we calculate the cost
of purchasing a hedge portfolio at the outset of hedging the swaption which
ensures that the swaption payoff is affordable by the hedge strategy with high
probability. We compute the costs of hedging swaptions across all market models
and all swaption times to expiry and identify the best performing models1. We
deliberately focus on swaptions having an underlying ten-year swap rate because
our US data set contains ten-year swap rates and therefore allows us to calculate
a payoff at expiration of the swaption.

We describe how we price swaptions in this chapter. The payoff at time T of a
payer swaption with unit notional and strike rate R is

HT =
n∑

i=1

P (T, Ti)(Ti − Ti−1)(SWT −R)+, (8.1.1)

where T1, . . . , Tn are the payment times of the underlying swap, SWT is the
corresponding swap rate at time T and we take T0 = T . This payoff is the same
as that of a put option on a coupon bond with coupon rate R and having strike

1The results have been published in Fergusson and Platen [2014a]
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price equal to one, that is,

HT =

(
1−

n∑
i=1

(R(Ti − Ti−1) + 1i=n)P (T, Ti)

)+

, (8.1.2)

see for example Hull [1997]. Here 1i=n denotes the indicator function which equals
one if i = n and zero otherwise.

8.1.1 Model with Black-Scholes Discounted GOP

Applying (5.1.1) to this payoff for the deterministic short rate and Black-Scholes
discounted GOP market model, the real-world swaption pricing formula simplifies
to the intrinsic value of the swaption, namely

V
δHT
t =

(
exp

{
−
∫ T0

t

rsds

}
−

n∑
i=1

(R(Ti − Ti−1) + 1i=n) exp

{
−
∫ Ti

t

rsds

})+

.

(8.1.3)

For a mean reverting Gaussian interest rate model Jamshidian [1989] proves that
the price of a coupon bond option with strike price K, and corresponding strike
rate R, is equal to the sum of options on constituent zero-coupon bonds each
having its strike price calculated from the common strike rate R. The derivation
of the formula relies on the observation that the monotonicity of the zero-coupon
bond price as a function of the short rate implies that the exercise short rate of
the portfolio of ZCBs is the same as each of the exercise short rates of the options
on the component ZCBs, see for example Hull and White [1990]. Jamshidian’s
formula suffices for the Vasicek short rate and Black-Scholes discounted GOP
model and in this instance we have the real-world swaption pricing formula

V
δHT
t =

n∑
i=1

(
R(Ti − Ti−1) + 1i=n

)(
− A(t, Ti) exp(−rtB(t, Ti))N(−d

(1)
i ) (8.1.4)

+ A(t, T ) exp(−rtB(t, T ))KiN(−d
(2)
i )
)
,

where A and B are given in (3.2.49) and (3.2.48) and d
(1)
i and d

(2)
i are given by

d
(1)
i =

1

σi

log

(
A(t, Ti) exp(−rtB(t, Ti))

A(t, T ) exp(−rtB(t, T ))Ki

)
+

1

2
σi (8.1.5)

d
(2)
i =

1

σi

log

(
A(t, Ti) exp(−rtB(t, Ti))

A(t, T ) exp(−rtB(t, T ))Ki

)
− 1

2
σi (8.1.6)

with σi given by

σi = σB(T, Ti)

√
1

2κ
(1− exp(−2κ(T − t))) (8.1.7)
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and Ki given by
Ki = A(T, Ti) exp(−xB(T, Ti)). (8.1.8)

Here x is the solution to the equation

1 =
n∑

i=1

(R(Ti − Ti−1) + 1i=n)A(T, Ti) exp(−xB(T, Ti)). (8.1.9)

8.1.2 Model with MMM Discounted GOP

Also, Jamshidian’s method can be adapted to the deterministic short rate and
MMM discounted GOP model giving the real-world swaption pricing formula

V
δHT
t =

n∑
i=1

(R(Ti − Ti−1) + 1i=n)

(
− Bt

BTi

(
χ2
0,λ(u

∗
i )− exp(−λ/2)

)
(8.1.10)

+
Bt

BTi

(
exp

(
− τi
1 + 2τi

λ

)
χ2
0,λ/(1+2τi)

((1 + 2τi)u
∗
i )− exp(−λ/2)

)

+Ki
Bt

BT

(
χ2
0,λ(u

∗
i )− exp(−λ/2)

))
,

where

u∗
i =

{
2
ϕTi

−ϕT

ϕT−ϕt
log 1

1−KiBTi
/BT

if 1 > KiBTi
/BT ;

∞ otherwise,
(8.1.11)

λ =
S̄δ∗
t

ϕT − ϕt

,

τi =
1

2

ϕT − ϕt

ϕTi
− ϕT

and Ki given by

Ki =
BT

BTi

(
1− exp(−xτi)

)
. (8.1.12)

Here x is the solution to the equation

1 =
n∑

i=1

(R(Ti − Ti−1) + 1i=n)
BT

BTi

(
1− exp(−xτi)

)
. (8.1.13)

We have used the notation χ2
ν,λ(x) to denote the cumulative distribution function

of a non-centrally distributed random variable having non-centrality parameter
λ and ν degrees of freedom.

However, for the Vasicek short rate and MMM discounted GOP model we resort
to the following theorem, previously stated in Section 5.6, but proven here.
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Theorem 8.1.1 Suppose that the short rate rt obeys Vasicek’s SDE (7.1.2) and
suppose the short rate and the discounted GOP S̄δ∗

t are independent. Then the
real-world price of a coupon bond put option is given by

V
δHT
t =

∫ ∞

0

λ

u
V

δHT
t (u)fχ2

4,λ
(u) du, (8.1.14)

where

V
δHT
t (u) =

n∑
i=1

((
R(Ti − Ti−1) + 1i=n

)
× (1− exp(−τiu)) (8.1.15)

×
(
− A(t, Ti) exp(−rtB(t, Ti))N(−d

(1)
i (u))

+ A(t, T ) exp(−rtB(t, T ))Ki(u)N(−d
(2)
i (u))

))
,

where A and B are given in (3.2.49) and (3.2.48) and d
(1)
i (u) and d

(2)
i (u) are

given by

d
(1)
i (u) =

1

σi

log

(
A(t, Ti) exp(−rtB(t, Ti))

A(t, T ) exp(−rtB(t, T ))Ki(u)

)
+

1

2
σi (8.1.16)

d
(2)
i (u) =

1

σi

log

(
A(t, Ti) exp(−rtB(t, Ti))

A(t, T ) exp(−rtB(t, T ))Ki(u)

)
− 1

2
σi (8.1.17)

with σi given by

σi = σB(T, Ti)

√
1

2κ
(1− exp(−2κ(T − t))) (8.1.18)

and Ki(u) given by

Ki(u) = A(T, Ti) exp(−xuB(T, Ti)). (8.1.19)

Here xu is the solution to the equation

1 =
n∑

i=1

(R(Ti − Ti−1) + 1i=n)(1− exp(−τiu))A(T, Ti) exp(−xuB(T, Ti)) (8.1.20)

and τi is given in (8.1.11).

Proof . See Appendix O.

8.2 Hedging Costs under a Deterministic Short

Rate

We present the costs of hedging swaptions under market models having a deter-
ministic short rate.
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In Table 8.1 the percentile benchmarked costs of hedging swaptions of various
terms to expiry and percentiles are shown for the deterministic short rate and
Black-Scholes discounted GOP model.

In Table 8.2 the percentile benchmarked costs of hedging swaptions of various
terms to expiry and percentiles are shown for the deterministic short rate and
MMM discounted GOP model.

For hedging swaptions with terms to expiry at or shorter than 15 years the BS
discounted GOP model and the MMM discounted GOP model perform similarly.
Beyond swaption terms to expiry of 15 years the MMM discounted GOP model
significantly outperforms the BS discounted GOP model. For example, hedging
a 50Y swaption at the 99-th percentile incurs a cost of 0.031698 under the MMM
discounted GOP model, which is roughly a quarter of the corresponding cost of
0.12804 under the BS discounted GOP model.

8.3 Hedging Costs under a Vasicek Short Rate

We present the costs of hedging swaptions under Vasicek short rate models.

In Table 8.3 the percentile benchmarked costs of hedging swaptions of various
terms to expiry and percentiles are shown for the Vasicek short rate and Black-
Scholes discounted GOP model.

In Table 8.4 the percentile benchmarked costs of hedging swaptions of various
terms to expiry and percentiles are shown for the Vasicek short rate and MMM
discounted GOP model.

For hedging swaptions with terms to expiry shorter than 7 years the MMM dis-
counted GOP model and the BS discounted GOP model perform similarly. How-
ever, at or beyond swaption terms to expiry of 7 year the MMM discounted
GOP model gives lower costs of hedging than that given by the Black-Scholes
discounted GOP model.

8.4 Conclusions on Hedging Swaptions

In Figure 8.1 the percentile costs of hedging swaptions of varying terms to expiry
are graphed. Each model for which the discounted GOP is modelled by the MMM
has lower costs of hedging long-dated swaptions. In particular, we find that
the Vasicek short rate and MMM discounted GOP model provides the cheapest
hedging strategy for long-dated swaptions. The market model composed of the
Vasicek short rate and MMM discounted GOP was also the best model for hedging
zero-coupon bonds in Section 7.10.
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Figure 8.1: Percentile costs of hedging swaptions of varying terms to expiry.
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Term to Expiry of Swaption (Years) 

Deterministic-SR & BS-DGOP Deterministic-SR & MMM-DGOP
Vasicek-SR & BS-DGOP Vasicek-SR & MMM-DGOP

Table 8.1: Percentile costs of hedging swaptions under a deterministic short rate
& Black-Scholes discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Swaption Percentile Percentile Percentile Percentile Percentile

1Y 0.48611 0.38003 0.31506 0.27528 0.20821
2Y 0.44005 0.33579 0.29116 0.25279 0.20378
3Y 0.4103 0.32175 0.27169 0.2263 0.19394
4Y 0.38279 0.29708 0.23888 0.19915 0.18646
5Y 0.36652 0.26234 0.22598 0.20163 0.18189
7Y 0.306 0.22095 0.20673 0.18653 0.17151
10Y 0.25529 0.21632 0.19987 0.17504 0.15582
15Y 0.24448 0.22389 0.20212 0.17748 0.14858
20Y 0.24321 0.22801 0.21065 0.16979 0.14934
25Y 0.24677 0.22338 0.21134 0.18003 0.15261
30Y 0.23978 0.22031 0.2028 0.17156 0.14505
40Y 0.18559 0.17428 0.17007 0.14754 0.12871
50Y 0.12804 0.11657 0.10833 0.1072 0.10012
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Table 8.2: Percentile costs of hedging swaptions under a deterministic short rate
& MMM discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Swaption Percentile Percentile Percentile Percentile Percentile

1Y 0.47544 0.37312 0.31076 0.25785 0.21711
2Y 0.42743 0.34451 0.29103 0.24248 0.19133
3Y 0.3962 0.31381 0.27224 0.22923 0.18142
4Y 0.37955 0.29242 0.25508 0.20019 0.18678
5Y 0.3588 0.26402 0.22649 0.19589 0.18186
7Y 0.31133 0.22974 0.2077 0.19088 0.17649
10Y 0.26536 0.22559 0.20246 0.19369 0.18583
15Y 0.23231 0.22473 0.21262 0.20827 0.18639
20Y 0.19473 0.18542 0.1812 0.17025 0.15873
25Y 0.15351 0.14079 0.12989 0.12479 0.11982
30Y 0.13853 0.11254 0.097728 0.084924 0.077339
40Y 0.084456 0.061148 0.046843 0.04057 0.036779
50Y 0.031698 0.025796 0.024644 0.02379 0.023148

Table 8.3: Percentile costs of hedging swaptions under a Vasicek short rate &
Black-Scholes discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Swaption Percentile Percentile Percentile Percentile Percentile

1Y 0.45536 0.35855 0.30709 0.24918 0.21407
2Y 0.39077 0.3202 0.27933 0.23469 0.19518
3Y 0.34031 0.29422 0.25338 0.22579 0.16604
4Y 0.28045 0.25812 0.22965 0.21069 0.15451
5Y 0.2584 0.24 0.20927 0.18904 0.13578
7Y 0.22588 0.19141 0.17426 0.15609 0.12294
10Y 0.19525 0.15656 0.12256 0.11395 0.098862
15Y 0.1472 0.12391 0.095036 0.074855 0.06858
20Y 0.10367 0.09483 0.075293 0.061024 0.053613
25Y 0.071685 0.06604 0.058912 0.049244 0.045019
30Y 0.0502 0.045495 0.043199 0.040535 0.038422
40Y 0.028523 0.027775 0.026965 0.025942 0.025264
50Y 0.018271 0.017919 0.017433 0.016915 0.016747
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Table 8.4: Percentile costs of hedging swaptions under a Vasicek short rate &
MMM discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Swaption Percentile Percentile Percentile Percentile Percentile

1Y 0.45291 0.34929 0.29782 0.26397 0.20662
2Y 0.41355 0.32358 0.27757 0.24985 0.18266
3Y 0.3485 0.28436 0.24871 0.21766 0.16344
4Y 0.31349 0.24955 0.22659 0.19592 0.15913
5Y 0.26693 0.23529 0.20533 0.17569 0.14353
7Y 0.19943 0.18343 0.17188 0.15911 0.11132
10Y 0.15752 0.13175 0.12518 0.1185 0.094938
15Y 0.10778 0.10203 0.084549 0.070733 0.060173
20Y 0.085821 0.076264 0.068102 0.052175 0.045619
25Y 0.060256 0.057678 0.049517 0.04639 0.037491
30Y 0.043094 0.041715 0.038363 0.034956 0.032305
40Y 0.024757 0.024145 0.0237 0.023144 0.022709
50Y 0.017216 0.01655 0.016265 0.016035 0.014939



Chapter 9

Hedging Index Options

9.1 Introduction

Long-term savings products with embedded guarantees on capital, such as vari-
able annuities, are popular among investors planning for retirement. Insurers
who write such products are interested in hedging their risk exposure either
through reinsurance, derivative markets or hedging programmes. Several frame-
works of accounting standards such as US GAAP, IASB and IFRS prescribe that
such products be marked-to-market and, therefore, hedging these products is
paramount for insurers seeking stable earnings and high credit ratings.

Using the benchmark approach of Platen [2002a], Platen [2006c] and Platen and
Heath [2006], pricing and hedging of long-dated claims on the S&P500 Total Re-
turn Index, when interest rates are deterministic, was demonstrated by Hulley
and Platen [2012]. In this chapter we extend this work under the benchmark ap-
proach to price and hedge long-dated equity index options when interest rates are
stochastic1. Some pricing and hedging of interest rate derivatives using the bench-
mark approach has been done by Fergusson and Platen [2014a]. The pricing and
hedging of equity options when share prices and interest rates are stochastic has
previously been done by Scott [1997] who also incorporates a jump diffusion com-
ponent and stochastic volatility to the stock price dynamics. Many approaches
to pricing equity options with models involving stochastic interest rates employ
inverse Fourier transforms, as done in Lee [2004]. However, in this chapter we
demonstrate less-expensive pricing and hedging of long-dated equity index op-
tions and provide approximate pricing formulae involving either the cumulative
distribution functions of the normal distribution or the non-central chi-squared
distribution. Furthermore, we compute the cost of hedging an equity index put
option, whose strike price is an exponential function of the spot price, for each
of the considered market models and various terms to expiry and identify the

1The results have been reported in Fergusson and Platen [2015a].
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best performing models as those involving a discounted GOP being modelled as
a squared Bessel process as in Platen’s minimal market model (MMM).

9.2 Description of Hedging Methodology

Beyond pricing of long-dated put options on an equity index, our aim is to demon-
strate cheaper costs of hedging such options. We focus on hedging a long-dated
put option expiring at time T , whose strike price K keeps pace with the level of
the equity index by way of the formula

K = Sδ∗
t exp

(
(η + μr)(T − t)

)
. (9.2.1)

Here t is the time at which the put option is written and η = 0.045486 is the net
market growth rate given in Table 6.1 and μr = 1

141

∑
s r(s) = 0.045726 is the

average of the one year continuously compounded cash rates over the 141 year
period of the data. The hedging strategy is described in Section 7.2.

9.3 Hedging Costs under a Deterministic Short

Rate

We present the costs of hedging GOP options under market models having a
deterministic short rate.

In Table 9.1 the percentile benchmarked costs of hedging GOP options of various
terms to expiry and levels of probability are shown for the deterministic short
rate and Black-Scholes discounted GOP model.

