

Development of a Direct Matrix Converter for Micro-grid Applications

Zahra Malekjamshidi

B.E.(Electrical Engineering) M.E.(Communication Engineering)

School of Electrical and Data Engineering University of Technology Sydney Australia

A thesis submitted to the University of Technology Sydney for the Degree of Doctor of Philosophy

May 2018

CERTIFICATE OF ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This research is supported by an Australian Government Research Training Program Scholarship.

Signature of Student: Zahra Malekjamshidi Khanehzenyani Date: 05/05/2018

Production Note Signature removed prior to publication.

ACKNOWLEDGEMENTS

I would like to take this opportunity to gratefully thank to my supervisor, Professor Jianguo Zhu, for his guidance and support, and most importantly, for his utmost patience in me throughout my study at UTS. His extensive knowledge and creative thinking has been a source of inspiration for me throughout the entire research project. I am also thankful to Dr. Ha Pham for his useful suggestions as co-supervisor of the project. I would like to especially thank Dr. Greg Hunter for his advices on practical issues.

Importantly, my appreciation goes towards my parents for their support and unconditional love. Their consistent support and practical experience sharing have been important and helpful during my life.

Last but not least, my minds and thanks always go to my beloved husband, Mohammad, for his love and spiritual support during my PhD study. This thesis would not have been possible without his encouragement and valuable help. I also dedicate this Ph.D. thesis to my two lovely children, Anahid and Avash who are the pride and joy of my life.

ABSTRACT

Matrix converter is a direct ac-ac converter topology which does not contain a dclink passive component, unlike conventional ac-ac frequency converters. Electrolytic capacitors which are used as the energy storage component have a limited lifetime. They are also bulky and unreliable at very high temperatures. Matrix converter is able to generate controllable sinusoidal ac outputs regarding magnitude and frequency directly from an ac power supply. The other significant advantages offered by matrix converters are the capability of regeneration and adjustable input power factor.

The main objective of this thesis is design, implementation and the stability analysis of the matrix converter for power flow control applications in the context of the microgrids. In this regard, different applications with bidirectional or unidirectional power flow capabilities are considered as the case study. These include using the matrix converter as an interface link between a microgrid and the utility grid, between a variable frequency source such as wind turbine and the microgrid ac bus, and between a variable frequency load such as induction machine and microgrid ac bus.

As bidirectional power flow control between the utility grid and the microgrid is significantly affected by the stability issue, the stability analysis has become an essential part of this research. Details of the input filter design are presented due to the considerable effect of the filter components on the system stability. The effects of the system parameters on the matrix converter stability are investigated using the

ABSTRACT

small-signal model of the converter. Two methods of stability improvement using the damping resistor and the digital filter are studied in detail. In order to increase the efficiency of the converter, an optimum solution based on the combination of the damping resistor and the digital filter is suggested, and the performance of the proposed method is analyzed. The operation of the matrix converter as an interface between the utility and a microgrid for bidirectional active and reactive power flow control is studied in detail. To control the active and reactive bidirectional power flows, a vector-oriented control method is used.

Two main modulation strategies, the Venturini and space vector modulation, are analyzed and the simulation and experimental results are compared. Due to the better performance of the space vector modulation, this technique is selected for modulation of the designed matrix converter. Different current commutation methods are studied in detail and the simulation and experimental results of four-step semisoft current commutation are presented as the selected commutation method in this work.

Furthermore, a comprehensive simulation study is carried out to investigate the operation of the proposed strategies for modulation, protection, stabilisation and bidirectional power flow control of the matrix converter. To validate the proposed stability analysis and numerical simulations, a prototype direct matrix converter has been developed. The simulation results related to each of the research sections are confirmed through the experimental tests.

iv

Contents

CERT	IFICA	TE OF ORIGINALITY	i
ACKN	OWLE	DGEMENTS	ii
ABSTI	RACT		iii
CONT	ENTS		\mathbf{v}
LIST (OF SYI	MBOLS	ix
LIST (OF AB	BREVIATIONS	xi
LIST (OF FIG	URES	xiii
LIST (OF TA	BLES	xxv
CHAP	TER1:	INTRODUCTION	1
1.1	Power	Electronic Converters	1
	1.1.1	Indirect ac-ac power converter	2
	1.1.2	Direct ac-ac power converter	4
1.2	A Rev	iew on the Matrix Converter Applications in Microgrids	9
	1.2.1	Matrix converter as an interface link between the	
		microgrid and the utility grid	9
	1.2.2	Other applications of the matrix converters in the microgrids .	14
1.3	Motiva	ation and Objectives of the Project	16
1.4	Thesis	Outline	18
CHAP	TER2:	MATRIX CONVERTER FUNDAMENTALS AND	
		PROTECTION TECHNIQUES	20

