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ABSTRACT

To meet surging traffic demands, heterogeneous networks (HetNets) enable

a more flexible, targeted and economical deployment of new infrastructure ver-

sus tower-mounted macro-only systems, which are very expensive to deploy and

maintain. For a high network spectrum efficiency, load balancing across differ-

ent tiers can be achieved by optimizing the association between users and base

stations (BSs). To achieve a high energy efficiency, proper controls of BSs’ activa-

tion (on/off status) and deployment density can significantly avoid unnecessary

BS power consumption. However, some practical conditions are not considered

in existing studies.

(i) Previous studies usually assumed that BSs were always busy transmitting

packets to their associated users, which characterized a worst case of the per-

formance metrics. In practice, one BS can either be busy or idle, depending on

its queuing condition, in which case the performance metrics such as the packet

delay should be further studied with queuing taken into account.

(ii) With the assumption of continuous BS transmission in previous literatures,

the network power consumption linearly increases with the number of BSs only.

Practically, the power consumption of a BS in the idle state is much lower than

that in the busy state, the tuning of the network design parameters, for example,

the bandwidth allocation and the BS deployment density, thus have a significant

impact on the BS busy/idle status, which in turn affects the network energy

efficiency.

(iii) Most of the previous studies focus on a uniform user distribution. In

reality, users might not be evenly distributed and may form a cluster in certain



hot area. In such cases, the user association optimization in a per-tier fashion

would result in a poor user experience in the overloaded areas, and a per-station

association scheme is thus preferable.

To address the above considerations, the thesis focuses on the optimization

of both the network spectrum efficiency and the network energy efficiency with

practical assumptions of queuing and non-uniform user distribution, which is

elaborated in the following.

1) Delay-optimal biased user association in HetNets. A thinned Poisson point

process model to characterize the locations of BSs in the busy state, and an

explicit expression of the average traffic intensity of each tier is obtained. On

that basis, an optimization problem is formulated to minimize the lower bound

of the network mean queuing delay by tuning the biasing factor of each tier, which

is shown to be a convex problem. The simulation results demonstrate that the

network queuing performance can be significantly improved by properly tuning

the biasing factor. It is further shown that the network mean queuing delay might

be improved at the cost of a deterioration of the network signal-to-interference

ratio (SIR) coverage, which indicates a performance tradeoff between real-time

and non-real-time traffic in HetNets.

2) Queue-aware optimal bandwidth allocation in HetNets. Based on the queu-

ing analysis, a minimization problem of the network average power consumption

and a maximization problem of the network SIR coverage are formulated, which

are shown to be convex and concave with respect to the bandwidth allocation to

each tier, respectively. By using an approximation of the average traffic intensity,

closed-form solutions are obtained for both problems. Simulation results of a

2-tier HetNet demonstrate that the network average power consumption and the

SIR coverage can be significantly improved by the optimal bandwidth allocation.
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3) Queue-aware energy efficient base station density optimization in HetNets.

By further using the approximation that BSs of a tier have the same SIR coverage,

the cumulative distribution function (CDF) of the traffic intensity of each tier is

obtained. On that basis, a minimization problem of the network average power

consumption is studied by optimally tuning the activation ratio of micro BSs

under the quality of serive (QoS) constraints of the network mean queuing delay

and the network SIR coverage. Numerical results demonstrate that if the idle

power coefficient is below a certain threshold, the optimal activation ratio should

equal the one to minimize the network average power consumption per area.

Otherwise, the optimal activation ratio should be obtained according to the QoS

constraints. It is further shown that universal frequency reuse (UFR) outperforms

spectrum partitioning (SP) in terms of both energy efficiency and SIR coverage

in the considered scenario.

4) Optimal biased association scheme with non-uniform user distribution in

HetNets. A practical scenario is studied where one cell is overloaded due to the

cluster of users. By maximizing the mean user utility in the area of this overloaded

cell and its neighboring cells, the optimal biasing factor can be obtained. It is

found that in the scenario where the overloaded cell is fully surrounded by a macro

cell, the optimal biasing factor logarithmically decreases with the user’s intensity

of the overloaded cell. Numerical results demonstrate that the mean user rate

of the overloaded cell and the whole network can be significantly improved by

properly tuning the biasing factor of the overloaded cell.

Key words: Heterogeneous network, Queuing, Non-uniform user distribution,

Biasing factor, Bandwidth allocation, BS deployment density, Network mean

queuing delay, Network average power consumption.
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Chapter 1

Introduction

In this chapter, we discuss the research background of the thesis. The emergence of the

heterogeneous networks (HetNets) is first introduced in Section 1.1. The key technologies

in designing a HetNet in previous literatures are then reviewed in Section 1.2. The

technical challenges and existing problems based on the literature review in HetNets are

examined and the motivations of this thesis are elaborated in Section 1.3. At last, an

overview of the research questions and the structure of the thesis are given in Section 1.4.

1.1 The Prevalence of HetNets

Future wireless networks are confronting tremendous demands by explosive number of

subscribers and exponential growth in mobile data traffic [1]. According to Visual Network

Index (VNI) report released from Cisco, mobile data traffic has grown 18-fold over the

past 5 years [2] driven by smartphones, tablets, and video streaming. It is estimated that

the wireless data explosion will continue to grow at a scale of 1000 times in 10 years [3].

Therefore, the data rate of the fifth generation (5G) should be enhanced by at least 1000

times to meet future communication demands. In addition, 5G is required to support

massive accessed devices and diverse quality of service (QoS) as the number of devices

1



2 Chapter 1. Introduction

could reach the tens or even hundreds of billions by the time 5G comes to fruition [4–6].

As the long-term evolution (LTE) system embodying 4G has been widely deployed

and is reaching maturity, under which case small amounts of new spectrum and limited

performance improvements can be expected, a paradigm shift should be achieved in 5G

via innovative new technologies [7]. To be more specific, the key technologies to get to

1000 times data rate in 5G can be categorized as:

1. Massive multiple-input multiple-output (MIMO) by implementing single BSs with

hundreds of antennas to smooth out channel responses as all small-scale channel

randomness abates as the number of channel observations grows [8–13];

2. Spectrum expansion by moving to millimeter wave (mmWave) spectrum to make a

better use of WiFi’s unlicensed spectrum [14–19];

3. Extreme densification by incorporating large number small-scale BSs such as femto-

BS with traditional cellular BSs to improve area spectral efficiency [20–24].

Among them, the most straightforward but effective way to increase the network

capacity is the extreme densification that makes the cells smaller [1]. It is predicted

in [25] that in the not too distant future, say 10–15 years out, the number of BSs may

actually exceed the number of cell phone subscribers, resulting in a cloud-like data shower

where a mobile device may connect to multiple BSs. Through the massive deployment

of various small-scale BSs, the network architecture is thus evolving to more dense and

irregular heterogeneous networks (HetNets) [26–33].

HetNets enable a more flexible, targeted and economical deployment of new infras-

tructure versus tower-mounted macro-only systems, which are very expensive to deploy

and maintain [34]. In a HetNet, various types of BSs are deployed to offload the macro

cell users, forming a multi-tier network overlaid with many small cells. Fig. 1.1 illustrates
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a 3-Tier HetNet which consists of macro BS, pico BS and femto BS, which differ pri-

marily in terms of maximum transmit power, physical size, deployment density, and cost.

For instance, the macro BSs are sparsely deployed and offer basic long-range coverage,

while the widely deployed femto BSs can only provide short-range communication links

to nearby users.

Figure 1.1: Illustration of a 3-Tier heterogeneous cellular network. Only a single macro-
cell is shown for simplicity.

However, the prevalence of HetNets have raised some challenges. First of all, as the

transmission power of these small-scale BSs is usually 10–20dB lower than that of macro

BSs, most of the users will still tend to associate with the macro BSs with the strongest

downlink signal, which leads to the load imbalance across different tiers. Furthermore, the

proliferation of small-scale BSs, nevertheless, leads to a significant increment on power

consumption, which greatly raises the operation expenditure for service providers. There-

fore, it is essential and necessary to optimize the design of a HetNet to improve its capacity

while reduce the energy consumption. In the following, we will review the key technologies
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to deal with these challenges.

1.2 Key Technologies in Designing HetNets

A great deal of effort has been made to improve the network performance. A large fraction

of the previous studies on HetNets strived to optimize the network spectrum efficiency

in terms of the rate and signal-to-interference-plus-noise ratio (SINR). In addition, some

literatures placed their emphasis on the users’ quality of service (QoS) provisioning by

the performance metrics of the packet transmission delay. Recently, as the issue of global

warming and heightened concern for the environment has raised a special focus on the

energy efficiency in communication systems, more and more researchers have paid much

attention to study power saving in HetNets. Therefore, Section 1.2.1 will review the

literatures to optimize the spectrum efficiency, Section 1.2.2 will go through the studies

on delay optimization, and Section 1.2.3 will summarize the related works on energy

efficiency optimization in Hetnets.

1.2.1 Review of Spectrum Efficiency Optimization in HetNets

As mentioned before, in HetNets, the BS parameters such as transmission power and

deployment density are distinct across tiers. Due to the disparate transmit powers and BS

capabilities, mobile users would be much more likely to associate with a tower-mounted

macro BS by the decision metrics such as SINR or received signal strength indicator

(RSSI). Therefore, a conservative offloading approach may result in severe load imbalance

[30], which would not only underutilize the benefit from the deployment of small-scale

cells but would also deteriorate the multimedia performance of macro cells due to the

additional interference caused by void cells [35–37]. It was found in [38–44] that with

conservative offloading strategy, only limited performance gain can be achieved from the
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deployment of small-scale cells. However, aggressively offloading mobile users from macro

BSs to smaller BSs such as WiFi access point (AP) can lead to a severe degradation of the

network performance. For example, a WiFi AP with excellent signal strength may suffer

from heavy load or have less effective bandwidth (channels), thus reducing the effective

rate it can serve at [45]. It is quite clear that both of the aforementioned consequences is

undesirable, which motivates engineers to seek an optimal offloading strategy.

Figure 1.2: Illustration of the user-BS association scheme. (a) Max-SINR association.
(b) Optimally scheduled association.

As a key component to realize the potential of capacity enhancement with the architec-

ture of HetNets, load balancing has long been studied and attracted extensive attention.

One direct approach for load balancing is to schedule each user-BS link in a centralized

manner. By assuming no handover and without any selection criteria, each user could

choose one BS to associate with freely. As demonstrated in Fig. 1.2, max-SINR associ-

ation would not only overload the Tier-1 BS (macro BS) but also force small-scale BSs

to serve very few users with some even being idle; By searching over all possible user-BS

associations and finding the optimal one, the load pressure of Tier-1 BSs can be effectively

balanced by its surrounding small-scale Tier-2 and Tier-3 BSs [46].
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However, since the above general approach of the user-BS association subject to a

resource would result in a coupled relationship between the users association and schedul-

ing, the NP hard and combinatorial nature of this optimization problem was identified

in [47–49]. In HetNets, pico and femto BSs are usually deployed with a much larger

density than macro BSs. Users thus have more freedom to make the association choice.

As the network scales up, finding an optimal solution to the combinatorial problem be-

comes untractable. Besides being computationally daunting, this approach is unlikely to

lead to insight into the role of key parameters on system performance. Therefore, a few

key mathematical approaches, i.e., relaxed optimization [46,50], Markov decision process

(MDP) [51–53], game theory [54,55] have been applied.

Nevertheless, the above mentioned approaches, i.e. relaxed optimization, MDP and

game theory, focus on strategic decision making of each individual user, and thus may

have limitations to further characterize the relations between performance metrics and

system parameters. Furthermore, these approaches are quite sensitive to the locations of

users and BSs, indicating that the algorithms have to run over and over again in order to

keep tracking of changes such as user mobility in networks. Hence, Cell Range Expansion

(CRE) [34] was adopted to serve as an easy-to-implement technique for load balancing in

HetNets. In early works regarding the user association problem, Cell Range Expansion

was first proposed in code-division multiple access (CDMA) systems. This so-called “Cell

Breathing” technique adopts a biased user-BS association scheme where each user assigns

a biased value to the measured received power from pilot signals transmitted by available

BSs, and associates with the BS that has the largest biased SINR [56, 57]. By doing

so, uneven load conditions in macro cells can be equalized readily by the expansion or

contraction of the cells coverage area. Similar approach was proposed in [58] where all

the cells coordinate to adjust their coverage by using the Cell Breathing technique based

on their load fluctuations. As the network architecture evolves into a heterogeneous form,
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BSs are divided into multiple tiers according to their transmission powers. Therefore, BSs

from different tiers have distinct cell sizes and load conditions, and thus they should be

assigned with distinct SINR biasing factors [59].

Formally, if there are K candidate tiers available with which a user may associate,

the index of the chosen tier is k∗ = arg max
i=1,...,K

BiPR,i, where Bi is the biasing factor for

Tier i and PR,i is the received power from Tier i. Conventionally, macro BS is usually

denoted by Tier 1 and has a bias of 1 (0dB). For example, a 10dB bias of a small-scale BS

indicates that a mobile user would associate with the small BS unless its received power

is at least 10dB less than that of the macro BS. Biasing effectively expands the coverage

area of small cells, so it is referred to as biased association scheme, which will be specified

in the following. Fig. 1.3 demonstrates the technique of Cell Range Expansion of a 2-Tier

HetNet.

Figure 1.3: An example of a 2-Tier HetNet with Cell Range Expansion.

Analytical approaches for biasing and interference coordination were first studied in

[60,61]. However, the downlink rate was not investigated, which is one of the key metrics

in evaluating the network performance. In [46], the authors formulated an optimization

problem in HetNets exploiting a logarithmic utility function of users’ long-term perceived

rate to account for the proportional fairness [62], and obtained the optimal per-tier biasing
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factor by a brute force search. It was shown that if the biasing factors are designed

carefully, the Cumulative Distribution Function (CDF) of the overall user rate is pretty

close to that achieved by solving the combinatorial association problem. However, this

method depends on specific network realization and the optimal biasing factor was found

empirically.

To find tractable expressions of key system performance metrics, stochastic geome-

try [63,64] was then introduced to model the locations of BSs and users as spatial random

point process. There has been considerable achievement in the theory of HetNets whereby

the locations of APs of each tier as well as the users are assumed to form a homogeneous

Poisson point process (PPP). In [65], the authors considered a network topology of K in-

dependent tiers of Poisson point process (PPP) distributed BSs and derived an expression

of SINR coverage, i.e., the probability that the SINR of a user exceeds a threshold value.

Motivated by [65], optimal per-tier biasing factors was characterized by [66] by maxi-

mizing the rate coverage, i.e., the probability that a randomly chosen user can achieve

a target rate. Similarly, [67] derived an explicit expression of the rate coverage by as-

suming resource partitioning, and numerically obtained the optimal biasing factor and

the fraction of resource partitioning. By maximizing a network-wide proportional fair

utility function based on the logarithm of the mean user rate, [68] analytically obtained

the optimal biasing factors of each tier.

1.2.2 Review of Delay Optimization in HetNets

Even though the subject of user association in a HetNet has been well studied, most of the

previous works did not take the QoS requirements into account explicitly. For a HetNet

with QoS flows, optimizing the packet delay performance is even more relevant than

maximizing the typically assumed proportional fair metric [69, 70]. Meanwhile, stringent

delay requirement has been posed on the network nowadays due to the emergence of
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new types of applications [1], such as latency-critical applications like command-and-

control of drones, advanced manufacturing, and tactile Internet [71, 72]. In practice,

with the proliferation of real-time multimedia applications, the packet delay is becoming

an important quality-of-service (QoS) metric. For example, an end-to-end latency over

200 ms for real-time video media stream is generally considered to be unacceptable [73].

Therefore, a deeper understanding of the effect of key network parameters on packet

transmission delay becomes essential to evaluate the overall network performance [74,75].

Since previous studies [30, 38–44, 46–55, 63–65, 67, 68] assumed that the BSs always

have packets to transmit, they present the network performance metrics of SINR and

rate, and neglect the characterization of the network delay performance. However, there

is an increasing interest in delay analysis for various types of networks. In particular, [76]

investigated the delay performance of both resource separation and resource sharing s-

trategies in terms of the provided QoS level of the internet. In [77], an adaptive scheme

to schedule the delay-sensitive traffic in IEEE 802.11e Wireless Local Area Networks

(WLAN) was proposed where the packets were queued based on their deadline to reach

the destination. [78,79] studied the local delay, i.e., the time it takes a node to successfully

transmit a packet to its neighbor, in ad hoc Poisson networks with the consideration of

node mobility. As for wireless networks, the packet blocking probability and the pack-

et queuing delay were characterized in [80, 81] for a isolated traditional macro cell. In

HetNets, the expected delay was analyzed in [82] by taking into account the delays in

radio access and backhaul links. The optimal spectrum allocation pattern was obtained

in [83,84] by minimizing the average packet queuing delay. Similarly, Cheng et al. [85] de-

rived a distributive stochastic learning algorithm to determine the optimal user scheduling

and power control policy by minimizing the average network delay.

The most challenging part of characterizing delay performance is queuing analysis. The

queuing performance of a single cell was evaluated in [80,81] for the first time in CDMA
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systems. By assuming constant interference over the entire cell, their work characterized

the performance of only one independent queue. Nevertheless, such queuing analysis is not

applicable to HetNets. In HetNets, as BSs of various types are quite close to each other

due to a large deployment intensity, the queues of all co-channel BSs are spatially and

temporally correlated, which is induced by interference and traffic/load patterns [86, 87].

In particular, each BS will only act as an interferer if it is in the busy state, leading to

the coupled queue problem [88]. The analysis of coupled queues is a long-standing open

problem, and even solving a special case of two interacting queues is challenging [89]. To

solve the coupled queue problem, [83–85] considered fixed number and locations of BSs

and modeled them as a n–dimension continuous time Markov chain (CTMC) based on

the instantaneous channel state information (CSI) and queue state information. However,

since CTMC can only deal with limited queues, the computational complexity becomes

unbounded as the network scales up. Hence, stochastic geometry should be combined with

queuing theory to decouple the queuing performance in HetNets, which will be elaborated

in the next chapter.

1.2.3 Review of Energy Efficiency Optimization in HetNets

Besides the efforts to optimize network spectrum efficiency and delay, more and more

intensive attention has been paid to improve the network energy efficiency since global

energy consumption due to information and communication technologies is rising rapidly

[90]. It is estimated in [91–95] that an active macro BS consumes 40 to 80 watts on

transmission. By combining the power consumed for signal processing, computation,

cooling, and radio frequency power amplification, the total power consumption can sums

up to over 1000 watts. With the fruition of HetNets, deploying small-scale BSs with a

huge density brings about a higher power consumption. According to [96], the current

HetNet consumes approximately 60 billion kWh per year and is expected to double by
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the year 2020.

Maximizing the energy efficiency has long been studied by previous literatures for cel-

lular networks [97–101]. [97,98] found the optimal BS deployment density by maximizing

the ratio between BSs’ achievable rate and the cellular network power consumption. Sub-

ject to SINR coverage and rate coverage, [99] first derived BSs’ minimum transmission

power, then obtained the optimal BS density to minimize the average network power

consumption. Besides optimizing the BS density, [100, 101] focused on optimizing the

operation mode (on/off status) of each BSs according to the load condition. In [100], the

authors proposed a distributed on/off switching based algorithm in cellular networks to

decide the minimum set of active BSs. By arguing that a cellular BS could operate in

normal mode, sleep mode, or expansion mode, [101] proposed a scheme that determines

which mode the BS should choose based on the load condition, such that the energy

consumption is minimized.

As for HetNets, enhancing the network energy efficiency becomes more critical as the

proliferation of small-scale BSs can cause a significant burden on the power consumption.

On the other hand, since the small-scale BSs usually serve fewer users due to the lim-

ited association region, traffic fluctuation have a severer negative impact on the energy

consumption in HetNets. In particular, the amount of user service requests can drop dra-

matically during non-peak traffic hours. The BSs are thus more likely to be idle during

such periods, but still consume energy [102]. To reduce the total power consumption, [103]

dynamically change the operating states (on and off) of the small-scale BSs, while keeping

the macro BSs on to avoid any service failure outside active small cells. [104] proposed

a scheme to determine the smallest set of BSs, which can be carried out periodically to

adapt to aggregate traffic variations. The core idea of [103,104] is to dynamically switch

off a fraction of cells during periods of low activity load, which is quite similar to [100,101].

However, as [103, 104] assumed fixed locations and number of BSs of all tiers, their
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methods thus highly depend specific network realization. Therefore, to find tractable

expressions of key system performance metrics, stochastic geometry was then adopted

by [105–108] to model the irregular deployment of BSs as Poisson Point Process (PPP).

In particular, [105,106] focused on a 2-tier HetNet and assumed that a transmission fails if

the received SIR of a user is lower than a given threshold. Instead of directly minimizing

the network power consumption, [105, 106] defined and maximized the network energy

efficiency performance as the ratio between the network total power consumption and the

network throughput, i.e., the average successfully transmitted bits per sec per Hz per unit

area. Although the optimization problem is not convex, an iterative algorithm is proposed

to obtain the optimal BS density of each tier. [107,108] also considered a HetNet consisting

of 2 types of BSs, following independent PPP distributions. To avoid the coverage hole

caused by BS sleeping, some BSs, called “coverage BSs”, cannot be switched off. Under

the network SINR coverage constraint, the authors in [107,108] optimized the BS density

in order to save energy. It is found that if the ratio of operation cost between micro and

micro BSs are lower than a threshold, which is a function of transmission power and path

loss, an optimal fraction of macro BSs should be obtained and switched off; otherwise,

the strategy is the opposite, i.e., an optimal fraction of micro BSs should be calculated

and powered off.

1.3 Challenges and Motivations

In this section, we will discuss the existing problems and challenges according to our

literature review, based on which the motivations of this thesis is given.
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How to balance the load pressure across tiers with queuing taken into account

Although plenty of efforts [46, 50–55, 60, 61, 65–68] have been made to strike a balanced

load across tiers for a higher spectrum efficiency in HetNets, they assumed that the BSs

are transmitting packets all the time without queuing considered inside BSs. Therefore,

they all focused on the performance metrics such as rate and SINR. In practice, one

BS can vary between busy and idle states over a small time scale due to the dynamic

packet arrivals of its associated users, under which case one BS would not interfere with

others unless it is busy transmitting packets to its user. As more small-scale cells are

incorporated into macro cells to form a HetNet, fewer users are served by BSs. Therefore,

it is of high probability that one BS can be idle during some time period such that the

delay performance cannot be neglected. How to balance the BS load pressure across

tiers in terms of the network delay performance by considering queuing thus becomes an

interesting issue that deserves much attention.

As mentioned before, the most challenging part in characterizing the delay is to

solve the coupled queue problem. Current queuing analysis in HetNets are all based

on continuous-time Markov chain (CTMC) [83–85]. However, CTMC can only deal with

specific network realization, no tractable expressions of the network performance can be

derived. In addition, as the network scales up, the state space of the Markov process may

become huge, and the analysis would become intractable. Hence, this motivates us to

deal with the coupled queue problem with the tool of stochastic geometry to account for

the random BS deployment, and derive the delay performance metrics analytically such

that some insights can be gained for load balancing with the consideration of queuing.

How to maximize network energy efficiency with queuing taken into account

Since [97–101, 103–108] all considered fixed power consumption of BSs without taking

queuing into account, the only system parameter that determines the network power
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consumption is the BS deployment. The overall network power consumption thus linear-

ly increases as the number/density of BSs increases. As a result, the energy efficiency

optimization problem in [97–101,103–108] falls into two categories:

• Minimize the network power/energy consumption to optimally switch off a fraction

of BSs under the constraint of network rate and SINR performance;

• Maximize the ratio between the network power consumption and the network through-

put to find the optimal BS deployment density.

By assuming dynamic traffic arrivals and queues inside BSs, nevertheless, other system

parameters such as bandwidth allocation could account for the network power consump-

tion performance as one BS consumes less energy in the idle state than it does in the busy

state [95, 109]. Furthermore, as BSs are more likely to be idle with a larger deployment

intensity, increasing the BS density would not necessarily deteriorate the energy efficiency.

Therefore, how system parameters could impact on the network energy efficiency under

the assumption of queuing needs to be reconsidered carefully.

How to optimize user-BS association with non-uniform user distribution

As mentioned before, most of the previous studies on load balancing [46, 50–55, 60, 61,

65–68] assumed a uniform user distribution. Therefore, these studies all adopt a per-tier

biasing, i.e., BSs of a tier use the same biasing factor, as the traffic load of a tier is

approximately the same. However, users might not be evenly distributed. In particular,

a cluster of users might appear within the association region of a cell. For instance, the

association region of a cell can be one hall or one room where people attend a lecture

or enjoy a concert and thus form a cluster. In such case, the resource of a cell will be

equally shared by more users than usual, which significantly lowers users’ perceived rate.

Hence, the tuning of the biasing factor in a per-tier fashion would not relieve the traffic

pressure in the overloaded areas, and a per-station biased scheme is thus preferable. The
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situation is quite intuitive: all of us must have experienced large drops in throughput due

to congestion in crowded events, irrespective of signal quality, i.e., I have five bars but

I cannot open a simple webpage. To enhance the spectrum efficiency of this overloaded

cell as well as the entire network, the research question lies in “how to optimally tune the

biasing factor of the overloaded BS according to load condition?”.

1.4 Thesis Contributions and Structure

1.4.1 Thesis Contributions

To address the existing problems and open challenges elaborated in Section 1.3, this thesis

aims to improve the network spectrum efficiency, delay performance and the network

spectrum efficiency by focusing on a more practical scenario with both queuing in the BS

and non-uniform user distribution. The key contributions of this thesis are summarized

as follows.

1) Characterization of the BS average traffic intensity. To account for the irregular

deployment of the BSs, stochastic geometry is adopted such that BSs of each tier are mod-

eled as a homogeneous PPP. In contrast to previous studies where one BS is transmitting

packets all the time, we consider that the packet requests from the users form a queue

in their associated BSs. The traffic intensity of one BS thus varies with the aggregate

packet requests of all its associated users. To decouple the queuing behavior of BSs, we

resort to the approximation of replacing each BS’s individual traffic intensity with the

average traffic intensity of its tier. The spatial distribution of BSs in the busy state can

thus be approximately characterized by a thinned-PPP model. The SIR coverage of each

tier is then obtained, based on which the average traffic intensity of each tier is further

obtained. It is further shown that when the spectrum resources is fully reused over the

network, the average traffic intensity of each tier can be determined by a set of fixed-point
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equations; With spectrum partitioning across tiers, an explicit expression of the average

traffic intensity of each tier can be derived.