In Table 9.2 the percentile benchmarked costs of hedging GOP options of various
terms to expiry and levels of probability are shown for the deterministic short
rate and MMM discounted GOP model.

For hedging GOP options with terms to expiry up to 10 years, the BS discounted
GOP model and MMM discounted GOP model perform similarly. Beyond GOP
option terms to expiry of 10 years, the MMM discounted GOP model outperforms
the BS discounted GOP model. For example, hedging a 50Y GOP option at the
99% probability level incurs a cost of 5.0172 under the MMM discounted GOP
model, which is significantly less than the corresponding cost of 23.995 under the
BS discounted GOP model.

9.4 Hedging Costs under a Vasicek Short Rate

We present the costs of hedging GOP options under Vasicek short rate models.
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In Table 9.3 the percentile benchmarked costs of hedging GOP options of various
terms to expiry and levels of probability are shown for the Vasicek short rate and
Black-Scholes discounted GOP model.

In Table 9.4 the percentile benchmarked costs of hedging GOP options of various
terms to expiry and levels of probability are shown for the Vasicek short rate and
MMM discounted GOP model.

For hedging GOP options with terms to expiry up to 15 years, the BS discounted
GOP model and MMM discounted GOP model perform similarly. However, be-
yond 15 years the MMM discounted GOP model outperforms the BS discounted
GOP model. In particular, the cost of hedging a 50Y GOP option at the 99%
probability level is 10.537 under the MMM discounted GOP model, which is sig-
nificantly less than the corresponding cost of 17.235 under the BS discounted
GOP model.

9.5 Hedging Costs under a CIR Short Rate

We present the costs of hedging GOP options under CIR short rate models.

In Table 9.5 the percentile benchmarked costs of hedging GOP options of various
terms to expiry and levels of probability are shown for the CIR short rate and
Black-Scholes discounted GOP model.

In Table 9.6 the percentile benchmarked costs of hedging GOP options of various
terms to expiry and levels of probability are shown for the CIR short rate and
MMM discounted GOP model.

For GOP option terms to expiry up to 15 years, the BS discounted GOP model
provides a significantly lower cost of hedging than under the MMM discounted
GOP model. However, beyond a GOP option term to expiry of 15 years, the
MMM discounted GOP model outperforms the BS discounted GOP model. For
example, the cost of hedging a GOP option is significantly reduced for a 50 year
term to expiry at the 99% probability level, the cost being 12.392 under the MMM
discounted GOP model, which is significantly less than the corresponding cost of
22.827 under the BS discounted GOP model.

9.6 Hedging Costs under a 3/2 Short Rate

We present the costs of hedging GOP options under 3/2 short rate models.

In Table 9.7 the percentile benchmarked costs of hedging GOP options of various
terms to expiry and levels of probability are shown for the 3/2 short rate model
and Black-Scholes discounted GOP model.
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In Table 9.8 the percentile benchmarked costs of hedging GOP options of various
terms to expiry and levels of probability are shown for the 3/2 short rate model
and MMM discounted GOP model.

For GOP option terms to expiry shorter than 15 years the BS discounted GOP
model is about the same as or lower than the MMM discounted GOP model.
Beyond a GOP option term to expiry of 15 years the MMM discounted GOP
model outperforms the BS discounted GOP model. For example, the cost of
hedging a 50Y GOP option at the 99% probability level is 13.838 under the
MMM discounted GOP model, which is significantly less than the corresponding
cost of 51.438 under the BS discounted GOP model.

9.7 Conclusions on Hedging Index Options

In Figure 9.1 the percentile costs of hedging GOP options of varying terms to
expiry are graphed. Each model for which the discounted GOP is modelled by
the MMM has significantly cheaper costs of hedging long-dated GOP options.
In particular, we find that among the models having a stochastic short rate,
the Vasicek short rate and MMM discounted GOP model provides the cheapest
hedging strategy for long-dated GOP put options. We remark on the effect of
stochastic versus deterministic interest rates that Jensen’s Inequality gives

E

(
exp
(
−
∫ T

t

rs ds
))

≥ exp

(
− E
( ∫ T

t

rs ds
))

, (9.7.1)

since the function f(x) = exp(−x) is convex. This indicates what we have also
seen and we see that stochastic interest rates will give rise to higher derivative
prices than those from deterministic interest rates if everything else is modelled
analogously. Improved MMM versions of GOP models with stochastic market
volatility as in Platen and Rendek [2012b] can most likely improve results even
further, in particular, for the shorter maturities. Forthcoming work will demon-
strate this in detail.
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Figure 9.1: Percentile Costs of Hedging GOP Put Options of Varying Terms to
Expiry
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Table 9.1: Percentile costs of hedging put options under a deterministic short
rate & Black-Scholes discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Put Option Percentile Percentile Percentile Percentile Percentile

1Y 0.27397 0.20183 0.18254 0.15424 0.13648
2Y 0.39842 0.29176 0.24874 0.22419 0.20839
3Y 0.44751 0.36636 0.34749 0.30787 0.29391
4Y 0.56623 0.48567 0.43258 0.41133 0.38396
5Y 0.68747 0.60918 0.54247 0.50127 0.46287
7Y 0.94346 0.89324 0.82469 0.73077 0.66711
10Y 1.4014 1.3563 1.2211 1.0961 1.0314
15Y 2.5887 2.4553 2.2317 1.9554 1.7858
20Y 4.184 3.9995 3.5928 3.2131 2.8099
25Y 6.3033 5.8811 5.5006 4.9965 4.1317
30Y 8.76 8.5493 7.9183 7.1568 6.0602
40Y 15.45 15.067 13.972 13.166 12.26
50Y 23.995 23.444 22.838 22.538 21.216

Table 9.2: Percentile costs of hedging put options under a deterministic short
rate & MMM discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Put Option Percentile Percentile Percentile Percentile Percentile

1Y 0.26256 0.20971 0.17928 0.15455 0.13933
2Y 0.38844 0.28898 0.25646 0.22633 0.21036
3Y 0.44883 0.37276 0.34775 0.30562 0.28377
4Y 0.55028 0.50237 0.43545 0.41342 0.37323
5Y 0.6583 0.60488 0.54859 0.50968 0.45911
7Y 0.8764 0.82385 0.77834 0.73707 0.68101
10Y 1.2785 1.1621 1.0663 1.0022 0.95727
15Y 1.9878 1.7257 1.4987 1.3902 1.3662
20Y 3.5324 2.1929 1.7767 1.5438 1.4853
25Y 4.7702 2.117 1.9963 1.8997 1.8677
30Y 5.5783 2.6459 2.5039 2.4681 2.2429
40Y 3.8298 3.6076 3.5365 2.1097 1.3734
50Y 5.0172 3.217 2.3311 1.8324 1.2442
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Table 9.3: Percentile costs of hedging put options under a Vasicek short rate &
Black-Scholes discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Put Option Percentile Percentile Percentile Percentile Percentile

1Y 0.26209 0.20057 0.18518 0.15539 0.1384
2Y 0.38887 0.29589 0.25043 0.22619 0.2102
3Y 0.42445 0.38483 0.33276 0.30434 0.28799
4Y 0.56939 0.47183 0.42084 0.40336 0.36581
5Y 0.73917 0.5589 0.50985 0.49118 0.45009
7Y 0.9217 0.75279 0.72856 0.69505 0.67038
10Y 1.1019 1.0746 1.0463 1.0302 0.98135
15Y 1.7703 1.7526 1.7253 1.6592 1.6007
20Y 2.6505 2.6003 2.5506 2.4401 2.3668
25Y 3.7675 3.7148 3.6954 3.5111 3.411
30Y 5.2499 5.1718 5.127 4.9874 4.8277
40Y 9.7301 9.6595 9.5639 9.3504 9.0286
50Y 17.235 17.059 16.905 16.788 16.218

Table 9.4: Percentile costs of hedging put options under a Vasicek short rate &
MMM discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Put Option Percentile Percentile Percentile Percentile Percentile

1Y 0.26891 0.21077 0.18833 0.15075 0.13911
2Y 0.34535 0.29305 0.26402 0.23253 0.21133
3Y 0.47236 0.37087 0.35022 0.3161 0.29035
4Y 0.59532 0.49272 0.43524 0.41383 0.3879
5Y 0.70438 0.59369 0.53894 0.50715 0.46685
7Y 0.9257 0.7902 0.75692 0.71941 0.69043
10Y 1.3062 1.089 1.0271 0.99164 0.96337
15Y 1.8235 1.6769 1.595 1.528 1.4794
20Y 2.4199 2.3152 2.2524 2.2031 2.1564
25Y 3.1984 3.153 2.9989 2.8215 2.7167
30Y 4.5578 4.2153 3.9152 3.4983 3.341
40Y 7.7437 6.1303 5.7859 5.2006 4.6009
50Y 10.537 8.7545 7.3966 6.9161 6.0211
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Table 9.5: Percentile costs of hedging put options under a CIR short rate &
Black-Scholes discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Put Option Percentile Percentile Percentile Percentile Percentile

1Y 0.26361 0.20099 0.18623 0.15548 0.13815
2Y 0.38399 0.29298 0.2529 0.22631 0.20976
3Y 0.42767 0.38364 0.3379 0.30484 0.28674
4Y 0.57874 0.47589 0.42838 0.413 0.37579
5Y 0.7401 0.57269 0.5157 0.50415 0.4559
7Y 0.91691 0.76812 0.74329 0.72131 0.67822
10Y 1.1679 1.1198 1.0954 1.0659 1.0108
15Y 1.9723 1.9333 1.8381 1.7431 1.6647
20Y 3.0453 2.9837 2.9111 2.6859 2.5507
25Y 4.4507 4.36 4.2831 4.0354 3.7726
30Y 6.3147 6.2158 6.0923 5.7914 5.5315
40Y 12.208 12.021 11.877 11.386 10.894
50Y 22.827 22.505 22.362 21.817 20.354

Table 9.6: Percentile costs of hedging put options under a CIR short rate &
MMM discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Put Option Percentile Percentile Percentile Percentile Percentile

1Y 0.38674 0.27452 0.22708 0.1934 0.17269
2Y 0.52285 0.41077 0.35496 0.32561 0.28225
3Y 0.64996 0.55456 0.45693 0.39492 0.36086
4Y 0.81779 0.62385 0.57292 0.53832 0.46281
5Y 0.85147 0.79164 0.68805 0.60938 0.53912
7Y 1.1763 0.98336 0.88747 0.83298 0.7417
10Y 1.5361 1.3964 1.3001 1.131 1.0229
15Y 2.0624 1.9721 1.8385 1.7358 1.6192
20Y 2.6329 2.4387 2.3819 2.3443 2.2961
25Y 3.4261 3.3294 3.1933 3.1383 3.0093
30Y 4.9173 4.5382 4.3104 4.0591 3.8871
40Y 8.6307 6.8582 6.2608 6.0561 5.803
50Y 12.392 10.563 9.1388 8.5686 7.5826
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Table 9.7: Percentile costs of hedging put options under a 3/2 short rate &
Black-Scholes discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Put Option Percentile Percentile Percentile Percentile Percentile

1Y 0.2664 0.21034 0.18632 0.15655 0.13641
2Y 0.383 0.29462 0.2604 0.22775 0.21844
3Y 0.44263 0.37739 0.34415 0.32066 0.29338
4Y 0.60574 0.494 0.43825 0.41616 0.3963
5Y 0.7494 0.6122 0.53268 0.51847 0.48492
7Y 0.89428 0.82897 0.80913 0.75714 0.70008
10Y 1.3188 1.2501 1.1929 1.1476 1.0268
15Y 2.4691 2.3606 2.1138 1.8398 1.7279
20Y 4.1914 3.946 3.5957 2.8854 2.6338
25Y 6.715 6.1678 5.6977 4.8608 4.0434
30Y 10.283 9.5079 8.6169 7.4723 5.9803
40Y 22.815 21.099 19.133 17.088 14.239
50Y 51.438 48.154 44.121 39.216 32.847

Table 9.8: Percentile costs of hedging put options under a 3/2 short rate & MMM
discounted GOP based on US data 1871 - 2012.

Term to Expiry 99-th 95-th 90-th 85-th 80-th
of Put Option Percentile Percentile Percentile Percentile Percentile

1Y 0.26558 0.21062 0.18689 0.15239 0.14139
2Y 0.34809 0.29062 0.26405 0.22823 0.20994
3Y 0.47585 0.39805 0.35755 0.31779 0.29356
4Y 0.60302 0.51428 0.45006 0.43793 0.41451
5Y 0.75283 0.62405 0.56988 0.53439 0.51137
7Y 1.7135 0.84799 0.82889 0.7829 0.75554
10Y 2.1669 1.2285 1.1974 1.1496 1.1172
15Y 2.4737 1.9552 1.8517 1.7445 1.7174
20Y 3.102 2.7326 2.5879 2.4996 2.4446
25Y 4.0677 3.6911 3.5268 3.3924 3.2666
30Y 5.0805 4.7434 4.5609 4.4722 4.2388
40Y 9.1205 7.6594 7.2593 6.944 6.8233
50Y 13.838 11.988 11.422 10.898 9.9248



220 CHAPTER 9. HEDGING INDEX OPTIONS



Chapter 10

Conclusion

This thesis has systematically applied the Benchmark Approach to pricing and
hedging long-dated derivatives under well studied models for stochastic interest
rates and stochastic index volatility.

When the discounted index obeys the standard Black-Scholes dynamics, the
real-world and risk neutral probability measures are equivalent and the Radon-
Nikodym derivative is a martingale. Thus, we recover in this case the classical risk
neutral pricing formulae. Yet the Black-Scholes model and many of its popular
relatives are unable to capture several stylised empirical features of the market
such as the leverage effect and the volatility hump of cap term structures.

The advantage of the Benchmark Approach is that equivalence of the real-world
measure to the risk neutral measure is not required. Therefore, a richer class of
models can be explored, which can reflect more realistically the stylised facts of
the market, in particular, long-term properties.

The thesis has developed original analytic and semi-analytic pricing formulae for
zero-coupon bonds, options on the index, options on zero-coupon bonds, caps and
swaptions under several market models with stochastic interest rates and stochas-
tic volatility1. The models each provide a consistent framework for pricing and
hedging caps and swaptions. Furthermore, the models are able to capture impor-
tant features of the long-term behaviour of equity and interest rate derivatives
which allows less-expensive and efficient hedging of long-dated equity and interest
rate derivatives. It has been demonstrated that the minimal market model for
the discounted index provides significantly cheaper hedge strategies across inter-
est rate derivatives and equity index options. Among the short rate models, the
3/2 is able to capture the hump-shaped volatility feature at short maturities but
does not appear to provide any advantage in hedging long-dated derivatives over
the Vasicek and CIR short rate models.

1The results for interest rate derivatives have been published in Fergusson and Platen [2014a]
and those for equity index options have been reported in Fergusson and Platen [2015a].
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There is scope to generalise the market models in this thesis in several ways.
Firstly, the market model can be extended to include foreign currencies which
would allow exotic cross-currency derivatives to be priced and hedged. The works
of Platen and Heath [2010] and Baldeaux et al. [2013] on the multi-currency min-
imal market model have trodden such a path. Secondly, the discounted index
model can be enhanced by incorporating a random intrinsic time process, which
would have the effect of reflecting better the short-term behaviour of volatility.
An example of such work is that of Baldeaux et al. [2013] which has incorpo-
rated random time scaling. Thirdly, the short rate models in this thesis can be
generalised by making the parameters time-dependent and correlating their un-
certainty with that of the index, which would permit better calibration of the
market model to the interest rate term structure and volatility surfaces.



Appendix A

Proofs of Results on the Vasicek
Model

Here we present proofs of results in Section 3.2.3.

