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Abstract 

In this paper, a new dynamic multiscale topology optimization method for cellular composites with multi-

regional material microstructures is proposed to improve the structural performance. Firstly, a free-material 

distribution optimization method (FMDO) is developed to generate the overall configuration for the discrete 

element densities distributed within a multi-regional pattern. The macrostructure is divided into several sub 

regions, and each of them consists of a number of elements but with the same densities. Secondly, a dynamic 

topology optimization formulation is developed to perform the concurrent design of the macrostructure and 

material microstructures, subject to the multi-regional distributed element densities. A parametric level set 

method is employed to optimize the topologies of the macrostructure and material microstructures, with the 

effective macroscopic properties evaluated by the homogenization. In the numerical implementation, the 

quasi-static Ritz vector (QSRV) method is incorporated into the finite element analysis so as to reduce the 

computational cost in numerical analysis, and some kinematical connectors are introduced to make sure the 

connectivity between adjacent material microstructures. Finally, 2D and 3D numerical examples are tested 

to demonstrate the effectiveness of the proposed dynamic multiscale topology optimization method for the 

material-structural composites. 

 

Keywords: Multiscale topology optimization; Cellular composites; Dynamic compliance; Level set 

method; Microstructures. 
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1 Introduction 

Cellular composites are a kind of artificially architected materials with the solids and voids, with extensive 

applications in engineering owing to their multifunctional properties [1,2], such as the honeycomb cellular 

composites having been considerably applied into the industry [3]. Moreover, how to improve the structural 

dynamic characteristics, like the vibration control and the reduction of frequency responses, has become an 

important topic in the field [4,5]. There are a large number of studies focused on the structural optimization 

of cellular composites under static loads [1,2], but only a limited number of works have been reported for 

multiscale topology optimization of cellular composites considering the vibration. 

In structural optimization, topology optimization has becoming very popular over the past two decades, due 

to its capability in finding an overall framework for the conceptual design without prior knowledge. Many 

different methods have been developed for topology optimization in recent years, like the homogenization 

method [6], the solid isotropic material with penalization (SIMP) [7,8] method, the evolutionary structural 

optimization (ESO) [9], the level set method (LSM) [10–12], and the phase-field method, e.g. [13,14]. One 

of them, LSM offers unique characteristics by evolving geometrical boundaries to implement shape and 

topological changes rather than updating element densities [11,12]. 

It is important to note that several complex numerical issues have restrained the further applications of the 

LSM to more advanced design problems [11,12]. Hence, many variant LSM methods have been developed 

in order to eliminate the numerical difficulties, e.g. [15–20]. Particularly, the parametrization LSM (PLSM) 

[16,17] has been demonstrated as one of efficient methods for structural optimization. It can not only inherit 

the favorable features of the most conventional LSMs, but also eliminate the complex numerical issues due 

to the implicit surface interpolation by the compactly supported basis functions (CSRBFs) [21]. Hence, the 

evolution of the structural boundaries is then achieved by iteratively updating the expansion coefficients of 

the interpolant. That is, the numerical implementation after the interpolation of the higher-dimension level 

set function is similar to the SIMP but interpolation points rather than elements based. Moreover, the OC 

(optimality criteria) method [22] and the method of moving asymptotes (MMA) [23] can be directly used 

to solve the optimization problems. The PLSM and its variants have shown the generality and applicability 

for different design problems [24,25]. 

Topology optimization has also been applied to the architected materials design for the generation of novel 

materials and even nanostructures, to achieve the extreme or prescribed material properties for the cellular 

composites [26,27]. Since the inverse homogenization method is proposed in [28], many different topology 
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optimization methods combined with the homogenization have been developed for a wide range of designs 

of cellular composites [29–35]. However, it should be noted that the above works for topology optimization 

focused on the monoscale designs. 

In pursuing the higher structural performance, the concurrent design idea has been introduced into topology 

optimization with the considerations of both the macro topology and the effective macroscopic properties 

[36,37]. The earlier works perform the optimization of material microstructure in a pre-defined distribution 

within the macrostructure [38]. After that, the concurrent topology optimization for the macrostructure and 

material microstructure has been discussed by many topology optimization methods [39,40], where only a 

unique material microstructure is configured in the macrostructure. This design can ensure the connectivity 

and remarkably reduces the computational cost, while the ultimate intention for the structural performance 

is strongly compromised. Later, multiscale topology optimization for cellular composites with the multiple 

microstructures is also studied [41–50], while the computational cost is prohibitive due to the optimization 

of a large number of microstructures. 

