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contribution of the authors listed in them. A complete List of Abbreviations and Symbols 

used in this work is also provided, along with a Table of Contents and a List of Figures and 

Tables for ease of navigation. An Abstract of my completed work is given before the 

chapters are listed in sequence, from 1 through to 7. Chapter 1 gives a brief, general 

introduction on the topic of polyoxometalates. Chapter 2 contains the methods and 

materials employed to complete my PhD. Chapters 3 to 6 contain the specific topics of my 

project, which will be generically introduced in Chapter 1. Chapter 7 contains general 

conclusions of this work, as well as some ideas for possible future work. All references 

used to study and support the content of my PhD are presented in the Bibliography at the 
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Abstract 

 

Inorganic-organic polyoxometalate-hybrid materials have attracted increased interest from 

researchers in recent years due their favourable photo-redox properties. These compounds 

have the potential to serve in a wide range of applications including photo-catalysis, gas- 

sensing and medicine. However, limited thermal and photo-chemical stability of these 

systems has restricted further development into other applications, such as photochromic 

technologies. 

This thesis focuses on the synthesis and thermal and photochemical stability of the 

polyoxometalate-hybrid designated CTA-W12, formed from the metatungstate anion, 

[H2W12O40]
6- and the cationic surfactant cetyltrimethylammonium, (C16H33)N(CH3)3

+ 

(CTA+). Only a narrow window of synthesis conditions actually leads to the production of 

the studied material because the products produced are very sensitive to pH, temperature, 

sequence of reactions steps and time. The CTA-W12 exhibits a lamellar bilayer structure, 

consisting of 2D sheets of hexagonally arranged polyoxometalate anions separated by 

interdigitated surfactant alkyl-tails. 

The thermal stability of CTA-W12 was studied using a battery of techniques, 

including in situ synchrotron x-ray diffraction. It was found that the salt went through seven 

phase and/or chemical transitions from room-temperature to 800°C within the enclosed 

environment of the quartz capillary. The lamellar structure persisted for the first three 

transitions and was destroyed by the fifth at 230°C, when the polyoxometalates fragmented 

and assumed a hexagonally-close-packed (HCP) arrangement. By ~350°C, the fragments 

reorganized into the bulk tungsten-suboxide W17O47 and by ~550°C all organic material was 

removed from the sample. At ~600°C the sample underwent a final transition to monoclinic 

WO2. The HCP fifth phase was further studied due to its high crystallinity and was found to 

be comprised of two types of polyanion fragments, alluding to the complex decomposition 

kinetics of polyoxometalates and inorganic-organic hybrids. 

The photochromism of CTA-W12 highlighted the photochemical instability of the 

inorganic-organic polyoxometalate hybrid. Multiple cycles of irradiation followed by 

recovery were applied to elucidate the behaviour of the material. The first four photochromic 

cycles coincided with a slight discoloration of the bleached state, detrimentally affecting 
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photochromic performance slightly. This was ascribed to irreversible oxidation to organic 

CTA+ which caused a yellowing of the material, as well the production of long-lived W5+ 

sites deep within the material which could not be re-oxidized by atmospheric O2. The material 

maintained reasonable photochromic performance beyond four cycles, which was attributed 

to the production of more reversible proton-transfer groups, as compared to CH2/3, and an 

equilibrium between the production of long-lived W5+ sites and the diffusion of O2 into the 

material. Lattice expansion and amorphization (which was partially reversed during 

bleaching) was observed to mutually occur with photo-colouration, as evidenced by XRD. 

The accumulation of strain in the sample, as indicated by the expansion in lattice parameter 

along the [001] direction, may represent a new photomechanical phenomenon. The 

photochemical instability of CTA-W12 was further revealed during XPS measurements, 

which caused progressive reduction of tungsten centres with each successive measurement 

due to the ionizing effect of the X-ray radiation in combination with the high vacuum 

environment of the instrument. 

 
The project has provided detailed insight into the synthesis, thermal stability and 

photochemical properties of CTA-W12. The mechanism of photochromism, and the reasons 

for its partial irreversibility, were found. A new photomechanical phenomenon was 

uncovered and investigated. The new insights provided by the project will facilitate future 

attempts to develop applications for these and related inorganic-organic hybrid compounds. 
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