Proof .[of Lemma 3.2.4] Integrating the SDE (3.2.3) gives

rt = rs +

∫ t

s

κ(r̄ − ru)du+

∫ t

s

σdZu (A.1)

and taking expectations conditioned on rs gives

ms(t) = rs +

∫ t

s

κ(r̄ −ms(u))du. (A.2)

This can be written as a first order ordinary differential equation in ms(t)

ms(t)
′ = κ(r̄ −ms(t)) (A.3)

with initial condition ms(s) = rs, the solution of which is straightforward. Now
the SDE of r2t is, by Ito’s Lemma,

dr2t = (σ2 + 2κr̄rt − 2κr2t )dt+ 2σrtdZt (A.4)

and integrating this SDE gives

r2t = r2s +

∫ t

s

(σ2 + 2κr̄ru − 2κr2u)du+

∫ t

s

2σrudZu. (A.5)

Taking expectations conditioned on rs, and defining m
(2)
s (t) = E(r2t |As), gives

m(2)
s (s) = r2s +

∫ t

s

(σ2 + 2κr̄ms(u)− 2κm(2)
s (u))du (A.6)
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from which we have the ordinary differential equation

m(2)
s

′
(t) = σ2 + 2κr̄ms(t)− 2κm(2)

s (t). (A.7)

Multiplying both sides by exp(2κt) and rearranging gives

d

dt

(
exp(2κt)m

(2)
t

)
= σ2 exp(2κt) + 2κr̄ms(t) exp(2κt) (A.8)

= σ2 exp(2κt) + 2κr̄ exp(2κt)

(
κr̄B(s, t) + rs(1− κB(s, t))

)
(A.9)

= (σ2 + 2κr̄rs) exp(2κt) + 2κ2r̄(r̄ − rs) exp(2κt)B(s, t).

We note that

∫ t

s

exp(2κu)B(s, u)du =
1

2
exp(2κt)B(s, t)2 (A.10)∫ t

s

exp(2κu)du =
1

2
exp(2κt)(2B(s, t)− κB(s, t)2).

Therefore, integrating both sides of (A.8) from s to t gives

exp(2κt)m(2)
s (t) = exp(2κs)r2t + (σ2 + 2κr̄rs)

1

2
exp(2κt)(2B(s, t)− κB(s, t)2)

(A.11)

+ 2κ2r̄(r̄ − rs)
1

2
exp(2κt)B(s, t)2

= exp(2κs)r2t + (σ2 + 2κr̄rs) exp(2κt)B(s, t)

+
1

2
exp(2κt)B(s, t)2

(
2κ2r̄(r̄ − rs)− κ(σ2 + 2κr̄rs)

)
= exp(2κs)r2t + (σ2 + 2κr̄rs) exp(2κt)B(s, t)

+
1

2
exp(2κt)B(s, t)2

(
2κ2r̄2 − κσ2 − 4κ2r̄rs

)
.

and dividing both sides by exp(2κt) gives

m(2)
s (t) = r2s exp(−2κ(t− s)) + (σ2 + 2κr̄rs)B(s, t) (A.12)

+
1

2
B(s, t)2

(
2κ2r̄2 − κσ2 − 4κ2r̄rs

)
.
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The variance is computed as vs(t) = m
(2)
s (t)− (ms(t))

2, that is

vs(t) = r2s exp(−2κ(t− s)) + (σ2 + 2κr̄rs)B(s, t) (A.13)

+
1

2
B(s, t)2

(
2κ2r̄2 − κσ2 − 4κ2r̄rs

)

−
(
r̄κB(s, t) + rs(1− κB(s, t))

)2

= r2s exp(−2κ(t− s)) + (σ2 + 2κr̄rs)B(s, t)

+
1

2
B(s, t)2

(
2κ2r̄2 − κσ2 − 4κ2r̄rs

)
− r̄2κ2B(s, t)2 − r2s(1− κB(s, t))2 − 2κr̄rs(B(s, t)− κB(s, t)2)

= σ2B(s, t)− 1

2
κσ2B(s, t)2

as required. Q.E.D.

Proof .[of Theorem 3.2.6] Differentiating (3.2.17) with respect to r̄ we have

∂

∂r̄
�(r̄, κ, σ) = −1

2

n∑
i=1

2(rti −mti−1
(ti))

vti−1
(ti)

×−∂mti

∂r̄
(A.14)

= κ

n∑
i=1

(rti −mti−1
(ti))B(ti−1, ti)

vti−1
(ti)

,

where we have used the fact that
∂mti−1 (ti)

∂r̄
= κB(ti−1, ti). Equating (A.14) to

zero gives the equation

n∑
i=1

(rti −mti−1
(ti)) = 0 (A.15)

which, using (3.2.13), is equivalent to

n∑
i=1

(rti − r̄) =
n∑

i=1

(rti−1
− r̄)(1− κB(ti−1, ti)). (A.16)

Since the sampling times ti are equidistant we can solve for κ, giving the solution

κ =
1

Δ
log

∑n
i=1(rti−1

− r̄)∑n
i=1(rti − r̄)

. (A.17)
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Differentiating (3.2.17) with respect to σ we have

∂

∂σ
�(r̄, κ, σ) = −1

2

n∑
i=1

(
1

vti−1
(ti)

− (rti −mti−1
(ti))

2

vti−1
(ti)2

)
∂vti−1

(ti)

∂σ
(A.18)

= −
n∑

i=1

(
1

vti−1
(ti)

− (rti −mti−1
(ti))

2

vti−1
(ti)2

)
vti−1

(ti)

σ

= − 1

σ

n∑
i=1

(
1− (rti −mti−1

(ti))
2

vti−1
(ti)

)
,

where we have used the fact that
∂vti−1 (ti)

∂σ
= 2

vti−1 (ti)

σ
. Equating (A.18) to zero

gives the equation
n∑

i=1

(rti −mti−1
(ti))

2

vti−1
(ti)

=
n∑

i=1

1 (A.19)

which, using the equation for vti−1
(ti) in (3.2.13), is equivalent to

σ2 =
1

n

n∑
i=1

(rti −mti−1
(ti))

2

B(ti−1, ti)(1− 1
2
κB(ti−1, ti))

. (A.20)

Since the sampling times ti are equidistant we can simplify the equation for σ2

to

σ2 =
1

nβ(1− 1
2
κβ)

n∑
i=1

(rti −mti−1
(ti))

2. (A.21)

Differentiating (3.2.17) with respect to κ we have

∂

∂κ
�(r̄, κ, σ) = −1

2

n∑
i=1

1

vti

∂vti
∂κ

+
∂

∂κ

(
(rti −mti−1

(ti))
2

vti−1
(ti)

)
(A.22)

= −1

2

n∑
i=1

{
1

vti−1
(ti)

∂vti−1
(ti)

∂κ

+
2(rti −mti−1

(ti))

vti−1
(ti)

×
(
− ∂mti−1

(ti)

∂κ

)

− (rti −mti−1
(ti))

2

vti−1
(ti)2

× ∂vti−1
(ti)

∂κ

}

= −1

2

n∑
i=1

1

vti−1
(ti)

∂vti−1
(ti)

∂κ

(
1− (rti −mti−1

(ti))
2

vti−1
(ti)

)

− 2(rti −mti−1
(ti))

vti−1
(ti)

∂mti−1
(ti)

∂κ
.
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To simplify (A.22) we determine expressions for
∂vti−1 (ti)

∂κ
and

∂mti−1 (ti)

∂κ
. Firstly,

∂vti
∂κ

=
∂

∂κ

{
σ2

(
B(ti−1, ti)−

1

2
κB(ti−1, ti)

2

)}
(A.23)

= σ2

(
∂B(ti−1, ti)

∂κ
− 1

2
B(ti−1, ti)

2 − κB(ti−1, ti)
∂B(ti−1, ti)

∂κ

)
.

We note that

∂(κB(ti−1, ti))

∂κ
=

∂(1− exp(−κ(ti − ti−1)))

∂κ
(A.24)

= (ti − ti−1) exp(−κ(ti − ti−1))

= (ti − ti−1)(1− κB(ti−1, ti))

and, therefore,

∂B(ti−1, ti)

∂κ
=

1

κ

(
∂(κB(ti−1, ti))

∂κ
− B(ti−1, ti)

)
(A.25)

=
1

κ

(
(ti − ti−1)(1− κB(ti−1, ti))− B(ti−1, ti)

)
.

Hence (A.23) becomes

∂vti
∂κ

= σ2

(
− 1

2
B(ti−1, ti)

2 + (1− κB(ti−1, ti))
∂B(ti−1, ti)

∂κ

)
(A.26)

= σ2

{
− 1

2
B(ti−1, ti)

2

+ (1− κB(ti−1, ti))
1

κ

(
(ti − ti−1)(1− κB(ti−1, ti))− B(ti−1, ti)

)}

= σ2

(
− 1

2
B(ti−1, ti)

2

+
ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
B(ti−1, ti)(1− κB(ti−1, ti))

)

= σ2

(
− 1

2
B(ti−1, ti)

2

+
ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
B(ti−1, ti) +B(ti−1, ti)

2)

)

= σ2

(
ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
B(ti−1, ti) +

1

2
B(ti−1, ti)

2)

)

= σ2 ti − ti−1

κ
(1− κB(ti−1, ti))

2 − σ2

κ

(
B(ti−1, ti)−

1

2
κB(ti−1, ti)

2

)

= σ2 ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
vti .
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Secondly,

∂mti−1
(ti)

∂κ
=

∂

∂κ

(
rs + (r̄ − rs)κB(ti−1, ti)

)
(A.27)

= (r̄ − rs)(ti − ti−1)(1− κB(ti−1, ti))

= −(ti − ti−1)(mti−1
(ti)− r̄).

Substituting (A.26) and (A.27) into (A.22) gives

∂

∂κ
�(r̄, κ, σ) = −1

2

n∑
i=1

{
1

vti−1
(ti)

(
σ2 ti − ti−1

κ
(1− κB(ti−1, ti))

2 − 1

κ
vti−1

(ti)

)
(A.28)

×
(
1− (rti −mti−1

(ti))
2

vti−1
(ti)

)

+
2(rti −mti−1

(ti))

vti−1
(ti)

(ti − ti−1)(mti−1
(ti)− r̄)

}
.

If the right hand side of (A.18) is zero, then (A.28) simplifies to

∂

∂κ
�(r̄, κ, σ) = −1

2

n∑
i=1

2(rti −ti−1
(ti))

vti−1
(ti)

(ti − ti−1)(mti−1
(ti)− r̄) (A.29)

= Δ
1

σ2(β + 1
2
κβ2)

n∑
i=1

(rti −mti−1
(ti))(mti−1

(ti)− r̄).

Hence ∂
∂κ
�(r̄, κ, σ) = 0 is equivalent to

0 =
n∑

i=1

(rti −mti−1
(ti))(mti−1

(ti)− r̄) (A.30)

=
n∑

i=1

(rti − r̄ − (1− κβ)(rti−1
− r̄))(rti−1

− r̄)(1− κβ)

from which we have

1− κβ =

∑n
i=1(rti − r̄)(rti−1

− r̄)∑n
i=1(rti−1

− r̄)2
. (A.31)

Thus in addition to (A.16), we have an expression for 1 − κβ in (A.31) and this
allows us to solve explicitly for r̄. Q.E.D.

Proof .[of Theorem 3.2.7] The log-likelihood function in (3.2.17) can be rewritten
as

�(r̄, κ, σ) = −1

2

n∑
i=1

�i(mi, vi) (A.32)
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where for i = 1, 2, . . . , n,

�i(mi, vi) = log(2πvi) +
(rti −mi)

2

vi
(A.33)

and where

mi ≡ mti−1
(ti) = r̄κB(ti−1, ti) + rti−1

(1− κB(ti−1, ti)) (A.34)

vi ≡ vti−1
(ti) = σ2

(
B(ti−1, ti)−

1

2
κB(ti−1, ti)

2

)
,

with B(s, t) as in (3.2.14). Rewriting (A.34) explicitly in r̄, κ and σ we have

mi = r̄(1− exp(−κΔ)) + rti−1
exp(−κΔ) (A.35)

vi =
σ2

2κ
κB(ti−1, ti)

(
2− κB(ti−1, ti)

)

=
σ2

2κ
(1− exp(−κΔ))(1 + exp(−κΔ))

=
σ2

2κ
(1− exp(−2κΔ)) ≡ v.

Our aim is to compute the second order partial derivatives of �(r̄, κ, σ) with
respect of r̄, κ and σ by employing the chain rule

∂�(r̄, κ, σ)

∂r̄
= −1

2

n∑
i=1

∂�i(mi, vi)

∂mi

∂mi

∂r̄
(A.36)

∂�(r̄, κ, σ)

∂κ
= −1

2

n∑
i=1

∂�i(mi, vi)

∂mi

∂mi

∂κ
+

∂�i(mi, vi)

∂vi

∂vi
∂κ

∂�(r̄, κ, σ)

∂σ
= −1

2

n∑
i=1

∂�i(mi, vi)

∂vi

∂vi
∂σ

.

Then, applying the chain rule again, the second order partial derivatives can be
written as

∂2�(r̄, κ, σ)

∂r̄2
= −1

2

n∑
i=1

∂2�i(mi, vi)

∂m2
i

(
∂mi

∂r̄

)2

(A.37)

∂2�(r̄, κ, σ)

∂κ2
= −1

2

n∑
i=1

{
∂2�i(mi, vi)

∂m2
i

(
∂mi

∂κ

)2

+ 2
∂2�i(mi, vi)

∂mi∂vi

∂mi

∂κ

∂vi
∂κ

(A.38)

+
∂2�i(mi, vi)

∂v2i

(
∂vi
∂κ

)2}
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∂2�(r̄, κ, σ)

∂σ2
= −1

2

n∑
i=1

∂2�i(mi, vi)

∂v2i

(
∂vi
∂σ

)2

(A.39)

∂2�(r̄, κ, σ)

∂r̄∂κ
= −1

2

n∑
i=1

{
∂2�i(mi, vi)

∂m2
i

∂mi

∂r̄

∂mi

∂κ
+

∂2�i(mi, vi)

∂mi∂vi

∂mi

∂r̄

∂vi
∂κ

}
(A.40)

∂2�(r̄, κ, σ)

∂r̄∂σ
= −1

2

n∑
i=1

∂2�i(mi, vi)

∂mi∂vi

∂mi

∂r̄

∂vi
∂σ

(A.41)

∂2�(r̄, κ, σ)

∂σ∂κ
= −1

2

n∑
i=1

{
∂2�i(mi, vi)

∂v2i

∂vi
∂σ

∂vi
∂κ

+
∂2�i(mi, vi)

∂mi∂vi

∂mi

∂κ

∂vi
∂σ

}
. (A.42)

From (A.33) we have the partial derivatives

∂�i
∂mi

= −2
rti −mi

vi
(A.43)

∂�i
∂vi

=
1

vi
− (rti −mi)

2

v2i
∂2�i
∂m2

i

=
2

vi
≡ Lmm

∂2�i
∂mi∂vi

= 2
rti −mi

v2i
∂2�i
∂v2i

= − 1

v2i
+ 2

(rti −mi)
2

v3i
.

From (A.35) we have the first order partial derivatives

∂mi

∂r̄
= 1− exp(−κΔ) ≡ mr̄ (A.44)

∂mi

∂κ
= Δ exp(−κΔ) (r̄ − rti−1

)

∂vi
∂κ

= − σ2

2κ2
(1− exp(−2κΔ)) +

σ2

2κ
2Δ exp(−2κΔ)

= −1

κ
vi − 2Δ vi +

σ2

κ
Δ ≡ vκ

∂vi
∂σ

= 2
σ

2κ
(1− exp(−2κΔ)) =

2

σ
vi ≡ vσ.
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The following six summations, most of which emanate from the maximum likeli-
hood conditions, namely each equation in (A.36) equalling zero, will prove useful
in simplifying the formulae for the second order partial derivatives given in (A.37)
to (A.42).

Firstly,
n∑

i=1

∂2�i(mi, vi)

∂mi∂vi
= 0 (A.45)

stems from the maximum likelihood equation ∂�(r̄,κ,σ)
∂r̄

= 0.

Secondly,
n∑

i=1

∂2�i(mi, vi)

∂v2i
=

n

v2
(A.46)

stems from the maximum likelihood equation ∂�(r̄,κ,σ)
∂σ

= 0.

Thirdly,
n∑

i=1

∂�i(mi, vi)

∂vi
= 0 (A.47)

also stems from the maximum likelihood equation ∂�(r̄,κ,σ)
∂σ

= 0.

Fourthly,
n∑

i=1

∂2�i(mi, vi)

∂mi∂vi

∂mi

∂κ
= 0 (A.48)

stems from the maximum likelihood equations ∂�(r̄,κ,σ)
∂σ

= 0 and ∂�(r̄,κ,σ)
∂κ

= 0.

Fifthly,

n∑
i=1

∂mi

∂κ
= Δ exp(−κΔ)

∑
(r̄ − rti−1

) = nΔ exp(−κΔ)(r̄ − S0), (A.49)

where S0 =
∑

rti−1
.