Since the first work for the dynamic [4], many dynamic problems have been discussed, like the maximizing 

fundamental eigenfrequency [5,51] and frequency response optimization [52–54]. The natural frequency 

problem intends to drive the fundamental eigenfrequency away from the excitation frequency to avoid the 

resonance, while the main intention of the frequency response problems is to reduce the response over a 

part of the structure or the whole domain. Ma et al [5] applied the homogenization method to improve the 

performance under a definition of the structural dynamic compliance. Then, the LSM has also been applied 

to minimize the local or global frequency response [53,54]. After that, a generalized incremental frequency 

method to minimize the dynamic compliance was proposed by Olhoff et al [52], subject to the prescribed 

low or high value of the excitation frequencies. Many model reduction schemes have also been developed 

to save the computational demands in the dynamic topology optimization [55,56]. It can be found that all 

the aforementioned works only consider the optimization at the macroscale. 

In order to improve the dynamic performance, the dynamic multiscale topology optimization for the design 

of cellular composites has been discussed [57], where the topologies of both the macrostructure and material 

microstructure are concurrently optimized to the maximum fundamental frequency. Then, the BESO is used 

to develop a concurrent topology optimization model to maximize the fundamental frequency [58]. Xu et 

al [59] performed the concurrent design of the composite macrostructures and multi-phase microstructure 

for minimizing the structural dynamic compliance. However, it should be noted that the previous works for 
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the dynamic multiscale topology optimization only considered a unique microstructure configured in the 

macro domain. In order to further enhance the dynamic performance, it is of great importance to investigate 

the dynamic topology optimization for cellular composites with multiple material microstructures. 

Hence, this research is motivated to develop a new dynamic topology optimization method for multiscale 

design of the cellular composites with multiple microstructures. Firstly, a FMDO formulation [60] will be 

employed to generate an overall distribution of multiple element densities in the macro design domain, so 

that the macro design domain is divided into several sub regions with the discrete densities. Each sub region 

is homogenously configured by a kind of the identical densities, which corresponds to the specific effective 

macroscopic property of a representative microstructure. Secondly, the topology of the macrostructure and 

the topologies of multiple microstructures are concurrently optimized to minimize the dynamic compliance, 

subject to the multi-regional distribution of the discrete element densities. Finally, two numerical examples 

will be performed to demonstrate the effectiveness of the proposed method. 

2 Finite element analysis for the dynamic 

The momentum equation of structures with viscous damping can be formulated by Newton’s law [5] when 

considering a dynamic external load, given as: 

𝐌𝐔̈௧ + 𝐂𝐔̇௧ + 𝐊𝐔௧ = 𝐅௧ (1) 

where 𝐌, 𝐂 and 𝐊 are the mass, damping and stiffness matrices for structures, respectively. The global 

displacement, velocity and acceleration field in the design domain varied with time are denoted by 𝐔௧ , 𝐔̇௧ 

and 𝐔̈௧, respectively. 𝐅௧ is the loaded external load vector. A Rayleigh damping model [5] is applied to 

evaluate the damping matrix by a linear combination of the mass and stiffness matrices, as: 

𝐂 = 𝒜𝐌 + ℬ𝐊 (2) 

where 𝒜 and ℬ are the related damping coefficients, respectively. To obtain the structural responses by 

the defined harmonic load with an excitation frequency 𝜔, the dynamic force and displacement field can 

be written in an exponential form, as: 

ቊ
𝐔௧ = U𝑒𝒾ఠ௧

𝐅௧ = F𝑒𝒾ఠ௧  
(3) 

where U and F are the amplitudes of the external load and the displacement, respectively. Eq. (1) can be 

written as a new form of the amplitudes of the displacement response and the applied force, when only 

considering the frequency domain, given as: 
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(−𝜔ଶ𝐌 + 𝒾𝜔𝐂 + 𝐊)U = F (4) 

For simplicity, Eq. (4) can be written in a compact form by the dynamic stiffness matrix, which is defined 

by the assembly of the mass, damping and stiffness matrices, denoted by 𝐊ௗ: 

൜
𝐊ௗ = −𝜔ଶ𝐌 + 𝒾𝜔𝐂 + 𝐊
F = 𝐊ௗU                             

(5) 

3 Parametric level set method for cellular composites 

A simple illustration of a 3D cellular composite at two scales is shown in Fig. 1, where the macrostructure 

is depicted in the global coordinate system x, and the local coordinate system y is applied to describe the 

microstructures. It can be easily seen that the macrostructure contains two different microstructures, which 

are respectively distributed in their corresponding locations in the macro domain. 

