Enhancement of the UV Emission in Metal Nanoparticle-Coated ZnO

by

Saskia FIEDLER

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy in the School of Mathematical and Physical Sciences Faculty of Science

2018
Declaration of Original Authorship

I, Saskia Fiedler, declare that this thesis titled, “Enhancement of the UV Emission in Metal Nanoparticle-Coated ZnO”, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences, Faculty of Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

Signature: ____________________________

Production Note: Signature removed prior to publication.

Date: 04/10/2018
Abstract

Large emission enhancement factors resulting from orders of magnitude increases in ultra-violet (UV) luminescence in ZnO have been reported, due to the presence of a surface coating of either Au or Al nanoparticles. Two significantly different models have been proposed to explain the observed increase in the UV light output. One involving the decay of metal nanoparticles localised surface plasmons (LSP) into hot carriers and their radiative recombination following injection into the ZnO conduction and valence bands. The other describes the creation of an additional fast relaxation pathway via a dipole-dipole coupling mechanism between excitons in ZnO and the metal nanoparticle LSPs, resulting in an improved ZnO UV spontaneous emission rate. This work specifically addresses this significant discrepancy in the existing literature, that reports metal nanoparticle-induced light emission in ZnO.

The UV emission enhancement mechanism between a-plane ZnO single crystals and ZnO nanorods coated with Al and Au nanoparticles were systemically investigated in this thesis, using cathodoluminescence (CL) and photoluminescence (PL) spectroscopy in conjunction with ellipsometry, optical absorption and synchrotron valence band spectroscopy measurements. Significantly novel concurrent CL-PL techniques were also employed in this study. The presence of both metal surface films was found to enhance the ZnO UV emission. Moreover, changes to the surface band bending induced by the metal coating was confirmed and their effect on visible deep level (DL) defect related ZnO emission and surface electronic properties was considered.

For 5 nm-Au nanoparticle-coated ZnO nanorods, an up to 3.8-fold enhanced UV emission with no change in the intensity of the visible defect luminescence due to deep level recombination: quenching of the DL is hallmark characteristic of the hot carrier model. The underlying UV enhancement effect was found to be excitation depth-dependent with the largest enhancement being observed with light generation at the surface, closest to the ZnO-Au interface. Concurrent CL-PL showed that UV emission of the Au nanoparticle-coated ZnO samples under simultaneous electron beam and laser irradiation is identical to the electron beam excitation alone, confirming that while LSPs are created in the Au nanoparticles, hot electrons are not injected into the conduction band of the ZnO. Furthermore, time-resolved PL measurements at 10 K revealed that the presence of the Au nanoparticle surface coating on ZnO nanorods produced a 40 ps reduced lifetime compared with the uncoated side of the sample. The corresponding Purcell enhancement
factor of only 1.4 is much lower than the observed UV enhancement of up to 3.8, indicating that the LSP-exciton coupling is not the cause of the UV enhancement. The findings collectively confirm that neither of the two reported models can be responsible for the observed UV enhancement in these samples. Consequently an alternate mechanism is proposed which is consistent with all of the experimental results. This model suggests that the interband transitions in Au in the UV spectral range, from the 5d band to the partly filled 6sp conduction band, can be excited by the exciton emissions in ZnO via a resonance energy transfer mechanism. The creation of this additional, faster relaxation channel increases the exciton spontaneous emission rate, enhancing the observed UV emission of Au nanoparticle-coated ZnO.

In the case of the Al-coating, a-plane ZnO single crystals and ZnO nanorods were coated with a 2 nm thin Al film, resulting in an up to 12-fold enhancement of the UV PL emission. The increase was attributed to a strong Al LSP-exciton coupling mechanism. Additionally, below 80 K, the in-diffusion of the Al into the ZnO was found to contribute to measured increase in the total UV emission by increasing the Al I_6 bound exciton luminescence. The maximum UV enhancement was found at 80 K, where the bound excitons (BX) in ZnO are mostly thermally dissociated and the luminescence spectra are dominated by the free exciton (FX) emission. The LO-phonon replicas of the FX were also highly-enhanced by the Al-coating, indicating that the LSPs in the Al nanoparticles couple more favourably to the FX in the ZnO than to the BX. It was also found that the LSP-coupling to one of the three A, B and C FXs in ZnO is dependent on the ZnO crystal orientation and thereby the polarisation of the FX in ZnO with respect to the incident laser light. Furthermore, the strength of the LSP-exciton coupling was found to be dependent on the carrier density of ZnO with samples having higher carrier densities exhibiting a greater UV enhancement.