2) Delay-optimal biased user association in HetNets. Based on the characterization of

the average traffic intensity, an optimization problem is formulated to minimize the lower

bound of the network mean queuing delay by tuning the biasing factor of each tier, which

is shown to be a convex problem. When the mean packet arrival rate of each user is small,

a closed-form solution is derived. The simulation results demonstrate that the network

queuing performance can be significantly improved by properly tuning the biasing factor.

It is further shown that the network mean queuing delay might be improved at the cost of

a deterioration of the network signal-to-interference ratio (SIR) coverage, which indicates

a performance tradeoff between real-time and non-real-time traffic in HetNets.

3) Queue-Aware Optimal Bandwidth Allocation in HetNets. To properly allocate the

spectrum resources to BSs of each tier in HetNets with the consideration of queuing, opti-

mization problems to minimize the network average power consumption and to maximize

the network SIR coverage are formulated, which are shown to be convex and concave with

respect to bandwidth allocation, respectively. When the mean packet arrival rate of each

user is small, closed-form solutions to the optimization problems are obtained. Simulation

results of a 2-tier HetNet demonstrate that the network average power consumption and

the SIR coverage can be significantly improved by the optimal spectrum allocation. A

tradeoff between energy efficiency and SIR coverage is further revealed, which provides

insights regarding the interplay of these two performance metrics.

4) Queue-aware energy efficient base station density optimization in HetNets. By

using the approximation that BSs of a tier have the same SIR coverage, the cumulative

distribution function (CDF) of the traffic intensity of each tier is obtained. On that

basis, a minimization problem of the network average power consumption is studied by

optimally tuning the activation ratio of micro BSs under the quality of serive (QoS)
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constraints of the network mean queuing delay and the network SIR coverage. Numerical

results demonstrate that if the idle power coefficient is below a certain threshold, the

optimal activation ratio should equal the one to minimize the network average power

consumption. Otherwise, the optimal activation ratio should be obtained according to

the QoS constraints. It is further shown that universal frequency reuse (UFR) outperforms

spectrum partitioning (SP) in terms of both energy efficiency and SIR coverage.

5) Optimal biased association scheme with non-uniform user distribution in HetNets.

A practical scenario is studied where one cell is overloaded due to the cluster of users. In

this case, the adjustment of the per-tier biasing factor becomes unreasonable, and thus

we propose to adjust the biasing factor of the overloaded cell to offload the traffic to its

surrounding cells. By maximizing the mean user utility in the area of this overloaded cell

and its neighboring cells, the optimal biasing factor can be obtained. It is found that in

the scenario where the overloaded cell is fully surrounded by a macro cell, the optimal

biasing factor logarithmically decreases with the user’s intensity of the overloaded cell.

Numerical results demonstrate that by using the optimal biasing factor of the overloaded

cell in the considered scenario, both the mean user rate in the overloaded cell and the

overall mean user rate can be improved compared to the previous biased scheme without

the adjustment of the overloaded cell in the literature. The analysis provides guidance

on the optimal tuning of the biasing factor of an overloaded cell and, is a step forward

towards the goal of the adjustment of the biasing factor in a per-station fashion under

non-uniform spatial user distribution.

1.4.2 Thesis Structure

The rest of this thesis is organized as follows. Queuing analysis for both universal fre-

quency reuse and orthogonal spectrum partitioning is presented in Chapter 2. An optimal

biased association scheme to minimize a lower bound of the network mean queuing delay
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with queuing taken into account is studied Chapter 3. A queue-aware optimal bandwidth

allocation across tiers to maximize the network SIR coverage and energy efficiency is ex-

amined in Chapter 4. A queue-aware energy efficient BS density optimization problem

under the QoS constraints of network mean queuing delay and network SIR coverage is

formulated and solved in Chapter 5. An optimal biased association scheme to optimally

offload the users from the overloaded cell with non-uniform user distribution is proposed

and studied in Chapter 6. Conclusions and future works are given in Chapter 7.



Chapter 2

Queuing Analysis

Throughout this thesis, we mainly focus on the scenario that one BS could either be

busy or idle and the interference only comes from the BSs in the busy state, which has

been mentioned in Chapter 1. As a result, the characterization of the network delay

performance, the network spectrum efficiency as well as the network energy efficiency in

this thesis are closely related to the queue status of each BS, which lays the foundation

for the network performance characterization and optimization in the following chapters.

In particular, Section 2.1 first identifies the queuing model and the coupled nature of

the queues. The mathematical approaches to decouple the queuing behavior of the BSs,

i.e., stochastic geometry and independent thinning, are introduced in Section 2.2. The

analytical results of the average traffic intensity of each tier for the cases of orthogonal

spectrum partitioning and universal frequency reuse are derived in Section 2.3, which is

then verified by a spatial-temporal simulation of a 2-Tier HetNet.

19
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2.1 Coupled Queue Problem

2.1.1 Queuing Model

Consider a K-tier heterogeneous network where BSs in the kth tier are denoted by the set

Φk = {BSk,1,BSk,2, ...,BSk,Nk
}, k ∈ {1, ..., K}, where Nk is the total number of the Tier-k

BSs. The mobile users form another set Φu = {UE1,UE2, ...,UENu}, where Nu is the

total number of the users. For a random user UEi located at the origin, the instantaneous

received power from a typical BSk,j in the kth tier is given by

PR,{k,j} = Pkgk,jx
−αk
k,j , (2.1)

where xk,j denotes the distance between UEi and BSk,j; Pk is the transmission power

of a BS in the kth tier; gk,j denotes the small-scale fading coefficient, which follows an

i.i.d. exponential distribution of unit mean; and αk is the path-loss coefficient, which is

assumed to be identical across different tiers, i.e., αk = α, ∀k. We assume in this chapter

that each user associates with the BS with the largest average reference signal receiving

power (RSRP)1. For the resource allocation, we assume that BSs of the same tier share

the spectrum with a bandwidth of Wk, k ∈ {1, ..., K}. Denote the total bandwidth as W .

With spectrum partitioning (SP) across tiers, we then have
K∑
k=1

Wk = W . With universal

frequency reuse (UFR) over the network, we have Wk ≡ W for each k ∈ {1, ..., K}.
For each user in the network, assume that its packet requests follow an independent

Poisson process with a mean arrival rate γ, and the packet length is exponentially dis-

tributed with mean L. The incoming packets for all users form a queue in the associated

BS, and the BS will transmit these packets in a first-in-first-serve (FIFS) fashion. To avoid

users in poor channel conditions occupying the BS, we consider a fixed rate modulation

and coding format. In particular, a BS will serve a user only when its instantaneous SIR

1Note that the queuing analysis based on the largest RSRP in this chapter can be applied to a biased

association scheme, which will be shown in Chapter 3.
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exceeds a threshold τ , and will drop its packet request otherwise. Note that due to a high

BS deployment intensity, the background noise is dominated by the interference, and is

therefore ignored in this thesis. According to Shannon’s formula, the service rate for each

user that is associated to a Tier-k BS can be obtained as

μk =
Wk

L
log2 (1 + τ) . (2.2)

For a randomly selected Tier-k BS, BSk,i, its traffic intensity, ρk,i, can be obtained as

ρk,i =
γk,i
μk

, (2.3)

where γk,i is the mean aggregate packet arrival rate of all its associated users. Note that

ρk,i can also be interpreted as the busy probability or the utilization of BSk,i when ρk,i ≤ 1.

Since BSk,i delivers a packet only when the SIR exceeds a certain threshold τ , its mean

aggregate packet arrival rate can be obtained as

γk,i = γNk,iPr [SIRk,i > τ ], (2.4)

and where Nk,i is the number of users that are associated to BSk,i and Pr [SIRk,i > τ ]

denotes the SIR coverage of BSk,i, i.e., the probability that the SIR of a random user

associated to BSk,i is larger than the threshold τ . By substituting (2.4) into (2.3), the

traffic intensity ρk,i can be further written as

ρk,i =
γNk,iPr [SIRk,i > τ ]

μk

, (2.5)

As the BS will be always be active and the queue in the BS will be unstable if ρk,i > 1, we

focus on the condition ρk,i ≤ 1 in this thesis. In this case, ρk,i equals the busy probability

of the BS. Due to a varied association region, each BS has a different mean aggregate

packet arrival rate, and the traffic intensity ρk,i varies across each BS. In addition, as the

experienced interference of one typical BS comes from all other co-channel BSs that are

currently transmitting, there exists a spatial-temporal correlation of the queues of the

BSs, which will be demonstrated in the following.
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2.1.2 Spatial-Temporal Correlation of the Queues

(a)

(b)

Figure 2.1: Interference pattern between the neighboring BSs. (a) Without queuing
considered (b) With queuing considered.

To study the spatial-temporal correlation of the coupled queues, let us first consider

two neighboring BSs which shares the spectrum resources, which is illustrated in Fig. 2.1.

As a comparison, Fig. 2.1(a) demonstrates the interference pattern under the assumption

that BSs always have packets to transmit. Hence, there exists consistent interference

from the neighboring BS to a typical user. With queuing considered as shown in Fig. 2.1,

nevertheless, each BS will transmit the packets in a FIFO fashion, under which case the

interference depends on the queue status of the BSs. Fig. 2.1 demonstrates a simple case
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of the coupled queue problem. Intuitively, when the first BS transmits, it increases the

interference experienced by the second BS and hence reduces its data rate; As a result,

the second BS now takes longer to transmit same amount of data than it would have

taken if the first BS was not transmitting. Hence, the queues are correlated and traffic

intensities of both BSs are coupled.

Figure 2.2: Traffic intensity of each BS in one simulation run. (a) Tier-1 BS traffic
intensity ρ1,i, i ∈ {1, ..., N1}. (b) Tier-2 BS traffic intensity ρ2,j, j ∈ {1, ..., N2}.

With fixed locations of the BSs and the users in one specific K-Tier heterogeneous

network realization and spectrum partitioning across tiers, the BS traffic intensity ρk,i is

a function of the traffic intensities of all other BSs in the same tier, i.e.,

ρk,i=f (ρk,1, ..., ρk,i−1, ρk,i+1, ..., ρk,Nk
) , (2.6)

where i ∈ {1, ..., Nk}. With universal frequency reuse, ρk,i is a function of the traffic

intensities of all other BSs over the network, i.e.,

ρk,i=f
(
ρ1,1, ..., ρk−1,Nk−1

, ρk,1, ..., ρk,i−1, ρk,i+1, ..., ρk,Nk
, ρk+1,1, ..., ρK,NK

)
, (2.7)

where i ∈ {1, ..., Nk}. Fig. 2.2 illustrates the simulation results of the traffic intensity

ρk,i of each Tier-k BS in one fixed network realization. The total number of Tier-1 and
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Tier-2 BSs are N1 = 42 and N2 = 205, respectively, and the total number of mobile users

is Nu = 4000. Each BS and user is randomly located in a square area of 4∗106m2. The

transmission powers of each BS in the two tiers are given by P1 = 20W and P2 = 6W,

respectively. Each user then associates to their BSs by the largest average reference signal

receiving power. For demonstration, the bandwidth allocation of the two tiers is given by

W1 = W2 = 6MHz. Other system parameters are set to be α = 4, τ = 1, γ = 60Packets/s,

L = 0.001Mb. It can be observed from Fig. 2.2 that the traffic intensity ρk,i of each BS

in the kth tier varies due to different cell sizes and the spatial-temporal correlations with

other BSs. For a typical BSk,i in the kth tier, the only way to obtain its traffic intensity

ρk,i is to solve the set of equations (2.6). When Nk becomes large, solving (2.6) directly

is intractable. To analyze the queuing performance of the BSs, mathematical approaches

and approximations such as stochastic geometry should be adopted, which will be shown

in the following.

2.2 Methodology to Decouple the Correlation

2.2.1 Stochastic Geometry

As mentioned in Section 2.1.2, the basic challenge of solving (2.6) or (2.7) is the huge

computational complexity, which grows unbounded as the network scales up. Besides,

since the solution of (2.6) or (2.7) highly depends on specific network realization, no

insight could be given on the impact of key system-level parameters like transmission

power, BS deployment density, and bandwidth allocation on the design of load balancing.

To overcome those disadvantages, we adopt stochastic geometry [63, 64] in this thesis to

account for the irregular locations of BSs and users in HetNets. Readers can refer to

Table 2.1 for quick access to the notations used in this thesis.

Stochastic geometry is a probabilistic analytical approach, where the network config-
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Table 2.1: Major Notation Summary

Notation Description

Φk; Φu PPP of active Tier-k BSs;

PPP of users

λk; λu Deployment density of Tier-k BSs;

Density of users

αk Path-loss coefficient of Tier k

W Total Bandwidth

γ Mean packet arrival rate of each user

L Mean packet length

τ SIR threshold

ρk,i; ρ̄k Traffic intensity of i-th BS in Tier k;

Average traffic intensity of Tier k

Sk; S; Ŝ SIR coverage of Tier k;

Network SIR coverage;

Threshold of network SIR coverage

Dk; D; D̂ Mean queuing delay of Tier k;

Network mean queuing delay;

Threshold of network mean queuing delay

Pk; Pk,s; Δk Transmission power of Tier-k BSs;

Additional power consumption of Tier-k BSs;

Power Consumption Coefficient

Pk,T; Pk,I; Power consumption of an active Tier-k BS

P̄k; P in busy state; Power consumption of an active

Tier-k BS in idle state; Average power consumption

of an active Tier-k BS; Network average power

consumption per area

ηk Idle power coefficient of Tier-k BSs
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uration is assumed random and following a certain distribution. In particular, the set of

BSs in tier Φk, k ∈ {1, ..., K}, is assumed to follow an independent 2–D homogeneous

Poisson Point Process (PPP) with a given intensity λk [65]. Similarly, the set of users

Φu can be modeled as another independent PPP with a given intensity λu. This has the

advantage of avoiding specific information on the network topology. In particular, for

a given area, the total numbers of the BSs of each tier Nk as well that of users Nu are

random, and the their locations are also randomly and uniformly distributed in such con-

sidered area. The only system parameter that determines the HetNet is the deployment

intensity λk of the BSs in each tier and the intensity of the users λu. Fig. 2.3 illustrates

the PPP characterization of 3-tier HetNet. Note that red dots are referred to as macro

BSs, green triangles are referred to as pico BSs, and dark squares are referred to as femto

BSs. It has been shown in [110,111] that modeling BSs of each tier as independent PPP

distributions achieves a high accuracy towards real wireless networks.

Due to the random topology by adopting stochastic geometry as a tool, the focus on

the exact traffic intensity ρk,i of each BS in the set Φk is then converted into the average

traffic intensity performance, i.e., from {ρk,i}i∈Φk
to E

i∈Φk

[ρk,i] for each k ∈ {1, ..., K}. By
combining (2.5), the average traffic intensity of Tier k can be is given by

ρ̄k =E [ρk,i] = E

[
γNk,iPr [SIRk,i > τ ]

μk

]

=
γ

μk

E [Nk,i]E [Pr [SIRk,i > τ ]] =
γLN̄kSk

Wklog2 (1 + τ)
, (2.8)

where N̄k = E [Nki ] denotes the average number of users associated with a Tier-k BS and

Sk = E [Pr [SIRk,i > τ ]] denotes the SIR coverage of all Tier-k BSs, i.e., the probability

that the SIR of a typical user associated with a Tier-k BS exceeds the threshold τ . As

the average traffic intensity, ρ̄k, is determined by the average number of associated users,

N̄k, and the SIR coverage, Sk, we will derive these two components in the following.
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Figure 2.3: Close-up view of coverage regions in a 3-tier HetNet.

According to [59], the average number of users associated with a Tier-k BS, N̄k, has

been obtained as

N̄k =
λuAk

λk

, (2.9)

where Ak denotes the probability for a typical user to be associated with a Tier-k BS.

Note that the association probability Ak has been derived in [59] as

Ak =
λk(Pk)

2/α

K∑
j=1

λj(Pj)
2/α

=
1

K∑
j=1

λ̃j

(
P̃j

)2/α
, (2.10)

where λ̃j = λj/λk and P̃j = Pj/Pk denote the normalized intensity and the normalized

transmission power, respectively, conditioned on Tier k being a serving tier.

To characterize of the Tier-k SIR coverage Sk, some approximation approach, i.e.,

independent thinning, should be adopted in this thesis, which will be introduced in the

next section.
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2.2.2 Independent Thinning

Recall that BSs of Tier k form a PPP Φk with an intensity of λk. Moreover, for a

randomly selected BSk,i where i ∈ Φk, the traffic intensity ρk,i can be interpreted as its

busy probability when ρk,i ≤ 1. The set of Tier-k BSs being busy, therefore, forms a

thinned point process Φ′
k ⊆ Φk by including BSk,i ∈ Φk with the probability ρk,i [112].

Since the traffic intensity of one BS is different from each other, the thinned point process

Φ′
k is non-homogeneous. For analytical tractability, we adopt the independent thinning

approach to approximately regard Φ′
k as an independently thinned homogeneous Poisson

point process, which is thinned by the average traffic intensity ρ̄k of this tier. From this

approach, the intensity of the approximated homogeneous PPP Φ′
k is given by

λ′
k = ρ̄kλk. (2.11)

It will be demonstrated in Section 2.3.3 that the independent thinning approach achieves

a good approximation in deriving the average traffic intensity ρ̄k.

2.3 Average Traffic Intensity

Based on the mathematical approaches of stochastic geometry and independent thinning,

we derive the expressions of the average traffic intensity ρ̄k for both the cases of orthogonal

spectrum partitioning and universal frequency reuse in this section. Then we perform a

spatio-temporal simulation to justify our derived analytical results.

2.3.1 Orthogonal Spectrum Partitioning

For a typical user that is associated with a Tier-k BS, the interference all comes from

busy BSs of the same tier. According to (2.1), the SIR of this typical user can then be



2.3 Average Traffic Intensity 29

written as

SIRk =
Pkgxk,0

x−α
k,0∑

j∈Φ′
k\BSk,0

Pkgk,jx
−α
k,j

, (2.12)

where xk,0 and xk,j denote the distance from the typical user to the associated BS BSk,0

and the jth interfering Tier-k BS, respectively; gk,0 and gk,j denote the small-scale fading

coefficient of BSk,0 and the jth interfering Tier-k BS, respectively. In (2.12), BSk,0 and

Φ′
k\BSk,0 denote the associated Tier-k BS of this typical user and the set of interfering

Tier-k BSs, respectively. Note that as spectrum partitioning is assumed across tiers, there

is no inter-tier interference, and the interfering sources consist of all the busy Tier-k BSs

besides the associated BSk,0. The following lemma presents the SIR coverage of a Tier-k

BS.

Lemma 2.1. If spectrum partitioning across tiers is adopted, the SIR coverage of a Tier-k

BS can be written as

Sk =
1

Akρ̄kZ (τ, α) + 1
, (2.13)

where Z (τ, α) = τ
2
α

´∞
(1/τ)

2
α

du

1+u
α
2
.

Proof. The probability density function (PDF) of the distance xk,0 between a typical user

and its serving Tier-k BS has been obtained in [59] as

fxk,0
=

2πλk

Ak

xk,0 exp

(
−πx2

k,0

λk

Ak

)
. (2.14)

Using (2.14), the SIR coverage of a Tier-k BS can be obtained as

Sk =

ˆ ∞

0

Sk (xk,0) fxk,0
dxk,0

=

ˆ ∞

0

Sk (xk,0)
2πλk

Ak

xk,0 exp

(
−πx2

k,0

λk

Ak

)
dxk,0 (2.15)

where Sk (xk,0) is the SIR coverage of Tier k conditioned on the distance between the

typical user and the serving tier-k BS being xk,0.
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By denoting I as the set of interfering Tier-k BSs, i.e., I = Φ′
k\BSk,0, the conditional

SIR coverage of Tier k can be written as

Sk (xk,0) = Pr

⎡⎢⎣ Pkgk,0x
−α
k,0∑

j∈I
Pkgk,jx

−α
k,j

> τ

∣∣∣∣∣xk,0

⎤⎥⎦

(a)
= E

[
exp

(
−τ
∑
j∈I

Pkgk,jx
−α
k,jP

−1
k xα

k,0

)∣∣∣∣∣xk,0

]

= EΦ′
k,gk,j

[∏
j∈I

exp
(−τxα

k,0gk,jx
−α
k,j

) ∣∣∣∣∣xk,0

]
(b)
= exp

{
−
ˆ
R2

[
1−Egk,j

[
exp

(−τxα
k,0gk,jx

−α
k,j

)]]× λ′
kdj

}
(2.16)

according to (2.12), where (a) follows from the fact that gk,0 is an exponential random vari-

able with unit mean, and (b) follows from the probability generating functional (PGFL)

of Φ′
k [112] due to the independency between Φ′

k and gk,j. According to (2.11), (2.16) can

be further written as

exp

{
−λkρ̄k

ˆ
R2

[
1−Egk,j

[
exp

(−τxα
k,0gk,jx

−α
k,j

)]]
dj

}

= exp

{
−2πλkρ̄k

ˆ ∞

xk,0

[
1−Egk,j

[
exp

(−τxα
k,0gk,jx

−α
k,j

)]]× xk,jdxk,j

}
(a)
= exp

[
−2πλkρ̄k

ˆ ∞

xk,0

(
1− 1

1+x−α
k,0τ

−1xα
k,j

)
xk,jdxk,j

]

= exp
[−πρ̄kλkx

2
k,0Z (τ, α)

]
, (2.17)

where

Z (τ, α) = τ 2/α
ˆ ∞

(1/τ)2/α

du

1 + uα/2
. (2.18)

Note that (a) follows from the exponential distribution of gk,i with unit mean. Finally,
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by combining (2.15) and (2.17), (2.13) can be obtained as

Sk =

ˆ ∞

0

exp
[−πρ̄kλkx

2
k,0Z (τ, α)

] · 2πλk

Ak

xk,0 exp

(
−πx2

k,0

λk

Ak

)
dxk,0

=
1

AkρkZ (τ, α) + 1
. (2.19)

According to Lemma 1, the outage probability of Tier k, Ok = 1− Sk, can be written as

Ok =
AkρkZ(τ,α,1)

AkρkZ(τ,α,1)+1
. If Tier-k BSs are always busy, i.e., ρ̄k = 1, the outage probability Ok

reduces to the results in [59].

By combining (2.8), (2.9), and (2.10), the average traffic intensity ρ̄k of Tier-k BSs

can be explicitly derived as

ρ̄k =
−λkRk +

[
(λkRk)

2 + 4γλuλkA
2
kRkLZ

] 1
2

2AkλkZRk

(2.20)

where Z denotes Z (τ, α) for simplicity and Rk = Wk log2 (1 + τ) is the transmission rate

of a Tier-k BS.

2.3.2 Universal Frequency Reuse

Different from spectrum partitioning, all the other active BSs in the busy state are the

interfering sources under the assumption of universal frequency reuse. By denoting Φ′
j as

the set of active Tier-j BSs in the busy state, the SIR of one typical user associated to a

Tier-k BS can be written as

SIRk,0 =
Pkgxk,0

x−α
k,0

K∑
j=1

∑
i∈Φ′

j\BSk,0

Pjgj,ix
−α
j,i

, (2.21)

where BSk,0 and Φ′
j\BSk,0 denote the associated Tier-k BS and the interfering Tier-j BSs,

respectively. xk,0 and xj,i denote the distances from this typical user to its associated
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BSk,0 and the ith interfering BS in the jth tier, respectively; gk,0 and gj,i denote the

small-scale fading coefficients of the channel to the associated Tier-k BS and the ith Tier-

j interfering BS, respectively. The following lemma gives the SIR coverage of a Tier-k BS

with universal frequency reuse.

Lemma 2.2. If universal frequency reuse is adopted, the SIR coverage of a Tier-k BS is

given by

Sk =
1

Ak

K∑
j=1

λ̃jP̃
− 2

α
j ρ̄jZ + 1

, (2.22)

where Z (τ, α) = τ
2
α

´∞
(1/τ)

2
α

du

1+u
α
2
and P̃j and λ̃j denote the normalized BS transmission

power and the active BS density of Tier j conditioned on that of Tier k, respectively.

Proof. By combining (2.21), the conditional SIR coverage of Tier k with a given xk,0 can

be written as

Sk (xk,0)

= E [Pr [SIRk,0 > τ | xk,0]]

= E

⎡⎢⎢⎢⎢⎣Pr
⎡⎢⎢⎢⎢⎣ Pkgk,0x

−α
k,0

2∑
j=1

∑
i∈Φ′

j\BSk,0

Pjgj,ix
−α
j,i

> τ

∣∣∣∣∣∣∣∣∣∣
xk,0

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

(a)
=

K∏
j=1

EΦ′
j ,gj,i

⎡⎣ ∏
i∈Φ′

j\BSk,0

exp
(
−τ P̃jgj,ix

−α
j,i x

α
k,0

)⎤⎦
(b)
=

K∏
j=1

EΦ′
j

⎡⎣ ∏
i∈Φ′

j\BSk,0

Egj,i

[
exp

(
−τ P̃jgj,ix

−α
j,i x

α
k,0

)]⎤⎦
(c)
=

K∏
j=1

exp

{
−
ˆ
R2

λ′
k

{
1− Egj,i

[
exp

(−τPjgj,ix
−α
j,i P

−1
k xα

k,0

)] }
di

}
, (2.23)

where P̃j = Pj/Pk is the normalized BS transmission power of Tier j conditioned on Tier

k. Note that (a) follows from the fact that gk,0 is an exponentially distributed random
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variable with unit mean, (b) follows that Φ′
j and gj,i are independent random variables,

and (c) follows the follows from the PGFL of Φ′
k with the intensity λ′

k.

Then, by substituting (2.11) into (2.23), Sk (xk,0) can be further written as

Sk (xk,0) =
K∏
j=1

exp

{
− λkρk

ˆ ∞

xk,0P̃
1
α
j

[
1− Egj,i

[
exp

(
−τ P̃jgj,ix

−α
j,i x

α
k,0

)]]
xj,idxj,i

}
(a)
=

K∏
j=1

exp

{
− 2πλjρj ×

ˆ ∞

xk,0P̃
1
α
j

(
1− 1

1 + x−α
k,0 P̃

−1
j τ−1xα

j,i

)
xj,idxj,i

}

=
K∏
j=1

exp
{
−πλjρjP̃

− 2
α

j x2
k,0Z

}
, (2.24)

where Z = Z (τ, α) can be found in (2.18), and (a) follows from the fact that gj,i is

an exponential random variable with unit mean. Finally, by combining (2.14), the SIR

coverage of Tier k can be obtained as

Sk =
1

Ak

2∑
j=1

λ̃jρjP̃
− 2

α
j Z + 1

. (2.25)

By substituting (2.22) into (2.8), the average traffic intensity ρ̄k can be written as

ρ̄k =
γλuLAk

λkW log2 (1+τ)
· 1

Ak

K∑
j=1

λ̃jP̃
− 2

α
j ρ̄jZ+1

, (2.26)

where k ∈ {1, ..., K}. It can be seen from (2.26) that the average traffic intensity of one

tier is closely related to that of other tiers, which forms the set of fixed-point equations.

