A Dissertation submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

Scalable MAC Protocol for D2D Communication for future 5G Networks

Bushra Ismaiel

2018

University Of Technology Sydney,

Faculty Of Engineering and Information Technology, School

Of Electrical and Data Engineering

Supervisor

Dr.Mehran Abolhasan

Co-Supervisor

Dr.Daniel Franklin

Declaration Of Authorship

I, Bushra Ismaiel, declare that this thesis titled, Scalable MAC Protocol for D2D

Communication for future 5G Networks, and the work presented in it are my own. I

confirm that:

• The work is done solely while in candidature for a research degree at this University.

• The work done in this thesis has not been previously submitted/published for a degree.

• The work of others have been quoted, the source is always given. With the exception

of such quotations, this thesis is entirely my own work.

• Any help that I received in my research work and the preparation of thesis itself has

been acknowledged.

'This research is supported by the Australian Government Research Training Program'

Signature of Student: Production Note: Signature removed prior to publication.

Date: 15^{th} October 2018

iii

Table of Contents

		xi xii		
		xii		
		xiii		
		xiv		
List Of Parameters x				
ABSTRACT				
	Х	viii		
		1		
		3		
		6		
		7		
		8		
		10		

2	$\operatorname{Lit}\epsilon$	zerature Review		13
	2.1	Introduction		13
	2.2	Heterogeneous Networks		14
		2.2.1 Resource Allocation in Heterogeneous Networks		17
		2.2.2 Challenges in Heterogeneous Networks		24
	2.3	Device to Device Communication (D2D)		25
		2.3.1 MAC Protocols in D2D Networks		31
		2.3.2 Resource Allocation in Infrastructure Assisted D2D Network	s	32
		2.3.3 Ad-hoc Networks		42
		2.3.4 MAC Protocols in Ad-hoc Networks		45
	2.4	Conclusion		69
3	Per	erformance Investigation of D2D Communication over LTE Solutions Op-		
erating in Unlicensed Band			70	
	3.1			70
	3.2	Background Of LTE Operating in Unlicensed Band		71
	3.3	State Of Art: LTE Networks Operating in Unlicensed Bands		72
		3.3.1 Carrier Wi-Fi		73
		3.3.2 LTE-Unlicensed (LTE-U)		73
		3.3.3 LTE-Licensed Assisted Access (LTE-LAA)		73
		3.3.4 LTE Wi-Fi Link Aggregation (LWA)		75
		3.3.5 MuLTEfire		76
	3.4	Simulation		77
	3.5	Conclusion		81
4	Sca	alable MAC Protocol For D2D Communication For Future 5G Networks 83		
	4.1	Introduction		83

	4.2	Backg	$round \dots \dots$	85
	4.3	Syster	m Model	85
		4.3.1	Proposed Three Tier Architecture	85
		4.3.2	Scalable MAC Protocol (SC-MP)	87
		4.3.3	Device to Device Communication (D2D) in SC-MP	89
	4.4	Simula	ation Result	91
	4.5	Applio	eations	94
	4.6	Concl	usion	94
5	Ana	alysis o	of Effective Capacity and Throughput of Polling Based Hetero	0-
	gen	eous N	Ietworks	96
	5.1	Relate	ed Work	97
	5.2	Syster	n Model and Analysis of Effective Capacity of SC-MP Through Semi-	
		Marko	v Process	98
	5.3	Marko	v Chain and Analysis of Throughput of SC-MP	107
	5.4	Result	s and Analysis	112
	5.5	Concl	usion	118
6	PC	F-Base	ed LTE Wi-Fi Aggregation for Coordinating and Offloading th	ıe
	Cel	lular T	raffic to D2D Network	120
	6.1	Introd	uction	120
	6.2	Relate	ed Work	121
	6.3	Syster	n Model	123
	6.4	Effect	ive Capacity of LTE and Scalable MAC Protocol (SC-MP)	126
		6.4.1	Effective Capacity Of SC-MP in unlicensed band	126
		6.4.2	Effective Capacity of LTE in Licensed Band	128
	6.5	Minim	nizing the Bandwidth Of Licensed Band	128