In conclusion, ZnO planar and nanorod samples coated with both Au and Al nanoparticles thin films in this work resulted in a large UV enhancement, arising from two different processes. The UV enhancement of the Au nanoparticle-coated ZnO samples was attributed to interband transitions in the Au nanoparticles, while the origin of the UV enhancement of the Al-coated ZnO samples was assigned to LSP-exciton coupling to preferably the FX in ZnO. The results of this thesis provide insight into why different explanations for the observed metal nanoparticle-induced emission enhancement in ZnO exist in the literature and why comprehensive characterisation of the structural and physical properties of both the ZnO and the metal nanoparticle ZnO composite is essential to establish the exact identity of the primary enhancement mechanism.
To my family — Mama, Papa and Nils.
Acknowledgements

I would like to sincerely thank my supervisor Prof. Matthew R. Phillips for his excellent guidance, support and motivation throughout the 3.5 years at UTS. I am truly grateful that he shared his knowledge and so many stories, particularly on traveling, with me in our weekly meetings! Thanks for helping me to get through the difficult and stressful times — you were always my point of reference.

I would also like to express my thanks to my co-supervisor Assoc. Prof. Cuong Ton-That for his comments and suggestions, particularly on the XPS data.

Special thanks to Dr. Olivier Lee Cheong Lem, who has been a constant source of motivation and great support — I could not have done it without you!

Furthermore, I would like to thank my great colleagues at UTS, especially Dr. Sejeong Kim for her help with the plasmonic simulations, and Dr. Carlo Bradac — you are a true source of inspiration.

Many thanks for the exceptional assistance and support at the UTS Microstructural Analysis Unit, particularly Katie McBean — thanks for proofreading my thesis in a very stressful time, as well as being a great boxing partner. Additionally, I wish to thank Geoff McCredie and Dr. Angus Gentle for their help with all technical issues I encountered during my time at UTS and their excellent support with ellipsometry, UV-Vis spectroscopy and the deposition of metals.

Furthermore, I would like to thank Marie Wintrebert-Fouquet from BluGlass for taking her time to help me with the Hall effect measurements.

I would like to extend my thanks to the great technical support at the Australian Synchrotron and Christian Clarke for collecting last minute XPS data for my thesis.

Special thanks to Markus Schleuning for spending so much time on collecting the time-resolved PL spectra in Berlin, as well as Prof. Axel Hofmann and his group for technical assistance at the Technische Universität Berlin, Germany.

To Prof. Igor Aharonovich for many stimulating discussions and fantastic scuba diving at Gordon’s Bay.

In addition, I wish to thank the Australian Research Council for the financial support during my time at UTS (DP150103317).

Finally, I would like to thank all my friends for being the best I could wish for. In particular, my friends back home for always being supportive, although being on the other
side of the globe, Constanze Matthai, Isabelle Hoffmann, Jacqueline Heu, Nadine Roche, Uta-Pari Kohlhoff and Valentina Ellinghaus.

Thanks for proofreading, Nina Schwarz and being a wonderful friend and dive buddy. Special thanks to Yvonne Bartling, who has become one of my best friends in Sydney in no time; thanks for not only sharing the horse love with me but also Jersey and Lulu.

Steve van den Berg, I am very grateful for your love and great support, especially during the very stressful times. Thanks for being the amazing person you are!