Sixthly,

n∑
i=1

(
∂mi

∂κ

)2

=
(
Δ exp(−κΔ)

)2∑
(r̄−rti−1

)2 = n
(
Δ exp(−κΔ)

)2
(r̄2−2r̄S0+S00).

(A.50)
where S00 =

∑
r2ti−1

.

In the light of these summations we now simplify the formulae for the second
order partial derivatives given in (A.37) to (A.42).

Using (A.43) and (A.44), the second order partial derivative (A.37) simplifies as
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follows

∂2�(r̄, κ, σ)

∂r̄2
= −1

2

n∑
i=1

Lmmm
2
r̄ (A.51)

= −1

2
nLmmm

2
r̄

= − nκ2β

σ2(1− 1
2
κβ)

.

Using (A.43) and (A.44), the second order partial derivative (A.38) simplifies as
follows

∂2�(r̄, κ, σ)

∂κ2
= −1

2

n∑
i=1

{
Lmm

(
∂mi

∂κ

)2

+ 2
∂2�i(mi, vi)

∂mi∂vi

∂mi

∂κ
vκ (A.52)

+
∂2�i(mi, vi)

∂v2i
v2κ

}

= −n

v

(
Δ exp(−κΔ)

)2
(r̄2 − 2r̄S0 + S00)−

n

2v2
v2κ.

Using (A.43) and (A.44), the second order partial derivative (A.39) simplifies as
follows

∂2�(r̄, κ, σ)

∂σ2
= −1

2

n∑
i=1

∂2�i(mi, vi)

∂v2i
v2σ (A.53)

= −2n

σ2
.

Using (A.43) and (A.44), the second order partial derivative (A.40) simplifies as
follows

∂2�(r̄, κ, σ)

∂r̄∂κ
= −1

2

n∑
i=1

{
Lmmmr̄

∂mi

∂κ
+

∂2�i(mi, vi)

∂mi∂vi
mr̄vκ

}
(A.54)

= −mr̄

v
Δ exp(−κΔ)(r̄ − S0).

Using (A.43) and (A.44), the second order partial derivative (A.41) simplifies as
follows

∂2�(r̄, κ, σ)

∂r̄∂σ
= −1

2

n∑
i=1

∂2�i(mi, vi)

∂mi∂vi
mr̄vσ = 0. (A.55)

Using (A.43) and (A.44), the second order partial derivative (A.42) simplifies as
follows

∂2�(r̄, κ, σ)

∂σ∂κ
= −1

2

n∑
i=1

{
∂2�i(mi, vi)

∂v2i
vσvκ +

∂2�i(mi, vi)

∂mi∂vi

∂mi

∂κ
vσ

}
(A.56)

= −1

2
vσvκ

n

v2
.
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The entries in the Fisher Information Matrix are simply the opposite of those in
the Hessian matrix. Q.E.D.
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Appendix B

Proofs of Expectations for the
Vasicek Model

Here we present proofs of results in Section 3.2.7.

Proof .[of Lemma 3.2.18] Let us write the random variable Y in the form Y =
μ + σZ, where Z is a standard normal random variable and σ is a positive real
number. Clearly, E(Y ) = μ and Var(Y ) = σ2. Also E(exp(Y )) = exp(μ + 1

2
σ2).

Then

E(exp(Y )1Y≤y) = E(exp(μ+ σZ)1μ+σZ≤y) (B.1)

= exp(μ)E(exp(σZ)1Z≤(y−μ)/σ)

and from Lemma 4.2.8 we have

E(exp(Y )1Y≤y) = exp(μ) exp(
1

2
σ2)E(1Z≤(y−μ)/σ−σ) (B.2)

= E(exp(Y ))× E(1Z≤(y−μ)/σ−σ)

= E(exp(Y ))× E(1Y≤y−σ2)

as required. Also the second equality emerges after applying the relation

E(exp(Y )1Y >y) = E(exp(Y )(1− 1Y≤y)) = E(exp(Y ))− E(exp(Y )1Y≤y) (B.3)

to the first equality. Q.E.D.

Proof .[of Lemma 3.2.19] We let

Y ′
2 = Y2 − βY1, (B.4)

where β = Cov(Y1, Y2)/Var(Y1). This allows us to write Y2 as a linear combination
of two uncorrelated random variables Y1 and Y ′

2 as follows:

Y2 = βY1 + Y ′
2 . (B.5)

235
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If β = 0, then Y1 and Y2 are uncorrelated and, because both are normally dis-
tributed random variables, are therefore independent which gives, by Lemma 3.2.18,
the result. Henceforth we assume β �= 0 and we have, by Lemma 3.2.18,

E(exp(Y1)1Y2≤y) = E(exp(Y1)1βY1+Y ′
2≤y) (B.6)

= E(E(exp(Y1)1βY1+Y ′
2≤y|Y ′

2))

= E(E(exp(Y1)1Y1≤ 1
β
(y−Y ′

2)
|Y ′

2)) for β > 0.

We remark that for β < 0 the inequality is reversed in the indicator func-
tion above, yet an identical result to that which follows is obtained. We apply
Lemma 3.2.18 to evaluate the inner expectation, giving

E(E(exp(Y1)1Y1≤ 1
β
(y−Y ′

2)
|Y ′

2)) (B.7)

= E(E(exp(Y1))E(1Y1≤ 1
β
(y−Y ′

2)−Var(Y1)
|Y ′

2))

= E(exp(Y1))E(E(1βY1+Y ′
2≤y−βVar(Y1)|Y ′

2))

= E(exp(Y1))E(1Y2≤y−βVar(Y1))

= E(exp(Y1))E(1Y2≤y−Cov(Y1,Y2))

which is the first equality. The second equality also follows similarly. Q.E.D.

Proof .[of Lemma 3.2.21] Because
∫ t

0
rsds is normally distributed we have

GT̄ (T ) = E

(
exp

(
−
∫ T̄

T

rsds

)∣∣∣∣AT

)
(B.8)

= E

(
exp

(
−
∫ T̄

t

rsds+

∫ T

t

rsds

)∣∣∣∣AT

)

= exp

(
E

(
−
∫ T̄

t

rsds+

∫ T

t

rsds

∣∣∣∣AT

)

+
1

2
Var

(∫ T̄

t

rsds

∣∣∣∣AT

))
,

where we have used Condition 3.2.20, namely that Var

(∫ T
t
rsds

∣∣∣∣AT

)
= 0, and

the properties of the lognormal distribution. Therefore, the conditional random
variable L given the information available at time t is given by

L = logGT̄ (T ) = −E

(∫ T̄

t

rsds

∣∣∣∣AT

)
+

∫ T

t

rsds+
1

2
Var

(∫ T̄

t

rsds

∣∣∣∣AT

)
(B.9)

and is normally distributed.
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Its expected value is

E(L|At) = −E

(∫ T̄

t

rsds

∣∣∣∣At

)
+ E

(∫ T

t

rsds

∣∣∣∣At

)
(B.10)

+
1

2
E

(
Var

(∫ T̄

t

rsds

∣∣∣∣AT

)∣∣∣∣At

)
,

which simplifies to

E(L|At) = −E

(∫ T̄

t

rsds

∣∣∣∣At

)
+ E

(∫ T

t

rsds

∣∣∣∣At

)
(B.11)

+
1

2
Var

(∫ T̄

t

rsds

∣∣∣∣AT

)
,

because the variance Var

(∫ T̄

t
rsds

∣∣∣∣AT

)
is deterministic, as demonstrated by

Var

(∫ T̄

t

rsds

∣∣∣∣AT

)
= Var

(∫ T

t

rsds+

∫ T̄

T

rsds

∣∣∣∣AT

)
(B.12)

= Var

(∫ T̄

T

rsds

∣∣∣∣AT

)
= v(T, T̄ ).

To simplify (B.11) we note that

logGT̄ (t) = −E

(∫ T̄

t

rsds

∣∣∣∣At

)
+

1

2
Var

(∫ T̄

t

rsds

∣∣∣∣At

)
(B.13)

logGT (t) = −E

(∫ T

t

rsds

∣∣∣∣At

)
+

1

2
Var

(∫ T

t

rsds

∣∣∣∣At

)

and that, by virtue of the Law of Total Variance,

Var(X) = Var(E(X|Y )) + E(Var(X|Y )), (B.14)

we have

Var

(∫ T̄

t

rsds

∣∣∣∣At

)
= Var

(
E

(∫ T̄

t

rsds

∣∣∣∣AT

)∣∣∣∣At

)
+Var

(∫ T̄

t

rsds

∣∣∣∣AT

)
.

(B.15)
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Therefore, we can rewrite (B.11) as

E(L|At) = logGT̄ (t)−
1

2
Var

(∫ T̄

t

rsds

∣∣∣∣At

)
(B.16)

− logGT (t) +
1

2
Var

(∫ T

t

rsds

∣∣∣∣At

)

+
1

2
Var

(∫ T̄

t

rsds

∣∣∣∣AT

)
= logGT̄ (t)/GT (t)

− 1

2
Var

(
E

(∫ T̄

t

rsds

∣∣∣∣AT

)∣∣∣∣At

)
− 1

2
Var

(∫ T̄

t

rsds

∣∣∣∣AT

)

+
1

2
Var

(∫ T

t

rsds

∣∣∣∣At

)
+

1

2
Var

(∫ T̄

t

rsds

∣∣∣∣AT

)
= logGT̄ (t)/GT (t)

− 1

2
Var

(
E

(∫ T̄

t

rsds

∣∣∣∣AT

)∣∣∣∣At

)
+

1

2
Var

(∫ T

t

rsds

∣∣∣∣At

)
.

Transposing (B.9) gives

E

(∫ T̄

t

rsds

∣∣∣∣AT

)
= −L+

∫ T

t

rsds+
1

2
Var

(∫ T̄

t

rsds

∣∣∣∣AT

)
(B.17)

and taking the variance of both sides gives

Var

(
E

(∫ T̄

t

rsds

∣∣∣∣AT

)∣∣∣∣At

)
= Var(L|At) + Var

(∫ T

t

rsds

∣∣∣∣At

)
(B.18)

−2Cov

(
L,

∫ T

t

rsds

∣∣∣∣At

)
.

Substituting this variance formula into (B.16) gives (3.2.70). The formula for the
variance (3.2.71) is easily deduced by rewriting (B.9) as

L = −E

(∫ T̄

T

rsds

∣∣∣∣AT

)
+

1

2
Var

(∫ T̄

t

rsds

∣∣∣∣AT

)
(B.19)

and taking variances of both sides. Q.E.D.

Proof .[of Theorem 3.2.22] The price of the first order asset binary call option on
GT̄ is

f1(t, T,K, T̄ ) = E

(
exp

{
−
∫ T

t

rsds

}
GT̄ (T )1GT̄ (T )>K

∣∣∣∣At

)
(B.20)

= E

(
exp

{
−
∫ T

t

rsds

}
E

(
exp

{
−
∫ T̄

T

rsds

}∣∣∣∣AT

)
1L>logK

∣∣∣∣At

)

= E

(
exp

{
−
∫ T̄

t

rsds

}
1L>logK

∣∣∣∣At

)
.
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We can apply Lemma 3.2.19 to the right hand side of (B.20) to give

f1(t, T,K, T̄ ) (B.21)

= E

(
exp

{
−
∫ T̄

t

rsds

}∣∣∣∣At

)
× E

(
1
L>logK−Cov(−

∫ T̄
t rsds,L|At)

∣∣∣∣At

)
= GT̄ (t)E(1Z>z1)

for a standard normal random variable Z where

z1 =
1√

Var(L)

(
logK + Cov

(∫ T̄

t

rsds, L

∣∣∣∣At

)
− E(L)

)
. (B.22)

The expression logK+Cov

(∫ T̄

t
rsds, L

∣∣∣∣At

)
−E(L) can be simplified using (B.16)

to give

logKGT (t)/GT̄ (t) + Cov

(∫ T̄

t

rsds, L

∣∣∣∣At

)
(B.23)

+
1

2
Var(L|At)− Cov

(
L,

∫ T

t

rsds

∣∣∣∣At

)

= logKGT (t)/GT̄ (t) + Cov

(∫ T̄

T

rsds, L

∣∣∣∣At

)

+
1

2
Var(L|At).

From (B.19) we have

Cov

(∫ T̄

T

rsds, L

∣∣∣∣At

)
(B.24)

= −Cov

(∫ T̄

T

rsds,E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)

= −E

(∫ T̄

T

rsds× E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)

+ E

(∫ T̄

T

rsds

∣∣∣∣At

)
× E

(
E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)
.
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Using the law of total covariance, we have

Cov

(∫ T̄

T

rsds, L

∣∣∣∣At

)
(B.25)

= −E

(
E

(∫ T̄

T

rsds× E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣AT

)∣∣∣∣At

)
+

{
E

(∫ T̄

T

rsds

∣∣∣∣At

)}2

= −E

({
E

(∫ T̄

T

rsds

∣∣∣∣AT

)}2∣∣∣∣At

)
+

{
E

(∫ T̄

T

rsds

∣∣∣∣At

)}2

= −Var

(
E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)
= −Var(L|At).

Thus (B.23) becomes

logKGT (t)/GT̄ (t)−
1

2
Var(L|At) (B.26)

and, therefore, (B.22) becomes

z1 =
1√

Var(L)

(
logKGT (t)/GT̄ (t)−

1

2
Var(L)

)
. (B.27)

Thus
E(1Z>z1) = 1−N(z1) = N(−z1) = N(d1), (B.28)

where

d1 =
1√

Var(L)

(
logGT̄ (t)/KGT (t) +

1

2
Var(L)

)
, (B.29)

as specified in statement of the lemma. The formula for the first order asset
binary put option is derived using call-put parity. Q.E.D.

Proof .[of Theorem 3.2.23] The price of the first order bond binary call option on
GT̄ is

f3(t, T,K, T̄ ) = E

(
exp

{
−
∫ T

t

rsds

}
1GT̄ (T )>K

∣∣∣∣At

)
. (B.30)

We can apply Lemma 3.2.19 to the right hand side of (B.30) to give

f3(t, T,K, T̄ ) = E

(
exp

{
−
∫ T

t

rsds

}∣∣∣∣At

)
× E

(
1L>logK−Cov(−

∫ T
t rsds,L|At)

∣∣∣∣At

)
(B.31)

= GT (t)E(1Z>z2)

for a standard normal random variable Z where

z2 =
1√

Var(L)

(
logK + Cov

(∫ T

t

rsds, L

∣∣∣∣At

)
− E(L)

)
. (B.32)
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The expression logK+Cov

(∫ T

t
rsds, L

∣∣∣∣At

)
−E(L) can be simplified using (B.16)

to give

logKGT (t)/GT̄ (t) + Cov

(∫ T

t

rsds, L

∣∣∣∣At

)
(B.33)

+
1

2
Var(L|At)− Cov

(
L,

∫ T

t

rsds

∣∣∣∣At

)

= logKGT (t)/GT̄ (t) +
1

2
Var(L|At).

Therefore, (B.32) becomes

z2 =
1√

Var(L)

(
logKGT (t)/GT̄ (t) +

1

2
Var(L)

)
(B.34)

and
E(1Z>z2) = 1−N(z2) = N(−z2) = N(d2), (B.35)

where

d2 =
1√

Var(L)

(
logGT̄ (t)/KGT (t)−

1

2
Var(L)

)
, (B.36)

as specified in statement of the lemma. The formula for the first order bond
binary put option is derived using call-put parity. Q.E.D.

Proof .[of Theorem 3.2.24] Expressing the call option as a combination of a first
order asset binary call option and a first order bond binary call option, we have

f5(t, T,K, T̄ ) = f1(t, T,K, T̄ )−Kf3(t, T,K, T̄ ). (B.37)

Inserting (B.21) and (B.31) into (B.37) gives

cT,K,GT̄
= GT̄ (t)E(1Z>z1)−KGT (t)E(1Z>z2) (B.38)

= GT̄ (t)N(−z1)−KGT (t)N(−z2)

as required. The formula for the put option is derived from (B.38) and call-put
parity. Q.E.D.

