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Abstract

We consider the problem of localising an un-
known underwater plume source in an energy-
optimal manner. We first develop a specialised
Gaussian process (GP) regression technique for
estimating the source location given concentra-
tion measurements and an ambient flow field.
Then, we use the GP upper confidence bound
(GP-UCB) for active perception to choose sam-
pling locations that both improve the estimate
of the source and lead the glider to the correct
source location. A trim-based FMT*planner is
then used to find the sequence of controls that
minimise the energy consumption. We provide
a theoretical guarantee on the performance of
the algorithm, and demonstrate the algorithm
using both artificial and experimental datasets.

1 Introduction

Plume source localisation is a prominent class of algo-
rithmic problems with immediate and critical practical
applications in environmental monitoring [Rudnick et
al., 2004], chemical warfare protection [Gunatilaka et al.,
2008], and oil and gas source localisation [Russell-Cargill
et al., 2018]. We are interested in the underwater con-
text, where the goal is to find the source of a substance
that is subject to an ambient flow field.

There are various circumstances in which it would be
beneficial to track substances diffusing in water. One
interesting recent development is a sensor that can mea-
sure methane concentration and that is suitable for use
with underwater robots [Russell-Cargill et al., 2018]. It
is imperative to develop algorithms that make use of such
sensors for effective application over large spatial scales
of tens to hundreds of kilometres. We treat this problem
in the active perception context, and consider how to
find the source of a plume while improving its estimate
simultaneously.

A major challenge is how to take into account realis-
tic ocean current models. Most existing work assumes

uniform current, which is restrictive. Relaxing this as-
sumption is difficult, however, because the relationship
between plume source and concentration with varying
ocean current is described by a nonlinear partial differen-
tial equation (PDE), and cannot be written in a general
closed form.

We address this challenge by elegantly incorporating
the PDE relationship into Gaussian process (GP) regres-
sion. We first use a GP to represent the concentration,
and then use the PDE model to relate the concentration
to the source of the plume. Then, we apply an existing
algorithm (GP-UCB) to perform active search for the
source.

In this paper, we present a novel algorithm for general
plume source localisation supported by rigorous theoret-
ical analysis. We evaluate the algorithm using artificial
data, and also using real data previously collected by an
underwater glider equipped with a methane concentra-
tion detector over a period of two weeks [Russell-Cargill
et al., 2018]. Results in simulation show that our algo-
rithm can accurately find the ground truth source of an
artificial plume. We cannot make the same statement
for the case with real data, as the true source location is
unknown, but results are consistent with intuition.

Our algorithm is general and can be used for many dif-
ferent types of plumes. This is an exciting result that en-
ables applications of underwater gliders and other types
of AUVs that cannot currently be addressed in any other
way. Application to methane plumes in particular is sig-
nificant because methane is used as an indicator to di-
rects gas and oil exploration, which is an activity with
substantial economic value.

2 Related Work

2.1 Plume Source Localisation

Autonomous monitoring of environmental plumes is of
substantial interest [Kowadlo and Russell, 2008]. There
are two main relevant bodies of work. The first is con-
cerned with tracking the boundary of a plume, and the
other is finding the source of a plume. Tracking the



boundary of a plume is useful for scenarios such as oil
leaks in the ocean, and has been achieved by using
heuristic strategies [Smith et al., 2010], level set-based
tracking [Marthaler and Bertozzi, 2004], and by exploit-
ing the structure of a flow field [Kularatne et al., 2015].
Multi-robot algorithms have also been proposed to ad-
dress the large spatial extent of plumes [Li et al., 2014].

In this work, we are interested in the problem of lo-
cating the source of plume. A traditional approach is
to adopt an empirical parametric model referred to as
the Gaussian plume [Gunatilaka et al., 2008], and to fit
the observations to the model. However, using a para-
metric model may prove demanding in practical scenar-
ios, because the data can be sparse or subject to noise.
Adaptive strategies such as waiting time [Chang et al.,
2013] and centroid tracking [Smith et al., 2010] have
been proposed that improve their accuracy given addi-
tional data. A more principled approach is the ‘infotaxi’
strategy [Vergassola et al., 2007], where actions are cho-
sen to maximise the information gain over the source
location [Hajieghrary et al., 2017]. Although the info-
taxi strategy has a theoretically justified background,
the probability distribution used for calculating the in-
formation gain is not given in closed form for any flow
fields more complex than the constant case, which is a
substantial limitations.