Last but not least, I would like to thank my family, my dad Michael Jansen, my mum Renate Fiedler and my brother Nils Fiedler, for always supporting me and my goals in life, although being 16 000 km away from home. I wish to thank my dad for being supportive in many ways; and I am very grateful for endless conversations on the phone with my mum, her kindness and love. Thanks to my loving brother for always being there for me and for traveling the world together.
List of Publications

Contents

Declaration of Original Authorship i
Abstract ii
Acknowledgements v
List of Publications vii
Contents viii
List of Figures xii
List of Tables xv
List of Abbreviations xvi

1 Introduction
 1.1 Aim and Objectives 2
 1.2 Thesis Structure 3

2 Theoretical Background and Literature Review 5
 2.1 Planar GaN-based LEDs 5
 2.2 Zinc Oxide 7
 2.2.1 Optical Properties of ZnO 7
 2.2.2 ZnO Nanostructures 10
 2.2.3 Hydrothermal Growth of ZnO Nanorods 12
 2.3 Existing Anti-Reflection Coatings 14
 2.4 Plasmonics: A Theoretical Background 16
 2.4.1 Maxwell’s Equations and Bulk Plasmons 16
 2.4.2 Surface Plasmons 19
 2.4.3 Localised Surface Plasmons 19
 2.4.4 Spontaneous Emission Rate and Purcell Enhancement Factor . . . 21
 2.5 Literature Review on Plasmonic Coupling 23
 2.5.1 Surface Plasmons in GaN-LEDs 23
 2.5.2 LSP-Exciton Coupling in ZnO with Various Metals 24
 2.5.3 Plasmonic Coupling between Au and ZnO 26
3 Experimental Details

3.1 ZnO Samples

3.1.1 Hydrothermally-Grown ZnO Nanorods

3.1.1.1 Seed Layer Deposition for ZnO Nanorod Growth

3.1.1.2 Hydrothermal Growth of ZnO Nanorods

3.1.2 ZnO Crystals

3.1.3 Metal Nanoparticle Coating

3.2 Sample Characterisation

3.2.1 Atomic Force Microscopy

3.2.2 Ellipsometry

3.2.3 Scanning Electron Microscopy

3.2.4 Cathodoluminescence Spectroscopy

3.2.4.1 CL System Correction

3.2.4.2 CL Modeling via CASINO Simulations

3.2.5 CL Techniques

3.2.5.1 Depth-Resolved CL Spectroscopy

3.2.5.2 Power-Resolved CL Spectroscopy

3.2.5.3 Temperature-Dependent CL Spectroscopy

3.2.6 Photoluminescence Spectroscopy

3.2.6.1 Combined CL and PL Spectroscopy

3.2.7 Time-Resolved PL Spectroscopy

3.2.8 X-Ray Photoelectron Spectroscopy

3.2.9 Finite-Difference Time-Domain Simulation Method for Modeling of Plasmonic Structures

4 Characterisation of Gold Nanoparticle-Coated ZnO

4.1 Morphology of the ZnO Nanorods and the Au Coating

4.2 Valence Band X-Ray Photoemission Spectroscopy of ZnO Nanorods Coated with Au Nanoparticles

4.3 Optical Spectroscopy of Gold-Coated ZnO

4.4 CL and PL Study of Gold-Nanoparticle Coated ZnO Nanorods

4.4.1 Depth-Resolved CL of Au Nanoparticle-Coated ZnO Nanorods

4.4.2 Temperature-Dependent PL of Au Nanoparticle-Coated ZnO Nanorods

4.4.3 Excitation Power-Dependent PL and CL of Au Nanoparticle-Coated ZnO Nanorods

4.4.4 Investigation of the Plasmonic Interaction of Au Nanoparticle-Coated ZnO Nanorods

4.4.4.1 Concurrent CL-PL Spectroscopy of Au Nanoparticle-Coated ZnO Nanorods

4.4.4.2 Time-Resolved PL of ZnO Nanorods Decorated with Gold Nanoparticles

4.4.5 Summary of Au Nanoparticle-Coated ZnO Nanorods

4.5 Optical Properties of Au Nanoparticle-Coated a-plane ZnO Single Crystals

4.5.1 CL and PL Study of Au Nanoparticle-Coated a-plane ZnO
4.5.2 Concurrent CL and PL of Au Nanoparticle-Coated a-plane ZnO ... 81
4.5.3 Time-resolved PL of Au Nanoparticle-Coated a-plane ZnO ... 83
4.5.4 Summary of the Au Nanoparticle-Coated a-plane ZnO Singe Crystals 84
4.6 FDTD simulations of Au Nanoparticle-Coated ZnO 85
4.7 Discussion 87