Although no closed-form expression of ρ̄k can be obtained directly, the existence and

uniqueness of the solution of (2.26) will be proved and an iterative method to solve it will

be proposed in Chapter 5 by a 2-Tier HetNet.
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Figure 2.4: Traffic intensity of each BS in one simulation run under the assumption of
spectrum partitioning and universal frequency reuse. Note that for spectrum partitioning,
the bandwidth is divided as W1 = W2 = 6MHz and the mean arrival bit rate per area is
γλuL = 60Mbps/km2; for universal frequency reuse, the mean arrival bit rate per area is
γλuL = 200Mbps/km2. (a) Tier-1 BS traffic intensity ρ1,i with spectrum partitioning. (b)
Tier-2 BS traffic intensity ρ2,j with spectrum partitioning. (c) Tier-1 BS traffic intensity
ρ1,i with universal frequency reuse. (b) Tier-2 BS traffic intensity ρ2,j with universal
frequency reuse.
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Table 2.2: Simulation Parameters

Parameter Value

Tier-1 BS Transmission Power P1 20 W

Tier-2 BS Transmission Power P2 6 W

Path Loss Coefficient α 4

SIR Threshold τ 1

Mean Packet Length L 0.001 Mb

Total Bandwidth W 12 MHz

2.3.3 Simulation Results

In this section, we will justify the proceeding analysis in Section 2.3.1 and Section 2.3.2

by conducting a spatial-temporal simulation of a 2-Tier HetNet. In the simulation, we

first deploy BSs of each tier by independent Poisson Point Processes (PPPs) in a square

area of 4∗106m2. The deployment densities of the two tiers are λ1 = 1∗10−5m−2 and

λ2 = 5∗10−5m−2, respectively. Users are deployed according to another PPP with the

intensity λu = 10−3m−2. Each user then associates to their BSs by the largest average

reference signal receiving power. The other system parameters are summarized in Table

2.2.

Fig. 2.4 illustrate the simulation results of the traffic intensity ρk,i of each Tier-k BS

in one simulation run. Note that one simulation run corresponds to one realization of the

Poisson point process, and last for 104s. It can be observed from Fig. 2.4 that although

the traffic intensity ρk,i of each Tier-k BS varies, the simulation result of the average

traffic intensity ρ̄k over a large region converges to a certain value in different realizations

for both spectrum partitioning and universal frequency reuse. This is quite similar to the

ergodicity of the Poisson point process, i.e., the spatial averages obtained by averaging

over a realization of the PPP over a large region equal the ensemble averages obtained
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by averaging over the point process. By extensive simulation runs of different network

topology, it turns out that the average traffic intensity ρ̄k is quite close to the analytical

results (2.20) and (2.26), which indicates that ρ̄k can be well predicted by the independent

thinning approach adopted in this thesis.

2.4 Conclusions

This chapter analyzes the queuing performance of the BSs in each tier in heterogeneous

networks. In particular, the queuing model and the formulation of the coupled queue

problem with fixed locations of BSs and users are first identified. By using stochastic

geometry as a tool, the set of BSs of each tier and the set of users are then modeled by

independent Poisson point processes, based upon which the average traffic intensity of

each tier is characterized. Independent thinning approach is introduced and adopted to

obtain the expression of the average traffic intensity of each tier. It is further shown that

with the strategy of spectrum partitioning, an closed-form solution of the average traffic

intensity is derived; With universal frequency reuse, the average traffic intensity of each

tier is determined a set of fixed-point equations. At last, the queuing analysis is justified

by a spatial-temporal simulation of a 2-Tier HetNet.



Chapter 3

Queue-Aware Delay-Optimal Biased

Association Optimization in HetNets

In this chapter, we will study how to optimally tune the biasing factor of the BSs of

each tier to improve the delay performance of a HetNet. Based on the queuing analysis

in Chapter 2, the average traffic intensity with respect to the biasing factor of each tier

is explicitly derived, and is shown to be an increasing function of the biasing factor. In

order to find the delay limit that the network can achieve, an optimization problem is

formulated to minimize a lower bound of the network mean queuing delay. By showing

that the optimization problem is convex, the optimal biasing factor of each tier can be

obtained numerically. When the mean packet arrival rate of each user is small, a closed-

form solution is derived. The simulation results demonstrate that the network queuing

performance can be significantly improved by properly tuning the biasing factor. It is

further shown that the network mean queuing delay might be improved at the cost of a

deterioration of the network SIR coverage, which indicates a performance tradeoff between

real-time and non-real-time traffic in HetNets.

37
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3.1 Introduction

Among all the techniques used in HetNets, load balancing plays a key role to determine

the network performance. For example, to purposely push users to micro BSs, [46,59,65–

68,113,114] proposed a biased association scheme where each user assigned a biased value

to the measured received power from BSs of each tier, and associated with the BS with

the largest mean biased received power. A detailed review can be found in Section 1.2.1.

However, since the aforementioned studies [46, 59, 65–68, 113, 114] assumed that the

BSs always have packets to transmit, they presented a worst case for the performance

metrics such as the network SINR and rate coverage, and did not characterize the delay-

related performance. One BS, nevertheless, can vary between busy and idle states over

a small time scale due to the dynamic packet arrivals of its associated users, in which

case the packet delay could be taken into account. In practice, with the proliferation

of real-time multimedia applications, the packet delay is becoming an important QoS

metric. For example, an end-to-end latency over 200 ms for real-time video media stream

is generally considered to be unacceptable [73]. Hence, this motivates us to derive the

delay performance metrics analytically with the consideration of queuing, such that some

system design insights can be gained to balance the load pressure across tiers.

In particular, we consider a K-Tier HetNet in this chapter where users and BSs of

all tiers are randomly distributed, i.e., follow a PPP distribution. Similar to previous

studies [59, 65–68, 114], it is assumed that each user adopts a biased association scheme

to choose one BS with the maximum biased received power. The packet requests from

the users is assumed to form a queue in their associated BSs. In order to find the delay

limit that the network can achieve, an optimization problem is formulated to minimize

a lower bound of the network mean queuing delay by optimizing over the biasing factor

of each tier based on the derived average traffic intensity in Chapter 2. It is shown that

the optimization problem is convex, and the optimal biasing factor can be numerically
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obtained. When the mean packet arrival rate of each user is small, an explicit expression

of the optimal biasing factor of each tier is obtained. With equal bandwidth allocation

across tiers, it is further shown that each user should associate with its nearest BS. A

case study of a 2-Tier HetNet shows that the optimal biasing factor is sensitive to the

bandwidth allocation of each tier. To characterize the network capacity to support non-

real-time services, the network SIR coverage is further derived. The contributions of this

chapter are summarized as follows.

• By assuming queuing in each BS, an explicit expression of the average traffic in-

tensity of each tier is derived, which is shown to be an increasing function of the

biasing factor of each tier.

• An optimization problem of a lower bound of the network mean queuing delay is

formulated, and is shown to be convex with respect to the biasing factor of each

tier. When the mean packet arrival rate of each user is small, an explicit solution

is obtained.

• Simulation results of a 2-tier case demonstrate that the network mean queuing delay

can be significantly reduced by properly tuning the biasing factor of each tier. In

the meanwhile, a tradeoff is revealed between the network mean queuing delay and

the network SIR coverage, which indicates that the service provider should strike a

balance between the performance of real-time and non-real-time services.

The rest of this chapter is organized as follows. The system model is presented in

Section 3.2. An optimization problem to minimize a lower bound of the network mean

queuing delay is formulated and studied in Section 3.3. A case study of a 2-tier HetNet

is presented in Section 3.4. Conclusions are given in Section 3.5.
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3.2 System Model

Consider a K-tier heterogeneous network where BSs in the kth tier form an independent

PPP Φk with an intensity of λk, k ∈ {1, ..., K}. Users, on the other hand, form another

independent homogeneous PPP Φu with an intensity of λu over the whole network. Fre-

quency partitioning across tiers is assumed in this chapter. In particular, BSs of the same

tier share the spectrum with a bandwidth of Wk, k ∈ {1, ..., K}, and BSs of different tiers

occupy non-overlapping frequency bands. Therefore, for each user in the downlink, the

associated BS acts as a desired signal transmitter, and other BSs of the same tier are

interfering sources. Consider a typical user located at the origin. Denote the distance

between this typical user and a Tier-k BS as xk, and the transmission power of a Tier-k

BS as Pk. The received power PR for a typical user from this BS can then be written as

PR = Pkgkx
−α
k , (3.1)

where gk is a small-scale fading coefficient, which is assumed to follow an i.i.d exponential

distribution of unit mean, i.e., gk∼ exp{1}, and α is the path-loss coefficient, which is

assumed to be the same for all BSs in the network. Note that shadowing, i.e., log-normal

fading, can be modeled by the randomness of the BSs’ and users’ locations [111].

In this chapter, we consider a biased association scheme where users associate with one

BS according to the maximum mean biased received power [59,65–68,114]. In particular,

for a typical user located at the origin, it measures the mean received power from each

tier’s BSs, and chooses a Tier-k BS if

PkBkx
−α
k,min ≥ PjBjx

−α
j,min ∀j ∈ {1, ..., K}, (3.2)

where Bj denotes the biasing factor of Tier j and xj,min is the distance between the user

and the nearest Tier-j BS.

For each user in the network, assume that its packet requests follow an independent
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Poisson process with a mean arrival rate γ, and the packet length is exponentially dis-

tributed with mean L. The incoming packets for all users form a queue in the associated

BS, and the BS will transmit these packets in a first-in-first-serve (FIFS) fashion. Note

that a more complicated scheme can be that the packet is stored in the buffer when the

SIR is low and wait for next transmission opportunity when the SIR becomes higher than

the threshold. However, as this thesis mainly focuses on the performance of some delay-

sensitive applications such as online gaming, this more complicated scheme would result

in high queuing delay even for the users that have good channel conditions. Therefore,

it is beyond the scope of this thesis. But it still deserves much attention in the future

study. To avoid users in poor channel conditions occupying the BS, we consider a fixed

rate modulation and coding format. In particular, a BS will serve a user only when its

instantaneous SIR exceeds a threshold τ , and will drop its packet request otherwise.

3.3 Queuing Delay Optimization

In this section, we will characterize the minimization problem of the network mean queuing

delay by optimizing the association probability (biasing factor) of each tier. As the mean

queuing delay of a BS increases with a higher busy probability, we will first study how

the average traffic intensity of one tier varies with the association probability of this tier.

3.3.1 Relation Between Average Traffic Intensity and Associa-

tion Probability

Recall in Section 2.3.1 that the average traffic intensity ρ̄k of Tier-k BSs can be derived

as

ρ̄k =
−λkWklog2 (1 + τ) +

[
(λkWklog2 (1 + τ))2 + 4γλuλkA

2
kWklog2 (1 + τ)LZ

] 1
2

2AkλkZWklog2 (1 + τ)
, (3.3)
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where Z denotes Z (τ, α) for simplicity. Note that as a biased association scheme is

adopted, the association probability Ak in (3.3) should be modified as

Ak =
λk(PkBk)

2/α

K∑
j=1

λj(PjBj)
2/α

=
1

K∑
j=1

λ̃j

(
B̃jP̃j

)2/α
(3.4)

according to [59], where λ̃j = λj/λk, P̃j = Pj/Pk, and B̃j = Bj/Bk denote the normalized

intensity, the normalized transmission power, and the normalized biasing factor of Tier

j, respectively, conditioned on Tier k being a serving tier. As it can be easily observed

from (3.4) that the association probability {Ak}∀k is uniquely determined by the biasing

factor {Bk}∀k, we will optimize Ak instead of optimizing Bk of each tier in the rest of this

chapter.

It is indicated in (3.3) that ρ̄k is critically determined by the mean packet arrival

rate of each user γ and the association probability Ak. It is clear that ρ̄k increases as

γ increases. On the other hand, the following lemma presents the monotonicity of the

average traffic intensity ρ̄k of Tier-k BSs with respect to the association probability Ak.

Lemma 3.1. The average traffic intensity ρ̄k of Tier-k BSs is an increasing function of

its association probability, Ak.

Proof. According to (3.3), the first-order derivative of the average traffic intensity ρ̄k with

respect to Ak is given by

dρ̄k
dAk

=
4γLλuλ

2
kWklog2 (1 + τ)A2

kZ
2Δ− 1

2−λkZ
(
−λkWklog2 (1 + τ) + Δ

1
2

)
2Wklog2 (1 + τ) (AkλkZ)

2 , (3.5)

where Δ = λ2
kW

2
k log

2
2 (1 + τ) + 4γλuλkWklog2 (1 + τ)A2

kLZ. The numerator on the right
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hand side of (3.5) can be further written as

4γLλuλ
2
kW

2
k log

2
2 (1 + τ)A2

kZ
2Δ− 1

2 − λkWklog2 (1 + τ)Z
(
−λkWklog2 (1 + τ) + Δ

1
2

)
=

λ2
kR

2
kZ

[(
λ2
kW

2
k log

2
2 (1 + τ) + 4γλuλkWklog2 (1 + τ)A2

kLZ
) 1

2 − λkWklog2 (1 + τ)
]

Δ
1
2

> 0.

(3.6)

By combining (3.5) and (3.6), we have dρ̄k
dAk

> 0, which indicates that ρ̄k monotonically

increases as Ak increases.

Intuitively, as the probability of a user being associated with a Tier-k BS increases, more

users from other tiers will be offloaded to BSs of Tier k, which leads to an increment of

the traffic intensity.

When the mean packet arrival rate of each user γ is small, the average traffic intensity

ρ̄k of Tier-k BSs can be approximately written as

ρ̄k =
−1 +

[
1 + 4γλuA

2
k(λkWklog2 (1 + τ))−1LZ

] 1
2

2AkZ

(a)≈ −1 + 1 + 2γλuA
2
k(λkWklog2 (1 + τ))−1LZ

2AkZ

=
γλuLAk

λkWklog2 (1 + τ)
, (3.7)

where (a) follows from the fact that[
1 +

4γλuA
2
kLZ

λkWklog2 (1 + τ)

] 1
2

≈ 1 +
2γλuA

2
kLZ

λkWklog2 (1 + τ)
. (3.8)

Note that since (3.8) becomes more accurate as
4γλuA2

kLZ

λkWklog2(1+τ)
approaches zero, using (3.7)

to represent ρ̄k achieves better approximation with a lower value of the mean packet

arrival rate γ, which indicates a network with a lower traffic load pressure.
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3.3.2 Queuing Delay Optimization

As each BS can be modeled as a M/D/1 queuing system, the mean queuing delay Dk of

Tier k BSs can be obtained as

Dk = E

[
L

Wklog2 (1 + τ) (1− ρk,i)

]
. (3.9)

Here we would like to make it clear that as we study the average queuing conditions of

the BSs of each tier and each BS is modeled as M/D/1 system, therefore, each Tier-k BS

has a traffic intensity and a mean queuing delay which is averaged over time, respectively.

From this approach, the average traffic intensity ρ̄k and the mean queuing delay of a tier

Dk is then averaged over all the BSs, respectively, in this tier.

Since (3.9) is difficult to characterize, we resort to its lower bound using the convexity

of 1/(1− ρk,i), i.e., we have

Dk ≥ D̄k =
L

Wklog2 (1 + τ) (1− E [ρk,i])
=

L

Wklog2 (1 + τ) (1− ρ̄k)
. (3.10)

By combining (3.3) and (3.10), the lower bound of the mean queuing delay of the whole

network D̄ can then be written as

D̄ =
K∑
k=1

λk

K∑
j=1

λj

· D̄k =
K∑
k=1

2Akλ
2
kLZ

K∑
j=1

λj

(
2AkλkZRk + λkRk −

[
(λkRk)

2 + 4γλuλkA2
kRkLZ

] 1
2

) ,
(3.11)

where Rk = Wklog2 (1 + τ).

It can be observed from (3.11) that the lower bound of the mean queuing delay D̄

is critically determined by the association probability Ak. To minimize D̄, we have the

following optimization problem

minimize
{Ak}∀k∈{1,...,K}

D̄, (3.12a)

s.t.
K∑
k=1

Ak = 1, (3.12b)
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ρ̄k < 1, k ∈ {1, . . . , K}. (3.12c)

Note that as we optimize over the association probabilities {Ak}∀k in (3.12) to obtain the

optimal solution {A∗
k}∀k, the optimal normalized biasing factor of Tier k conditioned on

Tier i, {B̃∗
k}∀k, can then be readily obtained as

B̃∗
k =

Pi(λiA
∗
k)

α
2

Pk(λkA∗
i )

α
2

, k ∈ {1, ..., K}, (3.13)

according to (3.4). On the other hand, the constraint (3.12b) comes from the fact that

each user should associate with one BS, and the constraint (3.12c) ensures that the lower

bound of the network’s mean queuing delay is bounded, which leads to the following

lemma.

Lemma 3.2. For the lower bound D̄k, when the mean packet arrival rate γ > (Z+1)λkRk

λuL
,

it is bounded if the association probability

0 < Ak <
λkRk

γλuL− λkRkZ
; (3.14)

otherwise, it will become unbounded. When γ < (Z+1)λkRk

λuL
, it is always bounded.

Proof. It has been shown in Lemma 3.1 that the average traffic intensity ρ̄k monotonically

increases as the association probability Ak increases. With Ak < 1, we then have

ρ̄k =
−λkRk +

[
(λkRk)

2 + 4γλuλkRkA
2
kLZ

] 1
2

2AkλkRkZ

<
−λkRk +

[
(λkRk)

2 + 4γλuλkRkLZ
] 1

2

2λkRkZ
. (3.15)

In the following, we divide the discussion into two parts:

1) If
−λkRk+[(λkRk)

2+4γλuλkRkLZ]
1
2

2λkRkZ
< 1, i.e., γ < (Z+1)λkRk

λuL
, we have

ρ̄k < 1 (3.16)

according to (3.15). In this case, D̄k will always be bounded if γ < (Z+1)λkRk

λuL
.
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2) If γ > (Z+1)λkRk

λuL
, D̄k will be bounded if and only if

−λkRk +
[
(λkRk)

2 + 4γλuλkA
2
kRkLZ

] 1
2

2AkλkRkZ
< 1. (3.17)

Accordingly, we have

Ak <
λkRk

γλuL− λkRkZ
. (3.18)

According to Lemma 3.2, constraint (3.12c) can be further written as{
0 < Ak <

λkRk

γλuL−λkRkZ
, γ > (Z+1)λkRk

λuL

0 < Ak < 1, γ < (Z+1)λkRk

λuL

, (3.19)

where k ∈ {1, . . . , K}. First note that (3.19) does not have a feasible region if and only

if

γ > max
∀k

{
(Z+1)λkRk

λuL

}
(3.20a)

and

K∑
k=1

λkRk

γλuL− λkRkZ
< 1, (3.20b)

according to (3.19). Intuitively, when the mean packet arrival rate of each user γ is too

large, (3.19) can be written as 0 < Ak <
λkRk

γλuL−λkRkZ
for each Tier k, k ∈ {1, . . . , K}, which

leads to
K∑
k=1

Ak < 1 according to (3.20b). In this case, the lower bound of the network

mean queuing delay will always be unbounded. If (3.20) does not hold, the feasible region

of the optimization problem (3.12) can be further written as

A=

{
(A1, ..., AK−1) ,

∣∣∣∣0 < Aj < min
{
1,

λjRj

γλuL−λjRjZ

}
, j ∈ {1..., K−1};

max
{
0, 1− λKRK

γλuL−λKRKZ

}
<

K−1∑
j=1

Aj < 1

}
, (3.21)
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where AK is eliminated according to the constraint (3.12b) without loss of generality. The

following lemma proves that the objective function (3.12a) is convex within the feasible

region A

Lemma 3.3. The objective function (3.12a) is convex with respect to the association

probability Ak within the constraints (3.12b) and (3.12c).

Proof. According to (3.10), the second-order derivative of D̄k with respect to Ak can be

written as

d2D̄k

dAk
2 =

2L

Rk (1− ρ̄k)
3 ·
(
dρ̄k
dAk

)2

+
L

Rk (1− ρ̄k)
2 · d

2ρ̄k

dAk
2 . (3.22)

Substituting (3.5) into (3.22) yields

d2D̄k

dAk
2 >

L

Rk (1− ρ̄k)
2 ·
[
2

(
dρ̄k
dAk

)2

+
d2ρ̄k

dAk
2

]
=

L

Rk (1− ρ̄k)
2A4

kZ
2Δ

·
(
4γλuLλ

2
kR

2
kZ

2A3
k+2Δ+2λkRkAkZΔ

1
2 + λ2

kR
2
k − 2AkZΔ− λkRkΔ

1
2

)

>
L

Rk (1− ρk)
2A4

kZ
2Δ

·
[
4γλuLλ

2
kR

2
kZ

2A3
k + λkRk

(
2AkZΔ

1
2 + λkRk −Δ

1
2

)]
, (3.23)

where Δ = λ2
kR

2
k + 4γλuλkRkA

2
kLZ. Since Δ

1
2 > λkRk, we further have

d2D̄k

dAk
2 >

L

Rk (1− ρk)
2A4

kZ
2Δ

·
[
4γλuLλ

2
kR

2
kZ

2A3
k + λkRk

(
2AkZΔ

1
2 + λkRk −Δ

1
2

)]

>
L

Rk (1− ρk)
2A4

kZ
2Δ

·
[
4γλuLλ

2
kR

2
kZ

2A3
k + λkRk

(
2λkRkAkZ + λkRk −Δ

1
2

)]
(a)
>

4γλuL
2λ2

kRk

(1− ρk)
2AkΔ

> 0, (3.24)

where (a) follows from the fact that ρ̄k < 1, As the constraints (3.12b) and (3.12c) are

linear, it can be concluded from (3.24) that the optimization problem is convex with

respect to Ak.

Nevertheless, there may not exist a solution in A by setting the partial derivative of D̄
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with respect to the association probability Ak to zero, i.e.

∂D̄

∂Ak

= −2λkZ
RkA

−2
k −R2

kA
−3
k

(
R2

kA
−2
k + 4γλuλ

−1
k RkLZ

)− 1
2[

2ZRk +RkA
−1
k − (

R2
kA

−2
k + 4γλuλ

−1
k RkLZ

) 1
2

]2 + 2λKZ

×
RK

(
1−

K−1∑
j=1

Aj

)−2

−R2
K

(
1−

K−1∑
j=1

Aj

)−3
⎡⎣R2

K

(
1−

K−1∑
j=1

Aj

)−2

+4γλuλ
−1
K RKLZ

⎤⎦− 1
2

⎧⎪⎨⎪⎩2ZRK+RK

(
1−

K−1∑
j=1

Aj

)−1

−
⎡⎣R2

K

(
1−

K−1∑
j=1

Aj

)−2

+4γλuλ
−1
K RKLZ

⎤⎦ 1
2

⎫⎪⎬⎪⎭
2

= 0, k ∈ {1, . . . , K−1}. (3.25)

The following lemma rules out this possibility and guarantees that the optimal association

probabilities {A∗
k}∀k can always be obtained by finding the solution of (3.25) within A.

Lemma 3.4. (3.25) has a unique solution within the feasible region A, which is the

optimal association probabilities {A∗
k}∀k.

Proof. We divide the proof into two parts.

1) If γ > max
∀k

{
(Z+1)λkRk

λuL

}
, then the mean queuing delay D̄k of all tiers go to infinity as

Ak approaches to 1. Therefore, according to (3.11), the lower bound of the network mean

queuing delay, D̄, goes to infinity at the boundary of A. As D̄ is convex within the region

A, (3.25) always has a unique solution of the optimal association probabilities {A∗
k}∀k.

2) If γ < max
∀k

{
(Z+1)λkRk

λuL

}
, then there exists at least one tier such that the lower bound of

its mean queuing delay is always bounded. Without loss of generality, denote this tier as

Tier K. For Tier K, we have λKRK

γλuL−λKRKZ
> 1, and the feasible region A is then written

as

A=

{
(A1, ..., AK−1) ,

∣∣∣∣0 < Ak < min
{
1,

λkRk

γλuL−λkRkZ

}
, k ∈ {1..., K−1};

0 <
K−1∑
k=1

Ak < 1

}
. (3.26)
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For each k ∈ {1, . . . , K−1}, we have

lim
Ak→0

∂D̄

∂Ak

= 2λKZ ·
RKA

−2
K

[
1− (

1+4γλuλ
−1
K A2

KR
−1
K LZ

)− 1
2

]
[
2ZRK+RKA

−1
K −(R2

KA
−2
K +4γλuλ

−1
k RkLZ

) 1
2

]2 < 0 (3.27)

according to (3.25).

Following a similar approach, if λkRk

γλuL−λkRkZ
> 1, we have

lim
Ak→1

∂D̄

∂Ak

> 0. (3.28)

Otherwise, if λkRk

γλuL−λkRkZ
< 1, the lower bound D̄k goes to infinity as Ak approaches

λkRk

γλuL−λkRkZ
, and thus we have

lim
Ak→ λkRk

γλuL−λkRkZ

∂D̄

∂Ak

> 0. (3.29)

By combining (3.27), (3.28) and (3.29), it can be concluded that (3.25) always has only

one solution within the region 0 < Ak < min{1, λkRk

γλuL−λkRkZ
}, k ∈ {1, . . . , K−1}.

Furthermore, if
K−1∑
k=1

Ak > 1, i.e., AK < 0, we always have ∂D̄
∂Ak

> 0, k ∈ {1, . . . , K−1}
by substituting AK < 0 into (3.25). This indicates that the solution is not in the re-

gion where
K−1∑
k=1

Ak > 1. Therefore, (3.25) has a unique solution in region A when

γ < max
∀k

{
(Z+1)λkRk

λuL

}
.