 
Fig. 1. 3D Cellular composite at two scales 

It is noted that the superscript 𝑀 indicates the macroscale quantities, and 𝑚 is related to the quantities at 

the micro scale. In the LSM, the implicit dynamic surface is utilized to represent the structural topology, in 

which the boundary of the structure is implicitly described by the zero-level set of a higher-dimensional 

level set function (LSF) [10], as given in Fig. 2. As far as cellular composites with multiple microstructures, 

several LSFs are required to represent the macrostructure and material microstructures, respectively. 

 
Fig. 2. 3D LSF and 2D structural design domain 
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A higher-dimensional level set function is firstly defined to represent the macro topology, given as: 

ቐ

𝛷ெ(𝐱) > 0, ∀𝐱 ∈ Ωெ Γெ⁄   (𝑚𝑎𝑐𝑟𝑜 𝑠𝑜𝑙𝑖𝑑)

𝛷ெ(𝐱) = 0, ∀𝐱 ∈ Ωெ ∩ Γெ (𝑚𝑎𝑐𝑟𝑜 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)

𝛷ெ(𝐱) < 0, ∀𝐱 ∈ 𝐷ெ Ωெ⁄   (𝑚𝑎𝑐𝑟𝑜 𝑣𝑜𝑖𝑑)

(6) 

where Ωெ, Γெ 𝑎𝑛𝑑 𝐷ெ denote the design domain, structural boundary and reference domain of the macro-

structure, respectively. Here, Assuming that there exist 𝛩 distinct material microstructures in the porous 

composite (𝛩 = 2 in Fig. 1), we should introduce 𝛩 LSFs to represent the microstructures, respectively, 

expressed as: 

ቐ

𝛷ణ
௠(𝐲) > 0, ∀𝐲 ∈ Ωణ

௠ Γణ
௠⁄   (𝑚𝑖𝑐𝑟𝑜 𝑠𝑜𝑙𝑖𝑑)

𝛷ణ
௠(𝐲) = 0, ∀𝐲 ∈ Ωణ

௠ ∩ Γణ
௠ (𝑚𝑖𝑐𝑟𝑜 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)

𝛷ణ
௠(𝐲) < 0, ∀𝐲 ∈ 𝐷ణ

௠ Ωణ
௠⁄   (𝑚𝑖𝑐𝑟𝑜 𝑣𝑜𝑖𝑑)

   {𝜗 = 1,2, ⋯ , 𝛩} (7) 

where Ωణ
௠, Γణ

௠ 𝑎𝑛𝑑 𝐷ణ
௠ indicate the design domain, structural boundary and reference domain of the 𝜗௧௛ 

representative material microstructure, respectively. Introducing a pseudo-time into Eqs. (6) and (7), and 

differentiating them on both sides with respect to the time variable 𝑡, the dynamic boundaries at two scales 

can be expressed through the H-J PDEs [11,12], expressed as: 

⎩
⎨

⎧
𝜕𝛷ெ

𝜕𝑡
− 𝜐𝐧

ெ|∇𝛷ெ| = 0  

𝜕𝛷ణ
௠

𝜕𝑡
− 𝜐ణ,𝐧

௠ |∇𝛷ణ
௠| = 0

(8) 

where 𝜐𝐧
ெ 𝑎𝑛𝑑 𝜐ణ,𝐧

௠  denote the corresponding normal velocity fields at two scales, respectively. Hence, 

the advancing of the structural boundaries by the normal velocity fields corresponds to the feasible solutions 

of the H-J PDEs. However, solving the H-J PDEs requires the complicated numerical schemes [11,12]. 