2.1	Introd	uction	20
2.2	Bidire	ctional Switches	22
2.3	Input	Filter	23
	2.3.1	Design of the input filter	25
2.4	Clamp	O Circuit	30
2.5	Safe C	ommutation Techniques For DMCs	34
	2.5.1	Output current direction based four-step semi-soft commuta-	
		tion method \ldots	38
	2.5.2	Two-step semi-soft commutation method	46
	2.5.3	$Overlap\ current\ commutation\ method\ .\ .\ .\ .\ .\ .\ .\ .$	50
	2.5.4	Dead-time current commutation method $\ldots \ldots \ldots \ldots \ldots$	50
	2.5.5	Input voltage polarity based commutation method	51
2.6	Conclu	sion	55
		MODILI ADIONI MEDILODO, CIMULI ADIONO, AND	
CHAP	IER3:	EXPEDIMENTAL DESILTS	57
21	Introd	externiental nesolits	57
0.1 3.9	Alosin	a Venturini Modulation Method	50
0.2	3.9.1	Alesina-Venturini optimised method	62
	3.2.1	Simulation results of Alosina Vonturini and its optimised method	62
33	Space	Vector Modulation Method	64
0.0	3 3 1	Direct space vector approach	66
	332	Simulation and experimental results of DSVM	76
	333	Indirect space vector approach	83
	3.3.4	The rectifier stage	91
	3.3.5	The inverter stage	96
	3.3.6	Indirect space vector modulation for the entire matrix converter	98
	3.3.7	Simulation results of the indirect matrix converter	101
3.4	Conclu	ision	104
CHAP	TER4:	DESIGN AND IMPLEMENTATION OF A DIRECT	
		MATRIX CONVERTER PROTOTYPE 1	.05
4.1	Introd	uction	105
4.2	The P	ower Module	106
4.3	Gate I	Drive Circuits	108
4.4	Interfa	ce Board	108

4.5	Input	Filter	111
4.6	Clam	o Circuit	114
4.7	Matri	x Converter Control	115
4.8	Meası	rement and Protection Circuits	119
	4.8.1	Input voltage measurement and protection circuits	121
	4.8.2	Output current measurement	123
4.9	Concl	usion	125
СПАТ		. STADILITY ANALYSIS OF THE MATDLY	
UIIAI	IERJ	CONVERTER	129
5.1	Introd	luction	129
5.2	Stabil	ity Analysis of the MC	131
0	5.2.1	Developing the mathematical model	132
	5.2.2	Small-Signal Model	135
	5.2.3	Numerical approach for stability analysis	138
	5.2.4	Stability analysis for maximum output power	142
5.3	Stabil	ity Analysis of the MC With Damping Resistor	148
	5.3.1	Numerical approach for stability analysis of the MC with the	
		damping resistor	151
5.4	Stabil	ity of the MC With Digital Low-Pass Input Filter	155
	5.4.1	Numerical approach for stability analysis of the MC with dig-	
		ital input filter	158
5.5	Concl	usion	161
CHAF	PTER6	BIDIRECTIONAL POWER FLOW CONTROL	162
6.1	Introc	luction	162
	6.1.1	System stabilisation using the damping resistor	164
	6.1.2	Improving the stability using the digital filter	169
6.2	Syster	n Stabilisation by Applying a Combination of the Damping	
	Resist	ance and Digital Input Filter	170
6.3	Unidi	rectional Power Flow Control	181
	6.3.1	Unidirectional power flow control with damping resistor R_d	183
	6.3.2	Unidirectional power flow control with digital input filter	184
	6.3.3	Unidirectional power flow control with a combination of the	
		damping resistor and digital input filter	188
	6.3.4	Experimental results for unidirectional active power flow control	190

6.4	Bidire	ctional Power Flow Control	192
	6.4.1	Bidirectional power flow control with damping resistor R_d	196
	6.4.2	Bidirectional power flow control with	
		digital input filter	202
	6.4.3	Bidirectional power flow control using a combination of the	
		damping resistor and the digital input filter stabilisation meth-	
		ods	206
	6.4.4	Experimental results of bidirectional power flow control $% \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$	208
6.5	PI Cor	ntroller	215
6.6	Anti-w	rindup PI Controller	217
6.7	Conclu	ision	218
CHAP	TER7:	CONCLUSIONS AND FUTURE WORK	220
7.1	Conclu	\mathbf{sions}	220
7.2	Recom	mendation For Future Work	222
LIST C	OF PU	BLICATIONS BASED ON THE THESIS WORK	224
REFERENCES		238	

LIST OF SYMBOLS

q	Voltage gain
i_x, i_y, i_z	Instantaneous output currents, A
v_x, v_y, v_z	Instantaneous output voltages, V
i_A, i_B, i_C	Instantaneous input currents, A
L_f	Input filter inductance
C_f	Input filter capacitance
R_f	Resistance of the input filter inductance
ω_{coff}	Cut-off frequency of the input filter
ζ	The damping factor of the input filter
R_d	Damping resistance
R_s	Line resistance
L_s	Line inductance
L_l	Load inductance
R_l	Load resistance
C_c	Clamp capacitance
\tilde{eta}_i	Phase angle of the input current vector
$\tilde{\alpha}_o$	Phase angle of the output voltage vector
$i_i(t)$	Instantaneous input current, A
$v_{si}(t)$	Instantaneous output voltages, V
$v_{im}(t)$	Input voltage amplitude, V