5 Characterisation of ZnO Coated with Aluminium 94

5.1 Morphology of Aluminium-coated a-plane ZnO 94
5.1.1 Atomic Force Microscopy Al- and Al$_2$O$_3$-Coated a-plane ZnO ... 96
5.1.2 Ellipsometry of Al- and Al$_2$O$_3$-Coated a-plane ZnO 96
5.1.3 Optical Spectroscopy of Al- and Al$_2$O$_3$-Coated a-plane ZnO ... 99
5.1.4 X-Ray Photospectroscopy of Al- and Al$_2$O$_3$-Coated a-plane ZnO ... 101
5.2 CL and PL Study of Aluminium-Coated a-plane ZnO 102
5.2.1 Depth-resolved CL of Al-Coated a-plane ZnO 102
5.2.2 Temperature-dependent PL and CL Spectroscopy of a-plane ZnO Coated with Aluminium 110
5.2.3 Excitation Power-Dependent CL and PL Study of Al-Coated a-plane ZnO .. 118
5.2.4 Time-Resolved PL of Al-Coated a-plane ZnO 123
5.2.5 Summary of the Results of Al-coated a-plane ZnO 124
5.3 Optical Properties of Hot Al-Coated a-plane ZnO 125
5.3.1 Depth-Resolved CL Spectroscopy of Hot Al-Coated a-plane ZnO 125
5.3.2 Temperature-Dependent PL Spectroscopy of Hot Al-Coated a-plane ZnO ... 129
5.3.3 Excitation Power-Dependent PL and CL Spectroscopy of Hot Al-Coated a-plane ZnO .. 131
5.3.4 Time-resolved PL of Hot Al-coated a-plane ZnO 135
5.3.5 Summary of the Results of Hot Al-coated a-plane ZnO 135
5.4 Optical Properties of Aluminium Oxide-Coated a-plane ZnO 136
5.4.1 Depth-Resolved CL of Al$_2$O$_3$-Coated a-plane ZnO 136
5.4.2 Temperature-Dependent PL of Al$_2$O$_3$-Coated a-plane ZnO ... 140
5.4.3 Excitation Power-Dependent PL of Al$_2$O$_3$-Coated a-plane ZnO 141
5.4.4 Time-Resolved PL of Al$_2$O$_3$-Coated a-plane ZnO 142
5.4.5 Summary of Al$_2$O$_3$-Coated a-plane ZnO 143
5.5 Effect of Carrier Density on the UV Enhancement a-plane ZnO with Al 144
5.6 Characterisation of Al-coated ZnO Nanorods 145
5.6.1 Optical Characterisation of Hydrothermally-Grown ZnO Nanorods Coated with 2 nm Al 146
5.6.1.1 Depth-Resolved CL of Al-Coated Hydrothermally-Grown ZnO Nanorods .. 146
5.6.1.2 Temperature-Dependent PL of Al-Coated ZnO Nanorods 150
5.6.1.3 Excitation Power-Dependent PL of Al-Coated ZnO Nano-
rods .. 153
5.6.1.4 Time-Resolved PL of Hydrothermally-Grown Al-Coated ZnO Nanorods 155
5.6.2 Summary of Hydrothermally-Grown Al-Coated ZnO Nanorods 156
5.6.3 Morphology of VS-Grown ZnO Nanorods Coated with 2 nm Al 157
5.6.4 Optical Characterisation of VS-Grown ZnO Nanorods Coated with Al 158
5.6.5 Summary of VS-Grown ZnO Nanorods Coated with 2 nm Al ... 165
5.7 Discussion ... 166