So far we have demonstrated how to find the optimal association probability of each

tier A∗
k by solving (3.25) numerically. Recall that it is indicated in Lemma 3.2 that when

the mean packet arrival rate of each user γ < min
∀k

{
(Z+1)λkRk

λuL

}
, we have the average traffic

intensity ρ̄k < 1 for all tiers, and the lower bound of the mean queuing delay D̄k is always

bounded for each tier. In this case, the average traffic intensity ρ̄k is simply written as

(3.7), and an explicit optimal association probability A∗
k for each tier can be obtained,

which is shown in the following lemma.
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Lemma 3.5. When the mean packet arrival rate of each user γ < min
∀k

{
(Z+1)λkRk

λuL

}
, the

optimal association probability of Tier k, A∗
k, to minimize the lower bound of the network

mean queuing delay D̄ can be written as

A∗
k =

λk

K∑
j=1

λj

+

λklog2 (1 + τ)
K∑
j=1

λj(Wk −Wj)

γλuL
K∑
j=1

λj

. (3.30)

Proof. By combining (3.7), (3.11), and (3.12b), when the mean packet arrival rate of each

user satisfies γ < min
∀k

{
(Z+1)λkRk

λuL

}
, the lower bound of the network mean queuing delay

can be written as

D̄ =
1

K∑
j=1

λj

K∑
k=1

λ2
kL

λkRk−γλuLAk

=
1

K∑
j=1

λj

·
[

K−1∑
k=1

λ2
kL

λkRk−γλuLAk

+
λ2
KL

λKRK−γλuL(1−
K−1∑
j=1

Aj)

]
. (3.31)

By setting the partial derivative of D̄ with respect to Ak to zero, we have

∂D̄

∂Ak

=
λ2
k

K∑
j=1

λj

· λuγ(
λk

Rk

L
− λuγAk

)2 − λ2
K

K∑
j=1

λj

· λuγ[
λk

Rk

L
− λuγ

(
1−

K−1∑
j=1

Aj

)]2

= 0, ∀k∈{1, . . . , K−1}. (3.32)

By combining (3.12b) and (3.32), (3.30) can be obtained.

Intuitively, if the bandwidth of Tier k is larger than that of Tier j, i.e., Wk > Wj, the

service rate of Tier k will be larger, indicating a better queuing performance. Therefore,

the Tier-k BSs will undertake more traffic from other tiers by having a larger association
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Algorithm 1 Procedure to optimize the association probability when the mean packet

arrival rate of each user γ < min
∀k

{
(Z+1)λkRk

λuL

}
1: Input: λk, Wk for each tier, and other system parameters

λu, L, γ, τ .

2: Initialize: a set of index C = {1, . . . , K} where optimal

association probability of Tier k is not determined.

3: Calculate the solution set {A∗
k}∀k∈C by (3.30).

4: for ∀k ∈ C, construct a set S = {m |A∗
m < 0, ∀m ∈ C }.

5: if S = ∅, return {A∗
k}∀k∈C .

6: else, for ∀m ∈ S, let λm = 0 and A∗
m = 0, delete m from C.

7: end if

8: go to Step 3.

probability. With equal bandwidth allocation among all tiers, i.e., Wi = Wj, i, k ∈
{1, . . . , K}, the optimal association probability of a Tier-k BS can be further written as

A∗
k =

λk

K∑
j=1

λj

(3.33)

according to (3.30). The corresponding optimal normalized biasing factor B̃∗
k of Tier k,

conditioned on Tier i, is thus given by

B̃∗
k=

1

P̃k

, (3.34)

where P̃k is the normalized transmission power of Tier k conditioned on Tier i. It is

indicated in (3.34) that in this case, each user chooses the nearest BS. The traffic load is

thus evenly distributed among all BSs, which leads to similar queuing performance with

the same service rate of each tier’s BSs.
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Table 3.1: Simulation Parameters

Parameter Value

User Density λu 10−3 m−2

Tier-1 BS Density λ1 10−5 m−2

Tier-2 BS Density λ2 5∗10−5 m−2

Tier-1 BS Transmission Power P1 40 W

Tier-2 BS Transmission Power P2 3 W

Path Loss Coefficient α 4

Mean Packet Length L 0.001 Mb

Note from (3.30) that if there exists one tier, say Tier m, such that

log2 (1+τ)
K∑
j=1

λj(Rm−Rj) < −γλuL, (3.35)

and then we have A∗
m < 0. To minimize the lower bound of the network mean queuing

delay, the association probability of Tier m should be close to zero. Intuitively, if the

bandwidth of Tier m is much smaller than that of other tiers, then few users should

associate with Tier-m BSs due to the low service rate. In this case, the association

probability Am could then be simply set as Am = 0, i.e., Tier-m BSs are turned off. The

procedure to obtain the optimal association probability when γ < min
∀k

{
(Z+1)λkRk

λuL

}
is

summarized in Algorithm 1.

3.4 Simulation Results

In this section we will validate the analytical results by simulations of a 2-Tier HetNet.

The base stations and the users are drawn from PPPs with high intensities, and the

background noise is ignored in the simulations. This setting, for example, can correspond

to a dense heterogeneous network that consists of macro cellular BSs and micro Wi-Fi
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Figure 3.1: Average traffic intensity of each tier ρ̄k versus the normalized biasing factor
B̃2 with various values of the mean arrival bit rate per area γλuL. W1 = 10MHz, W2 =
6MHz, and τ = 1.

access points, each of which uses a non-overlapping frequency band. Each point of the

simulation results is obtained by averaging all the BSs on a time scale of 105s. The system

parameters used in simulations are summarized in Table 3.1.

Fig. 3.1 illustrates how the average traffic intensity of each tier, i.e., ρ̄1 and ρ̄2, varies

with the normalized biasing factor B̃2 with various values of the mean arrival bit rate per

area γλuL. It can be observed from Fig. 3.1 that the average traffic intensity of Tier

1, ρ̄1, decreases as the normalized biasing factor B̃2 increases, while that of Tier 2, ρ̄2,

increases. Intuitively, since the association probability of a Tier-2 BS, A2, increases as the

normalized biasing factor B̃2 increases according to (3.4), more users that associate with

Tier-1 BSs would be offloaded to Tier-2 BSs, which leads to an increment of ρ̄2 according

to Lemma 2. Moreover, due to a larger deployment intensity of the Tier-2 BSs, the users

that originally associate with only one Tier-1 BS can be offloaded to several neighboring

Tier-2 BSs. Hence, the decline rate of ρ̄1 is larger than the increasing rate of ρ̄2. It can be
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Figure 3.2: Network mean queuing delay D and its lower bound D̄ versus the normalized
biasing factor B̃2 with various values of the mean arrival bit rate per area γλuL. W1 =
10MHz, W2 = 6MHz, and τ = 1.

clearly seen from Fig. 3.1 that the simulation results match with the analysis well with

a wide range of the normalized biasing factor, indicating that the independent thinning

by replacing each BS’s traffic intensity by the average traffic intensity in (2.11) achieves

a good approximation.

Fig. 3.2 further demonstrates how the network mean queuing delay D, as well as its

lower bound D̄, vary with the normalized biasing factor B̃2. For the sake of comparison,

the y-axis on the left hand side of Fig. 3.2 denotes the network mean queuing delay D

while on the right hand side it denotes the lower bound D̄. To obtain the network mean

queuing delay in simulations, BSs that have an unbounded queuing delay are not taken

account of. It can be observed from Fig. 3.2 that the trend of the network mean queuing

delay D resembles that of its lower bound D̄. Both D and D̄ are very sensitive to the

normalized biasing factor B̃2. If B̃2 is not carefully tuned, the delay performance could be

greatly degraded. For example, when γλuL = 19Mbps/km2, the network mean queuing
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Figure 3.3: Minimum lower bound of the network mean queuing delay D̄∗ versus the
mean arrival bit rate per area γλuL. W1 = 10MHz, W2 = 6MHz, and τ = 1.

delay D is as high as 135ms with the normalized biasing factor B̃2 = −10dB, which is not

acceptable to many delay-sensitive applications. Moreover, due to a similar trend between

the network mean queuing delay D and its lower bound D̄, the optimal normalized biasing

factor of D̄ is close to that of D. Therefore, by properly tuning the normalized biasing

factor B̃2 according to (3.13) and (3.25), the mean queuing delay performance can be

improved significantly. With the mean arrival bit rate per area γλuL = 19Mbps/km2,

for instance, the optimal normalized biasing factor is obtained as B̃∗
2 = 1.7dB, and the

corresponding network mean queuing delay D can be reduced to be 48ms.

Recall that it is indicated in Lemma 3.5 that when the mean packet arrival rate

satisfies γ < min
∀k

{
(Z+1)λkRk

λuL

}
, the minimum lower bound of the network mean queuing

delay D̄∗ can be obtained by combining (3.11) and (3.30). Fig. 3.3 further compares

the minimum lower bound of the network mean queuing delay D̄∗ obtained by combining

(3.11) and (3.25) with that by combining (3.11) and (3.30), respectively. It can be observed

from Fig. 3.3 that the gap between the two curves diminishes as the mean arrival bit
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rate per area γλuL decreases. When the mean arrival bit per area γλuL is small, i.e.,

γ < min
∀k

{
(Z+1)λkRk

λuL

}
, the minimum lower bound of the network mean queuing delay D̄∗

obtained by combining (3.11) and (3.30) is quite close to that obtained by combining (3.11)

and (3.25). When the mean arrival bit per area γλuL is large, i.e., γ ≥ min
∀k

{
(Z+1)λkRk

λuL

}
,

there is a large gap between the curves in Fig. 3.3. Therefore, the optimal association

probabilities {A∗
k}∀k should be instead obtained by numerically solving (3.25). As Lemma

3.4 guarantees, (3.25) has a unique solution within the feasible region A, which is the

optimal association probability {A∗
k}∀k.

Fig. 3.4 further illustrates how the optimal normalized biasing factor, B̃∗
2 , and the

corresponding minimum lower bound of the network mean queuing delay, D̄∗, vary with

the bandwidth ratio of Tier 2, W2/W , with various values of the mean packet arrival

rate of each user γ. Note that the total bandwidth W = W1 +W2 is fixed here. It can

be observed from Fig. 3.4(a) that for a given γ, the optimal normalized biasing factor

B̃∗
2 increases as W2/W increases. Intuitively, as the bandwidth of Tier 2, W2, increases,

Tier-2 BSs can provide a higher service rate to the associated users. The optimal B̃∗
2

should thus become larger so as to encourage more users to be associated with Tier-2

BSs. Moreover, it can be observed from Fig. 3.4(a) that as W2/W increases, the optimal

normalized biasing factor B̃∗
2 becomes insensitive to the mean packet arrival rate of each

user γ. The minimum lower bound of the network mean queuing delay D̄∗, on the other

hand, decreases as W2/W increases, as Fig. 3.4(b) demonstrates.

While minimizing the network mean queuing delay is desirable for real-time traffic,

the SIR coverage is an important performance metric to support non-real-time traffic for

service providers. According to (2.13), the network SIR coverage S can be written as

S =
K∑
k=1

Ak · P [SIRk > τ ] =
K∑
k=1

Ak

AkρkZ (τ, α, 1) + 1
. (3.36)

Fig. 3.5(a) demonstrates how the network SIR coverage S varies with the normalized
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(a) (b)

Figure 3.4: Optimal normalized biasing factor B̃∗
2 and the minimum lower bound of the

network mean queuing delay D̄∗ versus the bandwidth ratio of Tier 2 W2/W with various
values of the mean arrival bit rate per area γλuL. W=12MHz and τ = 1. (a) Optimal

normalized biasing factor B̃∗
2 . (b) Minimum lower bound of the network mean queuing

delay D̄∗.
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biasing factor B̃2 with various values of the bandwidth ratio W2/W . It can be observed

from Fig. 3.5(a) that there exists an optimal normalized biasing factor with which the

network SIR coverage is maximized. Intuitively, when B̃2 is too large, a large fraction of

users that are originally associated with Tier-1 BSs are offloaded to Tier-2 BSs. As these

users are close to the interfering Tier-1 BSs and have long distances to their associated

Tier-2 BSs, they have very poor channel conditions, which leads to a low SIR coverage of

the network. Similarly, when B̃2 is too small, the network SIR coverage also deteriorates.

In addition, it can be seen from Fig. 3.5(a) that the optimal normalized biasing to

maximize S is insensitive to the bandwidth allocation. In the meanwhile, the optimal

normalized biasing factor B̃∗
2 to minimize D̄ increases as W2/W increases, as illustrated in

Fig. 3.5(c) indicating a tradeoff between the network mean queuing delay and the network

SIR coverage. For example, if W2/W = 1/2, the optimal normalized biasing factor is

obtained as B̃∗
2 = 24dB, with which the network SIR coverage greatly deteriorates. In

this case, the service providers should properly tune the biasing factor in HetNets such

that a desired point on the tradeoff curve can be achieved to balance the performances of

real-time traffic and non-real-time traffic.

As the SIR threshold τ critically determines the network mean queuing delay and the

network SIR coverage, Fig. 3.6 further demonstrates the impact of the SIR threshold

τ on these two performance metrics. It can be observed from Fig. 3.6 that for a given

normalized biasing factor B̃2, the network SIR coverage S decreases as the SIR threshold

τ increases. In the meanwhile, both the network mean queuing delay D and its lower

bound D̄ decrease as τ increases. Intuitively, with a higher SIR threshold τ , the mean

aggregate packet arrival rate of each BS becomes lower while the service rate becomes

higher, leading to a better queuing performance. In addition, it is illustrated in Fig.

3.6(a) that the optimal normalized biasing factor to maximize the network SIR coverage

S is insensitive to the SIR threshold τ , while the optimal normalized biasing factor B̃∗
2 to
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(a) (b) (c)

Figure 3.5: The network SIR coverage and the network mean queuing delay performance
with various bandwidth ratios of Tier 2 W2/W . γλuL = 18Mbps/km2, W = 12MHz, and
τ = 1. (a) Network SIR coverage S. (b) Network mean queuing delay D. (c) Lower
bound of the network mean queuing delay D̄.

(a) (b) (c)

Figure 3.6: The network SIR coverage and the network queuing delay performance
with various values of the SIR threshold τ . W1 = 8MHz, W2 = 4MHz, and γλuL =
38Mbps/km2, (a) Network SIR coverage S. (b) Network mean queuing delay D. (c)
Lower bound of the network mean queuing delay D̄.
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minimize D̄ increases as τ decreases, as Fig. 3.6(c) demonstrates. Intuitively, although

the service rates of both macro and micro BSs become lower with a smaller τ , macro BSs

are more likely to become overloaded as their deployment density is much lower than that

of micro BSs. The optimal normalized biasing factor B̃∗
2 should thus become larger to

undertake the load pressure from macro BSs. By comparing Fig. 3.6(a) with Fig. 3.6(b)

and Fig. 3.6(c), it can be found that with a smaller SIR threshold τ , the deterioration of

the network mean queuing delay D becomes much more severe if the normalized biasing

factor is optimally tuned to maximize the network SIR coverage S, indicating a more

significant tradeoff between the network SIR coverage and the network mean queuing

delay.

3.5 Conclusion

In this chapter we have studied how to optimally tune the biasing factor of each tier

in HetNets in order to minimize a lower bound of the network mean queuing delay.

It is shown that the network queuing performance can be significantly improved when

the biasing factor of each tier is optimally tuned. The characterization of the optimal

biasing factor provides guidance for real-time service provisioning in HetNets. The case

study of a 2-Tier HetNet further illustrates that the network mean queuing delay and

the network SIR coverage might not be optimized simultaneously by tuning the biasing

factor, indicating a performance tradeoff between real-time and non-real-time services.

It is worth mentioning that it is assumed that one BS will serve a user with a constant

rate if its SIR exceeds a threshold. In practice, nevertheless, the service rate could depend

on the channel conditions. In this case, as the biasing factor of one tier decreases, the

mean service rate of this tier increases as the users located at the edge of the cells are

offloaded. The queuing performance of this tier can thus be improved due to a lower mean
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aggregate packet arrival rate and a higher mean service rate. Therefore, there would exist

an optimal biasing factor for each tier such that the traffic load is balanced across tiers

and the network mean queuing delay is minimized. On the other hand, if the biasing

factor of one tier is too large, the SIR coverage of this tier degrades, which would drag

down the network SIR coverage. Therefore, the network mean queuing delay may be

optimized at the cost of the network SIR coverage.
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Chapter 4

Queue-Aware Optimal Bandwidth

Allocation in HetNets

In this chapter, we will study how to improve the network performance in terms of the

energy efficiency and SIR coverage by properly allocating the spectrum resources to BSs

of each tier in HetNets. By considering queuing in each BS, optimization problems to

minimize the network average power consumption and to maximize the SIR coverage

are formulated, which are shown to be convex and concave with respect to bandwidth

allocation, respectively. When the mean packet arrival rate of each user is small, closed-

form solutions to the optimization problems are obtained. Simulation results of a 2-Tier

HetNet demonstrate that the network average power consumption and the SIR coverage

can be significantly improved by the optimal spectrum allocation. A tradeoff between

energy efficiency and SIR coverage is further revealed, which provides insights regarding

the interplay of these two performance metrics.

63
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4.1 Introduction

Besides the effort to optimize the delay performance in Chapter 3, energy efficiency be-

comes a crucial design factor for HetNets due the the high power consumption of the mas-

sive number of small-scale BSs. As the traffic activity varies distinctively during different

time periods, an efficient approach is to put cells in a low energy mode during periods

of low activity load [115, 116]. Hence, a lot of previous literatures [100, 101, 103, 104, 117]

focused on this issue and improved the energy efficiency by introducing sleep-mode tech-

niques where some BSs are selectively switched off according to the traffic load. As the

aforementioned studies [100, 101, 103, 104, 117] assumed that one BS is always transmit-

ting packets, the network energy consumption performance is thus only determined by

the BS deployment intensity. As a result, the goal of the these studies is to determine

the smallest set of active BSs to reduce energy consumption. With the consideration of

queuing, nevertheless, there exists a significant gap of the power consumption of each indi-

vidual BS between busy state and idle state. Therefore, the network energy consumption

performance is also related to the queuing status of the BSs.

Recall that the average traffic intensity of each tier, i.e., the average BS busy proba-

bility of each tier, was derived in Chapter 2. With orthogonal spectrum allocation across

tiers, the service rate of one tier would be higher with a wider bandwidth. Since one

BS consumes less energy in the idle state, its average power consumption will be lower.

Therefore, the bandwidth should be carefully allocated across tiers to achieve a high ener-

gy efficiency. There have been a great deal of effort in the previous literatures [68,118–122]

towards spectrum allocation strategy. The authors in [119] proposed a bilateral bargaining

algorithm to split the spectrum resource for a macro and micro BS link to maximize their

achievable rates. To optimize the average downlink user data rate, Bao et al. [121, 122]

proposed a structured spectrum allocation and user association scheme and showed that

BSs of a tier with higher deployment density should have higher priority in spectrum
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allocation. Sadr et al. [120] focused on a multi-tier HetNet and formulated a rate cover-

age maximization problem by properly allocating spectrum to each tier. Similarly, Lin

et al. [68] obtained the optimal bandwidth allocation by maximizing the logarithm of

the mean user rate. It was found in [68, 120] that the optimal proportion of spectrum

allocated to a tier equals the proportion of users associated with that tier.

As it was assumed in [68,118–122] that the BSs are always busy, energy efficiency be-

comes insensitive to the bandwidth allocation. Therefore, they only focused on improving

spectrum efficiency. Hence, by taking queuing into account in this chapter, we will study

the impact of the bandwidth allocation on the network energy efficiency and SIR coverage

to find the optimal bandwidth allocation strategy. The contributions of this chapter are

summarized as follows.

• Based on the derived average traffic intensity under the assumption of spectrum

partitioning, a network average power consumption minimization problem as well

as a network SIR coverage maximization problem with respect to the bandwidth

allocation are formulated, which are shown to be convex and concave respectively.

• By using the approximation of the average traffic intensity of each tier, explicit

solutions to the optimization problems are further derived.

• Simulation results demonstrate that both the network average power consumption

and SIR coverage can be remarkably improved by properly allocating the bandwidth

to each tier. In addition, it is further revealed that the network average power

consumption and SIR coverage cannot be optimized simultaneously, which indicates

a tradeoff between energy and SIR coverage.

The rest of this chapter is organized as follows. The system model is presented in

Section 4.2. A network average power consumption minimization problem is studied in

Section 4.3. A network SIR coverage maximization problem is examined in Section 4.4.
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Simulation results are demonstrated in Section 4.5. Conclusion remarks are drawn in

Section 4.6.

4.2 System Model

Consider a K-Tier heterogeneous network where BSs in the kth tier, k ∈ {1, ..., K}, are
deployed according to an independent homogenous PPP Φk with an intensity λk, and users

form another independent homogenous PPP Φu with an intensity of λu. The instantaneous

received power of a typical user from a BS in the kth tier is given by Pkgkx
−αk
k where

Pk is the transmission power of a BS in the kth tier; gk denotes the small-scale fading

coefficient, which follows an i.i.d. exponential distribution of unit mean; and αk is the

path-loss coefficient, which is assumed to be identical across different tiers, i.e., αk = α,

∀k. Each user associates with the BS with the largest average reference signal receiving

power (RSRP). The set of BSs belonging to one tier operate in their own frequency band

with the bandwidth Wk and hence do not interfere with the BSs of other tiers. Denote

the total bandwidth as W . We then have
∑K

k=1 Wk = W .

Similar to the queuing model defined in Section 2.1.1, we assume that the packet

request of each mobile user in the downlink follows an independent process with the mean

arrival rate γ, and forms a queue in its associated BS. The packet length is exponentially

distributed with the mean length L. Each BS transmits packets in a first-in-first-serve

(FIFS) fashion. A signal-to-interference ratio (SIR) threshold τ is assumed, with which

a BS will serve a user if the SIR exceeds τ , and drop the request otherwise. Therefore,

by substituting Rk = Wk log2 (1 + τ) into (2.20), the average traffic intensity ρ̄k can be

written as

ρ̄k =
−λk +

√
λ2
k +

4γλuLλkZA2
k

Wklog2(1+τ)

2AkλkZ
, (4.1)

where Z = τ
2
α

´∞
τ−

2
α
du/

(
1 + u

α
2

)
and Ak denotes the association probability to a Tier-k
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BSs, which can be found in (2.10). It is clear from (4.1) that the average traffic intensity

of Tier k, ρ̄k, decreases as its allocated bandwidth Wk increases. As BSs consume more

energy in the busy state than in the idle state, the energy consumption of the whole

network can be optimized by a proper bandwidth allocation to balance the traffic load

across different tiers.

4.3 Network Average Power Consumption Minimiza-

tion

In this section, we will minimize the network average power consumption by optimally

allocating the spectrum resources to each tier. Section 4.3.1 will first demonstrate the

convexity of the optimization problem. Based on an approximation of the average traffic

intensity, explicit solution of the problem is then obtained in Section 4.3.2.

4.3.1 Problem Formulation

According to [95], the power consumption of a Tier-k BS in the busy state can be written

as

Pk,T = Pk,s +ΔkPk, (4.2)

where Pk,s is the power consumption of its signal processing and battery leakage, and Δk

is the coefficient to reflect BS’s cooling and feeder loss. On the other hand, the power

consumption of a Tier-k BS in the idle state is given by

Pk,I = ηkPk,T. (4.3)

where ηk < 1 is the idle power coefficient, i.e., the BS power consumption ratio between

the idle state and the busy state. The average power consumption of a BS in the kth tier
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can then be written as

Pk,av = Pk,Tρ̄k+Pk,I (1−ρ̄k) = (1−ηk)Pk,Tρ̄k+ηkPk,T. (4.4)

By combining (4.1) and (4.4), the network average power consumption is given by

P =
K∑
k=1

λkPk,av =
K∑
k=1

λk (1− ηk)Pk,Tρ̄k + λkηkPk,T

= Pk,T

K∑
k=1

(1− ηk)

(
−λk+

√
λ2
k+

4γλuLλkZA2
k

Wklog2(1+τ)

)
2AkZ

+λkηk. (4.5)

It can be seen from (4.5) that the network average power consumption P is critically

determined by the bandwidth allocation of each tier.

To minimize the network average power consumption, we have

min
{Wk}∀k∈{1,...,K}

Pk,T

K∑
k=1

(1− ηk)

(
−λk+

√
λ2
k+

4γλuLλkZA2
k

Wklog2(1+τ)

)
2AkZ

+λkηk, (4.6a)

s.t.
∑K

k=1
Wk = W, (4.6b)

ρk < 1, k ∈ {1, ..., K}. (4.6c)

The constraint (4.6b) comes from the fact that the bandwidth of each tier sums up to the

total bandwidth W . Recall in Section 2.1.1 that in this thesis we focus on the condition

where the traffic intensity ρk,i ≤ 1, i.e., ρk,i equals the busy probability of the BS. The

constraint (4.6c) thus guarantees that the average traffic intensity equals the average BS

busy probability for each tier, which can be converted into the bandwidth constraint

Wk >
γλuLAk

(1 + AkZ)λklog2 (1 + τ)
, k ∈ {1, ..., K}, (4.7)

according to (4.1).
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Before solving the optimization problem, first note that (4.6) does not have a feasible

region R if
K∑
k=1

γλuLAk

(1 + Akρ̄kZ) ρ̄kλklog2 (1 + τ)
> W (4.8)

according to (4.6b) and (4.7). Intuitively, one tier should be allocated a large bandwidth

to improve the service rate to satisfy ρ̄k < 1. In this case, the total bandwidth W might

not be wide enough to meet the requirement of ρ̄k < 1.

If (4.8) doest not hold, we could minimize the network average power consumption per

area, P , by properly allocating the bandwidth to each tier. The following lemma proves

the convexity of the optimization problem (4.6).

Lemma 4.1. The network average power consumption per area P is convex with respect

to the bandwidth allocation {Wk}∀k under the constraints of (4.6b) and (4.6c).