LIST OF SYMBOLS

$I_{im}(t)$	Input current amplitude, A
$v_{om}(t)$	Output voltage amplitude, V
$I_{om}(t)$	Output current amplitude, A
P_i	Input power
P_o	Output power
φ_i	Input displacement angle
φ_o	Output displacement angle
PF_{in}	Input power factor
ω_i	Input angular frequency
ω_o	Output angular frequency
S_{kj}	Switching function of a single switch
m_{kj}	Duty cycle of the switch S_{kj}
t_{kj}	Conduction time of the switch S_{kj}
T_s	Switching period
$v_{o,ref}$	Output reference voltage
k_i	Input current sector
k_v	Output voltage sector
f_i	Input frequency
f_o	Output frequency
f_s	Switching frequency
$\vec{V_o}$	Output voltage space vector
$\vec{I_i}$	Input current space vector
Р	Active power
Q	Reactive power

LIST OF ABBREVIATIONS

ac	alternative current
ac	direct current
ADC	Analog to Digital Converter
BBVSC	Back-to-Back Voltage Source Converter
CD	Current Direction
CSR	Current Source Rectifier
DB-VSI	Diode-Bridge Voltage Source Inverter
DAC	Digital to Analog Converter
DMC	Direct Matrix Converter
DSP	Digital Signal Processor
DSVM	Direct Space Vector Modulation
FCC	Forced Commutated Cycloconverter
FFT	Fast Fourier Transform
FPGA	Field Programmable Gate Array
IC	Integrated Circuit
IGBT	Insulated-Gate Bipolar Transistor
ILMC	Inverting Link Matrix Converter
IMC	Indirect Matrix Converter
ISVM	Indirect Space Vector Modulation
LPF	Low-Pass Filter

LIST OF ABBREVIATIONS

MC	Matrix Converter
NCC	Naturally Commutated Cycloconverter
OC	Over Current
OV	Over Voltage
PC	Personal computer
PCB	Printed Circuit Board
PF	Power Factor
PI	Proportional and Integral
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
RBIGBT	Reverse Blocking Insulated-Gate Bipolar Transistor
rms	root mean square
SMC	Sparse Matrix Converter
SVM	Space Vector Modulation
THD	Total Harmonic Distortion
TL	Threshold Level
USMC	Ultra Sparse Matrix Converter
VHDL	Very high peed integrated circuit Hardware Description Language
VOC	Voltage Oriented Control
VSI	Voltage Source Inverter
VSMC	Very Sparse Matrix Converter
3LVSI	Three-Level Voltage Source Inverter
ZOH	Zero Order Hold

List of Figures

Figure 1.1	ac-ac indirect power converter, with the intermediate $dc - link$	
stage	a) With diode bridge on the supply side (DB-VSI) b) back-to-	
back v	voltage source converter (BBVSC)	2
Figure 1.2	ac-ac indirect power converter, with the $dc - link$ stage and	
3LVSI	on the output side	4
Figure 1.3	ac-ac direct power converters a) DMC b) IMC \hdots	5
Figure 1.4	Schematic of the Indirect Matrix Converter (IMC)	6
Figure 1.5	Schematic of the sparse matrix converter (SMC)	7
Figure 1.6	Schematic of the very sparse matrix converter (VSMC) $\ . \ . \ .$	7
Figure 1.7	Schematic of the ultra sparse matrix converter (USMC)	8
Figure 1.8	Schematic of the inverting link matrix $converter(ILMC)$	8
Figure 1.9	a) Using a transformer as an interface link between the micro-	
grid a	nd the utility grid at the PCC, b) Using a matrix converter as	
an int	erface link at the PCC	10
Figure 1.10	Application of the MC as a link between two microgrids $~~.~.~$	11
Figure 1.11	Application of the MC as a link between the utility grid and a	
microg	grid, a) Using a MC with a low-frequency transformer, b) Using	
two M	ICs with a medium-frequency transformer $\ldots \ldots \ldots \ldots$	12
Figure 1.12	2 Application of the MC as an interface between a variable-	
freque	ncy wind turbine generator or a high-frequency generator and	
the m	icrogrid ac bus \ldots	14
Figure 1.13	3 Application of the MC in doubly fed induction generators	
(DFIC	G) for variable speed generation systems $\ldots \ldots \ldots \ldots \ldots$	15
Figure 1.14	Application of the MC as an interface between the microgrid	
ac bus	s and the ac load with variable frequency	16