The algorithm we propose in this paper is more flexi-
ble in terms of the types of flow fields and plume sources.
We incorporate a physical model of plume dispersion into
the Gaussian process (GP) regression framework, which
allows us to estimate the source location in a nonpara-
metric manner. Further, the tracking strategy proposed
in this paper has a known theoretical performance guar-
antee which, as we show, still holds in our case.

2.2 Motion Planning for Underwater
Gliders

Autonomous underwater gliders are a class of au-
tonomous underwater vehicles (AUVs). They are dis-
tinguished from other AUVs by their propulsion mecha-
nism, where the forward motion is generated by changing
its buoyancy to dive up and down. The lack of an active
propulsion makes underwater gliders more energy effi-
cient compared to other AUVs at the expense of speed,
making them sensitive to the surrounding ocean flow
field. These qualities makes gliders ideal for long du-
ration missions such as surveying and patrolling, as long
as it can properly exploit the ocean current.

In this work, we are interested in finding an energy-
optimal 3D glider path in an ocean flow field. Popular
planning algorithms such as RRT [Rao and Williams,
2009], A* [Fernandez-Perdomo et al., 2010; Isern-
Gonzalez et al., 2011; Fernandez-Perdomo et al., 2011;
Xinke et al., 2015, and genetic algorithms [Zamuda and

Hernéndez Sosa, 2014; Shih et al., 2017] have been used
as planning frameworks to properly navigate the under-
water glider through the 2D ocean flow field. Under-
water glider manoeuvres in 3D space also exists, where
Dubins path made with a series of ‘sawtooth’ and spi-
ral motions is given as a solution [Cao et al., 2017;
Liu et al., 2017). However these work do not consider
the ocean flow field. Also in our recent work on under-
water glider planning [Lee et al., 2017], we have demon-
strated that traditional operations of underwater gliders
may not give the most energy-optimal path. Most work
assumes directly controllable turning rates and simplified
kinematics model that consequently neglects important
glider states, such as glider angle and the ballast.

In this work, we will be using the trim-based
FMT*planning algorithm demonstrated in [Lee et al.,
2017] to find the energy-optimal glider path trajectory
in 3D ocean environment. The planner makes use of
‘trim-states’ that holds the critical glider states needed
for accurate glider model.

3 Background
3.1 Underwater Glider

Underwater gliders makes forward velocity by using the
lift and drag force generated from the sequences of dives.
The forces are dependent on the glider’s angle of attack
that is a function of its glide angle.

A continuous dynamical model of an underwater glider
with high dimensions can be expressed as follows:

x(t) = f(x(t),u(t)) + w(x(t)), (1)

where x(t) is the glider state at time ¢, u(¢) is the con-
trol vector, and w is the ocean current vector at current
glider position given a priori. The control vector consists
of; the ballast pump control used to regulate the glider’s
buoyancy for dives and surfacing, and the moving mass
position used to control glider’s orientation and velocity,
as velocity is a function of the glide angle.

A trim-state is a state of dynamic equilibrium that
a vehicle will hold to in the absence of disturbances or
variations to control [Leonard and Graver, 2001]. As we
expect the glider to travel long distances between each
state, we can reformulate the dynamic model as a trim-
state, where the time taken to change the control state
is assumed negligible. Since no energy is spent while
travelling between states, the trim-state can be reduced
down to a kinematic model that considers the control
vector:

Vi v Ok mbk]Ty (2)

where V}, is the speed, 7y is the glide angle, § is the head-
ing angle, and m;, is the ballast mass (i.e., amount of
water in the ballast tank). We assume that the ballast
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Figure 1: Trim-based glider manoeuvre over 3D environ-
ment under the influence of ocean currents

tank is either empty or full (i.e., my € [0, Mpmayx]). The
new glider kinematic motion can be described as:

Vie(y) cosy cos §
x(t+1)=x(t)+ | | Vi(y)cosvysind
Vi(7) siny

+w(x(t)) | At.

3)

and use it to solve for the trim-state that moves the
glider from one state to another. Given a sequence of
trim states, an example of a continuous glider trajectory
under the influence of ocean currents is shown in Fig. 1.