	6.6	Simula	tion	133
		6.6.1	Performance evaluation for minimizing the bandwidth of licensed band	135
	6.7	Conclu	sion	139
7	Con	clusion	n and Future Works	140
	7.1	Conclu	asion	140
		7.1.1	Literature Review	141
		7.1.2	Performance Investigation of D2D Communication over LTE Solutions	
			Operating in Unlicensed Band	142
		7.1.3	Scalable MAC Protocol For D2D Communication For Future 5G Net-	
			works	143
		7.1.4	Analysis of Effective Capacity and Throughput of Polling Based Het-	
			erogeneous Networks	144
		7.1.5	Optimal Scheduling and Resource Allocation in LWA-Driven D2D-	
			Enabled Networks	144
	7 2	Futuro	Works	1/15

List of Figures

1.1	Heterogenous Wireless Communication Network Towards 5G Networks	1
2.1	Heterogeneous Network Architecture towards 5G	15
2.2	Throughput Fairness Test	19
2.3	Common Radio Resource Management Model	22
2.4	Device To Device Networks	25
2.5	Inband Spectrum Sharing in D2D Communication Networks	29
2.6	Outband Spectrum Sharing in D2D Communication Networks	30
2.7	D2D communication scenerios underlaying LTE-A Networks	33
2.8	Ad-hoc Networks	42
2.9	Wireless Sensor Network	43
2.10	Wireless Mesh Network	44
2.11	Mobile Ad-hoc Networks	44
2.12	Vehicular Ad-hoc Networks	45
2.13	Types of MAC Protocols in Ad-hoc Network	46
2.14	RTS-CTS Mechanism	47
2.15	MACA Vs MACAW	48
2.16	PCF Operation Structure During CFP	57
2.17	HCF Mechanism	67

3.1	LTE in unlicensed bands: LWA, LAA, MuLTEfire	74
3.2	Total Network Throughput vs Offered Load	78
3.3	Effect of Wi-Fi Throughput vs Number of Workstations	80
3.4	Delay vs Number of workstation	80
3.5	Network Throughput with D2D communication	81
4.1	Proposed three tier Future 5G Architecture For Dense Environment	86
4.2	Polling scheme based on Best SNR in SC-MP	88
4.3	Flow Chart of Proposed Scheme	90
4.4	Total Network Load vs Total Number of Workstations	92
4.5	Total Network Throughput vs Total Number of Workstations	93
4.6	Packet Loss Ratio vs Total Number of Workstations	93
5.1	State Diagram of network using Semi-Markov Model with two users	99
5.2	State Diagram of network using Markov Model with two users	109
5.3	Effective Capacity vs The QoS Exponent: $P_V=0.3,\ P_M=0.7,\ P_N=0.7,\ and$	
	$P_D=0.3$	114
5.4	Effective Capacity vs The QoS Exponent: P_V =0.45, P_M =0.55, P_N =0.4, and	
	$P_D=0.4$	115
5.5	Effective Capacity vs Number of Wi-Fi users: $P_V=0.3, P_M=0.7, P_N=0.7,$ and	
	$P_D=0.3$	116
5.6	Effective Capacity vs Number of Wi-Fi users: $P_V=0.45, P_M=0.55, P_N=0.4,$	
	and $P_D=0.4$	117
5.7	Throughput Graph: $P_V=0.3$, $P_M=0.7$, $P_N=0.7$, and $P_D=0.3$	118
6.1	Proposed Three-Tier Heterogeneous Network	123
6.2	Queuing Model Of Three-Tier Network	124
6.3	Licensed Bandwidth vs Delay bound: $P_V=0.3$, $P_M=0.7$, $P_N=0.4$, and $P_D=0.6$	135