Figure 2.1 Back-to-back bidirectional switches configurations a) Common-	
collector b) Common-emitter	21
Figure 2.2 Other possible bidirectional switch arrangements a) Switch-	
diode bridge b) Antiparallel reverse blocking IGBTs (RBIGBTs) c)	
Switch and diode in series configuration	21
Figure 2.3 Package and the circuit configuration of Dynex IGBT bidirec-	
tional switch module $[1,2]$	21
Figure 2.4 SEMELAB SML150MAT12 bidirectional module [3]	22
Figure 2.5 EconoMAC three-phase bidirectional switch module [4] \ldots	22
Figure 2.6 Basic power circuit of the DMC with the input filter and RL	
load \ldots	24
Figure 2.7 Second order LC filter, three-phase and single-phase	25
Figure 2.8 Second order LC filter with damping resistors a) In series with	
the inductors b) In parallel with the inductors c) Single-phase diagram	
for parallel damping resistor	27
Figure 2.9 Per-phase equivalent scheme of direct matrix converter \ldots .	28
Figure 2.10 Second order LC filter with bypass relays for preventing of	
more power loss, and damping resistors a) in parallel b) in series with	
the inductors	30
Figure 2.11 Comparison of the bode plots of the damped LC filter transfer	
function for different values of the damping resistor $\ldots \ldots \ldots$	31
Figure 2.12 Circuit diagram of the voltage clamp used for converter pro-	
tection against overvoltage spikes	32
Figure 2.13 Voltage across clamp capacitor when a) $C_c = 3.2 \mu F$ b) $C_c =$	
$10\mu F$	33
Figure 2.14 a) Output voltage $v_x(t)$ with clamp circuit, b) Output voltage	
$v_x(t)$ without clamp circuit, c) Common-mode voltage with clamp	
circuit, and d) Common-mode voltage without clamp circuit \ldots .	35
Figure 2.15 Input and output currents with clamp circuit, where a) Output	
current $i_x(t)$, b) Input source current $i_{sA}(t)$, and c) Input current $i_A(t)$	36
Figure 2.16 Matrix converter with two-phase input source and single-phase	
load	37
Figure 2.17 Simulation results of the output current direction	38
Figure 2.18 Experimental result of the output current i_y and its direction.	39

Figure 2.19 State diagram of the soft-switching four-step commutation	
strategy for both switch cell arrangements	39
Figure 2.20 Four step semi-soft commutation of the bidirectional switches	
for a two-phase to single-phase DMC, when the current direction is	
toward the load $i_x > 0$ (common-collector and common-emitter modes)	41
Figure 2.21 Timing diagram of the four-step commutation strategy for	
common-collector switch cell arrangement, where a) $i_x > 0$, and b)	
$i_x < 0$	42
Figure 2.22 Experimental result of the four-step semi-soft commutation	42
Figure 2.23 Four-step semi-soft commutation of the bidirectional switches	
for a two-phase to single-phase DMC when the current direction is	
from the load (common-collector) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	43
Figure 2.24 State diagram of the semisoft-switching four-step commuta-	
tion strategy for a three-phase to single-phase DMC	44
Figure 2.25 Schematic of the four-step commutation strategy for a three-	
phase to single-phase DMC using the logic elements $[5]$	45
Figure 2.26 State diagram of the current-direction based two-step commu-	
tation strategy for two bidirectional switches $\ldots \ldots \ldots \ldots \ldots$	47
Figure 2.27 Timing diagram of the current direction based two-step com-	
mutation when the commutation is needed within the threshold levels	48
Figure 2.28 Timing diagram of two-step commutation for common-collector	
switch cell arrangement a) $i_x > 0$ b) $i_x < 0$	49
Figure 2.29 Overlap current commutation, where a) Timing diagram, and	
b) state diagram	51
Figure 2.30 Dead-time current commutation, where a) Timing diagram,	
and b) state diagram	52
Figure 2.31 State diagram of the voltage-polarity based four-step commu-	
tation strategy for two bidirectional switches $\ldots \ldots \ldots \ldots \ldots \ldots$	53
Figure 2.32 Timing diagram of the voltage-polarity based four-step com-	
mutation strategy for common-collector switch cell arrangement, where	
a) $v_{SA} > v_{SB}$, and b) $v_{SA} < v_{SB}$	54
Figure 3.1 Switching pattern of the <i>kth</i> output phase in Venturini method	61
Figure 3.2 Sinusoidal output voltages (\bar{v}_{kN}) , fitting into input three-phase	
voltages	62