The underwater glider energy cost is the sum of the
ballast pump cost, moving mass re-position cost, turning
cost, and the hotel cost. Note that the pump cost is
only applied when expelling water out of the ballast tank
(i.e. when increasing buoyancy), since the static pressure
from the ocean environment can be used to fill the tank
without the pump.

3.2 Plume Dispersion Model

Advection-diffusion equation [Lupini and Tirabassi,
1979] describes the relation between source and plume
under the influence of flow field. Advection refers to the
transport of plume particles by the flow field, and diffu-
sion describes the natural dispersion in still water.

The introduction of plume species into the environ-
ment by a scalar function is s : RT x R3 — R, referred to
as the source strength. The source strength describes the
influx of species into the environment (i.e. a source) at
position x and time ¢. Given the source strength, s(x, t),
the advection-diffusion equation describes the evolution
of concentration of a species, ¢ : RT x R? as:

Oc(x,t)

5 +w(x,t) - Ve(x, t) = DA%e(x,t) + s(x,t), (4)

where V is the gradient operator, A? is the Laplacian
operator, w is the flow field and D is the diffusion coeffi-
cient. For instance, the diffusion coefficient for methane-
water system ranges between D = 1—5m? /s, depending
on the temperature [Mrazovac et al., 2012).
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Figure 2: Examples of 2D advection-diffusion process

Given s(x) is time invariant, the plume process reaches
its steady-state. Based on (4), the steady-state equation
is obtained by setting the time derivative to zero:

w(x) - Ve(x) = DA% c(x) + s(x). (5)

where we wrote ¢(x) = lims_, oo ¢(X, t) with a slight abuse
of notation.

If w(x) does not vary across space, it is well-known
that (5) admits the so-called Gaussian plume solu-
tion [Lupini and Tirabassi, 1979]. However, it is practi-
cally impossible to find an analytical solution in the gen-
eral case when w(x) varies spatially, and (5) needs to be
solved numerically using, e.g. finite difference method.
An example of such a solution in 2D is shown in Fig. 2.
In Fig. 2, it can be seen that the chemical species is not
only advected along the flow, but also diffused in direc-
tions against the flow.

4 Problem Statement

Suppose we have an underwater glider described in
Sec. 3.1 with trim state-based manoeuvre under the
influence of fully known, spatially varying ocean cur-
rents w. There is a plume underwater of which the
concentration c is governed by the dispersion model de-
scribed in Sec. 3.2. We will model the source of the
plume by source strength, s(x), which describes the
amount of plume species being introduced to the envi-
ronment at position x. Given the source strength, we
model the source location by:

Xs = arg max s(x), (6)
x€E

where £ is the operating environment of the glider.

When the glider is near the seabed, it measures the
concentration of the plume at a point using an onboard
sensor. The measurements are modelled by:

y=c(x)+e (7)



where € ~ N (0, UZ) is white Gaussian noise with known
variance 05. We will denote a set of observations as
O = {xi, ¥}y

Given the concentration measurements, we wish to
find a sequence of optimal control vectors u(t) that leads
to the source location x; in an energy-optimal manner.
Formally, we wish to find a sequence of controls, u(¢)

that solves the following problem.

T
minimise E(x(t),u(t
imise 3 E(x(0).u(t)

x = f(x,u)
x(T) = xs.

subject to

where F(x(t),u(t)) is the energy cost function.

As the source strength over the environment is initially
unknown, the overall problem necessitates two main sub-
problems: estimation and planning. The estimation
problem is to predict the source strength over the en-
vironment given sparse measurements of the plume con-
centration. To do so, we first estimate the plume con-
centration over the environment, and predict the source
strength by exploiting a physical model. An overview of
the framework is illustrated in Fig. 3.

Based on the uncertain estimate of the source
strength, the planning problem is to find a sequence of
controls that is energy-optimal and leads the glider to
the source in a probabilistic sense. Note that because
the true source strength is unknown, and the estimation
of the true source strength also depends on the actions
taken, the planner must also consider the uncertainty of
the estimated source strength, and encourage increase in
information gain.