Proof .[of Corollary 3.2.25] Using Theorem 3.2.24 we must compute

σ2
G = Var

(
E

(∫ T̄

T

rsds

∣∣∣∣AT

)∣∣∣∣At

)
. (B.39)

Firstly, from Lemma 3.2.9,∫ T̄

T

rsds = rTB(T, T̄ ) + r̄(T̄ − T − B(T, T̄ )) + σ

∫ T̄

T

B(u, T̄ )dZu (B.40)
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and therefore

E

(∫ T̄

T

rsds

∣∣∣∣AT

)
= rTB(T, T̄ ) + r̄(T̄ − T − B(T, T̄ )) (B.41)

from which we have

σ2
G = B(T, T̄ )2Var

(
rT

∣∣∣∣At

)
. (B.42)

Secondly, from Lemma 3.2.4 we have

Var(rT |At) = σ2

(
B(t, T )− 1

2
κB(t, T )2

)
, (B.43)

which simplifies to

Var(rT |At) = σ21− exp(−2κ(T − t))

2κ
. (B.44)

It follows that

σ2
G = B(T, T̄ )2σ21− exp(−2κ(T − t))

2κ
(B.45)

and we arrive at the result. Q.E.D.



Appendix C

Proofs of Results on the CIR
Model

We provide the proof to a lemma in Section 3.3.1.

Proof .[of Lemma 3.3.3] From (3.3.7) we have the SDE

dYt = Xϕtdzt + ztdXϕt (C.1)

=
Yt

zt
dzt + zt(νdϕt + 2

√
XϕtdZϕt)

= Ytbtdt+ zt(ν
c2t
4zt

dt+ 2
√
Xϕt dZϕt)

= (Ytbt + ν
c2t
4
)dt+ 2zt

√
Xϕt dZϕt .

We define the process Ut =
∫ t
0

1√
ϕ′
u

dZϕu and note that d[U ]t = dt, which means

that U is a standard Wiener process. Here ϕ′(t) = c2t
4zt

and so

dUt =
1√
ϕ′
t

dZϕt =
2
√
zt

ct
dZϕt . (C.2)

Hence

dYt = (Ytbt + ν
c2t
4
)dt+ ct

√
Yt dUt (C.3)

which proves (3.3.8). Q.E.D.

This lemma leads to the proof of a theorem in Section 3.3.1.

Proof .[of Theorem 3.3.4] Comparing the corresponding terms of (3.3.1) and

243
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(3.3.8) gives

κr̄t =
νc2t
4

(C.4)

−κ = bt (C.5)

σt = ct (C.6)

from which we have

ct = σt = ς
√
r̄t (C.7)

ν =
4κr̄t
c2t

(C.8)

=
4κ

ς2

bt = −κ (C.9)

ϕt = ϕ0 +
1

4

∫ t

0

c2u
zu

du = ϕ0 +
1

4
ς2
∫ t

0

r̄u exp(κu)

z0
du (C.10)

zt = z0 exp(−κt). (C.11)

Q.E.D.

We give here the proof of a lemma pertaining to moments of the CIR short rate.

Proof .[of Lemma 3.3.17] Integrating the SDE (3.3.1) gives

rt = rs +

∫ t

s

κ(r̄ − ru)du+

∫ t

s

σ
√
rudZu (C.12)

and taking expectations conditioned on rs gives

ms(t) = rs +

∫ t

s

κ(r̄ −ms(u))du. (C.13)

This can be written as a first order ordinary differential equation in ms(t)

ms(t)
′ = κ(r̄ −ms(t)) (C.14)

with initial condition ms(s) = rs, the solution of which is straighforward. Now
the SDE of r2t is, by Ito’s Lemma,

dr2t = ((2κr̄ + σ2)rt − 2κr2t )dt+ 2σr
3/2
t dZt (C.15)

and integrating this gives

r2t = r2s +

∫ t

s

((2κr̄ + σ2)ru − 2κr2u)du+

∫ t

s

2σr3/2u dZu. (C.16)
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Taking expectations conditioned on rs, and defining m
(2)
s (t) = E(r2t |As), gives

m(2)
s (t) = r2s +

∫ t

s

((2κr̄ + σ2)ms(u)− 2κm(2)
s (u))du (C.17)

from which we have the ordinary differential equation

m(2)
s (t)

′
= (2κr̄ + σ2)ms(t)− 2κm(2)

s (t) (C.18)

the solution of which is

m(2)
s (t) = r2s exp(−2κ(t− s)) + (2κr̄ + σ2)

(
1− exp(−2κ(t− s))

2κ
r̄ (C.19)

+ (rs − r̄)
exp(−κ(t− s))− exp(−2κ(t− s))

κ

)
.

The variance is computed as vs(t) = m
(2)
s (t)−ms(t)

2. Q.E.D.
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Appendix D

Moments of CIR Savings
Account

The proofs in this appendix pertain to calculations of the moments of the savings
account under the CIR model.

Proof .[of Lemma 3.3.6] The moment generating function is

MGFY (t) = E
(
exp(tY )

)
(D.1)

=
ν∏

i=1

E
(
exp(t(μ(i) + Z(i))2)

)

= exp(λt)
ν∏

i=1

E
(
exp(2tμ(i)Z(i) + t(Z(i))2)

)
.

Now, for a standard normal random variable Z the expectation of the quadratic
exponential simplifies as follows:

E
(
exp(aZ2 + bZ)

)
(D.2)

=
1√
2π

∫ ∞

−∞
exp(−1

2
(z2 − 2az2 − 2bz))dz

=
1√
2π

exp(
1

2
b2/(1− 2a))

∫ ∞

−∞
exp(−1

2
((1− 2a)z2 − 2bz + b2/(1− 2a)))dz

=
1√
2π

exp(
1

2
b2/(1− 2a))

∫ ∞

−∞
exp(−1

2
(1− 2a)(z − b/(1− 2a))2)dz

=
1√

1− 2a
exp(

1

2
b2/(1− 2a)).
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Therefore,

MGFY (t) = exp(λt)
ν∏

i=1

1√
1− 2t

exp(
1

2
(2tμ(i))2/(1− 2t)) (D.3)

= exp(λt)(1− 2t)−ν/2 exp(2λt2/(1− 2t))

= exp(λt)(1− 2t)−ν/2 exp(λ(2t2 − t+
1

2
(2t− 1) +

1

2
)/(1− 2t))

= exp(λt)(1− 2t)−ν/2 exp(λ(−t− 1

2
+

1

2
/(1− 2t))

= exp(λt)(1− 2t)−ν/2 exp(−λt− 1

2
λ+

1

2
λ/(1− 2t))

= exp(−1

2
λ)(1− 2t)−ν/2 exp(

1

2
λ/(1− 2t)).

Q.E.D.

Proof .[of Lemma 3.3.8] We rewrite the MGF of Y in (3.3.12) as

MGFY (t) = (1− 2t)−ν/2 exp(−1

2
λ)

∞∑
k=0

1

k!
(
1

2
λ(1− 2t)−1)k (D.4)

= exp(−1

2
λ)

∞∑
k=0

1

k!
(
1

2
λ)k(1− 2t)−k−ν/2.

Observing that the MGF of the chi-squared distributed random variable with n
degrees of freedom is (1− 2t)−n/2 allows us to write the MGF of Y as

MGFY (t) = exp(−1

2
λ)

∞∑
k=0

1

k!
(
1

2
λ)kMGFχ2

ν+2k
(t). (D.5)

Taking inverse Laplace transforms gives the result. Q.E.D.

Proof .[of Corollary 3.3.10] Observing that the probability density function of the
chi-squared distribution with n degrees of freedom is

f(x) =
1

2n/2Γ(n/2)
xn/2−1 exp(−x/2) (D.6)

and applying Lemma 3.3.8 gives

fχ2
ν,λ
(x) = exp(−λ/2)

∞∑
i=0

(λ/2)i

i!

1

2i+ν/2Γ(i+ ν/2)
xi+ν/2−1 exp(−x/2) (D.7)

= exp(−λ/2) exp(−x/2)xν/2−1 1

2ν/2

∞∑
i=0

(λx/4)i

i!

1

Γ(i+ ν/2)

which is the result. Q.E.D.
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We now provide the proof to Lemma 3.3.18 in Section 3.3.5.

Proof .[of Lemma 3.3.18] From Cox et al. [1985] we obtain directly the formula
(3.3.40) for the case k = −1.

By (3.3.38) and (3.3.39) we have

exp(kL) = (BT/Bt)
k = exp

{
k

∫ T

t

ru du} = exp{
∫ T

t

r̃u du
}
, (D.8)

where r̃u = k ru for u ≥ 0. By the Ito formula we have from (3.3.1) the SDE

dr̃u = kdru = kκ(r̄ − ru) du+ kσ
√
ru dZu (D.9)

= κ(kr̄ − r̃u) du+
√
k σ
√
r̃u dZu

for u ≥ 0 with r̃0 = k r0.

By taking (3.3.40) with the choice k = −1 and replacing σ by
√
k σ, r̄ by k r̄ and

rt by krt we obtain directly formula (3.3.40). Q.E.D.
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Appendix E

Proofs of Expectations for the
CIR Model

Here we present proofs of results in Section 3.3.8.

Proof .[of Theorem 3.3.26] We commence by computing the expectation

A+
T,K,GT̄

(t) = E

(
exp

(
−
∫ T

t

rsds

)
GT̄ (T )1GT̄ (T )>K

∣∣∣∣At

)
. (E.1)

The function 1GT̄ (T )>K is equal to the function 1rT<R where the strike rate R is
determined from the equation

K = A(T, T̄ ) exp(−B(T, T̄ )R). (E.2)

Also we have that

GT̄ (T ) = E

(
exp

(
−
∫ T̄

T

rsds

)∣∣∣∣AT

)
. (E.3)

Therefore, we consider the expectation

E

(
exp

(
−
∫ T̄

t

rsds

)
1rT<R

∣∣∣∣At

)
, (E.4)

which can be rewritten in the form

E

(
exp

(
−
∫ T̄

t

rsds

)∣∣∣∣At

)
× E

(
exp
(
−
∫ T̄

t
rsds
)

E

(
exp
(
−
∫ T̄

t
rsds
)∣∣∣∣At

)1rT<R

∣∣∣∣At

)
. (E.5)

Define the random variable r′T as having the probability density function

fr′T (x) =
exp
(
−
∫ T̄

t
rsds
)

E

(
exp
(
−
∫ T̄

t
rsds
)∣∣∣∣At

)frT (x). (E.6)
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Then our expectation becomes

= GT̄ (t)E

(
1r′T<R

∣∣∣∣At

)
(E.7)

= GT̄ (t)P (r′T < R),

where P (r′T < R) denotes the probability that the random variable r′T is below
the strike rate R determined in (E.2).

If we can compute the moment generating function of r′T with the purpose of
identifying the distribution of r′T , then it will be straightforward to compute
P (r′T < R).

So we compute the moment generating function of r′T as follows,

E

(
exp(r′Tu)

∣∣∣∣At

)
= E

(
exp
(
−
∫ T̄

t
rsds
)

E
(
exp
(
−
∫ T̄

t
rsds
)∣∣At

) exp(rTu)
∣∣∣∣At

)
(E.8)

=
1

GT̄ (t)
E

(
exp

(
rTu−

∫ T̄

t

rsds

)∣∣∣∣At

)

=
1

GT̄ (t)
E

(
exp

(
rTu−

∫ T

t

rsds−
∫ T̄

T

rsds

)∣∣∣∣At

)

=
1

GT̄ (t)
E

(
exp

(
rTu−

∫ T

t

rsds

)
exp

(
−
∫ T̄

T

rsds

)∣∣∣∣At

)

=
1

GT̄ (t)
E

(
exp

(
rTu−

∫ T

t

rsds

)
GT̄ (T )

∣∣∣∣At

)

=
A(T, T̄ )

GT̄ (t)
E

(
exp

(
rT (u− B(T, T̄ ))−

∫ T

t

rsds

)∣∣∣∣At

)
.

From Lemma 3.3.25 we have

E

(
exp

(
rTu−

∫ T

t

rsds

)∣∣∣∣At

)
(E.9)

=

(
h exp(1

2
κ(T − t))

(κ− σ2u) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

)2κr̄/σ2

× exp

(
hu cosh 1

2
h(T − t)− (κu+ 2) sinh 1

2
h(T − t)

(κ− σ2u) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

rt

)
.

It follows that

E

(
exp

(
rT (u− B(T, T̄ ))−

∫ T

t

rsds

)∣∣∣∣At

)
(E.10)

=

(
h exp(1

2
κ(T − t))

(κ− σ2(u− B(T, T̄ ))) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

)2κr̄/σ2

× exp

(
h(u− B(T, T̄ )) cosh 1

2
h(T − t)− (κ(u− B(T, T̄ )) + 2) sinh 1

2
h(T − t)

(κ− σ2(u− B(T, T̄ ))) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

rt

)
.
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We can rewrite the expression inside the exponential as

h(u− B(T, T̄ )) cosh 1
2
h(T − t)− (κ(u− B(T, T̄ )) + 2) sinh 1

2
h(T − t)

(κ− σ2(u− B(T, T̄ )) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

rt (E.11)

= rt
(h cosh 1

2
h(T − t)− κ sinh 1

2
h(T − t))u

((κ+ σ2B(T, T̄ )) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t))− σ2u sinh 1

2
h(T − t)

+ rt
(κB(T, T̄ )− 2) sinh 1

2
h(T − t)− hB(T, T̄ ) cosh 1

2
h(T − t)

((κ+ σ2B(T, T̄ )) sinh 1
2
h(T − t) + h cosh 1

2
h(T − t))− σ2u sinh 1

2
h(T − t)

= rt
a1u+ a2

a3 − σ2u sinh 1
2
h(T − t)

where

a1 = h cosh
1

2
h(T − t)− κ sinh

1

2
h(T − t), (E.12)

a2 = (κB(T, T̄ )− 2) sinh
1

2
h(T − t)− hB(T, T̄ ) cosh

1

2
h(T − t) (E.13)

= B(T, T̄ )(κ sinh
1

2
h(T − t)− h cosh

1

2
h(T − t))− 2 sinh

1

2
h(T − t)

= −B(T, T̄ )a1 − 2 sinh
1

2
h(T − t)

and

a3 = (κ+ σ2B(T, T̄ )) sinh
1

2
h(T − t) + h cosh

1

2
h(T − t) (E.14)

= (κ sinh
1

2
h(T − t) + h cosh

1

2
h(T − t)) + σ2B(T, T̄ ) sinh

1

2
h(T − t)

= C(t, T )

(
1 +

1

2
σ2B(t, T )B(T, T̄ )

)
.

Continuing, we have that the expression inside the exponential becomes

rt
1

a3
×
(
a1 + 2

1
2
σ2 sinh 1

2
h(T−t)

a3
a2

1− 2
1
2
σ2 sinh 1

2
h(T−t)

a3
u

× u+ a2

)
. (E.15)

From (E.10) we now have the simplified expression

E

(
exp

(
rT (u− B(T, T̄ ))−

∫ T

t

rsds

)∣∣∣∣At

)
(E.16)

=

(
h exp(1

2
κ(T − t))

a3 − σ2u sinh 1
2
h(T − t)

)2κr̄/σ2

× exp

(
rt

1

a3
×
(
a1 + 2

1
2
σ2 sinh 1

2
h(T−t)

a3
a2

1− 2
1
2
σ2 sinh 1

2
h(T−t)

a3
u

× u+ a2

))
.
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From (E.8) and (E.16) we have

E

(
exp(r′Tu)

∣∣∣∣At

)
(E.17)

=
A(T, T̄ )

GT̄ (t)
E

(
exp

(
rT (u− B(T, T̄ ))−

∫ T

t

rsds

)∣∣∣∣At

)

=
A(T, T̄ )

GT̄ (t)

(
h exp(1

2
κ(T − t))

a3 − σ2u sinh 1
2
h(T − t)

)2κr̄/σ2

× exp

(
rt

1

a3
×
(
a1 + 2

1
2
σ2 sinh 1

2
h(T−t)

a3
a2

1− 2
1
2
σ2 sinh 1

2
h(T−t)

a3
u

× u+ a2

))

=
A(T, T̄ )

GT̄ (t)

(
h exp(1

2
κ(T − t))

a3 − σ2u sinh 1
2
h(T − t)

)2κr̄/σ2

× exp

{
rt

1

a3
×
(
a1 + 2

1
2
σ2 sinh 1

2
h(T − t)

a3
a2

)

×
(
1− 2

1
2
σ2 sinh 1

2
h(T − t)

a3
u

)−1

× u

}

× exp

(
rt
a2
a3

)
.