In the PLSM [16,17], the LSF is interpolated by a set of centrally positioning radially symmetric CSRBFs 

at a number of knots over the design domain. Hence, the LSFs at two scales are defined as: 

⎩
⎪
⎨

⎪
⎧

𝛷ெ(𝐱, 𝑡) = 𝝋்(𝐱)𝜶ெ(𝑡) = ෍ 𝜑௜(𝐱)𝛼௜
ெ(𝑡)

ேಾ

௜ୀଵ

𝛷ణ
௠(𝐲, 𝑡) = 𝝋்(𝐲)𝜶ణ

௠(𝑡) = ෍ 𝜑௝(𝐲)𝛼ణ,௝
௠ (𝑡)

ே೘

௝ୀଵ

(9) 

where 𝑁ெ 𝑎𝑛𝑑 𝑁௠ are the total number of the CSRBF knots in the macrostructure and microstructures 

respectively, and the CSRBFs with C2 continuity [21] is employed here: 

𝜑(𝑟) = (1 − 𝑟)ା
ସ (4𝑟 + 1) (10) 
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where 𝑟 is used to control the size of the influence domain of the basis function at the CSRBFs knot. The 

H-J PDEs can be expanded as the new forms by substituting Eq. (9) into Eq. (8), given as: 

⎩
⎨

⎧𝝋்(𝐱)
𝑑𝜶ெ(𝑡)

𝑑𝑡
− 𝜐𝐧

ெ|∇𝝋்(𝐱)𝜶ெ(𝑡)| = 0  

𝝋்(𝐲)
𝑑𝜶ణ

௠(𝑡)

𝑑𝑡
− 𝜐ణ,𝐧

௠ |∇𝝋்(𝐲)𝜶ణ
௠(𝑡)| = 0

(11) 

and the normal velocities 𝜐𝐧
ெ 𝑎𝑛𝑑 𝜐ణ,𝐧

௠  at two scales can then be given as: 

⎩
⎪
⎨

⎪
⎧𝜐𝐧

ெ =
𝝋்(𝐱)

|∇𝝋்(𝐱)𝜶ெ(𝑡)|

𝑑𝜶ெ(𝑡)

𝑑𝑡
  

𝜐ణ,𝐧
௠ =

𝝋்(𝐲)

ห∇𝝋்(𝐲)𝜶ణ
௠(𝑡)ห

𝑑𝜶ణ
௠(𝑡)

𝑑𝑡

(12) 

As we can see, the normal velocities at two scales have been naturally applied to the corresponding domains 

due to the CSRBFs positioned in the whole design domain. The topology optimization problems driven by 

the H-J PDEs have been re-shaped into the ordinary differential equations (ODEs), even algebraic equations 

(AEs), with the interpolation coefficients unknown [16,17]. 

4 Dynamic multiscale topology optimization for cellular composites 

The procedure of the current dynamic multiscale topology optimization formulation for cellular composites 

is illustrated in Fig. 3, which involves the stage of the FMDO and then the stage of the concurrent topology 

optimization. The initial structural design domain is displayed in Fig. 3 (a). 

As shown in Fig. 3 (b), a continuous distribution (given in the first figure) of the element densities is firstly 

obtained by the FMDO formulation. It can be seen that a large number of the intermediate element densities 

are existed in the macro domain, which results in a huge amount of material microstructures to be designed. 

In this case, the computational cost is prohibitive for the latter concurrent topology optimization. Hence, a 

regularization mechanism needs to be defined to reduce the number of the intermediate element densities. 

The regularized distribution of the element densities is given in Fig. 3 (b). As we can see, the regularized 

element densities are distributed in a discrete and multi-regional manner, in which the macro design domain 

is divided into several sub regions and each sub region is configured with a unique density but with a large 

number of elements. 

Then, the topology of the macrostructure and the topologies of multiple microstructures are optimized in a 

concurrent topology optimization procedure to minimize dynamic compliance, subject to the multi-regional 
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distribution of the discrete element densities. At the macro, the PLSM is applied to optimize the topology 

of the macrostructure under the global volume constraint, displayed in Fig. 3 (c). At the micro, the topology 

of each material microstructure is also optimized by the PLSM with the numerical homogenization method, 

subject to the local volume constraint defined by the discrete element density. The topologies for multiple 

microstructures are indicated in Fig. 3 (c). The final multiscale design of the cellular composite is displayed 

in Fig. 3 (d). It can be easily found that the optimized topology of the macrostructure is divided into three 

sub regions plotted with different colors (white, red and black), and each sub region is uniformly configured 

by the representative material microstructure with the same color. Hence, the dynamic multiscale topology 

design of the cellular composite with multi-regional microstructures can be obtained. 