Proof. According to (4.1), the first and second order derivative of ρ̄k with respect to Wk

can be obtained as

dρ̄k
dWk

= − γλuLAk

β
1
2 log2 (1 + τ)W 2

k

> 0, (4.9)

and

d2ρ̄k

dWk
2 =

γλuLAk

log2 (1 + τ)
·
[
2β− 1

2W−3
k − 2β− 3

2W−4
k γλuLλkA

2
kZ

log2 (1 + τ)

]

=
γλuLAk

2log2 (1 + τ) β
3
2W 4

k

[
λ2
kWk +

16γλuLλkA
2
kZ

log2 (1 + τ)
− 4γλuLλkA

2
kZ

log2 (1 + τ)

]
> 0, (4.10)

respectively, where

β = λ2
k +

4γλuLλkA
2
kZ

log2 (1 + τ)Wk

. (4.11)

Therefore, the average traffic intensity ρ̄k is convex with respect to the bandwidth allo-

cation of each tier. As the network average power consumption P is a linear function of

ρ̄k, P is convex with respect to Wk. Finally, the constraint (4.6c) is equivalent to the

constraint (4.7). As both (4.6b) and (4.6c) are linear constraints, the network average

power consumption minimization problem (4.6) is convex.
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Intuitively, the spectrum allocated to one tier cannot be too small or too large. If it

is too small, BSs of this tier would be more likely to be busy, and thus consume more

power. Otherwise, BSs of other tiers would have a higher busy probability such that the

network average power consumption would also deteriorate.

4.3.2 Explicit Solution

According to Lemma 4.1, the optimal bandwidth allocated to each tier {W ∗,P
k }∀k can be

obtained by a numerical method such as gradient decent. However, to obtain the explicit

solution of the network average power minimization problem (4.6), we adopt a similar

approximation of the average traffic intensity ρ̄k by (3.7) in Section 3.3.1. In this case,

the network average power consumption P can be further written as

P=γλuL
∑K

k=1

(1− ηk)Pk,TAk

Wklog2 (1 + τ)
+
∑K

k=1
λkηkPk,T, (4.12)

and the constraint (4.6c) is equivalent to the bandwidth constraint

Wk >
γλuLAk

λklog2 (1 + τ)
, k ∈ {1, ..., K}, (4.13)

according to (3.7). The following lemma gives an explicit solution of the bandwidth

allocation {W ∗,P
k }∀k to the optimization problem (4.6).

Lemma 4.2. When the mean packet arrival rate of each user satisfies

γ < min
∀k

⎧⎪⎪⎨⎪⎪⎩
W log2 (1 + τ)

√
λ3
kP

2
α
k (1− ηk)Pk,T

λuLAk

K∑
i=1

√
λiP

2
α
i (1− ηi)Pi,T

⎫⎪⎪⎬⎪⎪⎭ , (4.14)

the optimal bandwidth allocation {W ∗,P
k }∀k can be written as

W ∗,P
k =

√
λkP

2
α
k (1− ηk)Pk,T∑K

i=1

√
λiP

2
α
i (1− ηi)Pi,T

W, k ∈ {1, ...K}. (4.15)
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Proof. According to (3.7), the second-order derivative of ρ̄k with respect to Wk can be

obtained as

d2ρ̄k

dWk
2 =

2γλuLAk

λklog2 (1 + τ)W 3
k

> 0. (4.16)

As the network average power consumption P is a linear function of ρ̄k, (4.12) is convex

with respect to {Wk}∀k. Therefore, by substituting WK with W −∑K−1
k=1 Wk in (4.12),

and taking the partial derivative of P with respect to Wk, we have

∂P

∂Wk

= − γλuLAkΔkPk

W 2
k log2 (1+τ)

+
γλuLAKΔKPK(

W−
K−1∑
k=1

Wk

)2

log2 (1+τ)

, k = 1, ..., K − 1. (4.17)

The optimal bandwidth allocation {W ∗,P
k }∀k can be obtained by solving the set of equa-

tions ∂P
∂Wk

=0, k = 1, ..., K−1 as

W ∗,P
k =

√
λkP

2
α
k (1− ηk)Pk,T

K∑
i=1

√
λiP

2
α
i (1− ηi)Pi,T

W, k ∈ {1, ...K}. (4.18)

Finally, by combining (4.13) with (4.18), we have

W ∗,P
k =

√
λkP

2
α
k (1− ηk)Pk,T

K∑
i=1

√
λiP

2
α
i (1− ηi)Pi,T

W >
γλuLAk

λklog2 (1 + τ)
, (4.19)

which leads to the constraint of the mean packet arrival rate in Lemma 4.2 as

γ < min
∀k

⎧⎪⎪⎨⎪⎪⎩
W log2 (1 + τ)

√
λ3
kP

2
α
k (1− ηk)Pk,T

λuLAk

K∑
i=1

√
λiP

2
α
i (1− ηi)Pi,T

⎫⎪⎪⎬⎪⎪⎭ . (4.20)

With the optimal bandwidth allocation, when γ reaches the upper bound, there must

exist a certain tier, Tier-k for instance, such that its average traffic intensity ρ̄k approaches

1. In this case, γ is not small compared to the service rate of the queue in each Tier-k



72 Chapter 4. Queue-Aware Optimal Bandwidth Allocation in HetNets

BS. On the other hand, since (3.7) becomes closer to (2.20) as γ decreases, the optimal

bandwidth allocation obtained in (4.15) is more accurate with a smaller value of γ. As

the network average power consumption in (4.12) is a linear function of the mean packet

arrival rate γ, the optimal bandwidth allocation W ∗,P
k does not depend on γ. In addition,

it can be clearly seen from (4.15) that W ∗,P
k increases as the transmission power Pk or the

BS deployment density λk increases. Intuitively, with a larger Pk or a higher λk, users are

more likely to associate with a Tier-k BS. A larger bandwidth can effectively reduce the

power consumption of this tier.

4.4 Network SIR Coverage maximization

Besides energy efficiency, the SIR coverage is another important performance metric which

characterizes spectrum efficiency [119–122]. In this section, we will further derive the

optimal bandwidth allocation to maximize the network SIR coverage. Section 4.4.1 will

first demonstrate the convexity of the optimization problem. Based on an approximation

of the average traffic intensity, explicit solution of the problem is then obtained in Section

4.4.2.

4.4.1 Problem Formulation

Recall that the SIR coverage of Tier-k BSs has been derived as

Sk = P [SIRk > τ ] =
1

AkρkZ + 1
. (4.21)

according to (2.13). By combining (4.1) and (4.21), the network SIR coverage S is given

by

S =
K∑
k=1

Ak

AkρkZ + 1
=

K∑
k=1

2λkAk

λk +
√
λ2
k +

4γλuLλkZA2
k

Wklog2(1+τ)

. (4.22)
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To maximize the network SIR coverage, we have

max
{Wk}∀k∈{1,...,K}

=
K∑
k=1

2λkAk

λk +
√
λ2
k +

4γλuLλkZA2
k

Wklog2(1+τ)

, (4.23a)

s.t.
∑K

k=1
Wk = W, (4.23b)

ρk < 1, k ∈ {1, ..., K}. (4.23c)

Similarly, (4.23) does not have a feasible region R if (4.8) holds. The following lemma

proves the concavity of (4.23).

Lemma 4.3. The network SIR coverage S is concave with respect to the bandwidth

allocation {Wk}∀k under the constraint of (4.23b) and (4.23c).

Proof. According to (4.21), the second-order derivative of Tier-k SIR coverage Sk with

respect to Wk can be obtained as

d2Sk

dWk
2 = −A2

kZ

[
−2AkZ

(Akρ̄kZ + 1)3
· dρ̄k
dWk

+
1

(Akρ̄kZ + 1)2
· d2ρ̄k

dWk
2

]
. (4.24)

Recall that we have dρ̄k
dWk

<0 and d2ρ̄k
dWk

2>0 according to (4.16) and (4.17). It can then be

concluded that ∂2Sk

∂Wk
2<0. Since the network SIR coverage can be written as S =

K∑
k=1

AkSk,

which is a linear function of the SIR coverage of Tier k, the network SIR coverage S is

concave with respect to {Wk}∀k. Finally, as the constraints (4.23b) and (4.23c) are linear,

the network SIR coverage maximization problem is concave.

Intuitively, when the bandwidth allocated to a certain tier is small, BSs of this tier

would cause severe interference to the associated users due to a high busy probability.

Otherwise, the interference level in other tier would be high. In both cases, the network

SIR coverage would deteriorate.
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4.4.2 Explicit Solution

Lemma 4.3 guarantees that the optimal bandwidth allocation {W ∗,S
k }∀k to maximize the

network SIR coverage S can be obtained by numerical approaches such as the gradient

decent method. Similar to the derivations of {W ∗,P
k }∀k in Section 4.3.2, we use (3.7)

to approximate the average traffic intensity ρ̄k. The network SIR coverage can then be

rewritten as

S =
∑K

k=1

λkWkAklog2 (1 + τ)

ZγλuLA2
k + λkWklog2 (1 + τ)

, (4.25)

and the constraint (4.23c) can be further written as

Wk >
γλuLAk

λklog2 (1 + τ)
, k ∈ {1, ..., K}, (4.26)

by combining (3.7) and (4.22). The following lemma presents an explicit expression of

the optimal bandwidth allocation {W ∗,S
k }∀k.

Lemma 4.4. When the mean packet arrival rate of each user satisfies

γ < min
∀k

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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(
K∑
j=1

λjP
3
α
j

)2

λ2
kP

3
α
k

λuL

⎡⎣Zλ2
kP

3
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k

K∑
l=1

λlP
3
α
l

(
P

1
α
k − P

1
α
l

)
− Ak

(
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j=1

λjP
3
α
j

)2
K∑
j=1

λjP
3
α
j

⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (4.27)

the optimal bandwidth allocation {W ∗,S
k }∀k can be written as

W ∗,S
k =

λkP
3
α
k∑K

j=1 λjP
3
α
j

·
[
W − γλuLZ

log2 (1 + τ)
·
∑K

l=1 λlP
3
α
l

(
P

1
α
k − P

1
α
l

)
(∑K

j=1 λjP
2
α
j

)2

]
, k ∈ {1, ..., K}.

(4.28)

Proof. By substituting (3.7) into (4.21), the second-order derivative of Sk with respect to

Wk can be obtained as

d2Sk

dWk
2 = − 2γλuLZA

3
kλ

2
k log

2
2 (1 + τ)

[γλuLZA2
k + λkWklog2 (1 + τ)]

3 < 0. (4.29)
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As the network SIR coverage S is a linear function of Sk, (4.25) is concave with respect

to {Wk}∀k. Therefore, by substituting WK with W −∑K−1
k=1 Wk in (4.25), and taking the

partial derivative of S with respect to Wk, we have

∂C

∂Wk

=
γλuLZA

3
KλK log2 (1 + τ)[

γλuLZA2
K+λK

(
W−

K−1∑
j=1

Wj

)
log2 (1+τ)

]2
− γλuLZA

3
kλklog2 (1 + τ)

[γλuLZA2
k + λkWklog2 (1 + τ)]

2 , k = 1, ..., K − 1. (4.30)

The optimal bandwidth allocation {W ∗,S
k }∀k can be obtained by solving the set of equa-

tions ∂S
∂Wk

=0, k = 1, ..., K−1 as

W ∗,S
k =

λkP
3
α
k

K∑
j=1

λjP
3
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j

·
[
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λjP
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]
, k ∈ {1, ...K}. (4.31)

Finally, by combining (4.26) with (4.31), we have

W ∗,S
k =

λkP
3
α
k
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3
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> 0,

(4.32)

which leads to the constraint of the mean packet arrival rate in Lemma 4.4 as

γ < min
∀k
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When γ is small, the optimal bandwidth allocated W ∗,S
k can be further written as

W ∗,S
k

∣∣∣
γ→0

=
λkP

3
α
k∑K

j=1 λjP
3
α
j

W, (4.34)
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Table 4.1: Simulation Parameters

Parameter Value

User Density λu 10−3 m−2

Tier-1 BS Density λ1 10−5 m−2

Tier-2 BS Density λ2 5∗10−5 m−2

Tier-1 Power Consumption Coefficient Δ1 4.7

Tier-2 Power Consumption Coefficient Δ2 2.6

Tier-1 Idle Power Coefficient η1 0.1

Tier-2 Idle Power Coefficient η2 0.1

Total Bandwidth W 12 MHz

Path Loss Coefficient α 4

SIR Threshold τ 1

Mean Packet Length L 0.001 Mb

which increases as the transmission power Pk or the BS intensity λk increases. Intuitively,

with a larger Pk or λk, more users are associated to this tier, leading to a higher BS

busy probability and a higher intra-tier interference level. By allocating more spectrum

resources to this tier, the network SIR coverage can be improved.

4.5 Simulation Results

In this section, we will demonstrate simulation results to validate the analysis in Section

4.3 and Section 4.4. We consider a 2-Tier HetNet where the total available bandwidth

is set to be fixed. Each tier occupies an orthogonal spectrum band. We perform Monte

Carlo simulations over different topologies where BSs of each tier and users are drawn from

independent PPPs with given intensities in each topology. Each point of the demonstrated
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Figure 4.1: Average traffic intensity ρ̄k of each tier versus the bandwidth of Tier 2, W2.
P1 = 20W, P2 = 6W.

results is obtained by averaging over 500 simulations on a time scale of 105 seconds. The

parameters regarding BS energy consumption are set according to [95]. For simplicity,

we assume the idle power coefficient η1 = η2 = 0.1. Table 4.1 summarizes the system

parameters.

An explicit expression of the average traffic intensity with respect to the bandwidth

allocation has been shown as (4.1) in Section 4.2. Fig. 4.1 illustrates how the average

traffic intensities of the BSs of both tiers, i.e., ρ̄1 and ρ̄2, vary with the bandwidth of

Tier-2, W2, under various values of the mean bit arrival rate per area γλuL. It can be

observed from Fig. 4.1 that as the bandwidth W2 increases, the average traffic intensity

of Tier 1 increases, while that of Tier 2 decreases. Intuitively, with a higher bandwidth,

the service rate of Tier 2 becomes larger, leading to a better queuing performance.

The network average power consumption has been characterized in Section 4.3.1 based

on the derived average traffic intensity ρ̄k. Fig. 4.2 demonstrates how the network average
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Figure 4.2: Network average power consumption P versus the bandwidth of Tier 2, W2.
P1 = 20W, P2 = 6W.

power consumption, P , varies withW2 under various values of the mean bit arrival rate per

area γλuL. It can be observed that the network average power consumption P is sensitive

to the bandwidth allocation. By optimally tuning the bandwidth allocation, the network

average power consumption can be minimized. For instance, with γλuL = 40 Mbps/km2,

the optimal bandwidth of Tier 2 can be obtained as W ∗,P
2 = 5.15 MHz, and the network

average power consumption is as low as 0.86 ∗ 103 W/km2.

On the other hand, the network SIR coverage has been derived as (4.22) in Section

4.4.2. Fig. 4.3 illustrates how the network SIR coverage, S, varies with the bandwidth of

Tier 2, W2. It can be observed from Fig. 4.3 that the network SIR coverage is concave

with respect to the bandwidth of Tier 2. Intuitively, as W2 increases, Tier-2 BSs are

more likely to be idle, and the interference in Tier 2 becomes less severe. However, as W2

becomes larger, Tier-1 BSs are more probable to be busy, indicating that the interference

in Tier 1 degrades, leading to the deterioration of the whole network SIR coverage. By
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Figure 4.3: Network SIR coverage S versus the bandwidth of Tier 2, W2. P1 = 20W,
P2 = 6W.

comparing Fig. 4.2 with Fig. 4.3, it can be seen that the optimal bandwidth allocation

to minimize the network average power consumption is not the same as that to maximize

the network SIR coverage. Therefore, the network SIR coverage and the network power

consumption could not be optimized simultaneously, indicating a tradeoff between these

two performance metrics. In practice, the service providers should properly determine a

desired point to balance between SIR coverage and energy efficiency.

Fig. 4.4 further demonstrates how the optimal bandwidth of Tier 2 to minimize the

network average power consumption and to maximize the network SIR coverage, i.e.,

W ∗,P
2 and W ∗,S

2 , vary with the BS density ratio, λ2/λ1, with various values of the BS

transmission power of Tier 2, P2. Besides the significant gap between W ∗,P
2 and W ∗,S

2

which is discussed in the previous paragraph, it can be observed from Fig. 4.4 that both

W ∗,P
2 and W ∗,S

2 increase as the density of Tier-2 λ2 or the transmission power of Tier

2 P2 increases. Intuitively, with a larger P2 or λ2, the association probability of Tier 2
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Figure 4.4: Optimal bandwidth of Tier 2, W ∗,P
2 and W ∗,S

2 , to minimize the network
average power consumption and maximize the network SIR coverage. P1 = 20W and
γλuL = 40Mbps/km2.

becomes larger. Tier 2 thus has a higher busy probability and intra-tier interference level,

which imposes a significant impact on both the average power consumption P and the

SIR coverage S of the network. Hence, more spectrum resources should be allocated to

Tier 2 to improve the queuing performance of this tier.

To show the accuracy of the results in Lemma 4.2 and Lemma 4.4, Fig. 4.5 demon-

strates the optimal bandwidth of Tier 2, i.e., W ∗,P
2 and W ∗,S

2 , as well as the corresponding

minimum network average power consumption P ∗ and maximum network SIR coverage

S∗. Note that the range of the mean bit arrival rate per area in Fig. 4.5 is obtained as

γλuL < min
∀k

⎧⎪⎪⎨⎪⎪⎩
W log2 (1 + τ)

√
λ3
kP

2
α
k (1− ηk)Pk,T

Ak

K∑
i=1

√
λiP

2
α
i (1− ηi)Pi,T

⎫⎪⎪⎬⎪⎪⎭ (4.35a)



4.5 Simulation Results 81

(a) (b)

(c) (d)

Figure 4.5: Optimal bandwidth of Tier 2 W ∗,P
2 and W ∗,S

2 as well as the corresponding
minimum network average power consumption P ∗ and maximum network SIR coverage
S∗ versus the mean arrival bit rate per area γλuL. (a) Optimal bandwidth of Tier 2,
W ∗,P

2 . (b) Minimum network average power consumption P ∗. (c) Optimal bandwidth of
Tier 2, W ∗,S

2 . (d) Maximum network SIR coverage S∗.
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and

γλuL < min
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(4.35b)

according to (4.14) and (4.27), respectively. It can be observed from Fig. 4.5(a) and Fig.

4.5(c) that the there is a small gap between the two curves, and the gap diminishes as

γλuL decreases. Furthermore, it can be observed from Fig. 4.5(b) and Fig. 4.5(d) that

the two curves of P ∗ and S∗ almost overlap, which indicates that the bandwidth allocation

according to (4.15) and (4.28) can achieve near-optimal performance.

4.6 Conclusion

This chapter studies how to optimize the network power consumption and the network SIR

coverage by allocating spectrum resources to each tier in HetNets. By considering queues

in each BS, optimization problems to minimize the network average power consumption

and to maximize the network SIR coverage are formulated, which are shown to be convex

and concave, respectively. Closed-form solutions are given by using an approximation

of the average traffic intensity. Simulation results of a 2-Tier HetNet demonstrate that

the network average power consumption and network SIR coverage cannot be optimized

simultaneously, indicating a tradeoff between energy efficiency and SIR coverage.



Chapter 5

Queue-Aware Energy Efficient BS

Density Optimization in HetNets

In this section, we will study the minimization of network average power consumption

in a 2-Tier HetNet by optimally tuning the activation ratio of micro BSs under the QoS

constraints of the network mean queuing delay and the network SIR coverage. With the

assumption of universal frequency reuse (UFR), the average traffic intensity of each tier

is characterized by a set of fixed-point equations, which can be solved by a proposed

iterative method. By using the approximation that BSs of a tier have the same SIR

coverage, the cumulative distribution function (CDF) of the traffic intensity of each tier

is then obtained. On that basis, the network average power consumption per area as well

as the constraints of the network mean queuing delay and the network SIR coverage are

characterized. Numerical results demonstrate that if the idle power coefficient is below

a certain threshold, the optimal activation ratio should equal the one to minimize the

network average power consumption per area. Otherwise, the optimal activation ratio

should be obtained according to the QoS constraints. It is further shown that UFR

outperforms spectrum partitioning (SP) in terms of both energy efficiency and spectrum

83
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efficiency in the considered scenario.

5.1 Introduction

We have shown in Chapter 4 that the network energy efficiency can be significantly im-

proved by optimally allocating the spectrum resources to each tier in the consideration of

queuing, the most direct and effective way to reduce the network power consumption is

to control of the BS deployment density.

5.1.1 Energy Efficiency Optimization

Although a great deal of effort [103,104,106,107,123] has been made to find the optimal

BS density in HetNets, they all assumed that BSs are transmitting packets all the time.

Therefore, a fixed power consumption of each individual BS was considered, and the

total network power consumption thus linearly increases as the BS deployment density

increases. By taking queuing into account, nevertheless, one BS consumes less energy in

the idle state than it does in the busy state. Tuning the BS deployment density thus

have a significant impact on the the probability that one BS is in the busy state, which in

turn affects its power consumption. Hence, this motivates us to characterize the network

average power consumption by taking consideration of the average traffic intensity. Under

the assumption of queuing, we consider a 2-Tier HetNet with universal frequency reuse

(UFR) across both tiers in this chapter, in which case both the intra-tier interference

and the inter-tier interference exist. According to the set of fixed-point equations of

the average traffic intensity derived in Section 2.3.2, the existence and the uniqueness

of the solutions are further proved in the considered scenario. An iterative method is

then proposed to numerically obtain the average traffic intensity. On that basis, an

optimization problem is formulated to minimize the network average power consumption
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per area by turning on only a fraction of micro BSs according to an activation ratio.

Numerical results demonstrate that the network average power consumption per area can

be minimized by optimally tuning the activation ratio.

5.1.2 QoS Constraint

Besides energy efficiency, QoS provisioning is an important issue in HetNets. In [99,103],

users’ QoS was guaranteed by the consideration that the network rate coverage should not

fall below a target value. The ratio between BSs’ sum rate and their power consumption

in the network was optimized in [97,98,106,107,124–126]. Apart from the rate related QoS

metrics, the delay performance attracts more and more attention with the proliferation of

real-time multimedia applications. In particular, Zhong et al. [127] derived the probability

that the mean delay of a packet exceeds a given threshold in a K-tier HetNet. Zhang et

al. [128] analyzed the impact of the system parameters such as the BS density on the local

delay, i.e., the mean number of slots for a packet to be delivered. In [129], the optimal

user association and BS resource allocation was obtained to minimize the average packet

delay. Nevertheless, [127–129] all assumed consistent interference from other co-channel

BSs, due to which a worst case of the delay performance was characterized in [127–129].

This thus motivates us to characterize the delay performance in a more precise manner

by capturing the correlation between queuing and interference. In particular, by using

the approximation that the BSs in one tier have an identical SIR coverage, the cumulative

distribution function (CDF) of the traffic intensity of the BSs in each tier is characterized,

based on which the network mean queuing delay is further obtained. We then formulate

the QoS constraints by guaranteeing that the network mean queuing delay is lower than

a certain value and that the network SIR coverage is higher than a certain value. The

threshold value could be determined by QoS requirements. The analytical results show

that the constraints of the network mean queuing delay and the network SIR coverage
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can be translated into a lower bound fraction of micro BSs that should be switched on.

5.1.3 Universal Frequency Reuse Versus Spectrum Partitioning

Throughout this chapter, universal frequency reuse (UFR) is adopted where BSs of all tiers

share the whole spectrum resources. Nevertheless, due to the intensive BS deployment in

HetNets, BSs become much closer to each other. The interference in HetNets is thus much

more severe than that in traditional cellular networks. As a result, spectrum partitioning

(SP) was advocated in a great deal of previous works to mitigate the inter-tier interference

in HetNets [68, 118, 121, 122]. In particular, Lin et al. [68] maximized the logarithm of

users’ rate by properly allocating the bandwidth to each tier. Similarly, Ramamonjison et

al. [118] optimized the bandwidth allocation between macro and micro cells to maximize

the area spectral efficiency. To minimize the average downlink user data rate, Bao et

al. [121,122] proposed a structured spectrum allocation and user association scheme, and

showed that BSs of a tier with higher deployment density should have a higher priority

in spectrum allocation. Compared to UFR, it was observed in [68, 118, 121, 122] that the

system performance can be significantly improved by a properly spectrum allocation.

As queuing is not assumed in [68, 118, 121, 122], the interference level of a user solely

depends on the number of interfering BSs. In consideration of traffic dynamics, never-

theless, the interference is not only determined by the number of BSs but also is closely

related to the queuing status of each co-channel BS. This leads to the question that

whether SP can still perform better than UFR. To address this issue, this chapter further

conducts a comparative study between UFR and SP in terms of the network average

power consumption per area and the network SIR coverage. It is found that although the

number of interfering BSs increases when reusing the spectrum resources among all tiers,

the bandwidth allocated to each tier is enlarged. Therefore, the inter-tier interference

will not necessarily deteriorate as it can be mitigated by a better queuing performance of
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the BSs. The simulation results show that UFR outperforms SP in terms of both energy

efficiency and SIR coverage in the considered scenario.

The contributions of this chapter are summarized as follows.

• With the consideration of dynamical traffic arrivals in a 2-Tier HetNet, the average

traffic intensity of each tier is characterized by a set of fixed-point equations, based

upon which the existence and uniqueness of the solution is obtained. To numerically

solve the fixed-point equations, an iterative method is proposed. By using the

approximation that BSs of a tier have the same SIR coverage, the CDF of the traffic

intensity of each tier is obtained.

• Based on the characterization of the traffic intensity, a network average power con-

sumption minimization problem under the constraints of the network mean queuing

delay and the network SIR coverage is formulated. Numerical results show that if

the idle power coefficient is below a certain threshold, the optimal activation ratio

should equal the one to minimize the network average power consumption per area.

Otherwise, the optimal activation ratio should be obtained according to the QoS

constraints.

• On the contrary to previous observations, a comparative study show that UFR

outperforms SP in terms of both energy efficiency and SIR coverage in the considered

scenario.

The rest of this chapter is organized as follows. The system model is presented in Sec-

tion 5.2. The BS traffic intensity is characterized in Section 5.3. A network average power

consumption optimization problem under the constraints of the network mean queuing

delay and network SIR coverage is formulated and studied in Section 5.4. Simulation

results are demonstrated in Section 5.5. A comparative study of UFR and SP is studied

in Section 5.6. Conclusions are given in Section 5.7.
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5.2 System Model

We consider a 2-Tier HetNet where BSs in the k-th tier are spatially distributed as a

PPP with the deployment density λd
k, k = 1, 2. Without loss of generality, Tier-1 BSs are

referred to as macro BSs with a higher transmission power P1 and a lower deployment

density λd
1, and Tier-2 BSs are referred to as micro BSs with a lower transmission power P2

and a higher deployment density λd
2. To provide global coverage, we assume that all Tier-1

BSs are active while Tier-2 BSs could be switched off with an active ratio ε. Therefore,

the set of active Tier-1 BSs, Φ1, has an intensity λ1 = λd
1, and the set of active Tier-2

BSs, Φ2, has an intensity λ2 = ελd
2. Mobile users, on the other hand, are modeled by an

independent PPP Φu with an intensity λu. Each mobile user in the downlink connects to

a BS that offers the highest received power. Universal frequency reuse (UFR) is adopted

where the whole bandwidth of W is shared by all the BSs across tiers.