Using (E.12), (E.13) and (E.14) we can simplify the term

(
h exp(1

2
κ(T − t))

a3 − σ2u sinh 1
2
h(T − t)

)2κr̄/σ2

(E.18)

=

(
h exp(1

2
κ(T − t))

C(t, T )

)2κr̄/σ2

×
(

C(t, T )

a3 − σ2u sinh 1
2
h(T − t)

)2κr̄/σ2

= A(t, T )×
(
1 +

1

2
σ2B(t, T )B(T, T̄ )

)−2κr̄/σ2

×
(
1− σ2u

a3
sinh

1

2
h(T − t)

)−2κr̄/σ2

= A(t, T )×
(
1 +

1

2
σ2B(t, T )B(T, T̄ )

)−2κr̄/σ2

×
(
1− 1

2
σ2uB(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

)−2κr̄/σ2
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Also the latter terms in (E.17) simplify as follows,

exp

{
rt

1

a3
×
(
a1 + 2

1
2
σ2 sinh 1

2
h(T − t)

a3
a2

)
(E.19)

×
(
1− 2

1
2
σ2 sinh 1

2
h(T − t)

a3
u

)−1

× u

}

× exp

(
rt
a2
a3

)

= exp

(
rt

1

a3
×
(
a1 +

1

2
σ2a2B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

)

×
(
1− 1

2
σ2uB(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

)−1

× u

)

× exp

(
rt
a2
a3

)
.

Further we note that

a1
a3

= B(t, T )

(
1 +

1

2
σ2B(t, T )B(T, T̄ )

)−1

(E.20)

× 1

2 sinh 1
2
h(T − t)

(
h cosh

1

2
h(T − t)− κ sinh

1

2
h(T − t)

)

= B(t, T )

(
1 +

1

2
σ2B(t, T )B(T, T̄ )

)−1

×
(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)
a2
a3

=
−B(T, T̄ )a1 − 2 sinh 1

2
h(T − t)

a3

= −B(T, T̄ )
a1
a3

− B(t, T )(1 +
1

2
σ2B(t, T )B(T, T̄ ))−1

and that

g =
a1
a3

+
1

2
σ2a2

a3
B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1 (E.21)

=
a1
a3

+
1

2
σ2

(
− B(T, T̄ )

a1
a3

− B(t, T )(1 +
1

2
σ2B(t, T )B(T, T̄ ))−1

)

× B(t, T )(1 +
1

2
σ2B(t, T )B(T, T̄ ))−1

=
a1
a3

− 1

2
σ2B(T, T̄ )

a1
a3

B(t, T )(1 +
1

2
σ2B(t, T )B(T, T̄ ))−1

− 1

2
σ2B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

=
a1
a3

(
1− 1

2
σ2B(T, T̄ )B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

)

− 1

2
σ2

(
B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

)2

.
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For ease of legibility of the formulae which follow we define

γ =
1

4
σ2B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1. (E.22)

This allows us to rewrite (E.21) as

g =
a1
a3

(
1− 2B(T, T̄ )γ

)
− 8

σ2
γ2 (E.23)

which, upon substituting the expression for a1/a3 in (E.20), simplifies to

g =
4

σ2
γ

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)(
1− 2B(T, T̄ )γ

)
− 8

σ2
γ2 (E.24)

Therefore, we can write

E

(
exp(r′Tu)

∣∣∣∣At

)
(E.25)

∝
(
1− 1

2
σ2uB(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

)−2κr̄/σ2

× exp

(
rtgu

(
1− 1

2
σ2uB(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

)−1)
.

From (3.3.12) the moment generating function of a non-central chi-squared ran-
dom variable X with non-centrality parameter ω and ν degrees of freedom is

MGFX(t) = (1− 2t)−ν/2 exp

(
ωt

1− 2t

)
(E.26)

and the moment generating function of the random variable Y = γX is

MGFY (t) = MGFX(γt) = (1− 2γt)−ν/2 exp

(
ωγt

1− 2γt

)
. (E.27)

Comparing this MGF with the right hand side of (E.25) we see that

ν = 4κr̄/σ2 (E.28)

γ =
1

4
σ2B(t, T )(1 +

1

2
σ2B(t, T )B(T, T̄ ))−1

ω = rtg/γ

= rt
4

σ2

(
1

2
h coth

1

2
h(T − t)− 1

2
κ

)(
1− 2B(T, T̄ )γ

)
− rt

8

σ2
γ

where g is as in (E.24).

Thus r′T is distributed as a scaled non-central chi-squared random variable with
parameters ν, ω, γ as in (E.28). Therefore, we have

P (r′T < R) = χ2
ν,ω(R/γ) (E.29)
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where R is determined from (E.2). It follows from (E.5) that

A+
T,K,GT̄

(t) = GT̄ (t)χ
2
ν,ω(R/γ), (E.30)

which is the result for the asset binary call option. Now for the asset binary put
option we have similarly

A−
T,K,GT̄

(t) = E

(
exp

(
−
∫ T

t

rsds

)
GT̄ (T )1GT̄ (T )≤K

∣∣∣∣At

)
(E.31)

= E

(
exp

(
−
∫ T

t

rsds

)
GT̄ (T )(1− 1GT̄ (T )>K)

∣∣∣∣At

)
= GT̄ (t)− A+

T,K,GT̄
(t)

= GT̄ (t)

(
1− χ2

ν,ω(R/γ)

)
.

Q.E.D.
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Appendix F

Proofs on CIR Short Rate
Contributions to Bond Yields
and Forward Rates

The following proof corresponds to the short rate contribution to the long bond
yield.

Proof .[of Corollary 3.3.21] The short rate contribution to the long ZCB yield is
given by the formula

h∞(t) = − lim
T̄→∞

1

T̄ − t
logGT̄ (t) (F.1)

= lim
T̄→∞

1

T̄ − t
(− logA(t, T̄ ) + rtB(t, T̄ )).

But limT̄→∞ B(t, T̄ ) = 1
κ
and, therefore, limT̄→∞

1
T̄−t

(rtB(t, T̄ )) = 0.

h∞(t) = lim
T̄→∞

− 1

T̄ − t
logA(t, T̄ ) (F.2)

= lim
T̄→∞

− 1

T̄ − t

2κr̄

σ2
log

h exp(1
2
κ(T − t))

κ sinh 1
2
h(T − t) + h cosh 1

2
h(T − t)

= lim
T̄→∞

−2κr̄

σ2

(
1

2
κ− 1

2
h

)

=
κr̄

σ2
(h− κ)

as required. Q.E.D.

The following proof corresponds to the short rate contribution to the T̄ -forward
rate.
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Proof .[of Lemma 3.3.22] Taking logarithms on both sides of (3.3.44) gives

logGT̄ (t) = logA(t, T̄ )− B(t, T̄ )rt (F.3)

and then taking the negative of the partial derivative of this with respect to T̄
gives

gT̄ (t) = − ∂

∂T̄
logGT̄ (t) (F.4)

= − ∂

∂T̄
logA(t, T̄ ) + rt

∂

∂T̄
B(t, T̄ )

= −2κr̄

σ2

∂

∂T̄
L(t, T̄ ) + rt

∂

∂T̄
B(t, T̄ ),

where

L(t, T̄ ) =

(
2κr̄

σ2

)−1

logA(t, T̄ ) (F.5)

= log
h exp

(
1
2
κ(T̄ − t)

)
C(t, T̄ )

= log h+
1

2
κ(T̄ − t)− logC(t, T̄ ).

Now

∂

∂T̄
B(t, T̄ ) =

h cosh 1
2
h(T̄ − t)

C(t, T̄ )
(F.6)

− 2 sinh 1
2
h(T̄ − t)

C(t, T̄ )2
h

2
(κ cosh

1

2
h(T̄ − t) + h sinh

1

2
h(T̄ − t))

=
h cosh 1

2
h(T̄ − t)

C(t, T̄ )
− h

C(t, T̄ )2
(κ sinh

1

2
h(T̄ − t) cosh

1

2
h(T̄ − t)

+ h cosh2 1

2
h(T̄ − t)− h)

=
h cosh 1

2
h(T̄ − t)

C(t, T̄ )
+

h2

C(t, T̄ )2
− h cosh 1

2
h(T̄ − t)

C(t, T̄ )

=
h2

C(t, T̄ )2
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and

∂

∂T̄
L(t, T̄ ) =

1

2
κ− 1

C(t, T̄ )

∂C(t, T̄ )

∂T̄
(F.7)

=
1

2
κ− 1

C(t, T̄ )
(
1

2
hκ cosh

1

2
h(T̄ − t) +

1

2
h2 sinh

1

2
h(T̄ − t))

=
1

2
κ− h

2 sinh 1
2
h(T̄ − t))C(t, T̄ )

× (κ sinh
1

2
h(T̄ − t) cosh

1

2
h(T̄ − t))− h+ h cosh2 1

2
h(T̄ − t)))

=
1

2
κ− h

2 sinh 1
2
h(T̄ − t))C(t, T̄ )

(cosh
1

2
h(T̄ − t))C(t, T̄ )− h)

=
1

2
κ− h

2
coth

1

2
h(T̄ − t)) +

1

2
h2 1

sinh 1
2
h(T̄ − t))C(t, T̄ )

.

Both (F.6) and (F.7) inserted into (F.4) lead to (3.3.50). Q.E.D.



262APPENDIX F. PROOFS ON CIR SHORT RATE CONTRIBUTIONS TO BONDYIELDS



Appendix G

Laplace Transform for the 3/2
Short Rate

We supply a proof of the formula for the Laplace transform of
∫ T
t
rs ds when rt

obeys (3.4.1). This proof is based on the proof given for Theorem 3 in Carr and
Sun [2007]. Furthermore, this formula for the Laplace transform agrees with that
given in Section 5.5 of Baldeaux and Platen [2013].

Proof .[of Lemma 3.4.4] From Section 9.7 of Platen and Heath [2006], the Feynman-
Kac Theorem states that if

u(x, t) = E

(∫ T

t

exp

{
−
∫ s

t

V (Xτ , τ) dτ

}
f(Xs, s) ds (G.1)

+ exp

{
−
∫ T

t

V (Xτ , τ) dτ

}
ψ(XT )

∣∣∣∣Xt = x

)
,

where X = {Xt : t ≥ 0} is a stochastic process satisfying

dXt = μ(Xt, t)dt+ σ(Xt, t)dWt (G.2)

then u(x, t) satisfies the partial differential equation (PDE)

∂u

∂t
+ μ(x, t)

∂u

∂x
+

1

2
σ(x, t)2

∂2u

∂x2
− V (x, t)u(x, t)− f(x, t) = 0, (G.3)

with the boundary condition

u(x, T ) = ψ(x). (G.4)

Applying this theorem to the problem of computing the Laplace transform

u(rt, t) = E

(
exp

{
− s

∫ T

t

rτ dτ

}∣∣∣∣At

)
, (G.5)
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where r = {rt : t ≥ 0} is the stochastic process given in (3.4.1), we must solve
the PDE (G.3). We have

μ(x, t) = px+ qx2 (G.6)

σ(x, t) = σx3/2

ψ(x) = 1

V (x, t) = s x

f(x, t) = 0

and (G.3) becomes

∂u

∂t
+ (px+ qx2)

∂u

∂x
+

1

2
σ2x3∂

2u

∂x2
− s x u(x, t) = 0. (G.7)

The boundary conditions for the solution to (G.7) are

u(x, T ) = 1 (G.8)

u(0, t) = 1

lim
x→∞

u(x, t) = 0.

As done in Carr and Sun [2007], we guess that

u(x, t) = w(y), (G.9)

where
y = x{exp(p(T − t))− 1}/p. (G.10)

The boundary conditions in (G.8) become

w(0) = 1 (G.11)

lim
y→∞

w(y) = 0.

We have

∂u

∂t
= w′(y) (−x− py) (G.12)

∂u

∂x
= w′(y)

exp(p(T − t))− 1

p
= w′(y)

y

x

∂2u

∂x2
= w′′(y)

(
exp(p(T − t))− 1

p

)2

= w′′(y)
y2

x2

and (G.7) becomes

w′(y) (−x+ q x y) +
1

2
σ2xy2w′′(y)− s xw(y) = 0, (G.13)

which upon dividing both sides by x becomes

w′(y) (−1 + q y) +
1

2
σ2y2w′′(y)− sw(y) = 0. (G.14)
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Write w(y) = zαh(z) where z = β/y, for some constants α and β to be chosen
later to effect some simplification. Then

w′(y) = −α

β
zα+1h(z)− 1

β
zα+2h′(z) (G.15)

w′′(y) =
α(α + 1)

β2
zα+2h(z) +

2α + 2

β2
zα+3h′(z) +

1

β2
zα+4h′′(z)

and substituting into (G.14) gives

1

2
σ2zα+2h′′(z) +

(
1

2
(2α + 2)σ2zα+1 − 1

β
zα+1(−z + qβ)

)
h′(z) (G.16)

+

(
− s zα − α

β
zα(−z + qβ) +

1

2
α(α + 1)σ2zα

)
h(z) = 0.

Dividing both sides by zα gives

1

2
σ2z2h′′(z) +

(
1

2
(2α + 2)σ2z − 1

β
z(−z + qβ)

)
h′(z) (G.17)

+

(
− s+

α

β
z − αq +

1

2
α(α + 1)σ2

)
h(z) = 0.

Choosing α such that

−s− αq +
1

2
α(α + 1)σ2 = 0 (G.18)

and dividing both sides of (G.17) by 1
2
σ2z gives

zh′′(z) +

(
(2α + 2) +

2

σ2β
z − 2

σ2
q

)
h′(z) +

2α

σ2β
h(z) = 0. (G.19)

Choosing β such that the coefficient of z in the multiplier of h′(z) in (G.19) is
−1, that is,

β = − 2

σ2
, (G.20)

and writing

γ = 2α + 2− 2

σ2
q (G.21)

gives
zh′′(z) + (γ − z)h′(z)− αh(z) = 0. (G.22)

This is Kummer’s differential equation, see Chapter 4 of Watson [1966], whose
general solution, when γ is not an integer, is expressible in terms of the confluent
hypergeometric functions of the first and second kinds, namely

h(z) = aM(α, γ, z) + b U(α, γ, z), (G.23)

where

M(α, γ, z) =
∞∑
n=0

(α)n
(γ)n

zn

n!
(G.24)
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and

U(α, γ, z) =
π

sin πγ

(
M(α, γ, z)

Γ(1 + α− γ)Γ(γ)
− z1−γM(1 + α− γ, 2− γ, z)

Γ(α)Γ(2− γ)

)
. (G.25)

Therefore
w(y) = zαh(z) = a zαM(α, γ, z) + b zαU(α, γ, z), (G.26)

where z = −2/(σ2y). The boundary conditions (G.11) are met when b = 0 and
α equals the upper root of (G.18), that is,

α =
−(−q + 1

2
σ2) +

√
(−q + 1

2
σ2)2 + 2s σ2

σ2
. (G.27)

So we have
w(y) = a zαM(α, γ, z). (G.28)

As z → 0, y → ∞ and w(y) → a zαM(α, γ, 0) = 0. Also, as z → −∞, y → 0+

and

M(α, γ, z) ∼ Γ(γ)

Γ(γ − α)
(−z)−α, (G.29)

so that letting

a =
Γ(γ − α)

Γ(γ)
(−1)α (G.30)

makes w(y) = a zαM(α, γ, z) → 1 as z → −∞. Thus, from (G.9) we have

u(x, t) =
Γ(γ − α)

Γ(γ)

(
2

σ2y

)α

M
(
α, γ,− 2

σ2y

)
, (G.31)

where y is given by (G.10), α is given by (G.27) and γ is given by (G.21). Q.E.D.
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Proofs on 3/2 Short Rate
Contributions to Bond Yields
and Forward Rates

The following proof corresponds to the short rate contribution to the long bond
yield.

Proof .[of Corollary 3.4.6] We write the logarithm of (3.4.22) as

logGT̄ (t) = log Γ(γ1 − α1)− log Γ(γ1) + α1 log z + logM(α1, γ1,−z), (H.1)

where z = 2
σ2y(t,rt)

. We note that

lim
T̄→∞

log y(t, rt)

T̄ − t
= lim

T̄→∞

log rt/p+ log(exp(p(T̄ − t))− 1))

T̄ − t
(H.2)

= lim
T̄→∞

log(exp(p(T̄ − t))− 1))

T̄ − t

= lim
T̄→∞

p log(exp(p(T̄ − t))− 1))

log exp(p(T̄ − t))

= p.