Figure 3.3 Simulation results of Alesina-Venturini method for output ref- erence voltage $v_{o,ref} = 195V(line - line)$, where a) Input source cur- rent and voltage of phase (A), b) Output current i_x , c) Output phase	C 4
Figure 3.4 Simulation results of Alesina-Venturini optimised method, where a and c) Input source current and voltage of phase (A) when output reference voltage is $v_{o,ref} = 200V$ and $v_{o,ref} = 300V$ (line-line), and b and d) Output current i_x when output reference voltage $v_{o,ref} = 200V$ and $v_{o,ref} = 300V$ (line-line), respectively	65
Figure 3.5 Complex space vector for active configurations a) Input cur-	00
rent switching vectors b) Output voltage switching vectors	68
Figure 3.6 Connected switches in case of using one zero configuration	71
Figure 3.7 Connected switches in case of using three zero configurations .	71
Figure 3.8 THD of the input source current and the output current using	
the switching pattern with one and three zeros	72
Figure 3.9 Input power factor using the switching pattern with one and	
three zeros	73
Figure 3.10 Generation of symmetrically distributed switching pulses, where a) When $k_i + k_v$ is odd, and b) When $k_i + k_v$ is even $\ldots \ldots \ldots$	74
Figure 3.11 Generation of symmetrically distributed switching pulses, time duration of each switching configuration for a switching sequence with	
Figure 3.12 Simulation results of time duration of each switching config- uration for a switching sequence with period T . When $k + k$ is: a)	6)
odd, and b) even $\ldots \ldots \ldots$	77
Figure 3.13 Simulation results of DSVM when $v_{o,ref} = 330V(L - to - L)$, where a) Three-phase output currents, and b) Frequency spectrum of	
i_x	78
Figure 3.14 Simulation results of DSVM with $v_{o,ref} = 330V(L-L)$, where a) Three-phase input source currents, and b) Frequency spectrum of	
i_{sA}	79
Figure 3.15 Simulation results of DSVM with $v_{o,ref} = 330V(L-L)$, where	
a) Output phase voltage v_{xn} , and b) Frequency spectrum of v_{xn}	80

Figure 3.16 Simulation results of DSVM with $v_{o,ref} = 330V(L-L)$, where
a) Input phase voltage v_A , b) Output line voltage v_{xy} , c) Output
phase voltage with respect to the input neutral point v_{xN} , and d)
Common mode voltage
Figure 3.17 Simulation results when output reference voltage (line-line) is:
a) $v_{o,ref} = 330V$, b) $v_{o,ref} = 200V$, and c) $v_{o,ref} = 80V$
Figure 3.18 Simulation results of DSVM with $v_{o,ref} = 330VL - L$ and
$f_o = 30Hz \dots \dots$
Figure 3.19 Experimental results of DSVM when $q = 0.86, f_i = 50 Hz, f_o =$
60Hz, where a) Three-phase input source currents, and b) Input
source current i_{sB} and its frequency spectrum $\ldots \ldots \ldots \ldots \ldots 84$
Figure 3.20 Experimental results of DSVM, input source current i_{sB} and
output current i_y when $q = 0.86$ and $f_i = 50Hz$, where a) $f_o = 30Hz$,
and b) $f_o = 70Hz$
Figure 3.21 Experimental results of DSVM, input source current i_{sB} and
output current i_y when $f_i = 50Hz$ and $f_o = 60Hz$, where a) $q = 0.86$,
and b) $q = 0.5$
Figure 3.22 Experimental results of DSVM, when $q = 0.86$, $f_i = 50Hz$
and $f_o = 60Hz$, where a) input source current and voltage i_{sB} and
v_{sB} , and b) input source voltage v_{sB} and its frequency spectrum 87
Figure 3.23 Experimental results of DSVM when $q = 0.86$, $f_i = 50 Hz and f_o =$
60Hz, where a) Three-phase output currents, and b) Output current
i_y and its frequency spectrum $\ldots \ldots \ldots$
Figure 3.24 Experimental results of DSVM when $q = 0.86$, $f_i = 50 Hz and f_o =$
$60Hz$, where a) Output phase voltage v_{yN} and its spectrum, and b)
Output line-to-line voltage v_{xy} and its spectrum $\ldots \ldots \ldots \ldots 89$
Figure 3.25 IMC with an RLC filter and a three-phase RL load 90
Figure 3.26 The schematic diagram of ideal IMC
Figure 3.27 IMC space vectors of a) The output voltage b) The input current 93
Figure 3.28 Synthesising the output reference voltage and input current
vectors by two adjacent space vectors in a given sector
Figure 3.29 Graphical representation of the switch states of IMC and its
equivalent circuit in DMC $\ldots \ldots \ldots$
Figure 3.30 Simulation results of IMC, where a) Common mode voltage,
and b) Virtual dc-link voltage V_{DC}