Similar to the queuing assumption in Chapter 3 and Chapter 4, it is assumed that the

packets randomly arrive and queue in the buffer of its associated BS. BSs then send the

packets in the buffer to its associated users in a FIFS fashion. The packet arrival follows

a Poisson process with the mean arrival rate γ, and the packet size is exponentially

distributed with the mean length L. Note that as UFR is adopted in this chapter, for the

typical user associated to a Tier-k BS, all other BSs are potential interferers. To prevent

users in poor channel conditions from occupying the spectrum resource, we still assume

that for each user, its packet would be dropped if the SIR is below a predetermined

threshold τ ; otherwise, it is served with a constant rate W log2 (1 + τ).

5.3 Traffic Intensity Characterization

In this section, we will first study the average traffic intensity of each tier ρ̄k, based on

which cumulative distribution function of ρk,i is obtained.
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5.3.1 Average Traffic Intensity

According to the characterization of the average traffic intensity with UFR in Section

2.3.2, we can apply the fixed-point equations (2.26) to our considered 2-Tier HetNet as

ρ̄k =
γλuLAk

λkW log2 (1+τ)
· 1

Ak

2∑
j=1

λ̃jP̃
− 2

α
j ρ̄jZ+1

, (5.1)

where k ∈ {1, 2}. It can be seen from (5.1) that the average traffic intensity of each tier,

i.e., ρ̄1 and ρ̄2, depends on each other. We will demonstrate how to obtain ρ̄k in the

following.

Corollary 5.1. The fixed-point equations (5.1) have a unique solution within the region

ρ̄k > 0, k ∈ {1, 2}.

Proof. According to (5.1), we have

ρ̄2 =
β1

θ1ρ̄1
− A1Zρ̄1

θ1
− 1

θ1
, (5.2a)

and

ρ̄2 =
− (1 + θ2ρ̄1) +

√
(1 + θ2ρ̄1)

2 + 4A2Zβ2

2A2Z
, (5.2b)

where

β1 =
γλuLA1

λ1W log2 (1 + τ)
, (5.3a)

θ1 = A1
λ2

λ1

·
(
P2

P1

) 2
α

Z, (5.3b)

β2 =
γλuLA2

λ2W log2 (1 + τ)
, (5.3c)

θ2 = A2
λ1

λ2

·
(
P1

P2

) 2
α

Z. (5.3d)
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Hence, the solution of (5.1) can be obtained by solving

δ =
β1

θ1ρ̄1
− A1Zρ̄1

θ1
− 1

θ1

−
− (1 + θ2ρ̄1) +

√
(1 + θ2ρ̄1)

2 + 4A2Zβ2

2A2Z
= 0. (5.4)

Since lim
ρ̄1→0

δ → ∞ and lim
ρ̄1→∞

δ → −∞, there exists at least one solution to (5.4).

Furthermore, according to (5.2a), we have

dρ̄2
dρ̄1

= − β1

θ1ρ̄21
− A1Z

θ1
, (5.5a)

d2ρ̄2
dρ̄21

=
β1

2θ1ρ̄31
> 0, (5.5b)

and according to (5.2b), we have

dρ̄2
dρ̄1

= − θ2
2A2Z

− θ2 (1 + θ2ρ̄1)

2A2Z
√

(1 + θ2ρ̄1)
2 + 4A2Zβ2

, (5.5c)

d2ρ̄2
dρ̄21

=
θ22

2A2Z
· 4A2Zβ2[

(1 + θ2ρ̄1)
2 + 4A2Zβ2

] 3
2

> 0. (5.5d)

By combining (5.4) with (5.5), we have

dδ

dρ̄1
< lim

ρ̄1→∞

(
− β1

θ1ρ̄21
− A1Z

θ1

)
− θ2

2A2Z
lim
ρ̄1→0

⎛⎝−1 +
1 + θ2ρ̄1√

(1 + θ2ρ̄1)
2 + 4A2Zβ2

⎞⎠
< −A1Z

θ1
+

θ2
2A2Z

= − λ1

2λ2

·
(
P1

P2

) 2
α

< 0, (5.6)

which indicates that (5.4) has a unique solution.

Generally, (5.1) does not have a closed-form solution, and the average traffic intensity of

each tier could be obtained iteratively as

ρ̄
(n+1)
1 =

γλuLA1

λ1W log2 (1 + τ)

(
1 + A1ρ̄

(n)
1 Z + A1

λ2

λ1
·
(

P2

P1

) 2
α
ρ̄
(n)
2 Z

) (5.7a)
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ρ̄
(n+1)
2 =

γλuLA2

λ2W log2 (1 + τ)

(
1 + A2ρ̄

(n)
2 Z + A2

λ1

λ2
·
(

P1

P2

) 2
α
ρ̄
(n)
1 Z

) (5.7b)

Note that ρ̄
(n)
1 and ρ̄

(n)
2 are the average traffic intensities after n-th iterations. The follow-

ing lemma proves the convergence of (5.7).

Lemma 4.1. Solving the fixed-point equations (5.1) by the iterative method (5.7) con-

verges to a unique set of points, which is the solution of (5.1).

Proof. By substituting (5.3) into (5.7), and denoting δ1 = A1Z and δ2 = A2Z, we have

ρ̄
(n+1)
1 =

β1

1 + δ1ρ̄
(n)
1 + θ1ρ̄

(n)
2

, (5.8a)

ρ̄
(n+1)
2 =

β2

1 + δ2ρ̄
(n)
2 + θ2ρ̄

(n)
1

. (5.8b)

Meanwhile, we have shown in Corollary 1 that (5.1) has a unique solution of ρ̄1 and ρ̄2,

which is denoted as as ρ̄∗1 and ρ̄∗2, respectively. By initializing the iteration with ρ̄
(0)
1 < ρ̄∗1

and ρ̄
(0)
2 < ρ̄∗1, we have

ρ̄
(1)
1 =

β1

1 + δ1ρ̄
(0)
1 + θ1ρ̄

(0)
2

>
β1

1 + δ1ρ̄∗1 + θ1ρ̄∗2
= ρ̄∗1, (5.9a)

ρ̄
(1)
2 =

β2

1 + δ2ρ̄
(0)
2 + θ2ρ̄

(0)
1

>
β1

1 + δ2ρ̄∗2 + θ2ρ̄∗1
= ρ̄∗2, (5.9b)

and

ρ̄
(2)
1 =

β1

1 + δ1ρ̄
(1)
1 + θ1ρ̄

(1)
2

<
β1

1 + δ1ρ̄∗1 + θ1ρ̄∗2
= ρ̄∗1, (5.9c)

ρ̄
(2)
2 =

β2

1 + δ2ρ̄
(1)
2 + θ2ρ̄

(1)
1

<
β1

1 + δ2ρ̄∗2 + θ2ρ̄∗1
= ρ̄∗2. (5.9d)
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Therefore, we conclude without loss of generality that ρ̄
(2n)
k < ρ̄∗k and ρ̄

(2n+1)
k > ρ∗k where

k ∈ {1, 2}. On the other hand, if we set a sufficiently small initial ρ̄
(0)
k , for example,

ρ̄
(0)
1 = ρ̄

(0)
2 = 0, we have

ρ̄
(2)
k > 0 = ρ̄

(0)
k , k ∈ {1, 2} , (5.10a)

and

ρ̄
(3)
1

ρ̄
(1)
1

=
1 + δ1ρ̄

(0)
1 + θ1ρ̄

(0)
2

1 + δ1ρ̄
(2)
1 + θ1ρ̄

(2)
2

< 1,

ρ̄
(3)
2

ρ̄
(1)
2

=
1 + δ2ρ̄

(0)
2 + θ2ρ̄

(0)
1

1 + δ2ρ̄
(2)
2 + θ2ρ̄

(2)
1

< 1. (5.10b)

By assuming ρ̄
(2n+2)
k /ρ̄

(2n)
k > 1 and ρ̄

(2n+1)
k /ρ̄

(2n−1)
k < 1 hold for any given n-th iteration,

we further have

ρ̄
(2n+3)
1

ρ̄
(2n+1)
1

=
1 + δ1ρ̄

(2n)
1 + θ1ρ̄

(2n)
2

1 + δ1ρ̄
(2n+2)
1 + θ1ρ̄

(2n+2)
2

< 1,

ρ̄
(2n+3)
2

ρ̄
(2n+1)
2

=
1 + δ2ρ̄

(2n)
2 + θ2ρ̄

(2n)
1

1 + δ2ρ̄
(2n+1)
2 + θ2ρ̄

(2n+1)
1

< 1, (5.11a)

and

ρ̄
(2n+4)
1

ρ̄
(2n+2)
1

=
1 + δ1ρ̄

(2n+1)
1 + θ1ρ̄

(2n+1)
2

1 + δ1ρ̄
(2n+3)
1 + θ1ρ̄

(2n+3)
2

> 1,

ρ̄
(2n+4)
2

ρ̄
(2n+2)
2

=
1 + δ2ρ̄

(2n+1)
2 + θ2ρ̄

(2n+1)
1

1 + δ2ρ̄
(2n+3)
2 + θ2ρ̄

(2n+3)
1

> 1, (5.11b)

which also hold for the (n+ 1)-th iteration. Therefore, by combining ρ̄
(2n)
k < ρ̄∗k and

ρ̄
(2n+1)
k > ρ̄∗k, it can be concluded that ρ̄

(2n)
k and ρ̄

(2n+1)
k would converge as n → ∞.

Finally, if ρ̄
(2n)
k and ρ̄

(2n+1)
k converge to different points, i.e., lim

n→∞
ρ̄
(2n)
k = ρ̄1,∗k and

lim
n→∞

ρ̄
(2n+1)
k = ρ̄2,∗k where ρ̄1,∗k �= ρ̄2,∗k , (5.1) would hold for both ρ1,∗k and ρ2,∗k , which is

contradictory to Corollary 5.1. Hence, ρ̄1,∗k = ρ̄2,∗k = ρ̄∗k, indicating that ρ̄
(2n)
k and ρ̄

(2n+1)
k

would converge to ρ̄∗k.
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In a lightly-loaded network scenario where the mean packet arrival of each user γ is

low, (5.1) can be written as

ρ̄k ≈ γλuLAk

λkW log2 (1 + τ)
·
(
1− Ak

2∑
j=1

λjP
− 2

α
j ρ̄jZ

)
, (5.12)

by using the approximation 1/ (1 + x) ≈ 1− x when x is small. According to (5.12), we

then have the explicit expressions of the average traffic intensity of each tier, i.e.,

ρ̄1 =
θ1 −

(
A2Z + 1

β2

)
θ1θ2 −

(
A1Z + 1

β1

)(
A2Z + 1

β2

) , (5.13a)

ρ̄2 =
θ2 −

(
A1Z + 1

β1

)
θ1θ2 −

(
A1Z + 1

β1

)(
A2Z + 1

β2

) , (5.13b)

where β1, β2, θ1 and θ2 are given in (5.3).

To this end, we have obtained the average traffic intensity ρ̄k of each tier. We will

further characterize the cumulative distribution function of ρk,i in the following subsection.

5.3.2 Cumulative Distribution Function of Traffic Intensity

According to (2.5), the traffic intensity ρk,i relies on two random variables, i.e., the number

of associated users Nk,i and the SIR coverage Sk,i. As Nk,i and Sk,i depends on each other,

it is difficult to characterize the distribution of ρk,i exactly. To simplify analysis, we use

the approximation that Sk,i is identical across BSs of one tier and equals the SIR coverage

of this tier, i.e., Sk,i = Sk. The traffic intensity can then be written as

ρk,i =
γNk,iSkL

W log2 (1 + τ)
. (5.14)

It can be clearly seen from (5.14) that the distribution of the traffic intensity ρk,i now

is solely determined by the number of associated users Nk,i, which is a discrete random
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variable. The following corollary gives the probability mass function of the traffic intensity

ρk,i.

Corollary 5.2. The probability mass function of the traffic intensity ρk,i is given by

Pr

[
ρk,i =

γSkLn

W log2 (1 + τ)

]
= 3.53.5

λn
u

n!

(
λk

Ak

)3.5

n−1∏
i=0

3.5 + i(
λu + 3.5 λk

Ak

)n+3.5 . (5.15)

Proof. Recall that users form a PPP distribution with the intensity λu. With a given

association area Tk, the distribution of the number of associated users Nk,i is given by

Pr [Nk,i = n |Tk ] =
(λuTk)

ne−λuTk

n!
. (5.16)

Meanwhile, according to [130], the association area of a random Tier-k BS, Tk, follows

the following probability density function (PDF)

fTk
(Tk) =

3.53.5λk

Γ (3.5)Ak

(
λkTk

Ak

)2.5

e
−3.5

λkTk
Ak , (5.17)

where Γ (x) =
´∞
0

tx−1e−tdt. Therefore, the probability mass function (PMF) of Nk,i can

be written as

Pr [Nk,i = n] =

ˆ ∞

0

Pr [Nk,i = n |Tk ] · fTk
(Tk) dTk

=

ˆ ∞

0

(λuTk)
ne−λuTk

n!
· 3.53.5λk

Γ (3.5)Ak

(
λkTk

Ak

)2.5

e
−3.5

λkTk
Ak dTk

=
3.53.5λn

u

Γ (3.5)n!

(
λk

Ak

)3.5

·

n−1∏
i=o

3.5 + i(
λu + 3.5 λk

Ak

)n

ˆ ∞

0

T 2.5
k e

−
(
λu+3.5

λk
Ak

)
TkdTk

= 3.53.5
λn
u

n!

(
λk

Ak

)3.5

n−1∏
i=0

3.5 + i(
λu + 3.5 λk

Ak

)n+3.5 . (5.18)

Finally, (5.15) can be obtained by combining (5.14) with (5.18).
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According to Corollary 5.2, the cumulative distribution function (CDF) of ρk,i can then

be written as

Pr [ρk,i < ρ] = Pr

[
γSkLNk,i

W log2 (1 + τ)
< ρ

]

=
N∑

n=0

3.53.5
λn
u

n!

(
λk

Ak

)3.5

n−1∏
i=0

3.5 + i(
λu + 3.5 λk

Ak

)n+3.5 , (5.19)

where N =
⌊
W log2(1+τ)

γSkL

⌋
is the maximum number of associated users as we assume that

each BS is unsaturated. It will be demonstrated in Section 5.5 that the analysis in

(5.19) is close to the simulation results, indicating that the approximation achieves a

good accuracy.

5.4 QoS Constrained Network Average Power Con-

sumption Optimization

It has been shown in Section 5.3 that the traffic intensity depends on the density of active

micro BSs, i.e., λ2 = ελd
2. As the power consumption of a BS varies significantly between

the busy and the idle states, the network energy efficiency is critically determined by the

activation ratio ε of micro BSs. Therefore, we formulate a network average power con-

sumption minimization problem under the QoS constraints of the network SIR coverage

and the network mean queuing delay as

min
ε

P, (5.20a)

s.t. S > Ŝ, (5.20b)

D < D̂. (5.20c)
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where P denotes the network average power consumption per area; Constraint (5.20b)

indicates that the network SIR coverage S does not drop below a certain threshold Ŝ;

Constraint (5.20c) guarantees that the network mean queuing delay D does not exceed a

target value D̂. We will further derive the network average power consumption per area

P , the network SIR coverage S, and the network mean queuing delay D in the following.

5.4.1 Performance Metrics

Network Average Power Consumption Per Area

According to [95], the power consumption of an active Tier-k BS in busy state Pk,T can

be written as Pk,T = Pk,s +ΔkPk where Pk,s denotes the power consumption of its signal

processing and battery leakage, and Δk denotes its cooling and feeder loss. The BS in the

idle state would consume less energy than it does in the busy state. Therefore, we use an

idle state coefficient ηk < 1 to denote the power consumption ratio of an active Tier-k BS

between the idle state and the busy state. The power consumption of an active Tier-k BS

in the idle state can then be written as Pk,I = ηkPk,T. In consideration that if the power

consumption of one active BS is higher in the busy state, its power consumption in the

idle state will also be higher, the coefficient ηk is assumed to be identical across tiers, i.e.,

η1 = η2 = η, for simplicity.

Therefore, the average power consumption of an active Tier-k BS can be written as

Pk,av = E [ρk,iPk,T + Pk,I (1− ρk,i)] = Pk,TE [ρk,i] + ηPk,T − ηPk,TE [ρk,i]

= (1− η)Pk,Tρ̄k + ηPk,T. (5.21)

The network average power consumption per area P can then be written as

P =
2∑

k=1

λk (1− η)Pk,Tρ̄k + λkηPk,T

= λd
1P1,T [(1−η) ρ̄1 + η] + ελd

2P2,T [(1−η) ρ̄2 + η] , (5.22)
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By having a larger activation ratio, the average busy probability of each active BS can

be reduced by offloading the traffic pressure to more active Tier-2 BSs, leading to a lower

average power consumption of an individual BS. On the other hand, the network power

consumption increases as the number of active Tier-2 BSs increases. Therefore, there

exists an optimal activation ratio ε̄ to minimize the network average power consumption

per area.

QoS Constraints

In this subsection, we first characterize the constraint of the network SIR coverage. Ac-

cording to (2.22), the network SIR coverage can be obtained as

S =

2∑
k=1

AkSk =
2∑

k=1

Ak

1 + Ak

2∑
j=1

λ̃jP̃
2/α
j ρ̄jZ

. (5.23)

(5.20b) can then be written as

2∑
k=1

Ak

1 + Ak

2∑
j=1

λ̃jP̃
2/α
j ρ̄jZ

> Ŝ. (5.24)

Numerical results show that (5.24) can be converted to a lower bound of Tier-2 BS

activation ratio εsmin. Fig. 5.1 demonstrates how the lower bound of the activation ratio

εsmin varies with the network SIR coverage threshold Ŝ with various values of the mean bit

arrival rate per area γλuL. It can be observed from Fig. 5.1 that with a given γλuL, ε
s
min

monotonically increases as the threshold Ŝ increases. Intuitively, as we consider queuing

in the BSs, the network SIR coverage (5.23) is not only determined by the number of

interferers but also is affected by the queuing performance of each BS. Although the

number of interfering sources increases by activating more Tier-2 BSs, the probability

that one BS is in the busy state can be significantly reduced, which offsets the effect of

the increment of the number of BSs. Therefore, as the threshold Ŝ increases, the lower
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Figure 5.1: The lower bound of Tier-2 BS activation ratio εsmin versus the network SIR
coverage threshold Ŝ. The system parameters can be found in Table I.

bound of the activation ratio εsmin becomes larger, which indicates that more Tier-2 BSs

should be switched on.

In the following, we further study the constraint of the network mean queuing delay.

Since each BS is modeled as a M/D/1 queuing system, the mean queuing delay of Tier k

can be obtained as

Dk = E

[
1

μk (1− ρk,i)

]
. (5.25)

According to Corollary 5.2, (5.25) can be written as

Dk =
∑
n

L

W log2 (1+τ)−γSkLn
Pr

[
ρk,i=

γSkLn

W log2 (1+τ)

]

=
N∑

n=0

3.53.5L

W log2 (1 + τ)− γSkLn
· λ

n
u

n!

(
λk

Ak

)3.5

n−1∏
i=0

3.5 + i(
λu + 3.5 λk

Ak

)n+3.5 . (5.26)

The network mean queuing delay can thus be written as

D =
2∑

k=1

λk

λ1 + λ2

Dk =
λd
1

λd
1 + ελd

2

D1 +
ελd

2

λd
1 + ελd

2

D2, (5.27)
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Figure 5.2: The lower bound of Tier-2 BS activation ratio subject to the network mean
queuing delay threshold D̂. The system parameters can be found in Table I.

and the constraint (5.20c) is then given by

λd
1

λd
1 + ελd

2

D1 +
ελd

2

λd
1 + ελd

2

D2 < D̂. (5.28)

Similarly, numerical results demonstrate that the constraint (5.28) can be translated

into another lower bound of the activation ratio εdmin. Fig. 5.2 demonstrates how the lower

bound εdmin varies with the network mean queuing delay threshold D̂ with various values

of the mean bit arrival rate per area γλuL. It can be observed from Fig. 5.2 that the lower

bound εdmin decreases as the threshold D̂ increases. Intuitively, as more Tier-2 BSs are

activated, the probability that a BS is in the idle state decreases. The queuing condition

of the network can thus be improved with a larger εdmin, indicating a lower network mean

queuing delay. Therefore, as the network mean queuing delay threshold D̂ decreases, more

Tier-2 BSs needs to be activated.



100 Chapter 5. Queue-Aware Energy Efficient BS Density Optimization in HetNets

5.4.2 QoS Constrained Network Average Power Consumption

Minimization

By combining (5.22), (5.24) and (5.28), the QoS constrained network average power con-

sumption optimization problem can be rewritten as

min
ε

λd
1P1,T [(1−η) ρ̄1 + η] + ελd

2P2,T [(1−η) ρ̄2 + η] , (5.29a)

s.t.
2∑

k=1

Ak

1 + Ak

2∑
j=1

λ̃jP̃
2/α
j ρ̄jZ

> Ŝ, (5.29b)

λd
1

λd
1 + ελd

2

D1 +
ελd

2

λd
1 + ελd

2

D2 < D̂. (5.29c)

Since ρ̄k does not have an explicit expression, it is difficult to obtain a closed-form

solution of the optimization problem (5.29). The optimal Tier-2 BS activation ratio

can be obtained numerically. Recall that the constraints (5.29b) and (5.29c) can be

translated into ε > εsmin and ε > εdmin. The QoS constraints in (5.29) is thus equivalent

to ε > εmin = max{εdmin, ε
s
min}. On the other hand, it has been shown in Section 5.4.1

that there exists an optimal activation ratio ε̄ to minimize the network average power

consumption per area P . Therefore, if ε̄ > εmin, the optimal solution of (5.29) can be

obtained as ε∗ = ε̄. Otherwise, as the network average power consumption per area

P monotonically increases when ε > εmin, the optimal solution is given by ε∗ = εmin.

By combining the above two cases, the optimal solution of (5.29) can be written as

ε∗ = max{ε̄, εmin} = max{ε̄, εdmin, ε
s
min}.

5.5 Simulation Results

In this section, we will demonstrate the simulation results to verify the proceeding anal-

ysis in Section 5.3 and Section 5.4. The locations of BSs and users are distributed as



5.5 Simulation Results 101

Table 5.1: Simulation Parameters

Parameter Value

User Density λu 10−3 m−2

Tier-1 BS Deployment Density λd
1 1.5 ∗ 10−5 m−2

Tier-2 BS Deployment Density λd
2 1.5 ∗ 10−4 m−2

Tier-1 BS Transmission Power P1 20 W

Tier-2 BS Transmission Power P2 6 W

Tier-1 BS Fixed Power Consumption P1,s 100 W

Tier-2 BS Fixed Power Consumption P2,s 25 W

Tier-1 Power Consumption Coefficient Δ1 4.7

Tier-2 Power Consumption Coefficient Δ2 2.6

Total Bandwidth W 12 MHz

Path-Loss Coefficient α 4

SIR Threshold τ 1

Mean Packet Length L 0.01 Mb

independent PPPs over a square region of size 5 × 5 km2. Monte Carlo simulations are

performed over different topologies. The system parameters are shown in Table 5.1.

5.5.1 Traffic Intensity

It has been shown in Section 5.3 that the average traffic intensity of each tier is uniquely

determined by a set of fixed-point equations, and can be obtained numerically by an

iterative approach. Fig. 5.3 demonstrates how the average traffic intensity ρ̄k varies with

the Tier-2 BS activation ratio ε. It can be observed from Fig. 5.3 that the average

traffic intensity of each tier ρ̄k decreases as the activation ratio ε increases or as the mean

packet arrival rate γ of each user decreases. Intuitively, with a higher ε or a lower γ, the

queuing performance of the BSs of both tiers improves due to a lower aggregate packet
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Figure 5.3: Average traffic intensity ρ̄k versus the Tier-2 BS activation ratio ε.

arrival rate of each individual BS. Therefore, BSs have a higher probability of being idle.

Simulation results match with the analysis well, which confirms that it serves as a good

approximation to regard the locations of busy BSs as a homogeneous thinned PPP.

Recall that in Section 5.3 the CDF of the traffic intensity ρk,i of each BS has been

derived as (5.3.2). Fig. 5.4 illustrates the CDF of the traffic intensity Pr [ρk,i < ρ]. It can

be observed from Fig. 5.4 the simulation results are close to the analysis. However, due

to the approximation of replacing the SIR coverage of each individual BS with the SIR

coverage of its tier, there exists a small gap between the simulation and analytical results.

5.5.2 Performance Metrics

The network SIR coverage has been derived as (5.23) in Section 5.4.1. Fig. 5.5(a) shows

how the network SIR coverage S varies with the Tier-2 BS activation ratio ε with various

values of the mean bit arrival rate per area γλuL. It can be observed that the network
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Figure 5.4: Cumulative distribution function of the traffic intensity Pr [ρk,i<ρ].
γλuL=17 Mbps/km2.

SIR coverage increases with the activation ratio ε. Intuitively, although the number of

potential interferers becomes higher with a larger Tier-2 BS activation ratio ε, the traffic

load can be effectively balanced by the additional activated Tier-2 BSs, in which case

BSs of all tiers have a higher probability of being idle and thus are less likely to interfere

with each other. Hence, the network SIR coverage increases with the activation ratio ε.

Furthermore, Fig. 5.5(a) demonstrates that with a given activation ratio ε, the network

SIR coverage decreases as the mean bit arrival rate per area γλuL increases. With a

higher mean bit arrival rate per area, BSs are more likely to be busy transmitting packets

to their users, which leads to a worse network SIR coverage.

On the other hand, the network mean queuing delay has been derived as (5.27) in

Section 5.4.1. Fig. 5.5(b) demonstrates how the network mean queuing delay D varies

with the Tier-2 BS activation ratio ε with various values of the mean bit arrival rate per

area γλuL. It can be observed from Fig. 5.5(b) that the network mean queueing delay D

decreases as the activation ratio ε increases or as the mean bit arrival rate per area γλuL
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(a) (b) (c)

Figure 5.5: QoS constrained power consumption optimization problem. η = 0.08. (a)
Network SIR coverage S versus the Tier-2 BS activation ratio ε. (b) Network mean
queuing delay D versus the Tier-2 BS activation ratio ε. (c) Network average power
consumption per area P versus the Tier-2 BS activation ratio ε.

decreases due to a better queuing performance of each BS. A small gap can be observed

from Fig. 5.5(b), which diminishes as ε increases. For instance, if γλuL = 17Mbps/km2,

the gap becomes less than 0.5ms when ε exceeds 0.4.