6 Conclusion .. 175

Bibliography .. 178
List of Figures

2.1 Illustration of Snell’s Law 5
2.2 LED Escape Cone ... 6
2.3 CL and PL of ZnO nanorods 8
2.4 Recombination Channels in ZnO 9
2.5 Various ZnO nanostructures 12
2.6 Metal sphere in electric field 20
2.7 Spontaneous Emission 21
2.8 Illustration of LSPs 22
2.9 Illustration of LSP-exciton coupling 27
2.10 Illustration of charge-transfer mechanism 28

3.1 Autoclave .. 33
3.2 Schematic of AFM ... 35
3.3 Penetration of electron beam 37
3.4 CL setup ... 39
3.5 CASINO trajectories 40
3.6 CASINO depth and radius 40
3.7 CASINO energy loss 41
3.8 PL spot size ... 45
3.9 Schematic of light injection 47
3.10 PL Injection .. 48
3.11 Schematic of TR-PL setup 49

4.1 SEM of ZnO nanorods 51
4.2 SEM of Au nanoparticles 52
4.3 VB-XPS of Au-coated ZnO nanorods 53
4.4 Band Bending of ZnO nanorods 54
4.5 Transmission spectra of Au-coated ZnO 57
4.6 CL spectrum of ZnO nanorods 58
4.7 CL and PL spectra of ZnO nanorods 59
4.8 High-resolution UV PL spectrum of ZnO nanorods ... 61
4.9 Depth-resolved CL spectra of ZnO nanorods 62
4.10 CL as a function of acceleration voltage 63
4.11 10 K-depth-resolved CL spectra of Au-coated ZnO nanorods 64
4.12 CASINO simualtion of energy loss in Au-coated ZnO 65
4.13 Temperature-dependent PL enhancement of Au-coated ZnO nanorods 66
4.14 Arrhenius plot of ZnO nanorods coated with Au 67
4.15 10 K-PL enhancement of Au-coated ZnO nanorods 68
4.16 Power-dependent PL enhancement of Au-coated ZnO nanorods 69
4.17 Concurrent PL-CL of Au-coated ZnO nanorods .. 71
4.18 TR-PL of uncoated and Au-coated ZnO nanorods .. 72
4.19 80 K-depth-resolved CL spectra of Au-coated a-plane ZnO 75
4.20 80 K-PL and CL spectra of Au-coated a-plane ZnO 77
4.21 Power-dependent PL enhancement of Au-coated a-plane ZnO 78
4.22 Temperature-dependent PL spectra of uncoated and Au nanoparticle-coated a-plane ZnO .. 79
4.23 Temperature-dependent PL enhancement of Au-coated a-plane ZnO 80
4.24 Integrated temperature-dependent PL enhancement of Au-coated a-plane ZnO .. 81
4.25 Concurrent PL-CL spectra of Au-coated a-plane ZnO 82
4.26 TR-PL of uncoated and Au-coated a-plane ZnO ... 83
4.27 FDTD excitation enhancement of Au-coated ZnO ... 85
4.28 FDTD Purcell enhancement of Au-coated ZnO ... 86
4.29 Interband and intraband transition in Au .. 92