It is difficult to directly solve for a sequence of con-
trols that optimises the energy expenditure while ac-
tively pursuing the source location, because it implic-
itly requires maximising the unknown source strength
function. Thus, we solve the planning problem in a
hierarchical manner, consisting of a dive-location plan-
ner and a trajectory planner. The dive-location planner
chooses dive locations that leads the glider to the goal,
while actively improving the estimate of the source. This
is achieved by using GP upper confidence bound (GP-
UCB) strategy. Based on the dive-locations generated,
the trajectory planner plans an energy-optimal path
through these dive-locations using the FMT*framework.

5 GP-Based Source Localisation

The estimation part of the framework estimates the
source location by estimating the source strength given
concentration measurements. It consists of two compo-
nents: concentration estimation and source localisation.

Concentration
Measurement

Estimation
Predicted

Concentration [Concentratio
Estimation

L Planning |
Waypoint Action
GP-UCB FMT* —>

Figure 3: Overview of hierarchical framework
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5.1 Estimation of Plume Concentration

The plume concentration at point x modelled as a GP
is denoted as ¢(x). Formally,

c(x) ~ GP(0, keo(x,x)), (9)

where k..(x,x’) is a kernel function. Since the funda-
mental solutions to (5) is given by a Gaussian plume, we
use the squared-exponential (SE) kernel:

Rsm(x,x') = oZexp (2 lx =x|*),  (10)

where o2
rameter.
Given a set of observations O = {x;,y;}¥; in the form
of (7), we learn the GP-based concentration function c¢(x
by representing observations and concentration as a joint
random variable. Given the joint random variable of the

form yp = [yl }T

e o [ ) m

where, k¥ € R, k¥, € RV, and K. € RV*V are:

is a self-variance and + is the length-scale pa-

---yn| , we have

ESr = kee(x",x¥)
k.= [kcc(xl,x*)

kcc (Xl ) Xl)

kCC(XNa X*)] 3
kcc(xlaxN) (12)
ch = :

Eec (XN7 Xl) kce (XNa XN)

Based on the joint random variable, the conditional
distribution of the concentration c¢(x) at the query
point x given a set of observations O is described as:

P(e(x") | 0) = N (pe(x"), 02 (x")), (13)

where the conditional mean p and variance o2 are

p(x") = kZZ(ch + U;I)_lyo

14
o?(x") = kiZ = kil (Kee + oy 1) 7'k, -



5.2 Localisation of Plume Source

Given the concentration ¢(x) estimated using GP regres-
sion in (13), we exploit the advection-diffusion PDE (5)
to estimate the source strength. In order to do so, we
need to combine the PDE into the GP regression frame-
work. This can be achieved by considering the PDE as an
operator on the vector space of the function [Sirkki and
Hartikainen, 2012]. The advection-diffusion PDE (5) can
be written in an operator-theoretic form by introducing:

Dy = (w(x) -V — DA?). (15)

By rearranging (5), we find that s(x) = Dxe(x). In
other words, we can recover the source strength from
the concentration by applying Dy on c¢(x). Using this
property of Dy, it can be shown that the kernel function
for s(x) and the cross-covariance functions are given by
applying Dy as:

kse(x,x") = Cov(s(x),c(x")) = Dxkee(x,x'), (16)

kes(x,x") = Cov(c(x), 8(X')) = kee(x, X" ) Dy, (17)

kss(x,x") = Cov(s(x),s(x")) = Dxkee(x, % )Dys.  (18)
It is important to note that (16), (17) and (18) can
be calculated analytically for a given choice of kernel
kee(x,x) for concentration. For instance, assuming SE
kernel (10), the cross-covariance function is given by:

kse(x,x")

19
=(D(2y = 2?[Ix]1?) + yw(x)" (x = x') Jksp(x, X). 1

Using the cross-covariance kernel functions (16), (17)
and (18), we can rewrite the concentration c¢(x) and
source strength s(x) as a joint GP [Sirkkd and Har-

tikainen, 2012]:
c(x) kee(%,%")  kes(x,%)
L(x)] ~GP <0’ {ksc(x, x') kes(x,x)| ) (20)
Combining (11) with (20), we get a joint random vari-
able for observation ye and the source strength s(x*)
at a query point x* denoted as

Yo Koo + 021 k},
) (o[ e ) e

where kX7 € R, k%, € RY, and k¥, € RV are given by:
Ery = kes(x™,x™)
ki, = [Kse(x",x1)
ki, = [kcs(XIaX*)

XN)]T

T

sc(X*a
cs (XN7 X*)]

The source strength at the query point can then be
predicted as the conditional distribution [Rasmussen and
Williams, 2006]:

P(s(x") | 0) = N (pe(x7), 02 (x7)), (22)

k
k

where the mean and variance are

p(x") = k:Z(ch + ‘751)_13’0

23
o?(x*) = kif — KD (Kee + 001) 'K}, 23)

6 Hierarchical Planning for Source
Seeking

Given the GP model of source strength in Sec. 5, we find
control vectors for finding the plume source. We first
find the most probable next dive-to waypoint given the
source strength map then find a continuous trajectory
under the influence of ocean currents.