Based on the average traffic intensity ρ̄k, the network average power consumption per

area P has been derived as (5.22) in Section 5.4.1. Fig. 5.5(c) illustrates how P varies with

the Tier-2 BS activation ratio ε. It can be observed from the Fig. 5.5(c) that when the

activation ratio ε is small, the average network power consumption per area P decreases as

ε increases; when ε becomes large, nevertheless, the average network power consumption

per area P increases as ε increases. Intuitively, when ε is small, the load pressure of the

network can be effectively balanced by switching on more Tier-2 BSs. BSs of both tiers

thus are more likely to be idle, which improves the network energy efficiency. However, as

the ε further increases, too many Tier-2 BSs are activated to consume energy. It can be

observed from Fig. 5.5(c) that by carefully choosing the Tier-2 BS activation ratio, the

average network power consumption per area can be optimized. For example, when the

mean bit arrival rate per area γλuL = 15Mbps/km2, the optimal activation ratio is given
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Figure 5.6: Optimal Tier-2 BS activation ratio ε∗ versus the idle state coefficient η.
Ŝ = 0.85 and D̂ = 10 ms.

by ε̄ = 0.5.

5.5.3 Optimal Activation Ratio

Recall in Section 5.4.1 that the optimal activation ratio of the QoS constrained power

consumption optimization problem (5.29) can be written as ε∗ = max{εmin, ε̄} where εmin

denotes the lower bound of the activation ratio subject to the constraints (5.29b) and

(5.29c), and ε̄ denotes the optimal activation ratio to minimize the network average pow-

er consumption per area P . As the BS power consumption in the idle state is critically

determined by the idle state coefficient η, Fig. 5.6 demonstrates how the optimal activa-

tion ratio ε∗ varies with the coefficient η with various values of the mean bit arrival rate

per area γλuL. It can be observed from Fig. 5.6 that both ε̄ and εmin increase as γλuL

increases. Intuitively, with a higher mean bit arrival rate per area γλuL, the active BSs

would be more likely to be busy, leading to a worse QoS and a lower energy efficiency.

Therefore, larger ε̄ and εmin are preferred to improve the queuing performance and the
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energy efficiency, respectively. As a result, the optimal solution ε∗=max {ε̄, εmin} increases
as γ increases.

On the other hand, it can be observed that ε̄ decreases as η increases. As εmin does

not depend on the idle state coefficient η, there exists a certain threshold η∗, such that if

η > η∗, we have ε̄ > εmin and ε∗ = ε̄; otherwise, we have ε̄ < εmin and ε∗ = εmin. Intuitively,

when η is small, the BS power consumption in the idle state is low. The average power

consumption of each individual BS could be effectively reduced by switching on more

Tier-2 BSs. Therefore, the optimal activation ratio ε̄ to minimize the network average

power consumption exceeds its lower bound εmin to guarantee users’ QoS. When η is

large, nevertheless, the BS power consumption in the idle state should sharply increase

by activating too many Tier-2 BSs. ε̄ thus tends to be small to save energy. In this case,

ε̄ could be lower than εmin, and the optimal fraction of Tier-2 BS to switch on should be

ε∗ = εmin.

5.6 Comparison of Universal Frequency Reuse and

Spectrum Partitioning

Throughout this chapter, universal frequency reuse (UFR) is assumed where BSs of both

tiers could interfere with each other. A great deal of previous studies, nevertheless,

proposed spectrum partitioning (SP) to mitigate the inter-tier interference in HetNets. As

it was assumed in these studies that one BS is transmitting all the time, the interference is

only determined by the density of interfering BSs. By considering queuing, the interference

level depends on both the number of co-channel BSs and the queuing status of these BSs.

As a result, the interference will not necessarily deteriorate by adopting UFR due to

a better queuing performance of the BSs. Therefore, we conduct a comparative study

between UFR and SP in this section to see whether SP can still perform better in terms
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(a) (b) (c)

Figure 5.7: Comparison between universal frequency reuse and spectrum partitioning.
η = 0.08 and γλuL = 17Mbps/km2 (a) Average traffic intensity ρ̄k versus the Tier-2 BS
activation ratio ε. (b) Network average power consumption per area P versus the Tier-2
BS activation ratio ε. (c) Network SIR coverage S versus the Tier-2 BS activation ratio
ε.

of the network energy efficiency and SIR coverage. Note that with SP in a 2-tier HetNet,

the whole bandwidth W is divided into two orthogonal bands W1 and W2. Detailed

derivations of the network average power consumption per area and the network SIR

coverage under the assumption of SP can be found in Chapter 4 and are omitted here.

Fig. 5.7(a) compares the average traffic intensity ρ̄k with UFR and SP, respectively. It

can be observed from Fig. 5.7(a) that the average traffic intensities of both tiers, i.e., ρ̄1

and ρ̄2, can be significantly reduced by adopting UFR. Intuitively, by sharing the whole

spectrum across both tiers, the service rate of each BS is higher, leading to a lower busy

probability of each individual BS. As a result, it can be observed from Fig. 5.7(b) that

the network average power consumption per area P can be greatly reduced by adopting

UFR, which indicates that UFR can achieve better energy efficiency over SP.

Fig. 5.7(c) further illustrates the network SIR coverage S under the assumption of

UFR and SP, respectively. It can be observed from Fig. 5.7(c) that by adopting UFR,

the network SIR coverage S even performs better than that by adopting SP. Intuitively,
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although the inter-tier interference is incurred by reusing the spectrum resources, the

average BS busy probability ρ̄k is reduced simultaneously due to a higher bandwidth.

Therefore, the inter-tier interference can be mitigated by the decrement of ρ̄k, due to

which the SIR coverage can be improved. It can be concluded from Fig. 5.7(b) and Fig.

5.7(c) that in the considered scenario the strategy of UFR is preferred over SP.

Note that power control can be applied to SP to reduce the power consumption. In

particular, the transmission power of each tier can be optimally tuned such that the net-

work average power consumption per area can be minimized. For the sake of comparison

between UFR and SP, we assume that the average transmission power per area of SP

equals that of UFR, which is given by λ1P1 + ελ2P2 = (300 + 900ε)W/km2 according to

Table 5.1. For SP with power control, the optimal transmission power of each tier can

then be obtained by solving the following optimization problem

min
{P1,P2}

P, (5.30a)

s.t. λ1P1 + ελ2P2 = (300 + 900ε)W/km2, (5.30b)

where P is given by (4.5). Fig. 5.8 illustrates how the network minimum average power

consumption per area for SP with power control, i.e., (5.30a), varies with the activation

ratio ε. By comparing Fig. 5.8 with Fig. 5.7, it can be observed that although the

network average power consumption per area P with SP is reduced by applying power

control, it is still higher than that of UFR. Therefore, it can be concluded that UFR does

have better performance over SP even if power control is applied by considering queuing.

5.7 Conclusions

This chapter has studied how to improve energy efficiency by optimally activating a frac-

tion of micro BSs in a 2-Tier HetNet under the QoS constraints of the network SIR
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Figure 5.8: The network average power consumption per area P between universal
frequency reuse and spectrum partitioning with power control. η = 0.08 and γλuL =
17Mbps/km2. For universal frequency reuse, P1 = 20W and P2 = 6W. For spectrum
partitioning with power control, P1 and P2 are obtained by solving (5.30)

coverage and the network mean queuing delay. It is shown that if the idle power coeffi-

cient is below a certain threshold, the optimal solution should equal the activation ratio

to minimize the network average power consumption per area. Otherwise, the optimal

activation ratio should be obtained according to the QoS constraints. Simulation results

illustrate a significant improvement on the network energy efficiency by carefully choosing

the activation ratio. It is further revealed that by taking queuing into account, universal

spectrum reuse outperforms spectrum partitioning in terms of energy efficiency and SIR

coverage in the considered scenario.
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Chapter 6

Optimal Biased Association Scheme

with Non-Uniform User Distribution

So far, Chapter 3, 4 and 5 have studied how to tune the optimal biasing factor of each tier,

the bandwidth allocated to each tier, and the micro BS deployment density in HetNets,

respectively, by taking queuing into consideration. Since the impact of a more practi-

cal characterization of the user distribution on the system performance still remains as

an open problem, which is mentioned in Section 1.3, we will study the optimal biased

association scheme with non-uniform user distribution in this chapter. In particular, in

contrast to previous studies where users are usually assumed to be uniformly distributed,

and thereby a per-tier SINR biasing factor is used to balance the load of BSs among

different tiers, we examine in this chapter a scenario that one cell is overloaded, i.e., has

a higher user intensity. In this case, the adjustment of the per-tier biasing factor becomes

unreasonable, and thus we propose to adjust the biasing factor of the overloaded cell to

offload the traffic to its surrounding cells. By maximizing the mean user utility in the

area of this overloaded cell and its neighboring cells, the optimal biasing factor can be

obtained. It is found that in the scenario where the overloaded cell is fully surrounded by

111
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a macro cell, the optimal biasing factor logarithmically decreases with the user’s intensity

of the overloaded cell. Numerical results demonstrate that by using the optimal biasing

factor of the overloaded cell in the considered scenario, both the mean user rate in the

overloaded cell and the that of the whole network can be increased significantly compared

to the traditional per-tier biased scheme without the adjustment of the overloaded cell

in the literature. Our analysis in this chapter provides guidance on the optimal tuning

of the biasing factor of an overloaded cell and, is a step forward towards the goal of the

adjustment of the biasing factor in a per-station fashion under heterogeneous spatial user

distribution.

6.1 Introduction

Recall that in HetNets, even with a targeted deployment where these small-scale BSs are

placed in high-traffic zones, most users will still receive the strongest downlink signal from

the tower-mounted macro BS, thus causing the load imbalance across tiers. Therefore, as

a key component to realize the potential of capacity enhancement with the architecture

of HetNets, biased association scheme has long been studied and attracted extensive

attention [46,66–68]. A detailed review can be found in Section 1.2.1.

However, the aforementioned studies [46, 66–68] assume homogeneous user distribu-

tion, i.e., users have a uniform population density. A per-tier biased scheme is thus

adopted where BSs of the same tier share an identical biasing factor. In practice, how-

ever, users might not be evenly distributed. To be specific, users might form a cluster in

some areas such as Hotspots. In such cases, the tuning of the biasing factor in a per-tier

fashion would not relieve the traffic pressure in the overloaded areas, and a per-station

biased scheme is thus preferable [30]. Although we follow a similar utility maximization

approach in [68], this chapter examines a different scenario where one cell is overloaded
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with a cluster of users, and thus the biasing factor of this particular cell is tuned based

on its load condition. To the best of the our knowledge, this study is the first to propose

a user intensity oriented biased scheme in the context of non-uniform user distribution

in HetNets, and is a step forward towards the goal of tuning the biasing factor in a

per-station fashion.

The contributions of this chapter are summarized as follows.

• A load-aware biased association scheme is proposed where the overloaded BS op-

timally adjusts its biasing factor according to its load condition by maximizing a

utility function of the mean user rate;

• It is demonstrated that in a simple scenario where the overloaded cell is adjacent to

only a macro cell, the optimal biasing factor of the overloaded BS can be perfectly

fitted as a log-linear function of its user density of the overloaded cell. This obser-

vation greatly facilitates the implementation of the proposed scheme in practice;

• Simulation results show that although the performance of the macro cell deteri-

orates, the proposed scheme can significantly improve the mean user rate in the

overloaded cell from 23% to 87% as the average number of cluster users increases

from 10 to 80 compared to the previous biased scheme without the adjustment of

the overloaded cell, and the overall mean user rate performance is also improved

due to load balancing.

The rest of this chapter is organized as follows. System model is presented in Section

6.2. An optimization problem to maximize mean user utility is formulated in Section 6.3.

A simple scenario is examined in Section 6.4. Simulations results are presented in Section

6.5. Conclusions and future works are given in Section 6.6.
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6.2 System Model

6.2.1 Network Topology

Consider a K-Tier heterogeneous network with fixed locations of BSs. Each user in the

network is associated with one of these BSs. We assume all the BSs share the spec-

trum. Therefore, for each user in the downlink, the associated BS acts as a desired signal

transmitter while other BSs act as interfering sources. In contrast to previous studies

where users are usually assumed to follow a homogeneous PPP with a uniform intensi-

ty [46,66–68], we consider in this chapter that one cell has a different user density, which

is a typical scenario in our daily life. For instance, the association region of a cell can be

one hall or one room where people attend a lecture or enjoy a concert and thus form a

cluster. As Fig. 6.1 illustrates, users in the whole area form a homogeneous PPP with the

intensity λr while in one cell (the shaded area) there are additional users following another

independent PPP with the intensity λc. As such, users in this cell form a superposition of

two independent PPP with the intensity λr and λc, which mimics the case that this cell is

overloaded when λc > 0. In the following, we refer to the users that follow a homogeneous

distribution in the whole region as regular users, and those additional users inside the

overloaded cell as cluster users. Denote this overloaded cell as C0 = {BS0, A0} with a

Tier-k0 ∈ {1, . . . , K} base station BS0 and its corresponding association region as A0.

Without loss of generality, we assume that Cell C0 is adjacent to Cell Cm = {BSm, Am},
m = 1, . . . ,M , where BSm belongs to Tier km ∈ {1, . . . , K} and Am is the corresponding

association region. Note that C0 is adjacent to Cm as long as A0 ∩ Am �= ∅1.
1A0 ∩Am is the boundary of two cells, and they are adjacent to each other if it is not a void set.
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Figure 6.1: Illustration of the network topology. (a) Without adjustment of the biasing
factor of the overloaded cell. (b) With adjustment of the biasing factor of the overloaded
cell.

6.2.2 Association Region and Biasing Factor

For a random user, its received power PR from a BS can be written as

PR = PSd
−α
S gS, (6.1)

where PS is the transmission power of the BS and dS is the distance from this user to

the BS. Note that α is the path loss coefficient which is assumed to be the same for all

the BSs for simplicity, and gS is the small-scale coefficient which is assumed to follow an

independent and identical exponential distribution of unit mean, i.e., gS ∼ exp {1}.
Without cluster users, i.e., λc = 0, all the users form a homogeneous PPP with the

intensity λr. In this case, each user is associated to the BS with the maximum biased

received power [59]. The tier of the associated BS is then given by

arg max
k=1,...,K

fkPkd
−α
k,min, (6.2)

where fk is the per-tier biasing factor reflecting association preference of a random user
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towards a Tier-k BS, Pk is the transmission power of a Tier-k BS and dk,min is the distance

between the user and its nearest Tier-k BS.

When a cluster of users appear in the association region of Cell C0, i.e., λc > 0, these

users will also associate with BS0 if the per-tier biasing factor is adopted. In this case,

as the number of cluster users increases, each user would share a diminishing fraction

of resources of the overloaded C0. To improve the performance of these users, some of

them should be offloaded to the neighboring cells. Intuitively, the per-tier bias may not

be reasonable as the load of other BSs of the same tier does not change. Therefore, in

this chapter we propose to tune the biasing factor of the overloaded BS based on its load

condition.

In particular, we aim to characterize the biasing factor of Cell C0, f
′
k0
. It is clear

that with λc > 0, BS0 should decrease the biasing factor to offload its edge users to

neighboring cells, thus we have f ′
k0

< fk0 . As for the M neighboring cells, the biasing

factor remains the same, i.e., for Cell Cm where m = 1, . . . ,M , its biasing factor equals

fkm where km ∈ {1, . . . , K}. Hence, for each user in the region of the overloaded cell and

its M neighboring cells, it would associate with BSi, and the index i is given by

i = arg max
m=0,...,M

βm, (6.3)

where βm =

⎧⎪⎨⎪⎩ fkmPkmd
−α
km

m = 1, ...,M

f ′
k0
Pk0d

−α
k0

m = 0
.

Here Pkm and dkm refer to the transmission power of BSm and the distance of the user to

that BS, respectively.

As f ′
k0

< fk0 , the association regions of the M neighboring cells expand while that of

C0 shrinks. In the following, we denote Am and A′
m as the association regions with the

biasing factor fk0 and f ′
k0
, respectively, and ΔAm as the corresponding changed association

region.
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6.2.3 Mean User Rate

Similar to [68], we consider a fixed rate modulation and coding format, and assume that

the interference dominates the background noise. In this case, a BS could serve a user

only when the user’s instantaneous SIR exceeds a threshold τ . By denoting I as the

interference, the spectrum efficiency can be obtained as

η =

⎧⎪⎪⎨⎪⎪⎩
log2(1 + τ) SIR � τ

0 SIR < τ

, (6.4)

where

SIR =
PSd

−α
S gS
I

(6.5)

according to (6.1). In addition, we adopt equal resource allocation, which is shown to

maximize the proportional fairness [46]. By denoting N and W as the number of users

associated to a BS and the total bandwidth, respectively, the spectrum allocated to each

user that is associated to this BS can then be written as W/N . By combining (6.4) and

(6.5), the mean rate of one user can be obtained as

R =
W

N
· log2 (1 + τ) Pr (SIR � τ) . (6.6)

6.3 Mean User Utility Optimization

In this section we will derive the mean user utility. To strike a balance between through-

put and fairness, the utility is defined as a logarithmic function of the mean user rate.

By maximizing the mean user utility, we aim to find the optimal biasing factor for

the overloaded BS. As mentioned in Section 6.2.2, the adjustment of the biasing fac-

tor for the overloaded BS only affects the association regions of this overloaded cell

and its M neighboring cells. Therefore, we only need to consider the mean user utili-

ty concerning theses M+1 cells. Let PrA and RA denote the probability and the mean
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rate of a random user, respectively, given that this user is located in Region A, where

A ∈ {A′
0, A1, A2, . . . , AM ,ΔA1,ΔA2, . . . ,ΔAM}. The mean user utility can then be writ-

ten as

U =
M∑

m=1

{
PrAmE

[
log

(
RAm

)]
+ PrΔAmE

[
log

(
RΔAm

)]}
+ PrA′

0
E
[
log

(
RA′

0

)]
. (6.7)

It is clear from (6.7) that the mean user utility is determined by the probability of a user

being located in a Region A, PrA, and the mean logarithm of the user rate in that region,

E
[
log

(
RA

)]
. In the following, we will derive these two components.

6.3.1 Probability of A Random User’s Location

As mentioned in Section 6.2.1, regular users form a PPP in the region
⋃M

m=0 Am with

the intensity λr while cluster users form an independent PPP with the intensity λc. De-

noting SA as the association area of Region A, where A ∈ {A′
0, A1, A2, . . . , AM ,ΔA1,

ΔA2, . . . ,ΔAM}, the average number of regular users N r and cluster users N c can then

be obtained as

N r = λr

M∑
m=0

SAm (6.8a)

and

N c = λcSA0 , (6.8b)

respectively. The average number of all users N t is thus given by

N t = N r +N c = λr

M∑
m=0

SAm + λcSA0 . (6.8c)

Denoting Prr and Prc as the probabilities that a random user is a regular user and a

cluster user, respectively. We have, in the former case,

Prr ≈ N r

N t

(6.9a)
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and in the latter case,

Prc ≈ N c

N t

. (6.9b)

By denoting RU and CU as the cases that a random user is a regular user and a cluster

user, respectively, we have

PrA′
0
= Prr · Pr (A′

0|RU) + Prc · Pr (A′
0|CU) =

N rSA′
0

N t

M∑
l=0

SAl

+
N cSA′

0

N tSA0

, (6.10a)

PrΔAm = Prr · Pr (ΔAm|RU) + Prc · Pr (ΔAm|CU) =
N rSΔAm

N t

M∑
l=0

SAl

+
N cSΔAm

N tSA0

, (6.10b)

and

PrAm = Prr · Pr (Am|RU) =
N rSAm

N t

M∑
l=0

SAl

, (6.10c)

where m = 1, . . . ,M , according to (6.8) and (6.9).

6.3.2 Mean Logarithm of User Rate

According to (6.6), we have

E
[
log

(
RA

)]
= log (W log2 (1 + τ))+E [log (Pr (SIRA � τ))] − E [log (Nm)] (6.11)

where SIRA denotes the signal to noise ratio for a random user in Region A, and Nm

is the total number of users associated to BSm,m ∈ {0, . . . ,M}. Similar to [68], the

mean logarithm of BSm’s load, E [log (Nm)], can be approximated as its upper bound

log (E [Nm]). We then have

E [log (N0)] � log (E [N0]) = log
(
(λc + λr)SA′

0

)
(6.12a)
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and

E [log (Nm)] � log (E [Nm]) = log (λr (SAm + SΔAm) + λcSΔAm) , (6.12b)

where m = 1, . . . ,M .

Finally, by substituting (6.10), (6.11) and (6.12) into (6.7), we can obtain the mean

user utility in the overloaded cell and its neighboring M cells. The optimal biasing factor

of the overloaded BS, f ∗, can then be obtained by maximizing the mean user utility,

f ∗ (a)
= argmax

f ′
k0

−
M∑

m=1

N rSAm

N t

M∑
l=0

SAl

· log

⎛⎜⎜⎝N r (SAm + SΔAm)
M∑

m=0

SAm

+
N cSΔAm

SA0

⎞⎟⎟⎠

+
M∑

m=1

⎛⎜⎜⎜⎝ N rSΔAm

N t

M∑
l=0

SAl

+
N cSΔAm

N tSA0

⎞⎟⎟⎟⎠ ·
{
C + E [log (Pr (SIRΔAm � τ))]

− log

⎛⎜⎜⎝N r (SAm + SΔAm)
M∑

m=0

SAm

+
N cSΔAm

SA0

⎞⎟⎟⎠
}

+

⎛⎜⎜⎜⎝ N rSA′
0

N t

M∑
l=0

SAl

+
N cSA′

0

N tSA0

⎞⎟⎟⎟⎠

·
{
C + E

[
log

(
Pr
(
SIRA′

0
� τ

))]− log

⎛⎜⎜⎝
⎛⎜⎜⎝ N c

SA0

+
N r

M∑
m=0

SAm

⎞⎟⎟⎠SA′
0

⎞⎟⎟⎠
}
, (6.13)

where C = log (W log2 (1 + τ)) and (a) follows the fact that optimal biasing factor f ′
k0

does not depend on PrAmE
[
log

(
RAm

)]
.

To this end, we have presented the proposed scheme, which is summarized in the

flowchart in Fig. 6.2. As illustrated in Fig. 6.2, for the base station BS0, it firstly measures

the associated user intensity within the corresponding association region A0, and exchange

its intensity information with neighboring BSs. After obtaining the intensity of regular

users λr and that of cluster users λc, it can decide if there exists a cluster within its region.
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Figure 6.2: Flowchart of the proposed scheme.

If there are no cluster users, BS0 keeps the per-tier biasing factor fk0 . Otherwise, BS0

would calculate the optimal biasing factor f ∗ according to (6.13), and then broadcast to

its associated users. Upon receiving the optimal biasing factor f ∗, each user would choose

a new serving BS accordingly.

As we can see from (6.13), the mean user utility depends on the network topology. In

the following we will illustrate the above analytical results by examining a simple network

scenario.

6.4 Case Study

We consider in this section that the overloaded cell C0 is adjacent to only one macro cell

C1, i.e., A0 ∩ A1 �= ∅. As illustrated in Fig. 6.1, C0 is fully surrounded by the macro cell

C1 and is not adjacent to other cells. If more users emerge in the association area of C0,
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i.e., as λc increases, the biasing factor of Cell C0 should be properly reduced and edge

users in A0 will be pushed to the macro cell C1, which is demonstrated in Fig. 1(b). This

scenario corresponds to the situation that low-tier BSs do not provide open access. For

example, privately-owned access points only support connection requests from authorized

users. In this case, users in the overloaded micro cell can only be offloaded to the macro

cell.

For each user in Region A′
0, the received power from the BS1 is much higher than that

from other BSs; therefore, the interference in Region A′
0 can be written as IA′

0
≈ Pk1d

−α
k1

gk1 .

On the other hand, for each user in Region ΔA0 which becomes part of the association

region of BS1 after the adjustment of the biasing factor of BS0, the received power from

BS0 is the main source of the interference. We then have IΔA0 ≈ Pk0d
−α
k0

gk0 .

According to [66], by denoting the location of BS0, BS1 and a random user as l0, l1

and lu, respectively, the association region of C0 can be obtained as

A0 =
{
lu : Pk1‖lu − l1‖−α � f̄k0Pk0‖lu − l0‖−α} , (6.14)

where

f̄k0 = fk0/fk1 (6.15)

is the normalized biasing factor of BS0 with respect to BS1, and ‖·‖ indicates the Euclidean
distance. By letting l1 = (0, 0) and l0 = (a, 0), (6.14) can be further written as

A0 =

{
(x, y) :

(
x− Ba

B − 1

)2

+ y2 � Ba2

(B − 1)2

}
, (6.16a)

where B =
(

Pk1

Pk0
f̄k0

) 2
α
. It is clear from (6.16a) that A0 is a circle with the center

(
Ba
B−1

, 0
)

and the radius r =
√

Ba2

(B−1)2
. Similarly, by denoting f̄ ′

k0
= f ′

k0
/fk1 as the adjusted normal-
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ized biasing factor of BS0, A
′
0 can be obtained as

A′
0 =

{
lu : Pk1‖lu − l1‖−α � f̄ ′

k0
Pk0‖lu − l0‖−α}

=

{
(x, y) :

(
x− B′a

B′ − 1

)2

+ y2 � B′a2

(B′ − 1)2

}
, (6.16b)

which is also a circle with the center
(

B′a
B′−1

, 0
)
and the radius r′ =

√
B′a2

(B′−1)2
, where

B′ =
(

Pk1

Pk0
f̄ ′
k0

) 2
α

.