5.1 AFM of uncoated and Al-coated a-plane ZnO ... 96
5.2 Bruggeman and Maxwell-Garnett models .. 97
5.3 Ellipsometry extinction spectra Al ... 98
5.4 UV-vis spectra of Al-coated UV-quartz ... 99
5.5 High-resolution transmission spectra of Al-coated ZnO 100
5.6 VB-XPS of Al-coated a-plane ZnO .. 101
5.7 Depth-resolved CL spectra of Al-coated a-plane ZnO 103
5.8 10 K-high-resolution CL spectra of Al-coated a-plane ZnO 106
5.9 10 K-depth-dependent CL enhancement of Al-coated a-plane ZnO 107
5.10 80 K-high-resolution CL spectra of Al-coated a-plane ZnO 108
5.11 80 K-high-resolution CL enhancement of Al-coated a-plane ZnO 109
5.12 Temperature-dependent PL spectra of uncoated a-plane ZnO 111
5.13 Temperature-dependent PL spectra of Al-coated a-plane ZnO 112
5.14 Temperature-dependent PL enhancement factor of Al-coated a-plane ZnO 113
5.15 Temperature-dependent CL and PL enhancement of Al-coated a-plane ZnO 113
5.16 10 K-high-resolution PL and CL enhancement of Al-coated a-plane ZnO 114
5.17 80 K-high-resolution CL and PL enhancement of Al-coated a-plane ZnO 115
5.18 Power-dependent CL and PL enhancement of Al-coated a-plane ZnO 118
5.19 Power-dependent PL and CL of Al-coated a-plane ZnO 119
5.20 10 K-PL spectra of Al-coated a-plane ZnO ... 120
5.21 Power-dependent PL and CL of Al-coated a-plane ZnO 121
5.22 Power-dependent CL and PL enhancement of Al-coated a-plane ZnO 122
5.23 TR-PL of Al-coated a-plane ZnO .. 123
5.24 10 K-depth-resolved CL spectra of hot Al-coated a-plane ZnO 126
5.25 High-resolution-depth-resolved CL spectra of hot Al-coated a-plane ZnO 128
5.26 High-resolution-depth-dependent CL enhancement of hot Al-coated a-plane ZnO .. 128
5.27 Temperature-dependent PL spectra of hot Al-coated a-plane ZnO 130
5.28 Temperature-dependent PL enhancement factor of hot Al-coated a-plane ZnO .. 130
5.29 60 K-high-resolution enhancement of hot Al-coated a-plane ZnO 131
5.30 Power-dependent PL and CL of Al-coated a-plane ZnO 132
5.31 Power-dependent CL and PL enhancement of hot Al-coated a-plane ZnO 134
5.32 Depth-resolved CL spectra of Al$_2$O$_3$-coated a-plane ZnO 137
5.33 High-resolution depth-resolved CL spectra of Al$_2$O$_3$-coated a-plane ZnO. 138
5.34 Depth-dependent CL enhancement factor of Al$_2$O$_3$-coated a-plane ZnO . 139
5.35 Temperature-dependent PL spectra of Al$_2$O$_3$-coated a-plane ZnO 140
5.36 Temperature-dependent PL enhancement factors of Al$_2$O$_3$-coated a-plane ZnO .. 141
5.37 Power-dependent PL enhancement of Al$_2$O$_3$-coated a-plane ZnO 142
5.38 TR-PL of Al$_2$O$_3$-coated a-plane ZnO 143
5.39 Carrier density-dependent PL enhancement of Al-coated a-plane ZnO 144
5.40 Depth-resolved CL spectra of Al-coated hydrothermally-grown ZnO nano-
rods ... 147
5.41 CASINO energy loss simulations of Al-coated ZnO 149
5.42 High-resolution PL spectra of Al-coated hydrothermally-grown ZnO nano-
rods ... 151
5.43 Temperature-dependent PL enhancement factors of Al-coated hydrothermally-
grown ZnO nanorods .. 152
5.44 Arrhenius plot of uncoated and Al-coated hydrothermally-grown ZnO nano-
rods .. 152
5.45 Power-dependent PL enhancement factor of Al-coated hydrothermally-
grown ZnO nanorods .. 154
5.46 Power-dependent PL enhancement factors of Al-coated hydrothermally-
grown ZnO nanorods .. 155
5.47 10 K-TR-PL of Al-coated hydrothermally-grown ZnO nanorods 156
5.48 80 K-TR-PL of Al-coated hydrothermally-grown ZnO nanorods 156
5.49 SEM of VS-grown ZnO nanorods .. 158
5.50 Depth-resolved CL spectra of VS-grown ZnO nanorods coated with Al 159
5.51 High-resolution depth-resolved CL spectra of VS-grown ZnO nanorods coated
with Al .. 161
5.52 Depth-dependent CL enhancement factors of VS-grown ZnO nanorods coated
with Al .. 162
5.53 10 K-high-resolution spectra of VS-grown ZnO nanorods coated with Al . 163
5.54 Power-dependent PL enhancement factor of VS-grown ZnO nanorods coated
with Al .. 164
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>NBE-recombinations in ZnO</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>DL-recombinations in ZnO</td>
<td>11</td>
</tr>
<tr>
<td>4.1</td>
<td>VB-XPS of Au-coated ZnO nanorods</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>CL enhancement of Au-coated ZnO nanorods</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>Activation energies of DBX in uncoated and Au-coated ZnO nanorods</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>CL enhancement of Au-coated a-plane ZnO</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>PL and CL UV enhancement factors of Au-coated a-plane ZnO</td>
<td>78</td>
</tr>
<tr>
<td>4.6</td>
<td>Lifetimes of uncoated and Au-coated a-plane ZnO</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>Band bending of Al-coated a-plane ZnO</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>Depth-dependent CL enhancement factors of Al-coated a-plane ZnO</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Power law exponents of the UV enhancement of Al-coated a-plane ZnO</td>
<td>122</td>
</tr>
<tr>
<td>5.4</td>
<td>Depth-dependent CL enhancement factors of hot Al-coated a-plane ZnO</td>
<td>127</td>
</tr>
<tr>
<td>5.5</td>
<td>Power law exponents of the UV enhancement of hot Al-coated a-plane ZnO</td>
<td>133</td>
</tr>
<tr>
<td>5.6</td>
<td>Depth-dependent CL enhancement factors of Al_{2}O_{3}-coated a-plane ZnO</td>
<td>136</td>
</tr>
<tr>
<td>5.7</td>
<td>Calculation of carrier density-dependent space charge region and surface electric field of Al-coated a-plane ZnO</td>
<td>145</td>
</tr>
<tr>
<td>5.8</td>
<td>Depth-dependent CL enhancement factors of Al-coated hydrothermally-grown ZnO nanorods</td>
<td>148</td>
</tr>
<tr>
<td>5.9</td>
<td>Activation energies of uncoated and Al-coated hydrothermally-grown ZnO nanorods</td>
<td>153</td>
</tr>
<tr>
<td>5.10</td>
<td>Depth-dependent enhancement factor of VS-grown ZnO nanorods coated with Al</td>
<td>160</td>
</tr>
<tr>
<td>5.11</td>
<td>Overview of Al-ZnO samples</td>
<td>167</td>
</tr>
<tr>
<td>5.12</td>
<td>Overview of results of Al-ZnO samples</td>
<td>172</td>
</tr>
</tbody>
</table>
List of Abbreviations