Although the knowledge about the source is updated
with concentration measurements over time, the knowl-
edge is still uncertain. This leads to the exploration-
exploitation dilemma. When there is not enough infor-
mation about the source, the glider must ezplore the
environment before it exploits the information.

In this section, we present a solution to the
exploration-exploitation dilemma with GP-upper confi-
dence bound (GP-UCB). The GP-UCB strategy adopts
the principle of optimism under uncertainty, and picks
the points that maximise the greatest value possible
given the measurements so far (i.e. the upper confi-
dence bound of posterior distribution). Note that the
upper confidence bound is a weighted sum of predictive
mean and standard deviation, which balances between
exploitation (i.e., the mean) and the exploration (i.e.,
the variance).

In our case, we pick the next dive-to waypoint Xz 1
as the one that maximises the following acquisition func-
tion:

Xk41 = arg max i (x) + Brok(x), (24)

xeN (xi)

where NV (xy) is a finite set of potential next dive-to loca-
tions, px and oy are the predictive mean and standard
deviation obtained from the GP after k£ samples, and
Bk is a tuning parameter that balances between explo-
ration and exploitation. As we will see later, 5 plays an
important role in guaranteeing finding the source. Be-
cause we consider a finite set of potential next dive-to
location, the acquisition function can be maximised by
direct sampling.

Once the next best dive-to waypoint is found us-
ing GP-UCB, we find an energy-optimal glider trajec-
tory in the form of a sequence of trim states as de-
scribed in Sec. 3.1 using a sampling-based planning al-
gorithm FMT*. The details about the sampling-based
planning with trim state is previously presented in [Lee
et al., 2017].

The pseudocode for GP-UCB-based hierarchical plan-
ner is shown in Alg. 1. We first sample the candidate
dive locations in line 5, and predict the source strength
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Algorithm 1 GP-UCB-based Hierarchical Planner

1: GP < InitialiseEmptyGP()

2: while Glider is operational do

3: if Previous dive x; completed then

4 Update GP with measurements Oy.

5 Nj + GetNeighbours(xy,)

6: for x € N}, do

T {ps(x),05(x)?} < GP.PredictSource(x)
8

9

repeat
X1 ¢ argmaxy e, fs(X) + fros(x)
10: until x4 is feasible
11: u(t) « FMT*(Xp, Xp41)-

at these candidate points (line 7). We pick the next dive
location as the one that is feasible and maximises the
GP-UCB acquisition function. After we find the best-
next-waypoint xx11, we find the glider controls from xj
using the FMT*algorithm.

6.1 Analysis
In an exploration-exploitation task where a decision is
made over uncertain information, the decision may not
be correct. The performance loss in making a wrong
decision is referred to as regret [Srinivas et al., 2010].
In the context of our source localisation task, regret
is the disparity between dive-to location xj41 and the
true source location x, in terms of source strength. In
this paper, we define average regret Ry, as the average
of regrets over the sequence of ‘dive-to location’-‘true
source location’ pairs at k-th time step. Formally,

Ry = s(xs) — s(xi)- (25)

M)~

1
T <

i=1

The average regret approaches to zero asymptotically
with high probability as path length increases. Intu-
itively, this is because the GP describes the correla-
tion between observations and source strength, and en-
sures that the estimated source strength converges to
the ground truth. In other words, using the source GP
to estimate the source location becomes increasingly ac-
curate. The convergence behaviour is satisfied with a
particular choice of tuning parameter 8. The following
theorem provides the formal statement.