6.4	Licensed Bandwidth vs Delay Bound: $P_V=0.6$, $P_M=0.4$, $P_N=0.4$, and $P_D=0.4$ 1	.36
6.5	Licensed Bandwidth vs Number of Transmitters: $P_V=0.3$, $P_M=0.7$, $P_N=0.4$,	
	and $P_D=0.6$	137
6.6	Licensed Bandwidth vs Number of Transmitters: P_M =0.6, P_M =0.4, P_N =0.4,	
	and $P_D = 0.4$	137
6.7	Delay Bound vs Number of Transmitters: $P_V=0.3,\ P_M=0.7,\ P_N=0.4,\ and$	
	$P_D = 0.6$	138
6.8	Delay Bound vs Number of Transmitters: $P_V=0.6,\ P_M=0.4,\ P_N=0.4,\ and$	
	$P_D = 0.4$	138

List of Tables

2.1	Heterogeneous Networks Vs Traditional Cellular Networks	14
2.2	Properties of Different Cells	16
2.3	A Comparison of Differnt Resource Allocation Schemes for Heterogeneous	
	Networks	21
2.4	Evolution in MAC in Wireless Networks	32
2.5	Summary Table for MAC Protocols Of Infrastructure Assisted D2D Networks	41
2.6	Infrastructure Assisted D2D Networks Vs Ad-hoc Networks	43
2.7	Comparison Summary of Contention Protocols in Distributed/Ad-hoc Wire-	
	less Networks	56
2.8	Comparison Summary of Contention Free Protocols in Distributed/Ad-hoc	
	Wireless Networks	63
2.9	Channelization Protocols Comparison Summary in Distributed/Ad-hoc Wire-	
	less Networks	66
2.10	Summary Comparison of Hybrid MAC Protocols in Distributed/Ad-hoc Wire-	
	less Networks	69
3.1	Comparison between Carrier Wi-Fi, LTE-U, LTE-LAA, LWA and MuLTEfire	77
5.1	Simulation Settings	113

List Of Abbreviations

D2D Device-to-Device

QoS Quality-of-Service

LTE-A Long term evolution advance

5G Fifth generation

MAC Medium access control

eNB Evolved node B

PCF Point coordinated function

DCF Distributed coordinated function

CP Contention period

CFP Contention free period

TDMA Time division multiple access

FDMA Frequency division multiple access

CSMA/CA Carrier sense multiple access collision avoidance

CSMA/CD Carrier sense multiple access collision detection

RTS Request-to-send

CTS Clear-to-send

NAV Network allocation vector

ACK Acknowledgement

SIFS Short Interframe Space

DIFS DCF short interframe space

PIFS PCF short interframe space

TXOP Transmission opportunity

TBTT Target beacon transmission time

List Of Abbreviations

WLAN Wireless local area network

SC-MP Scalable MAC Protocol

LTE-U Long term evolution unlicensed

LTE-LAA Long term evolution licensed assisted access

LWA Long term evolution and Wi-Fi aggregation

SDN Software defined network

BS Base station

WBS Wireless local area base station

HCF Hybrid coordination function

LBT Listen before talk

List Of Parameters

Polling state of user_k r_k Allocation of time slot to voice traffic of user_k v_k Time slot is allocated for video/multimedia traffic to a Wi-Fi user after satisfying the channel condition B or allow D2D communication to a Wi-Fi user m_k if the neighbour has already downloaded the video/multimedia file and satisfy the channel condition A d_k Allows user to do D2D communication in Markov process. P_V Probability for voice traffic P_M Probability for video/multimedia traffic P_N Probability that video is not downloaded by any neighbour P_S Channel condition B is not satisfied to allocate time slot P_D Channel condition A is not satisfied for D2D communication N_n Total number of neighbours that downloaded the video time spent to transmit the voice data t_v t_m time spent to transmit the video/multimedia data time spent to transmit the D2D data t_d d_v data rate for voice d_m data rate for video/multimedia data rate for D2D communication d_d Semi-Markov process transition matrix Q Semi-Markov process diagonal matrix Γ