 
Fig. 3. Dynamic multiscale topology optimization for cellular composites 

4.1 Free-material distribution optimization (FMDO) 

The FMDO [60] is employed here to optimize the distribution of the material element densities to minimize 

the dynamic compliance, and the mathematical form is expressed as: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝐹𝑖𝑛𝑑: 𝝆 = ൛𝜌ଵ, 𝜌ଶ, ⋯ , 𝜌௘ , ⋯ , 𝜌ே೐
ൟ                 

𝑀𝑖𝑛: 𝐽ௗ = |𝐽| = |𝐅𝑻𝐔|                                     

𝑆. 𝑡:

⎩
⎪
⎨

⎪
⎧

𝐊ௗ𝐔 = 𝐅                                                  

𝐺ௗ = ෍ 𝜌௘𝜐଴

ே೐

௘ୀଵ

− 𝑉ௗ ≤ 0                       

0 < 𝜌୫୧୬ ≤ 𝜌௘ ≤ 1 (𝑒 = 1,2, ⋯ , 𝑁௘)

(13) 
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where 𝐽 is the dynamic compliance. As described in [5], the dynamic compliance is a complex number. 

The real and image parts of 𝐽 are symbolled by 𝐽ோ  and 𝐽ூ , respectively. The module of the dynamic 

compliance 𝐽ௗ acts as the objective function for numerical stability, defined as: 

𝐽ௗ = ඥ(𝐽ோ)ଶ + (𝐽ூ)ଶ (14) 

where 𝐅 is the external dynamic load vector with a certain excitation frequency 𝜔, and 𝐔 is the global 

displacement field. 𝐊ௗ is the global dynamic stiffness matrix defined by Eq. (5). 𝐺ௗ  denotes the volume 

constraint subject to the maximum volume fraction 𝑉ௗ. 𝜐଴ is the volume fraction of solid elements. 𝜌௘ is 

the 𝑒௧௛ element density ranging from 0 to 1. 𝑁௘ is the total number of the finite elements to discretize the 

macro design domain. The formulation in Eq. (13) is analogous to the classic SIMP method [7,8], while the 

penalty mechanism is not employed to ensure a black-white design. Hence, the phenomenon of the localized 

modes does not appear in the optimization [52–54]. The formulation in Eq. (14) can generate a continuous 

distribution of the element densities, with a large number of the intermediate densities. The regularization 

mechanism is developed to remarkably reduce the number of intermediate element densities. It is assumed 

that the element densities in the continuous distribution are classified into 𝛩 groups, given as: 

𝜌
ణ

=
1

𝑁ణ
෍ 𝜌ణ

௜

ே഍

௜ୀଵ

   ൫𝜌ణ
୫୧୬ ≤ 𝜌ణ

௜ < 𝜌ణ
୫ୟ୶, 𝜗 = 1,2, ⋯ , 𝛩൯ (15) 

where 𝜌ణ
௜  is the 𝑖௧௛ element density belonging to the 𝜗௧௛ group. 𝜌ణ

୫୧୬ and 𝜌ణ
୫ୟ୶ are the defined lower 

and upper thresholds of the element densities in the 𝜗௧௛ group, respectively. 𝑁ణ is the total number of 

elements in the 𝜗௧௛ group, and 𝜌
ణ

 is the regularized density of the 𝜗௧௛ group which is defined by the 

average of all element densities in this group. The macro domain will also be divided into 𝛩 different sub 

regions, namely Ωଵ
ெ, Ωଶ

ெ, ⋯ , Ωణ
ெ, ⋯ , Ω௵

ெ. 