ABX Neutral Acceptor Bound eXciton
AFM Atomic Force Microscopy
ALD Atomic Layer Deposition
ASF Atomic Sensitivity Factor
BSE Back Scattered Electrons
BX Bound eXciton
CCD Charge-Coupled Device
CL CathodoLuminescence
DBX Donor Bound eXciton
DAP Donor-Acceptor Pair
DL Deep Level
EL ElectroLuminescence
EQE External Quantum Efficiency
FDTD Finite-Difference Time-Domain
FWHM Full Width at Half Maximum
FX Free eXciton
GL Green Luminescence at 2.3 eV
GL₁ Green Luminescence at 2.45 eV
HMT HexaMethyleneTetramine
IQE Internal Quantum Efficiency
LED Light Emitting Diode
LEE Light Extraction Efficiency
LO Longitudinal Optical
LSP Localised Surface Plasmon
LSPR Localised Surface Plasmon Resonance
MFP Mean Free Path
MQW Multiple Quantum Well
NBE Near Band Edge
ND Neutral Density
OL Orange Luminescence
PL PhotoLuminescence
RL Red Luminescence
sccm standard cubic centimetres per minute
SE Secondary Electrons
SER Spontaneous Emission Rate
SEM Scanning Electron Microscopy
SPP Surface Plasmon Polariton
SX Surface eXciton
TES Two-Electron Satellite
TE Transverse Electric
TEM Transmission Electron Microscopy
TM Transverse Magnetic
TR-PL Time-Resolved PhotoLuminescence
UV Ultra-Violet
UV-Vis Ultra-Violet Visible
XPS X-Ray Photoelectron Spectroscopy