Figure 3.31 S	imulation results of IMC, where a) Input source current and
voltage <i>i</i>	\dot{v}_{sA} and v_{sA} , b) Output current i_x , c) Frequency spectrum
of i_{sA} , d) Frequency spectrum of i_x , e) Output phase voltage v_x , f)
Output l	ine-to-line voltage v_{xy} , g) Input current i_A , and h) Frequency
spectrum	n of input current i_A
Figure 4.1 B	lock diagram of the overall structure of the designed DMC $$. 105 $$
Figure 4.2 B	lock diagram of the overall structure of the control plan $\ . \ . \ . \ 106$
Figure 4.3 T	The schematic of the power module with driver boards $\ . \ . \ . \ 107$
Figure 4.4 IC	GBT switch, where a) TO-247ADIRG7PH42UD1-EP, and b)
Schemat	ic of a single bidirectional-switch $\ldots \ldots 107$
Figure 4.5 I	Driver integrated circuit, where a) Schematic of the driver
board us	ing VLA567-01R driver integrated circuit, and b) VLA567-
01R driv	er integrated circuit [6] $\ldots \ldots 109$
Figure 4.6 C	Outline drawing and circuit diagram of VLA567-01R $[6]$ 110
Figure 4.7 C	peration flowchart on detecting short circuit $[6]$
Figure 4.8 P	hotograph of the power boards with the driver boards on them 112
Figure 4.9 S	chematic of the input filter circuit with damping resistors in
parallel v	with the filter inductances
Figure 4.10 S	econd order LC filter with bypass relays for preventing of
more por	wer loss, and damping resistors, where a) in parallel, and b)
in series	with the inductors
Figure 4.11 S	chematic of the clamp circuit
Figure 4.12 P	hotograph of the clamp circuit
Figure 4.13 T	MS320F28335 Experimenter Kit $[7]$
Figure 4.14 X	ILINX Spartan-6 LX150T Development Board used for this
prototyp	e[8]
Figure 4.15 X	ILINX Spartan-6 LX150T development board main compo-
nents $[8]$	
Figure 4.16 In	nstallation of Mezzanine Card to Board FMC Connector $\left[9\right]~.~118$
Figure 4.17 T	he control algorithm in the FPGA, where a) Top-level block,
and b) I	nside the top-level block $\ldots \ldots 119$
Figure 4.18 C	Overall structure of the control platform $\ldots \ldots \ldots$
Figure 4.19 C	Overall structure of the interface board $\ldots \ldots \ldots$
Figure 4.20 V	Toltage transducer LV 25-P [10] $\ldots \ldots 122$

Figure 4.21	Schematic of the voltage measurement circuit
Figure 4.22	Schematic of the over-voltage protection circuit $\ldots \ldots \ldots \ldots 123$
Figure 4.23	The voltage measurement and protection board $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
Figure 4.24	Prototype current measurement board, where a) Current sen-
sor bo	ard, and b) Current measurement and protection circuits 124
Figure 4.25	Current transducer LTSR 25-N [11] \ldots
Figure 4.26	Input-output characteristic of the current transducer LTSR
25-N [$11] \ldots 126$
Figure 4.27	Schematic of the over-current protection circuit
Figure 4.28	Current direction measurement circuit
Figure 5.1	Schematic of the DMC with LC input filter and RL load $~$ 132
Figure 5.2	The single-phase model of the input low-pass LC filter 132
Figure 5.3	Position of the dominant eigenvalue of the state matrix A in
the co	mplex plane as a function of the voltage gain q , where a) For
differe	nt values of C_f , and b) For different values of L_T
Figure 5.4	Position of the dominant eigenvalue of the state matrix A in
the co	mplex plane as a function of the voltage gain q , where a) For
differe	nt values of f_i , and b) For different values of R_s
Figure 5.5	Position of the dominant eigenvalue of the state matrix A in
the co	mplex plane as a function of the output power p_o , where a) For
differe	nt values of C_f , and b) For different values of L_T
Figure 5.6	Position of the dominant eigenvalue of the state matrix A in
the col	mplex plane as a function of the output power p_o , where a) For at a plane of f_o and b) For different values of D_o 147
differe:	nt values of f_i , and b) For different values of R_s
Figure 5.7	Schematic of the low-pass LC filter with the parallel damping
resisto	$\mathbf{r} \cdot \cdot$
Figure 5.8	Position of the dominant eigenvalue of the state matrix A_{d1} in
100 m	where a) For different values of C_{1} and b) For different values
of L_{ℓ}	f_{f} and f_{f} for different values of \mathcal{O}_{f} , and f_{f} for different values 152
Figure 5.0	Position of the dominant eigenvalue of the state matrix A_{\pm} in
the co	mplex plane as a function of the output power n for different
values	of R_d
varaco	