The short rate contribution to the long ZCB yield is given by the formula

h∞(t) = − lim
T̄→∞

1

T̄ − t
logGT̄ (t) (H.3)

= lim
T̄→∞

−1

T̄ − t
(log Γ(γ1 − α1)− log Γ(γ1) + α1 log z + logM(α1, γ1,−z))

= lim
T̄→∞

−α1 log z

T̄ − t

= lim
T̄→∞

α1 log y(t, rt)

T̄ − t

= α1p
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as required. Q.E.D.

The following proof corresponds to the short rate contribution to the T̄ -forward
rate.

Proof .[of Lemma 3.4.7] We write the logarithm of (3.4.22) as

logGT̄ (t) = log Γ(γ1 − α1)− log Γ(γ1) + α1 log z + logM(α1, γ1,−z) (H.4)

where z = 2
σ2y(t,rt)

. We note that

∂z

∂T̄
=

2p

σ2rt
× −1

(exp(p(T̄ − t))− 1)2
× p exp(p(T̄ − t)) (H.5)

= −z
p exp(p(T̄ − t))

exp(p(T̄ − t))− 1

= −zp

(
1 +

1

exp(p(T̄ − t))− 1

)
.

Also we have straightforwardly

∂M(α1, γ1, z)

∂z
=

α1

γ1
M(α1 + 1, γ1 + 1, z). (H.6)

From (3.2.58) and the above relations we have

gT̄ (t) = − ∂

∂T̄
logGT̄ (t) (H.7)

= −α1

z

∂z

∂T̄
− 1

M(α1, γ1,−z)

∂M(α1, γ1,−z)

∂z

∂z

∂T̄

= − ∂z

∂T̄

(
α1

z
+

1

M(α1, γ1,−z)

∂M(α1, γ1,−z)

∂z

)

= zp

(
1 +

1

exp(p(T̄ − t))− 1

)(
α1

z
− α1

γ1

M(α1 + 1, γ1 + 1,−z)

M(α1, γ1,−z)

)

and simplifying gives the result. Q.E.D.



Appendix I

Approximate Pricing Formulae
for Equity Index Options

The calculation of inverse Fourier transforms is computationally intensive on a
computer and a faster computational method approximates the distribution of the
GOP with a probability distribution having the same moments up to the second or
third order and having the same form as the distribution of the discounted GOP.
Another approach is to employ the Edgeworth series expansion up to second
or third order which we do not describe here. So for a model involving a BS
discounted GOP the distribution of the GOP is approximated by a lognormal
distribution that matches the first two moments of the GOP. Also, for a model
involving a MMM discounted GOP the distribution of the GOP is approximated
by a noncentral gamma distribution that matches the first three moments of the
GOP.

Because of the independence of the driving Wiener processes Z and W of the
short rate and the discounted GOP, respectively, the moments of the GOP Sδ∗

T

are the product of the corresponding moments of the savings account BT and
discounted GOP S̄δ∗

T . Also, the k-th moment of the related random variable Rδ∗
T

is

E

(
Sδ∗
t

Sδ∗
T

(Sδ∗
T )k
)

E

(
Sδ∗
t

Sδ∗
T

) =
Sδ∗
t

P (t, T )
E
(
(Sδ∗

T )k−1
)

(I.1)

and therefore can be computed from the (k − 1)-th moment of Sδ∗
T .

The k-th moment of BT is computed as

Bk
t MGFL(k), (I.2)

where L = logBT/Bt. When the discounted GOP obeys the BS model, the k-th
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moment of S̄δ∗
T is

(S̄δ∗
t )k exp

(k
2
θ2(T − t) +

k2

2
θ2(T − t)

)
. (I.3)

When the discounted GOP obeys the MMM model, the first, second and third
moments of S̄δ∗

T , which is distributed as NCG(2, 1/(2(ϕT − ϕt)), λ), are

E
(
S̄δ∗
T

)
= (ϕT − ϕt)(4 + λ) (I.4)

E
(
(S̄δ∗

T )2
)
= (ϕT − ϕt)

2(8 + 4λ)

E
(
(S̄δ∗

T )3
)
= (ϕT − ϕt)

3(32 + 24λ).

Having computed the moments of Sδ∗
T as the product of corresponding moments

of BT and S̄δ∗
T the lognormal approximations to the distributions of Sδ∗

T and Rδ∗
T

are

Sδ∗
T ∼ LN(m, v) (I.5)

Rδ∗
T ∼ LN(m− v, v),

where

v = log
(
1 + Var

(
Sδ∗
T

)
/E
(
Sδ∗
T

)2)
(I.6)

m = log E
(
Sδ∗
T

)
− 1

2
v.

Also, the noncentral gamma approximations to the distributions of Sδ∗
T and Rδ∗

T

are

Sδ∗
T ∼ NCG(α, γ, λ) (I.7)

Rδ∗
T ∼ NCG(α′, γ′, λ′),

where α, γ, λ are given by

γ = 2
Var
(
Sδ∗
T

)
Skew

(
Sδ∗
T

) +
√
4

(
Var
(
Sδ∗
T

)
Skew

(
Sδ∗
T

))2

− 2
E
(
Sδ∗
T

)
Skew

(
Sδ∗
T

) (I.8)

α = 2γE
(
Sδ∗
T

)
− γ2Var

(
Sδ∗
T

)
λ = −2γE

(
Sδ∗
T

)
+ 2γ2Var

(
Sδ∗
T

)
and α′, γ′, λ′ have the corresponding formulae in terms of moments of Rδ∗

T .

Using these approximations we can compute prices of various options straightfor-
wardly from (5.3.7).



Appendix J

Proofs of Expectations Involving
a Standard Normal Random
Variable

This appendix provides the proofs of the results in Section 4.2.5.

Proof .[of Lemma 4.2.8] We have

E(exp(αZ)) =

∫ ∞

−∞
exp(αu)n(u)du (J.1)

=

∫ ∞

−∞
exp(

1

2
α2)n(u− α)du

= exp(
1

2
α2)

∫ ∞

−∞
n(v)dv

= exp(
1

2
α2).

Next we have

E(exp(αZ)1Z>z) =

∫ ∞

z

exp(αu)n(u)du (J.2)

=

∫ ∞

z

exp(
1

2
α2)n(u− α)du

= exp(
1

2
α2)

∫ ∞

z−α

n(v)dv

= exp(
1

2
α2)E(1Z>z−α)

= exp(
1

2
α2)
(
1−N(z − α)

)
,

which is the second result. The third result is obtained by transposing the identity

E(exp(αZ)1Z>z) + E(exp(αZ)1Z≤z) = E(exp(αZ)) (J.3)
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and applying the first two results. Q.E.D.

Proof .[of Lemma 4.2.9] We have

E(N(αZ + β)) = E(E(1Y≤αZ+β|Z)) (J.4)

= E(1Y≤αZ+β)

= E(1Y≤αZ+β|Y )

= E(1(Y−αZ)/
√
1+α2≤β/

√
1+α2)

= E(1X≤β/
√
1+α2)

= N

(
β√

1 + α2

)
,

where we have made use of the facts Y ∼ N(0, 1) and X = (Y −αZ)/
√
1 + α2 ∼

N(0, 1). Q.E.D.

Proof .[of Lemma 4.2.10] For standard normal random variables X and Y , and
making use of Lemma 4.2.9, we have

E(exp(γZ)N(αZ + β)) = E(exp(γZ)E(1Y≤αZ+β|Z)) (J.5)

= E(exp(γZ)1Y≤αZ+β)

= E(E(exp(γZ)1Y≤αZ+β|Y ))

= E(E(exp(γZ)1(Y−β)/α≤Z |Y ))

= E(E(exp(
1

2
γ2)(1−N((Y − β)/α− γ))|Y ))

= exp(
1

2
γ2)E(1−N((Y − β)/α− γ))

= exp(
1

2
γ2)E(1−N((Y − β)/α− γ))

= exp(
1

2
γ2)

(
1−N

( −γ − β/α√
1 + 1/α2

))

= exp(
1

2
γ2)N

(
αγ + β√
1 + α2

)
,

which is the result. Q.E.D.



Appendix K

Proofs Involving Non-Central
Chi-Squared Random Variables

Here we provide proofs to the results in Section 4.3.6.

Proof .[of Lemma 4.3.17]

E

(
1

Z + 1
f(Z)

)
= exp(−μ)

∞∑
z=0

1

z!
μz 1

z + 1
f(z) (K.1)

=
1

μ
exp(−μ)

∞∑
z=0

1

(z + 1)!
μz+1f(z)

=
1

μ
exp(−μ)

(
− f(−1) +

∞∑
z=0

1

z!
μzf(z − 1)

)

= − 1

μ
exp(−μ)f(−1) +

1

μ
E

(
f(Z − 1)

)
.

Q.E.D.

Proof .[of Lemma 4.3.18]

E

(
1

X
1X≤x

)
=

∫ x

0

1

u
fχ2

ν
(u)du (K.2)

=
2−ν/2

Γ(ν/2)

∫ x

0

uν/2−2 exp(−u/2)du

=
2−1

ν/2− 1

2−(ν−2)/2

Γ((ν − 2)/2)

∫ x

0

uν/2−2 exp(−u/2)du

=
2−1

ν/2− 1

∫ x

0

fχ2
ν−2

(u)du

=
1

ν − 2
E

(
1Y≤x

)
.
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Q.E.D.

Proof .[of Lemma 4.3.19] We prove the first expectation. From Remark 3.3.9 we
write U = χ2

4+2Z where Z ∼ Poisson(λ/2), giving

E

(
λ

U
1U≤x

)
= E

(
λ

χ2
4+2Z

1χ2
4+2Z≤x

)
(K.3)

= E

(
E

(
λ

χ2
4+2Z

1χ2
4+2Z≤x

∣∣∣∣Z
))

.

Now from Lemma 4.3.18 we have that

E

(
λ

χ2
4+2Z

1χ2
4+2Z≤x

∣∣∣∣Z
)

=
λ

2Z + 2
E

(
1χ2

2+2Z≤x

)
(K.4)

and inserting this into (K.3) gives

E

(
λ

U
1U≤x

)
= E

(
λ

2Z + 2
E

(
1χ2

2+2Z≤x

∣∣∣∣Z
))

(K.5)

=
λ

2
E

(
1

Z + 1
E

(
1χ2

2+2Z≤x

∣∣∣∣Z
))

.

Employing Lemma 4.3.17 with f(Z) = E

(
1χ2

2+2Z≤x

∣∣∣∣Z
)

gives

E

(
λ

U
1U≤x

)
= E

(
E

(
1χ2

2Z≤x

∣∣∣∣Z
))

− exp(−λ/2)E

(
1χ2

0≤x

)
(K.6)

= E

(
1χ2

0,λ≤x

)
− exp(−λ/2)

= χ2
0,λ(x)− exp(−λ/2).

The second and third expectations have similar proofs. Q.E.D.

Proof .[of Lemma 4.3.20]

E

(
1

Z + 1
γZf(Z)

)
= exp(−μ)

∞∑
z=0

1

z!
μzγz 1

z + 1
f(z) (K.7)

=
1

μγ
exp(−μ)

∞∑
z=0

1

(z + 1)!
(μγ)z+1f(z)

=
1

μγ
exp(−μ)

(
− f(−1) +

∞∑
w=0

1

w!
(μγ)wf(w − 1)

)

= − 1

μγ
exp(−μ)f(−1) +

1

μγ
exp(−μ) exp(μγ)E

(
f(W − 1)

)

where W ∼ Poisson(μγ). Q.E.D.
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Proof .[of Lemma 4.3.21] The first expectation is evaluated straightforwardly as

E

(
1

X
exp(−τX)1X≤x

)
=

∫ x

0

1

u
exp(−τu)fχ2

ν
(u)du (K.8)

=
2−ν/2

Γ(ν/2)

∫ x

0

uν/2−2 exp(−u

2
(2τ + 1))du

=
2−1

ν/2− 1

2−(ν−2)/2

Γ((ν − 2)/2)

∫ x

0

uν/2−2 exp(−u

2
(2τ + 1))du

=
2−1

ν/2− 1

1

(2τ + 1)ν/2−1

∫ x(2τ+1)

0

fχ2
ν−2

(v)dv

=
1

ν − 2

1

(2τ + 1)ν/2−1
E

(
1Y≤(2τ+1)x

)
.

The second expectation follows similarly. Q.E.D.

Proof .[of Lemma 4.3.22] From Remark 3.3.9 we write U = χ2
4+2Z where Z ∼

Poisson(λ/2), giving

E

(
λ

U
exp(−τU)1U≤x

)
= E

(
λ

χ2
4+2Z

exp(−τχ2
4+2Z)1χ2

4+2Z≤x

)
(K.9)

= E

(
E

(
λ

χ2
4+2Z

exp(−τχ2
4+2Z)1χ2

4+2Z≤x

∣∣∣∣Z
))

.

Now from Lemma 4.3.21 we have that

E

(
λ

χ2
4+2Z

exp(−τχ2
4+2Z)1χ2

4+2Z≤x

∣∣∣∣Z
)

=
λ

2Z + 2

1

(2τ + 1)Z+1
E

(
1χ2

2+2Z≤(2τ+1)x

)
(K.10)

and inserting this into (K.9) gives

E

(
λ

U
exp(−τU)1U≤x

)
= E

(
λ

2Z + 2

1

(2τ + 1)Z+1
E

(
1χ2

2+2Z≤(2τ+1)x

∣∣∣∣Z
))

(K.11)

=
λ

2

1

(2τ + 1)
E

(
λ

Z + 1

1

(2τ + 1)Z
E

(
1χ2

2+2Z≤(2τ+1)x

∣∣∣∣Z
))

.

Employing Lemma 4.3.20 with γ = 1/(2τ + 1) and f(Z) = E

(
1χ2

2+2Z≤(2τ+1)x

∣∣∣∣Z
)

gives

E

(
λ

U
exp(−τU)1U≤x

)
= exp(−1

2
λ(1− 1/(2τ + 1)))E

(
E

(
1χ2

2W≤(2τ+1)x

∣∣∣∣Z
))

(K.12)

− exp(−λ/2)E

(
1χ2

0≤(2τ+1)x

)
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where W ∼ Poisson(λ/(2τ + 1)). Continuing we have

E

(
λ

U
exp(−τU)1U≤x

)
(K.13)

= exp(−1

2
λ(1− 1/(2τ + 1)))E

(
1χ2

0,λ/(2τ+1)
≤(2τ+1)x

)
− exp(−λ/2)

= exp(−1

2
λ(1− 1/(2τ + 1)))χ2

0,λ/(2τ+1)((2τ + 1)x)− exp(−λ/2).

Simplifying the exponential term gives the first expectation. The proof of the
other expectation is similar. Q.E.D.



Appendix L

US Market Data Sets Used in
this Thesis

Several data sets composed of short-term interest rates and stock market index
values have been employed in this thesis. Each data set is in respect of the US
market and have annual, monthly and daily observation frequencies.

L.1 Data Set A: Shiller’s Annual US Data Set

1871 to 2012

Our first data set is the annual data set given by Shiller [1989] and has 141
observations, making it amenable to fast parameter estimation on the models
used in this thesis. The cash account B(t) commences with a value of one and is
iteratively computed using the formula

B(t+ 1) = (1 + r
(1)
t )B(t)

where r
(1)
t is the one-year cash rate. The stock index, used as a proxy for the

growth optimal portfolio, commences with a value of one and is iteratively com-
puted using the formula

Sδ∗(t+ 1) = Sδ∗(t)× (I(t+ 1) +D(t+ 1))/I(t)

where I(t) is the stock price index at the end of year t and D(t) is the gross
value of dividends paid during year t. We assume that a financial institution’s
hedging profits can be offset against its product offerings and therefore attract
zero taxation. The ten-year semi-annual government bond yield is denoted by
y
(10)
t and is assumed to be a par bond yield.
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Figure L.1: Graph of Interest Rates and Logarithm of S&P 500 Composite Total
Return Index (Data Set B).
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L.2 Data Set B: Shiller’s Monthly US Data Set

1871 to 2012

The following monthly data set is interpolated from the annual data set given
by Shiller [1989] in respect of the US and is shown in Figure L.1. The cash
account B(t) commences with a value of one and is iteratively computed using
the formula

B(t+ 1/12) = (1 + r
(1)
t )1/12B(t)

where r
(1)
t is the one-year cash rate. The stock index, used as a proxy for the

growth optimal portfolio, commences with a value of one and is iteratively com-
puted using the formula

Sδ∗(t+ 1/12) = Sδ∗(t)× (I(t+ 1/12) +D(t+ 1/12))/I(t)

where I(t) is the stock price index at time t and D(t) is the gross value of div-
idends paid during the period (t − 1/12, t). As before, the ten-year semi-annual

government bond yield is denoted by y
(10)
t and is assumed to be a par bond yield.
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L.3 Data Set C: Shiller’s Monthly US Data Set

1871 to 2017

This is the extended from Shiller’s monthly US data set of cash rates and S&P500
total return values over the period from 1871 to 2012, as given in Shiller [1989]
and his website. Values from 2013 to 2017 have been spliced using data obtained
from Bloomberg data services.