 ϕ

 T_r

eigen value of matrix H

Duration of r in semi-Markovian model

List Of Parameters

Duration of voice traffic in semi-Markovian model
Duration of video/multimedia traffic in semi-Markovian model
Duration of voice traffic in semi-Markovian model
Duration of video/multimedia traffic in semi-Markovian model
Moment generating function
binary variable to select the band
Total bandwidth
Effective capacity of licensed/unlicensed band of user_k
Quality-of-service of licensed/unlicensed band of user_k
Bandwidth allocated to $user_k$ of
licensed/unlicensed band
Delay threshold of user_k
Signal-to-interference noise ratio of user_k in licensed/unlicensed band
Minimum data rate of user_k
Probability threshold of delay bound
Markov process transition matrix

ABSTRACT

Due to the steep growth in mobile data traffic, it will be a challenge for 5G networks to ful-fill the requirement using limited resources in licensed spectrum. However, the joint deployment of smaller cells in the Macro-cell has attempted to overcome this issue. It is observed that users are adversely affected by limited resources in the licensed band. Due to the scarcity of resources in the licensed band, it is better to deploy a small cell operating at an unlicensed spectrum like WLAN. Establishing Device to Device communication (D2D) in the cooperative deployment of cellular networks and WLAN can accommodate the on growing user data demand by intelligently allocating the resources, hence, forming a centralized control in a distributive manner.

This Thesis gives a detailed overview of all the LTE technologies operating in an unlicensed band which includes; LTE-U, LAA, LWA, and MuLTEfire. The technologies are compared with extensive simulation and further D2D communication is applied in these technologies to observe their behaviour.

This Thesis also introduces a three-tier architecture for next generation 5G networks which can offload traffic from cellular networks to WLAN in a dense environment. It proposes a Scalable MAC Protocol (SC-MP) to efficiently allocate resources for Wi-Fi users with D2D communication. SC-MP will allocate WLAN resources to the normal users in a centralized and efficient manner based on a novel PCF strategy, which will develop a centralized control in a distributive manner. The SC-MP is compared to legacy DCF protocol defined in IEEE 802.11 through extensive simulation to evaluate the network performance. The key result is that SC-MP is able to improve the performance compared to DCF for metrics that include; network throughput, network capacity, and network delay.

Furthermore, the thesis gives a detailed mathematical analysis of SC-MP using Markov modelling and semi-Markov modelling. Effective capacity is derived using three-state

semi-Markov modelling for the proposed SC-MP. Analytical results are validated through the simulation results. In addition, an optimal queue scheduling and resource allocation problem with QoS guaranteed between the licensed and unlicensed band is formulated to minimize the bandwidth of licensed spectrum and maximize the aggregated effective capacity of a three-tier network. The results proved that the proposed SC-MP can perform better compared with the state of art.

ACKNOWLEDGEMENTS

I would like to thank God for making the Ph.D journey easy for me. There are so many people that helped me, professionally and personally, through my Ph.D journey. There were many moments that I could not see a light at the end of the tunnel, but I am glad that the support and encouragement that I received along the have brought me to this point. I would like to acknowledge all the people who contributed to this journey.

First, I would like to thank my principal supervisor, Dr. Mehran Abolhasan, who had given me an opportunity to join as a post-graduate researcher. He has always been supportive and a source of encouragement and have an endless source of new ideas to investigate. I would like to thank Wei Ni, for giving me new ideas and helping me through the analytical part and giving me time whenever it was required. I would like to thank David Smith, for all the guidelines he has given me through my Ph.D. tenure. Also, I would like to thank Daniel Franklin, for tirelessly providing guidelines in technical writing.

I would like to thank my parents and my family, especially my kids, who have been supportive throughout my Ph.D. journey. I am thankful for all the sacrifices you have willingly made over the past few years to support me in so many endeavours.

In the end, I would like to thank my colleagues for the interesting discussions, technical support and motivation.