Figure 5.10 Position of the dominant eigenvalue of the state matrix A_{d2}
in the complex plane as a function of the voltage gain q for different
values of R_d
Figure 5.11 Position of the dominant eigenvalue of the state matrix A_{d2} in
the complex plane as a function of the voltage gain q with $R_d = 10\Omega$,
where a) For different values of ${\cal C}_f,$ and b) For different values of L_f . 154
Figure 5.12 Block diagram of the single-phase input filter with a digital
low-pass filter $\ldots \ldots 155$
Figure 5.13 Position of the dominant eigenvalue of the state matrix A_f in
the complex plane as a function of the voltage gain q , where a) For
different values of τ , and b) For different values of f_o when $\tau = 0.2ms$ 159
Figure 5.14 Position of the dominant eigenvalue of the state matrix A_f in
the complex plane as a function of the voltage gain q when $\tau = 0.2ms$,
where a) For different values of C_f , and b) For different values of L_f . 160
Figure 6.1 Stability region of the DMC system weltage gain 'a' against
$A_{\text{apping resistor } B_{\text{apping resistor } B_{apping resistor$
C_s when $L_s = 0.6mH_{ch}$ b) 3D graph of the case (a) c) For three
different filter capacitance C_f when $L_f = 3mH$ and d) 3D graph of
the case (c)
Figure 6.2 Stability region of the DMC system, voltage gain 'q' against
damping resistor R_d , where a) For three different filter inductance L_f .
and b) 3D graph of the case (a) $\ldots \ldots \ldots$
Figure 6.3 Stability region of the DMC system, voltage gain 'q' against
damping resistor R_d , where a) For different values of the load induc-
tance L_l , and b) For different values of the load resistance R_l 167
Figure 6.4 Stability region of the DMC system, voltage gain 'q' against
damping resistor R_d , where a) For different values of the line resistor
R_s , and b) For different values of the output frequency $f_o \ldots \ldots \ldots \ldots 168$
Figure 6.5 Stability region of the DMC system, voltage gain 'q' against
input digital filter time constant τ , where a) For three different filter
capacitance C_f , and b) 3D graph of the case (a) $\ldots \ldots \ldots \ldots \ldots 171$
Figure 6.6 Stability region of the DMC system, voltage gain 'q' against
input digital filter time constant τ , where a) For three different filter
inductance L_f , and b) 3D graph of the case (a) $\ldots \ldots \ldots \ldots \ldots \ldots 172$

Figure 6.7 Stability region of the DMC system, voltage gain 'q' against input digital filter time constant τ , where a) For different values of the load inductance L_l , and b) For different values of the load resistance R_l 173
Figure 6.8 Stability region of the DMC system, voltage gain 'q' against input digital filter time constant τ , where a) For different values of the line resistance R_s , and b) For different values of the output frequency $f_o \dots \dots$
Figure 6.9 Block diagram of one of the input phases with a digital low- pass filter and the damping resistor
Figure 6.10 Stable region of the DMC system, voltage gain 'q' against R_d , where a) For different values of τ , and b) 3D graph of the case (a) 180
Figure 6.11 Stable region of the DMC system, voltage gain 'q' against digital filter time constant τ for different values of damping resistor R_d 181
Figure 6.12 Unidirectional output power control using the voltage oriented control 182
Figure 6.13 Waveforms of the input source current and the output current for the unidirectional power flow, without applying any stabilisation method
Figure 6.14 The input and output waveforms for unidirectional power flow control with $R_d = 5\Omega$
Figure 6.15 Waveforms of the input source current and the output current for the unidirectional power flow control, with $R_d = 8\Omega$ and switching pattern using three zero vectors, where a) With normal PI controller, and b) With anti-windup PI controller
Figure 6.16 The input and output waveforms for unidirectional power flow control with $R_d = 5\Omega$, switching pattern using three zero vectors and conventional PI controllers
Figure 6.17 Waveforms of the output and input source currents for uni- directional power flow control with switching pattern using one zero vector and digital filter with time constant, where a) $\tau = 0.35ms$, switching frequency $f_s = 10kHz$, b) $\tau = 0.35ms$ and switching frequency $f_s = 5kHz$, and c) $\tau = 0.5ms$ and switching frequency $f_s = 10kHz$

Figure 6.18 Waveforms of the output and input source currents for uni-
directional power flow control with switching pattern using one zero
vector, damping resistor $R_d = 50\Omega$ and the digital filter time constant
$\tau = 0.5ms \dots \dots$
Figure 6.19 Waveforms of the current and instantaneous power loss in
a damping resistor for the unidirectional active power-flow control,
where a) Using only the damping resistor, $R_d = 5\Omega$, and b) Using the
damping resistor $R_d = 50\Omega$ and digital filter $\tau = 0.5ms$
Figure 6.20 Experimental results for unidirectional active power flow con-
trol with $R_d = 5\Omega$, $ior(q) = 0$ and $ior(d)$ steps up from 4A to 7A 192
Figure 6.21 Experimental results for unidirectional active and reactive
power flow, with $R_d = 47\Omega$ and $\tau = 0.5ms$, where a) $ior(q) = 0$
and $ior(d)$ changes from 4A to 7A, and b) $ior(d) = 0$ and $ior(q)$
changes from 4A to 7A \ldots
Figure 6.22 Bidirectional active and reactive output power flow control
using the VOC method
Figure 6.23 Waveforms of the input source current and output current for
bidirectional active power-flow with $R_d = 3\Omega$
Figure 6.24 d-q components of the output current and voltage gain for
bidirectional active power-flow, with $R_d = 3\Omega$
Figure 6.25 Waveforms of the input voltage and output reference voltage
for bidirectional active power-flow, with $R_d = 3\Omega$
Figure 6.26 The input and output sources active and reactive powers for
bidirectional active power-flow control, with $R_d = 3\Omega$
Figure 6.27 Waveform of the current and instantaneous power loss in a
damping resistor $(R_d = 3\Omega)$ for the bidirectional active power-flow
control
Figure 6.28 The voltage gain and d-q components of the output current
for bidirectional reactive power-flow, with $R_d = 3\Omega$
Figure 6.29 The input source current and output current for bidirectional
reactive power-flow, with $R_d = 3\Omega$
Figure 6.30 The input and output sources reactive and active powers for
bidirectional reactive power-flow, with $R_d = 3\Omega$
Figure 6.31 The input voltage of the MC and output reference phase volt-
age for bidirectional reactive power-flow, with $R_d = 3\Omega$