Theorem 1. Pick § € (0,1), and let
m2k2N, )
60 ’

where Ny is the size of potential sampling locations. Sup-
pose we pick the sampling locations as per (24). Then,

B = 2log( (26)

lim Ry =0 (27)
k—o0

holds with probability greater than 1 — 9.
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Figure 5: Ground truth concentration from experimental
dataset shown with iso-value contours

Proof. The theorem is an application of Theorems 1
and 5 in [Srinivas et al., 2010]. By Theorems 1 and 5

in [Srinivas et al., 2010], we have Ry, < v/ % for C; a
constant with probability > 1—4, and 47 = O(log(T)?).
In other words, dkg € N and dM; > 0 such that
Vk > ko, we have v, < M log(k)3. Thus, it holds that

= 3 3
R < Mm/w. Because 4/ 2:108k

z — 0 as k — oo,
the claim holds by the sandwich theorem. O

Intuitively, by Theorem 1, the GP-UCB-based planner
guarantees that the true source location is eventually
visited.

7 Case Studies

We demonstrate the case studies to show how our GP-
UCB-based hierarchical planner performs with simu-
lated environment and real dataset, where we used
the dynamic parameters of Teledyne-Webb G2 Slocum
glider [Webb et al., 2001]. In both studies, the glider is
initially given no prior knowledge over the true source
location xs. We show that the glider actively balances
between exploration and exploitation, and eventually
reaches the source location.

7.1 Simulated Source Finding

In this section, we test the proposed GP-UCB algorithm
on an simulated 2-dimensional environment with a dou-
ble gyre-flow field and plume. The plume with respect to
the flow field is generated using the advection-diffusion
equation in (5).

The updated source strength estimations given a set of
paths and observations are shown in Fig. 4. The glider
initially has no prior knowledge of the source location
shown in Fig. 4a. However, the UCB map allows the
glider to choose an intelligent next dive-location, be-
cause the proposed source concentration GP can exploit
the information about the flow field to compute a low
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Figure 6: Planning over the real measurement dataset

uncertainty upstream of the glider. After a few explo-
ration attempts, the glider gets close to a point (i.e.,
around k& = 16), the GP-UCB started to estimate the
belief over the concentration and the corresponding be-
lief over source location, and show an interesting area to
visit in the UCB map. As the glider moves further, the
dive-in waypoint due to UCB approaches the true source
location and the glider finally reaches the source.

An interesting observation is that when the upper con-
fidence bound of the source strength becomes almost in-
distinguishable to the source strength when the estimate
is converged. It is thus evident that the upper confi-
dence bound correctly balances between exploration and
exploitation. When the estimate is uncertain, the glider
explores the areas where the uncertainty is higher. When
the estimate is certain, the glider exploits the estimate
and converges toward the true source location.

It is important to note that the estimate of the con-
centration does not necessary converge to the ground
truth. This is because our objective is not to estimate
the overall concentration of the overall environment, but
to locate the source location. As such, the algorithm
does not expend effort on trying to estimate the con-
centration correctly, unless it is necessary for estimating
and converging toward the source location.

7.2 Real Measurement Dataset

We demonstrate the full 3D framework on an experi-
mental dataset collected around Perth, Australia pro-
vided by Blue Ocean Monitoring [Russell-Cargill et al.,
2018] using G2 Slocum glider equipped with an optical
methane gas sensor . The glider surveyed a region con-
taining a known methane source identified previously.
We pre-processed the collected data with GP regression
to produce smooth ‘ground truth’ concentration, which
is shown in Fig. 5. As the data is from the real ocean, it
is unknown where the true source location is. However,
it is intuitive that the glider expects to see the source at
the centre of the plume.

The result of our proposed algorithm is shown in
Fig. 5. It can be seen that the dive- and surface-locations
are chosen sequentially to eventually reach the centre of
the plume, by updating the concentration and source es-
timation. The actual true location of the source is not
provided with the dataset. However, our analysis us-
ing GP-UCB shows that there is a high chance that the
source is located around the centre of high UCB val-
ues. This is further ascertained by the convergence of
the estimated source strength around the glider’s final
position.



8 Conclusion and Future Work

We have presented an algorithmic framework for local-
ising the source of an underwater plume in an energy-
efficient manner. The proposed algorithms are general
enough to accommodate different types of flow fields
and plume sources. In addition, the algorithms exhibit
strong theoretical performance guarantee and good em-
pirical performance. In the future, we would like to
extend the framework to include further realistic con-
straints, such as energy or time budget, and to evaluate
our work in the field.
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