L.4 Data Set D: Monthly Data Set January 1962

to June 2014

The cash rates and ten-year bond yields of the following data set are the one-
year and ten-year Treasury bond yields sourced from the US Federal Reserve
Bank website whereas the S&P 500 Total Return Index is sourced from Global
Financial Data. The cash account B(t), stock index Sδ∗(t) and ten-year semi-

annual government bond yield y
(10)
t have the same meaning as for Shiller’s Annual

Data Set, Data Set A in Section L.1.

L.5 Data Set E: Daily Data Set January 1970

to May 2017

The daily US data set comprises the Federal Funds Rate and S&P 500 total
return index values over the period from January 1970 to May 2017, sourced
from Bloomberg data services.
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Appendix M

Algorithm for MLEs of SGH
Parameters

The symmetric generalised hyperbolic (SGH) distribution is specified by the prob-
ability density function

fL(x;μ, δ, ᾱ, λ) =
1

δKλ(ᾱ)

√
ᾱ

2π

(
1 +

(x− μ)2

δ2

) 1
2
(λ− 1

2
)

Kλ− 1
2

(
ᾱ

√
1 +

(x− μ)2

δ2

)
(M.1)

for x ∈ (−∞,∞), location parameter μ ∈ (−∞,∞) and two shape parameters
λ ∈ (−∞,∞) and ᾱ = αδ ∈ [0,∞), defined so that they are invariant under scale
transformations. The scale parameter is δ ∈ [0,∞). The parameters α and δ are
such that ᾱ = αδ with α, δ ∈ [0,∞) and

δ > 0, α ≥ 0, if λ < 0, (M.2)

δ > 0, α > 0, if λ = 0, (M.3)

δ ≥ 0, α > 0, if λ > 0. (M.4)

Also

Kλ(ω) =
1

2

∫ ∞

0

uλ−1 exp(−1

2
ω(u+ u−1))du (M.5)

is the modified Bessel function of the third kind with index λ, as given in Section
6.22 of Watson [1966].

Our methodology for obtaining the maximum likelihood estimates of the four
parameters μ, δ, ᾱ, λ is:

Input: For a given data set {xi : i = 1, 2, . . . , n} we compute the maximum
likelihood estimates of the SGH distribution;

Initialise: Prescribe grid step parameters Δᾱ and Δλ and grid size parameter
k;
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Outer Loop: For each pair (ᾱ, λ) in the grid specified by {(ᾱ0+iΔᾱ, λ0+jΔλ) :
i, j = −k,−k + 1, . . . , k} compute the maximum likelihood estimates of μ
and δ conditioned on the parameter pair (ᾱ, λ);

Inner Loop: Compute the maximum likelihood estimates of μ and δ conditioned
on the parameter pair (ᾱ, λ) using the Newton-Raphson iterative scheme.

The outer loop of the algorithm is simply a grid search, whereas the inner loop of
the algorithm is a two-dimensional Newton-Raphson iteration scheme. We now
describe in more detail the workings of the inner loop.

We write the logarithm of the SGH probability density function in (6.2.1) as

g(x) = log fL(x;μ, δ, ᾱ, λ) (M.6)

= log c(δ, ᾱ, λ) +
1

2

(
λ− 1

2

)
log

(
1 +

(x− μ)2

δ2

)

+ logKλ− 1
2

(
ᾱ

√
1 +

(x− μ)2

δ2

)

where the constant c is defined as

c(δ, ᾱ, λ) =
1

δKλ(ᾱ)

√
ᾱ

2π
(M.7)

and further, by letting t = (x− μ)/δ, we rewrite (M.6) as

h(t) = g(x) = log c(δ, ᾱ, λ)+
1

2

(
λ− 1

2

)
log(1+ t2)+ logKλ− 1

2
(ᾱ

√
1 + t2). (M.8)

From (6.2.5) we can derive straightforwardly the relations

Kλ+1(ω) =
2λ

ω
Kλ(ω) +Kλ−1(ω) (M.9)

and

∂Kλ(ω)

∂ω
= −1

2

(
Kλ+1(ω) +Kλ−1(ω)

)
(M.10)

= −λ

ω
Kλ(ω)−Kλ−1(ω)
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which allow us to more easily differentiate (M.8) with respect to t, giving

h′(t) =
(
λ− 1

2

) t

1 + t2
+

t√
1 + t2

×
ᾱK ′

λ− 1
2

(ᾱ
√
1 + t2)

Kλ− 1
2
(ᾱ

√
1 + t2)

(M.11)

=
(
λ− 1

2

) t

1 + t2
− ᾱt√

1 + t2
×
(

λ

ᾱ
√
1 + t2

+
Kλ− 3

2
(ᾱ

√
1 + t2)

Kλ− 1
2
(ᾱ

√
1 + t2)

)
)

=
t√

1 + t2

(
λ− 1

2√
1 + t2

− λ√
1 + t2

−
ᾱKλ− 3

2
(ᾱ

√
1 + t2)

Kλ− 1
2
(ᾱ

√
1 + t2)

)

= − t√
1 + t2

(
1

2
√
1 + t2

+
ᾱKλ− 3

2
(ᾱ

√
1 + t2)

Kλ− 1
2
(ᾱ

√
1 + t2)

)
.

For a given data set X = {xi : i = 1, 2, . . . , n} the log likelihood function is

gX(μ, δ, ᾱ, λ) =
n∑

i=1

h(ti;μ, δ, ᾱ, λ) (M.12)

where ti = (xi − μ)/δ, for i = 1, 2, . . . , n. The maximum likelihood estimates of
μ and δ, conditional on ᾱ and λ, are the solutions to the equations

∂gX
∂μ

= 0 (M.13)

∂gX
∂δ

= 0.

We have that

∂gX
∂μ

=
n∑

i=1

h′(ti)
∂ti
∂μ

(M.14)

= −1

δ

n∑
i=1

h′(ti)

and that

∂gX
∂δ

= n
∂ log c(δ, ᾱ, λ)

∂δ
+

n∑
i=1

h′(ti)
∂ti
∂δ

(M.15)

= −n

δ
− 1

δ

n∑
i=1

tih
′(ti).

We compute initial estimates (μ0, δ0) of (μ, δ) as

μ0 =
1

n

n∑
i=1

xi (M.16)

δ0 =

√
ᾱKλ(ᾱ)

Kλ+1(ᾱ)
×

√√√√ 1

n

n∑
i=1

x2
i −
( 1
n

n∑
i=1

xi

)2
.



284 APPENDIX M. ALGORITHM FOR MLES OF SGH PARAMETERS

From (M.11) we write

h′(t) = −x− μ

δ
h1(t) (M.17)

where

h1(t) =
1√

1 + t2

(
1

2
√
1 + t2

+
ᾱKλ− 3

2
(ᾱ

√
1 + t2)

Kλ− 1
2
(ᾱ

√
1 + t2)

)
. (M.18)

Then the condition ∂gX/∂μ = 0 allows for an iterative formula for μ by virtue of
the equivalence relations

∂gX
∂μ

= 0 ⇔
∑

h′(ti) = 0 (M.19)

⇔
∑

(xi − μ)h1(ti) = 0

⇔ μ =

∑
xih1(ti)∑
h1(ti)

.

So we arrive at the iterative formula

μj+1 =

∑
xih1(ti)∑
h1(ti)

(M.20)

where the right hand side uses the values μj and δj.

Also the condition ∂gX/∂δ = 0 allows for an iterative formula for δ by virtue of
the equivalence relations

∂gX
∂δ

= 0 ⇔
∑

tih
′(ti) = −n (M.21)

⇔ 1

δ2

∑
(xi − μ)2h1(ti) = n

⇔ δ2 =

∑
(xi − μ)2h1(ti)

n
.

So we arrive at the iterative formula

δ2j+1 =

∑
(xi − μj+1)

2h1(ti)

n
(M.22)

where the right hand side uses the values μj+1 and δj.

We continue the iterative formulae (M.20) and (M.22) in turn until the conver-
gence criteria

|μj+1 − μj| < ε (M.23)

|δj+1 − δj| < ε

are satisfied for a prespecified tolerance level ε > 0, thereby concluding the exe-
cution of the inner loop of the parameter estimation algorithm.



Appendix N

Asymptotic Properties of
Functions Involving the Modified
Bessel Function of the First Kind

We give some asymptotic properties of the function f(x) = log{exp(−x)I1(x)}
given in (4.3.27).

Lemma N.0.1 For the function f in (4.3.27) we have the asymptotic formulae

f ′(x) = − 1

2x
+

3

8x2
+

3

8x3
+O

(
1

x4

)
(N.0.1)

f ′′(x) =
1

2x2
− 3

4x3
+O

(
1

x4

)

Proof . As given in Chapter 6 of Watson [1966], the modified Bessel function of
the first kind can be written as

Iν(x) =
1

π

∫ π

0

exp(x cos(t)) cos(νt) dt−sin νπ

π

∫ ∞

0

exp(−x cosh t−νt) dt, (N.0.2)

which simplifies to

I1(x) =
1

π

∫ π

0

exp(x cos(t)) cos(t) dt (N.0.3)

when ν = 1. Given f(x) = log{exp(−x)I1(x)} we have

f ′(x) =
d

dx

{
− x+ log I1(x)

}
= −1 +

I ′1(x)

I1(x)
(N.0.4)

f ′′(x) =
d

dx

{
− 1 +

I ′1(x)

I1(x)

}
=

I ′′1 (x)

I1(x)
− I ′1(x)

2

I1(x)2
.
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Making the change of variables u = 2
√
x sin(t/2) in (N.0.3) gives

I1(x) =
1

π
exp(x)

∫ π

0

exp(x cos(t)− x) cos(t) dt (N.0.5)

=
1

π
exp(x)

∫ π

0

exp(−2x sin2(t/2)) cos(t) dt

=
1

π
exp(x)

∫ 2
√
x

0

exp(−u2/2)
cos(t)√
x cos(t/2)

du

=
1

π

exp(x)√
x

∫ 2
√
x

0

exp(−u2/2)(1− 1

2
u2/x)(1− 1

4
u2/x)−

1
2 du

=
exp(x)√

2πx

√
2

π

{∫ ∞

0

−
∫ ∞

2
√
x

}
exp(−u2/2)(1− u2

2x
)

× (1 +
u2

8x
+

3u4

128x2
+

5u6

1024x3
+O(

u8

x4
)) du

=
exp(x)√

2πx

√
2

π

∫ ∞

0

exp(−u2/2)(1− 3u2

8x
− 5u4

128x2
− 7u6

1024x3
+O(

u8

x4
)) du

=
exp(x)√

2πx

{
1− 3

8x
− 15

128x2
− 105

1024x3
+O

(
1

x4

)}
,

where we have made use of

√
2

π

∫ ∞

0

exp(−u2/2)u2k du = (2k − 1)(2k − 3) . . . 1, (N.0.6)

for k ∈ {0, 1, 2, . . .} and

∫ ∞

2
√
x

exp(−u2/2) du ≤
∫ ∞

2
√
x

u

2
√
x
exp(−u2/2) du =

exp(−2x)

2
√
x

. (N.0.7)

Similarly we have

I ′1(x) =
1

π
exp(x)

∫ π

0

exp(x cos(t)− x) cos2(t) dt (N.0.8)

=
1

π

exp(x)√
x

∫ 2
√
x

0

exp(−u2/2)(1− 1

2
u2/x)2(1− 1

4
u2/x)−

1
2 du

=
exp(x)√

2πx

√
2

π

∫ ∞

0

exp(−u2/2)(1− 7u2

8x
+

19u4

128x2
+

13u6

1024x3
+O(

u8

x4
)) du

=
exp(x)√

2πx

{
1− 7

8x
+

57

128x2
+

195

1024x3
+O

(
1

x4

)}
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and

I ′′1 (x) =
1

π
exp(x)

∫ π

0

exp(x cos(t)− x) cos3(t) dt (N.0.9)

=
1

π

exp(x)√
x

∫ 2
√
x

0

exp(−u2/2)(1− 1

2
u2/x)3(1− 1

4
u2/x)−

1
2 du

=
exp(x)√

2πx

√
2

π

∫ ∞

0

exp(−u2/2)(1− 11u2

8x
+

75u4

128x2
− 63u6

1024x3
+O(

u8

x4
)) du

=
exp(x)√

2πx

{
1− 11

8x
+

225

128x2
− 945

1024x3
+O

(
1

x4

)}
.

From these expressions we have

I ′1(x)

I1(x)
= 1− 1

2x
+

3

8x2
+

3

8x3
+O

(
1

x4

)
(N.0.10)

I ′1(x)
2

I1(x)2
= 1− 1

x
+

1

x2
+

3

8x3
+O

(
1

x4

)
I ′′1 (x)

I1(x)
= 1− 1

x
+

3

2x2
− 3

8x3
+O

(
1

x4

)

and the result follows. Q.E.D.
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Appendix O

Proofs on Real-World Pricing of
Swaptions

Proof .[of Theorem 8.1.1] We employ the real-world pricing formula (5.1.1) to the
payoff HT given in (8.1.2). The real-world price of the bond put option is

V
δHT
t = E

(
Sδ∗
t

Sδ∗
T

HT

∣∣∣∣At

)
(O.0.1)

= E

(
S̄δ∗
t

S̄δ∗
T

Bt

BT

HT

∣∣∣∣At

)

= E

(
S̄δ∗
t

S̄δ∗
T

E

(
Bt

BT

HT

∣∣∣∣S̄δ∗
T ,At

)∣∣∣∣At

)
.

Now let U = S̄δ∗
T /(ϕT − ϕt) which is a non-central chi-squared random variable

having four degrees of freedom and non-centrality parameter λ, see Platen and
Heath [2006]. We can write the inner expectation above as

V
δHT
t (u) (O.0.2)

= E

(
Bt

BT

HT

∣∣∣∣S̄δ∗
T = (ϕT − ϕt)u,At

)

= E

(
Bt

BT

HT

∣∣∣∣U = u,At

)

= E

(
Bt

BT

(
1−

n∑
i=1

(R(Ti − Ti−1) + 1i=n)(1− exp(−τiu))E

(
BT

BTi

∣∣∣∣AT

))+∣∣∣∣At

)
,

which we see is the value of a put option on a portfolio of zero-coupon bonds. By
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analogy to (8.1.4) we have

V
δHT
t (u) =

n∑
i=1

((
R(Ti − Ti−1) + 1i=n

)
× (1− exp(−τiu)) (O.0.3)

×
(
− A(t, Ti) exp(−rtB(t, Ti))N(−d

(1)
i (u))

+ A(t, T ) exp(−rtB(t, T ))Ki(u)N(−d
(2)
i (u))

))
,

where A and B are given in (3.2.49) and (3.2.48) and d
(1)
i (u) and d

(2)
i (u) are given

by

d
(1)
i (u) =

1

σi

log

(
A(t, Ti) exp(−rtB(t, Ti))

A(t, T ) exp(−rtB(t, T ))Ki(u)

)
+

1

2
σi (O.0.4)

d
(2)
i (u) =

1

σi

log

(
A(t, Ti) exp(−rtB(t, Ti))

A(t, T ) exp(−rtB(t, T ))Ki(u)

)
− 1

2
σi (O.0.5)

with σi given by

σi = σB(T, Ti)

√
1

2κ
(1− exp(−2κ(T − t))) (O.0.6)

and Ki(u) given by

Ki(u) = A(T, Ti) exp(−xuB(T, Ti)). (O.0.7)

Here xu is the solution to the equation

1 =
n∑

i=1

(R(Ti − Ti−1) + 1i=n)(1− exp(−τiu))A(T, Ti) exp(−xuB(T, Ti)). (O.0.8)

Therefore

V
δHT
t = E

(
S̄δ∗
t

S̄δ∗
T

V
δHT
t

(
S̄δ∗
T

ϕT − ϕt

)∣∣∣∣At

)
(O.0.9)

=

∫ ∞

0

λ

u
V

δHT
t (u)fχ2

4,λ
(u) du,

as required. Q.E.D.
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