Figure 6.32 The input source current and output current for bidirectional active power-flow, with $R_d = 3\Omega$ and simulation time-step $4\mu s$ 201
Figure 6.33 Input source current and output current for bidirectional ac- tive power-flow, with digital input filter $\tau = 0.8ms \dots \dots$
Figure 6.34 d-q components of the output current and voltage gain 'q' for bidirectional active power-flow, with digital input filter $\tau = 0.8ms$ 203
Figure 6.35 Input voltage and output reference voltage for bidirectional active power-flow, with digital input filter $\tau = 0.8ms$
Figure 6.36 d-q components of the output current and voltage gain 'q' for bidirectional reactive power-flow, with digital input filter $\tau = 0.8ms$. 204
Figure 6.37 The input source current and output current for bidirectional reactive power-flow, with digital input filter $\tau = 0.8ms$
Figure 6.38 The input and output sources active and reactive powers for bidirectional reactive power-flow, with digital input filter $\tau = 0.8ms$. 205
Figure 6.39 The input source current and output current for bidirectional active power-flow, with digital input filter $\tau = 0.8ms$ and time-step
$4\mu s$
Figure 6.40 The input source current and output current for bidirectional active power-flow, with the combination of the damping resistor $R_d = 10\Omega$ and the digital input filter $\tau = 0.2ms$
Figure 6.41 The input source current and output current for bidirectional active power-flow, with the combination of the damping resistor $R_d = 10\Omega$ and the digital input filter $\tau = 0.2ms$ when time-step is $4\mu s$ 207
Figure 6.42 Waveform of the current and instantaneous power loss in a damping resistor for the bidirectional active power-flow control. Stabilisation method is a combination of the damping resistor $R_d = 10\Omega$ and the digital input filter $\tau = 0.2ms$, when time-step is $4\mu s$ 208
Figure 6.43 Schematic of the designed system for the experimental test of the MC bidirectional power flow using utility grid
Figure 6.44 Experimental results for bidirectional active power control, input and output currents and voltages a) Without applying any stabilization method b) By adding only the large damping resistor $R_d = 47\Omega$

Figure 6.45 Experimental results for bidirectional power-flow control, in-
put and output currents and voltages, using the combination method,
with $R_d = 47\Omega$ and $\tau = 0.2ms$ a) Active power control b) Reactive
power control $\ldots \ldots 211$
Figure 6.46 FFT of the input and output currents, for bidirectional active
power flow control, a) From the input to the output side b) From the
output to the input side $\ldots \ldots 212$
Figure 6.47 Experimental results for bidirectional power-flow control, in-
put and output currents and voltages, using the digital filter method,
with $\tau=0.5ms$ a) Active power control b) Reactive power control 213
Figure 6.48 Experimental results for bidirectional power-flow control, in-
put and output currents and voltages, using the damping resistor
method, with $R_d = 3\Omega$ a) Active power control b) Reactive power
control $\ldots \ldots 214$
Figure 6.49 Analogue PI controller
Figure 6.50 Block diagram of the discrete PI controller

List of Tables

Table 2.1	Matrix converter simulation parameters
Table 3.1	Safe switching configurations of DMC and the output voltage
and t	he input current vectors associated with them $\ldots \ldots \ldots \ldots 67$
Table 3.2	Four "active configurations" selected for any combinations of
k_i, k_v	
Table 3.3	Connected switches and their connecting time durations when
$k_i = k_i$	$k_v = 2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
Table 3.4	Matrix converter simulation parameters
Table 3.5	Valid switching combinations for the rectifier stage and its re-
spect	ive generated input current vectors
Table 3.6	Valid switching combinations for the inverter stage and its re-
spect	ive generated output voltage vectors
Table 3.7	Valid switching combinations of the rectifier stage
Table 3.8	Valid switching combinations of the inverter stage
Table 3.9	The switching pattern of the IMC using one zero vector \ldots . 100
Table 3.10	The switching pattern of the IMC using three zero vectors 101 $$
Table 5.1	System Parameters for Numerical Analysis
Table 6.1	Matrix converter system parameters for stability analysis 165
Table 6.2	The results of the unidirectional power flow for different values
of R_d	(switching pattern with one zero vector)
Table 6.3	Matrix converter system parameters for stability analysis 184
Table 6.4	System parameters for bidirectional power flow control 193