Accordingly, we have

SA0 = πr2, (6.17a)

SA′
0
= πr′2, (6.17b)

and

SΔA0 = π
(
r2 − r′2

)
. (6.17c)

By substituting (6.17) into (6.8), we can obtain that

N r = λr

(
πr2 + SA1

)
, (6.18a)

N c = λcπr
2, (6.18b)

and

N t = λr

(
πr2 + SA1

)
+ λcπr

2, (6.18c)

where SA1 can be calculated by subtracting other cell’s association regions from that of

the macro cell. By combining (6.10), (6.12), (6.17) and (6.18), we have

PrA′
0
=

N rπr
′2

N t (πr2 + SA1)
+

N cr
′2

N tr2
, (6.19a)
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PrA1 =
N rπr

2

N t (πr2 + SA1)
, (6.19b)

PrΔA0 =
N rπ

(
r2 − r′2

)
N t (πr2 + SA1)

+
N c

(
r2 − r′2

)
N tr2

, (6.19c)

and

E [log (N0)] ≈ log
(
(λc + λr) πr

′2
)
, (6.20a)

E [log (N1)] ≈ log
(
λrSA1 + (λr + λc) π

(
r2 − r′2

))
. (6.20b)

Furthermore, it can be obtained that

E
[
log

(
Pr
(
SIRA′

0
� τ

))]
= −
‹

A′
0

(
(x− a)2 + y2

x2 + y2

)α
2 τPk1P

−1
k0

πr′2
dxdy (6.21a)

and

E [log (Pr (SIRΔA0 � τ))] = −
‹

ΔA0

(
x2 + y2

(x− a)2 + y2

)α
2 τPk0P

−1
k1

π
(
r2 − r′2

)dxdy. (6.21b)

The proof of (6.21) can be found in the following.

Proof. For a random user in Region A′
0 where the undesired signal from BS1 is the major

source of the interference, we have

E
[
log

(
Pr
(
SIRA′

0
� τ

))]
=

ˆ ∞

0

Edk0 ,gk0 ,dk1

[
log

(
Pr

(
Pk0d

−α
k0

gk0
Pk1d

−α
k1

gk1
� τ

))
|gk1

]
·pdfgk1 (gk1) dgk1 , (6.22)

where pdfgk1 (gk1) is probability density function of random variable gk1 . Conditioned on

a given gk1 we have

Edk0 ,gk0 ,dk1

[
log

(
Pr

(
Pk0d

−α
k0

gk0
Pk1d

−α
k1

gk1
� τ

))
|gk1

]
=

‹
Egk0

[
log

(
Pr

(
Pk0d

−α
k0

gk0
Pk1d

−α
k1

gk1
� τ

))
|gk1 , dk0 , dk1

]
· pdfdk0 ,dk1 (dk0 , dk1) ddk0ddk1 , (6.23)
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where pdfdk0 ,dk1 (dk0 , dk1) denotes the joint PDF of dk0 and dk1 . Hence, conditioned on gk1 ,

dk0 and dk1 , we can obtain that

Egk0

[
log

(
Pr

(
Pk0d

−α
k0

gk0
Pk1d

−α
k1

gk1
� τ

))
|gk1 , dk0 , dk1

]
(a)
= Egk0

[
log

(
exp

(−τd−α
k1

dαk0Pk1P
−1
k0

)) |gk1 , dk0 , dk1 ]
= −τd−α

k1
dαk0Pk1P

−1
k0

gk1 , (6.24)

where (a) follows that gk0 is an exponential random variable with unit mean.

By substituting (6.23) and (6.24) into (6.22), we have

E
[
log

(
Pr
(
SIRA′

0
� τ

))]
= −τPk1P

−1
k0

ˆ ∞

0

gk1pdf gk1
(gk1) dgk1 ·

‹
dαk0
dαk1

pdfdk0 ,d1
(dk0 , dk1) ddk0ddk1

(b)
=−τPk1P

−1
k0

‹
A′

0

(
(x−a)2 + y2

x2+y2

)α
2

pdfx,y (x, y) dxdy

(c)
=−
‹

A′
0

(
(x−a)2+y2

x2 + y2

)α
2 τPk1P

−1
k0

πr′2
dxdy, (6.25)

where (b) follows that gk1 is exponentially distributed with unit mean, i.e., Egk1
[gk1 ] = 1,

and (c) follows that users are uniformly deployed within each association region of a cell,

i.e., pdfx,y(x, y) = 1/πr′2.

On the other hand, E [log (Pr (SIRΔA0 � τ))] can be derived by a similar approach

and thus omitted here.

Finally, by substituting (6.8), (6.18), (6.19), (6.20) and (6.21) into (6.13), the normal-

ized optimal biasing factor for the overloaded C0 can be obtained as

f ∗ = argmax
f̄ ′
k0

O, (6.26)
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where the objective function

O =− N rπr
2

N t (πr2 + SA1)
· log

(
N rSA1

πr2 + SA1

+

(
N c

πr2
+

N r

πr2 + SA1

)
π
(
r2−r′2

))
+(

N rπ
(
r2−r′2

)
N t (πr2+SA1)

+
N c

(
r2−r′2

)
N tr2

)
·
(
C −
‹

ΔA0

(
x2+y2

(x−a)2+y2

)α
2

·

τPk0P
−1
k1

π
(
r2−r′2

)dxdy − log

(
N rSA1

πr2 + SA1

+

(
N c

πr2
+

N r

πr2 + SA1

)
π
(
r2 − r′2

)))

+

(
N rπr

′2

N t (πr2 + SA1)
+

N cr
′2

N tr2

)
·
(
C −
‹

A′
0

(
(x−a)2+y2

x2+y2

)α
2 τPk1P

−1
k0

πr′2
dxdy

− log

((
N c

πr2
+

N r

πr2 + SA1

)
πr′2

))
(6.27)

and the radius r′ is given by

r′ =
a
(
Pk1/

(
Pk0 f̄

′
k0

)) 1
α(

Pk1/
(
Pk0 f̄

′
k0

)) 2
α − 1

. (6.28)

Even for this simple case, it is difficult to obtain a closed-form solution of the optimization

problem (6.26), and f ∗ can only be obtained numerically. It will nevertheless be shown in

the following section that f ∗ can be perfectly fitted as a log-linear function of the average

number of cluster users given the power difference between the macro and the overloaded

micro BS and average number of regular users.

Remark: If there is a large difference in the transmission power between BS0 and BS1,

i.e., Pk1 � Pk0 , the objective function can be further written as

O′ =
N cr

′2

N tr2

(
C − τ

2Pk1

(α + 2)Pk0

(
r′

a

)α

− log

(
N cr

′2

r2

))
+

N c

(
r2 − r′2

)
N tr2

(
C − τ

Pk0

Pk1

2aα

(r − r′)2

(
r2−α − r′2−α

2− α
− r′r1−α − r′2−α

1− α

))
−
(
N c

(
r2 − r′2

)
N tr2

+
N r

N t

)
log

(
N rπr

′2

πr2 + SA1

+
N c

(
r2 − r′2

)
r2

)
. (6.29)
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Proof. With Pk1 � Pk0 , the radius of Region A0 is much smaller than the distance between

BS1 and the overloaded BS0, i.e., r =
√

Ba2

(B−1)2
� a. We then have B � 1, and thus

Ba
B−1

≈ a. In addition, as the biasing factor of BS0 decreases to offload some users to BS1,

we have B′ > B � 1, and thus Ba
B−1

= B′a
B′−1

≈ a. Therefore, both A0 and A′
0 can be

regarded as circular areas with the same center (a, 0) but different radius. Meanwhile,

since r′ < r � a, the distance from BS1 to a random user in region A0 or A′
0 can be

approximately regarded as a constant, i.e., dk1 ≈ a. We then have

E
[
log

(
Pr
(
SIRA′

0
� τ

))] ≈ −τ
Pk1

Pk0

Edk0 ,dk1

[
dαk0
aα

]
(a)
= −τ

Pk1

Pk0a
α

ˆ r′

0

dαk0 ·
2dk0
r′2

ddk0 = − 2τPk1

(α+2)Pk0

(
r′

a

)α

(6.30a)

and

E [log (Pr (SIRΔA0 � τ))] ≈ −τ
Pk0

Pk1

Edk0 ,dk1

[
aα

dαk0

]
(b)
=−τ

Pk0

Pk1

aα
ˆ r

r′

1

dαk0

2 (dk0−r′)

(r−r′)2
ddk0

= C − 2τPk0a
α

Pk1(r−r′)2

(
r2−α−r′2−α

2−α
−r′r1−α−r′2−α

1−α

)
, (6.30b)

where (a) and (b) follow the property of uniform distribution of a random user inside a

circular area.

As regular users’ intensity is usually much lower than that of cluster users, i.e., λr �
λc, and the association area of the macro cell is much larger than that of other cells, (6.19)

and (6.20) can be further written as

PrA′
0
=

N cr
′2

N tr2
, (6.31a)

PrA1 =
N r

N t

, (6.31b)

PrΔA0 =
N c(r − r′)2

N tr2
, (6.31c)
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Table 6.1: Simulation Parameters

Parameter Value

Radius R 300 m

Distance a 150 m

Path Loss Coefficient α 4

Bandwidth BW 1 MHz

Noise Power σ2
n -104 dBm

SINR Threshold τ 2

and

E [log (N0)] ≈ log
(
λcπr

′2
)
, (6.32a)

E [log (N1)] ≈ log
(
λrSA1 + λcπ(r − r′)2

)
. (6.32b)

Finally, by substituting (6.18), (6.30), (6.31) and (6.32) into (6.13), the objective function

(6.29) can be obtained.

It can be proved that objective function (6.29) is concave with respect to r′, by showing

that ∂2O′
∂r′2 < 0. Hence, the normalized optimal biasing factor can be obtained by combining

∂O′
∂r′ = 0 and (6.28).

6.5 Simulation Results

In this section we present simulation results to validate the analytical results in Section

6.4. Without loss of generality, we consider the whole region as a circular area with a

radius of 300 meters. One Tier-1 base station BS1 is located at the center (0, 0). Four

Tier-2 BSs scatter around BS1 located at (0,±a) and (±a, 0), respectively. One of the

four Tier-2 base stations, BS0, is overloaded by a cluster of users with the intensity λc.
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Figure 6.3: Normalized optimal biasing factor of the overloaded BS and all Tier-2 BSs
with different values of average number of regular users, N r. Pk1 = 60dBm, Pk0 = 20dBm
and r = 20m.

The normalized biasing factor fk0 with λc = 0 determines the initial radius r of the Tier-2

cells. As cluster users appear in BS0 with the initial radius r, the average number of

cluster users is given by N c = λcπr
2. The system parameters are summarized in Table

6.1.

Fig. 6.3 compares the normalized optimal biasing factor of the overloaded BS0 with

that of all Tier-2 BSs. Note that the optimal per-tier biasing factor can be obtained by

following a similar approach in this chapter, and is omitted here. As Fig. 6.3 illustrates,

the optimal biasing factor of the overloaded BS0 is smaller than that obtained by a per-

tier adjustment. Intuitively, as the per-tier adjustment will cause all Tier-2 BSs to reduce

their association regions, the resulting optimal biasing factor should be larger than f ∗

to keep these lightly-loaded micro cells more attractive to regular users. It can also be

observed from Fig. 6.3 that both the normalized optimal biasing factors decrease as the



130Chapter 6. Optimal Biased Association Scheme with Non-Uniform User Distribution

Figure 6.4: Normalized optimal biasing factor of the overloaded BS0. N r = 200.
Pk1/Pk0 = 50dB corresponds to r = 11.6m and Pk1/Pk0 = 60dB corresponds to r = 6.7m.

average number of cluster users increases, indicating that BS0 should push out more users

by shrinking its association region. Furthermore, the declining rate of the optimal factor

f ∗ reduces as N c becomes larger. This is because as BS0 gets more crowded, users who

are nearer to BS0 would be offloaded to the macro BS, i.e., BS1. As a result, the SIR of

these users would drop more seriously, which indicates BS1 should be less preferable. In

addition, as more users choose to associate with BS1, it should become less attractive to

the cluster users located closer to the overloaded BS0.

Fig. 6.4 demonstrates the curves of the normalized optimal biasing factor for the

overloaded BS0. In the remark of Section 6.4, when the transmission power of BS1 is

much larger than that of BS0, the objective function given in (6.27) can be approximately

written as (6.29). It can be observed from Fig. 6.4 that the gap between the normalized

optimal biasing factors obtained from (6.27) and (6.29) indeed diminishes as the difference

of the transmission power between BS1 and BS0 becomes larger.
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Figure 6.5: Numerical results and fitted curves of normalized optimal biasing factor of
the overloaded BS. r = 20m. Pk1/Pk0 = 40dB corresponds to the initial biasing factor of
4.73dB and Pk1/Pk0 = 50dB corresponds to the initial biasing factor of 5.44dB

Fig. 6.5 illustrates how the optimal normalized biasing factor f ∗ varies with the

average number of cluster users, N c under various values of power difference between BS0

and BS1 and the average number of regular users. It can be clearly seen from Fig. 6.5 that

f ∗ can be perfectly fitted into a log-linear function with the form f ∗ = a1+a2 · log10
(
N c

)
when N c is larger than 10. Although it is indicated in (6.27) that the optimal normalized

biasing factor f ∗ is determined by the power difference Pk1/Pk0 , the average number of

regular users N r and that of cluster users N c, it can be observed from Fig. 6.5 that the

slope a2 is not sensitive to these parameters. The intercept a1, on the other hand, depends

on the average number of regular users, N r. A larger N r leads to a lower f ∗ as BS1 needs

to be more attractive if there are more regular users.

The results shown in Fig. 6.5 greatly facilitates the network design in practice. In

particular, the two coefficients a1 and a2 are fixed given the power difference and the
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average number of regular users. As cluster users would initially associate with a BS, this

overloaded BS can estimate its average cluster numbers. The optimal biased value can

then be obtained according to the log-linear function.

For general cases, f ∗ may not be a log-linear function of N c. The optimal biasing

factor of the overloaded BS should instead be obtained through a linear search of (6.13).

The computational complexity given the intensity of cluster users is then given by fk0/Δ,

where fk0 is the original biasing factor of the overloaded cell and Δ is searching step size.

Note that it has been shown in Section 6.3 that with fixed intensity of regular users and

BSs’ transmitting powers, the optimal normalized biasing factor is solely determined by

the intensity of cluster users. Hence, this mapping relation between f ∗ and λc can be

numerically obtained by solving (6.13), and stored in the form of a table beforehand.

The computational complexity for the table is (fk0L) /Δ, where L could be the maximum

possible number of cluster users in one specific practical scenario. As long as λc remains

unchanged, the overloaded BS can obtain the optimal normalized biasing factor by simply

looking up the table.

In practice, nevertheless, the intensity of regular users may vary with time. The table

thus needs to be updated accordingly. By denoting ϕr as the changing frequency of λr, the

computational complexity per unit time is thus (fk0Lϕr) /Δ. In the considered scenario

in this chapter, the intensity of regular users is assumed to be stable for a long period,

compared to the changing frequency of the intensity of cluster users, i.e., ϕr is small.

In this case, the computational complexity per unit time is quite low, indicating a good

scalability of the proposed scheme.

Fig. 6.6 further compares the overall mean user rate, the mean user rate of the

overloaded Tier-2 micro cell and the Tier-1 macro cell when only the biasing factor of the

overloaded BS0 is optimally tuned with the corresponding rates when the biasing factor of

all Tier-2 BSs is optimally tuned. Each point is obtained by averaging over 2000 trials. It
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(a) (b) (c)

Figure 6.6: Mean user rate in different cells. N r = 200, Pk1 = 60dBm, Pk0 = 20dBm,
r = 20m. (a) Rates in the overloaded tier-2 cell. (b) Rates in the tier-1 macro cell. (c)
Overall rates.

can be observed that compared to the previous biased scheme without tuning the biasing

factor of BS0, our proposed scheme can remarkably improve the mean user rate in such

overloaded cell from 23% to 87% as the average number of cluster users increases from 10

to 80. Although the performance of the macro cell BS1 deteriorates as some cluster users

are offloaded to BS1, the overall mean user rate can also be improved by the proposed

scheme due to more balanced traffic.

It can be further observed from Fig. 6.6(c) that the proposed scheme achieves a better

overall mean user rate than the per-tier adjustment scheme. For the per-tier adjustment

scheme, the overall mean user rate is even lower than that without any adjustment.

Intuitively, as is illustrated in Fig. 6.3, the optimal adjustment of the per-tier BSs would

offload less cluster users to the macro cell than the adjustment of BS0, which would lead

to worse performance of each user in the overloaded cell. In addition, as the association

regions of all Tier-2 BSs are reduced according to the per-tier bias adjustment, the macro

BS would have to undertake more traffic pressure from these lightly-loaded micro cells,

and thus these cells will be more likely to become void. In this case, the BSs of the void cell

will only act as interfering sources, which offsets the gain from load balancing. Compared



134Chapter 6. Optimal Biased Association Scheme with Non-Uniform User Distribution

to the per-tier bias adjustment, the proposed scheme does not need coordinations among

BSs, and is thus easy to implement in practice.

6.6 Conclusions

In this chapter we consider heterogeneous user distribution in HetNets, in particular, one

cell becomes overloaded with a larger user density than other cells, and propose to adjust

the biasing factor to relieve the traffic pressure of the overloaded cell. The optimal biasing

factor of the overloaded cell is obtained by maximizing the mean utility of a random user

in the overloaded cell and its neighboring cells. Analytical results are demonstrated by a

simple case when the overloaded cell is fully surrounded by a macro cell. It is found that

in this case the optimal biasing factor can be perfectly fitted as a log-linear function of the

average number of cluster users. Numerical results indicate that with a proper tuning of

the biasing factor of the overloaded BS, the mean user rate in the overloaded BS and the

overall mean user rate can be improved. A comparative study further indicates a much

better performance than the per-tier adjustment of the biasing factor.

Note that although we assume only one overloaded cell in this chapter, our proposed

scheme can be extended to scenarios of multiple overloaded cells as long as these over-

loaded cells are not adjacent to each other and have different neighboring cells. This is

because adjusting the biasing factor of each one of these overloaded cells will only affect

the BS-user association in its own neighboring cells. However, for the cases where the

overloaded cells appear closely and even become adjacent to each other, the adjustmen-

t of the biasing factor of one cell could have an impact on the other overloaded cells.

Therefore, these related cells should cooperate with each other to obtain their optimal

biasing factors, which is the next step of our study. In addition, it is assumed in this

chapter that the cluster of users ideally appear in the association region of one cell. In
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practice, the coverage of the cluster may overlap with several cells spatially. In this case,

a more intriguing approach of a joint adjustment of the biasing factors of these related

cells should be considered, and deserves much attention in the future study.

In addition, besides tuning the biasing factor of the overloaded BS, bandwidth al-

location which has been studied in Chapter 4 can also be applied in this case. To be

specific, when a BS is overloaded due to the cluster of user, more bandwidth can be al-

located from the neighboring idle BSs to this overloaded BS, which would also involve a

BS coordination issue.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

The ongoing maturation of the heterogeneous network has elevated the HetNet’s perfor-

mance optimization to a central problem. Most of the traditional studies on the HetNet

assumed continuous BS transmission, which leads to a consistent interference pattern. In

addition, they characterized the locations of the users by uniform distributions. To ad-

dress these open challenges, this thesis optimizes both the network spectrum efficiency and

the network energy efficiency under a more practical scenario of queuing and non-uniform

user distribution. The queuing behaviors of the BSs are first decoupled by adopting s-

tochastic geometry and independent thinning approach with both spectrum partitioning

and universal frequency reuse. Based on the queuing analysis, an optimal biased asso-

ciation scheme between users and BSs are obtained by minimizing a lower bound of the

network mean queuing delay. The queue-aware optimal bandwidth allocation strategy

is then studied to minimize the network average power consumption and maximize the

network SIR coverage, respectively. By properly tuning the deployment density of micro

BSs, the average power consumption is minimized while guaranteeing the QoS constraints

137
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of network mean queuing delay and network SIR coverage. As last, with the consideration

of non-uniform user distribution, a user intensity oriented biased scheme is proposed and

studied. The contributions of this thesis is summarized as follows.

1) Queuing analysis. The queuing model in this thesis is first demonstrated and the

coupled nature of the queues is examined. To solve the coupled queue problem, mathe-

matical approaches of stochastic geometry and independent thinning are then introduced,

based upon which the average traffic intensity of each tier for the cases of orthogonal spec-

trum partitioning and universal frequency reuse are characterized. It is shown that with

spectrum partitioning, explicit expression of the average traffic intensity can be derived.

With universal frequency reuse, the average traffic intensity of each tier depends on each

tier, which forms a set of fixed-point equations. To justify the proceeding analysis, a

spatial-temporal simulation is conducted, which indicates that the average traffic intensi-

ty of each tier can be well predicted by the adopted approaches.

2) Queue-aware delay-optimal biased association optimization in HetNets. Based on

the derived expression of the average traffic intensity of each tier, the lower bound of the

network mean queuing delay is characterized. The minimization problem of the lower

bound of the network mean queuing delay is then formulated, which is then shown to be

convex with respect to the biasing factor of each tier. When the mean packet arrival rate

of each user is small, an explicit expression of the optimal biasing factor of each tier is

obtained. With equal bandwidth allocation across tiers, it is further shown that each user

should associate with its nearest BS. Simulation results justify our analysis by illustrating

that the network mean queuing delay can be significantly reduced by a proper tuning of

the biasing factor of each tier. Furthermore, by comparing the network mean queuing

delay with the network SIR coverage, a tradeoff between them is revealed, indicating

that a balance should be stroke between the performance of real-time and non-real-time

services.
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3) Queue-aware optimal bandwidth allocation in HetNets. To optimize the network

energy efficiency with queuing considered, a network average power consumption min-

imization problem is first formulated, and is proved to be convex with respect to the

bandwidth allocated to each tier. By using the approximation of the average traffic in-

tensity of each tier, an explicit solution of the bandwidth allocated to each tier is then

derived, which increases as the transmission power or the deployment density of the BSs of

this tier increases. To improve the network spectrum efficiency, a maximization problem

of the network SIR coverage is then studied, which is shown to be concave with respect

to the bandwidth allocation. Similarly by using the approximation of the average traffic

intensity, closed-form solution is obtained. It is further shown that when the mean packet

arrival of each user is small, the optimal bandwidth allocated to each tier also increases

as the transmission power or the deployment density of the BSs of this tier increases.

Simulation results demonstrate that both the network average power consumption and

SIR coverage can be remarkably improved by a proper bandwidth allocation strategy. At

last, a tradeoff is revealed between the network energy efficiency and SIR coverage.

4) Queue-aware energy efficient BS density optimization in HetNets. In the considera-

tion of universal frequency reuse by a 2-Tier HetNet, the existence and uniqueness of the

fixed-point equations of the average traffic intensity of each tier is proved. To numerically

obtain the solution, an iterative method is proposed and its convergence is then proved.

By further using the approximation that BSs of a tier have the same SIR coverage, the

CDF of the traffic intensity of each tier is obtained. On that basis, a network average pow-

er consumption minimization problem under the constraints of the network mean queuing

delay and the network SIR coverage is formulated. Numerical results show that if the idle

power coefficient is below a certain threshold, the optimal activation ratio should equal

the one to minimize the network average power consumption per area. Otherwise, the

optimal activation ratio should be obtained according to the QoS constraints. It is fur-
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ther revealed that by taking queuing into account, universal spectrum reuse outperforms

spectrum partitioning in terms of energy efficiency and SIR coverage in the considered

scenario.

5) Optimal biased association scheme with non-uniform user distribution. The scenario

that one cell is overloaded with a cluster of users, i.e., has a higher user intensity, is

examined. A load-aware biased association scheme where the overloaded BS optimally

adjusts its biasing factor according to its load condition by maximizing a utility function

of the mean user rate. By studying the case where one micro BS is fully surrounded by a

macro BS, we find that the optimal biasing factor of the overloaded BS can be perfectly

fitted as a log-linear function of its user density of the overloaded cell, which greatly

facilitates the implementation of our proposed scheme. Simulation results demonstrate

the proposed scheme can significantly improve the mean user rate in the overloaded cell,

and the overall mean user rate performance can also be improved due to a more balanced

load.

7.2 Future Works

This thesis addresses the performance optimization of HetNets by considering queuing

dynamics and a more practical user distribution model. The achieved results in this

thesis can lead to many interesting open questions. Some directions for future research

are pointed out as follows.

1) Combination of queuing dynamics and non-uniform user distribution. Although

this thesis considers the more practical scenario of queuing dynamics and non-uniform

user distribution, these two assumptions are not combined together, which could result in

a different and more complex coupled queue problem. In particular, due to the cluster of

users, the traffic intensity of the overloaded cell should be much more higher than that of
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the regular cell in one tier. Therefore, the neighboring BSs of such overloaded BS have a

higher level of the experienced interference, which in turns raises the busy probability of

the overloaded BS. The queuing analysis of the overloaded BS as well as its neighboring

BSs remains an interesting issue that attracts much attention in the future.

2) Uplink transmission model. Quite different from the downlink transmission where

the interfering sources are BSs with high transmission powers, the source of the inter-

ference in the uplink are the mobile users with low levels of power and more diverse

geographical distribution. Although the homogeneous PPP assumption for BSs of each

tier greatly simplifies the downlink interference characterization, analysis of the uplink

in such a setting is highly non-trivial, as the uplink interference does not originate from

Poisson distributed nodes. Therefore, a mathematical model needs to be adopted to char-

acterize the locations of the mobile users. Moreover, as power control is usually adopted

in the uplink to fully or partially compensate for the path loss, users may choose to as-

sociate with different BSs in the uplink. Therefore, there exists a decoupled association

strategy for the users between downlink and uplink, and such user-BS association opti-

mization becomes more intriguing in the uplink. At last, as each mobile user now has its

own queue in the uplink, characterizing the traffic intensity of each individual user is thus

more complicated. Hence, how to optimize the network performance for the uplink in

terms of both network spectrum efficiency and energy efficiency deserves much attention

in the future study.



142 Chapter 7. Conclusions and Future Works



Appendix A

Abbreviations

5G Fifth Generation

AP Access Point

BS Base Station

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CRE Cell Range Expansion

CSI Channel State Information

CTMT Continuous Time Markov Chain

FIFS First In First Serve

FUA Fractional User Association

HetNet Heterogeneous Network

LTE Long Term Evolution

mmWave millimeter wave

MDP Markov Decision Problem

MIMO Multiple Input Multiple Output

PDF Probability Density Function
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PGFL Probability Generating Functional

PPP Poisson Point Process

QoS Quality of Service

RAT Radio Access Technology

RSRP Reference Signal Receiving Power

RSSI Received Signal Strength Indicator

SIR Signal to Interference Ratio

SINR Signal to Interference plus Noise Ratio

SP Spectrum Partitioning

UFR Universal Frequency Reuse

VNI Visual Network Index

WLAN Wireless Local Area Network
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