4.2 Concurrent topology optimization to minimize the dynamic compliance 

The latter stage in the multiscale design for porous composites aims to optimize the topology of the macro-

structure and the topologies of multiple material microstructures, subject to the multi-regional distribution 

of the discrete element densities achieved in the former stage, namely the FMDO. In this work, the PLSM 

[16,17] is applied to optimize the topologies at two scales, with the numerical homogenization method [61] 

to evaluate the effective macroscopic properties. The detailed mathematical model for the concurrent design 

of the macrostructure and multiple material microstructures is expressed as: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝐹𝑖𝑛𝑑: 𝛼௜
ெ , 𝛼ణ,௝

௠     (𝑖 = 1,2, ⋯ , 𝑁ெ;  𝜗 = 1,2, ⋯ , 𝛩;  𝑗 = 1,2, ⋯ , 𝑁௠; )

𝑀𝑖𝑛:
𝐮,ః 

𝐽ௗ(𝐮, 𝛷) = |𝐽(𝐮, 𝛷)| = อ෍ න 𝐅்𝐮ణ
ெ𝐻൫𝛷ణ

ெ൯𝑑Ωణ
ெ

஽ಾ

௵

ణୀଵ

อ                   

𝑆. 𝑡: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑎(𝛷ெ , 𝐮ெ, 𝐯ெ, 𝐄ு) = 𝑙(𝛷ெ , 𝐯ெ),      ∀𝐯ெ ∈ U(Ωெ)         

𝑎(𝛷ణ
௠, 𝐮ణ

௠, 𝐯ణ
௠) = 𝑙(𝛷ణ

௠, 𝐯ణ
௠),      ∀𝐯ణ

௠ ∈ U(Ωణ
௠)               

𝐺ெ = ෍ ൝න 𝐻൫𝛷ణ
ெ൯𝑑Ωణ

ெ

஽ಾ

න 𝐻(𝛷ణ
௠)

஽ഛ
೘

𝑑Ωణ
௠ൡ

௵

ణୀଵ

− 𝑉ெ ≤ 0

𝐺ణ
௠ = න 𝐻(𝛷ణ

௠)
஽ഛ

೘
𝑑Ωణ

௠ − 𝜌
ణ

≤ 0                                         

𝛼୫୧୬
ெ ≤ 𝛼௜

ெ ≤ 𝛼୫ୟ୶
ெ ;  𝛼ణ,୫୧୬

௠ ≤ 𝛼ణ,௝
௠ ≤ 𝛼ణ,୫ୟ୶

௠                      

       

(16) 

where 𝛼௜
ெ is the 𝑖௧௛ macro design variable of the macrostructure bounded by 𝛼୫୧୬

ெ  𝑎𝑛𝑑 𝛼୫ୟ୶
ெ . 𝛼ణ,୫୧୬

௠  

and 𝛼ణ,୫ୟ୶
௠  are the lower and upper bounds of the design variable 𝛼ణ,௝

௠  for 𝜗௧௛ material microstructure, 

respectively. 𝐽 is the structural dynamic compliance, and the objective function is defined by the module 

of the dynamic compliance, denoted by 𝐽ௗ. 𝐺ெ is the global volume constraint calculated by considering 

the macrostructure and the representative microstructures. 𝑉ெ is the total material consumption. 𝐺ణ
௠ is 

the volume constraint of the 𝜗௧௛ microstructure, which is equal to the regularized density 𝜌
ణ

. 𝐻 is the 

Heaviside function [10]. 𝐮ெ is the macro displacement field, and 𝐯ெ is the macro virtual displacement 

field belonging to the kinematically admissible space U(Ωெ). The macro equilibrium equation for the 

dynamic compliance is developed by the bilinear energy term 𝑎 and the load linear term 𝑙, given as: 

⎩
⎪
⎨

⎪
⎧𝑎 = ෍ 𝑘൫𝛷ణ

ெ, 𝐮ణ
ெ , 𝐯ణ

ெ, 𝐄ణ
ு൯ + 𝒾𝜔𝑐൫𝛷ణ

ெ, 𝐮ణ
ெ , 𝐯ణ

ெ, 𝐄ణ
ு൯ − 𝜔ଶ𝑚൫𝛷ణ

ெ, 𝐮ణ
ெ, 𝐯ణ

ெ , 𝐄ణ
ு൯

௵

ణୀଵ

𝑙 = න 𝑝𝐯ெ𝐻(𝛷ெ)𝑑Ωெ

஽ಾ

+ න 𝑓𝐯ெ𝛿(𝛷ெ)|∇𝛷ெ|𝑑Ωெ

஽ಾ

                                            

(17) 

where 𝑝 is the macro body force and 𝑓 is the macro boundary traction. 𝛿 is the partial derivative of the 

Heaviside function 𝐻. 𝑘, 𝑐 and 𝑚 indicate the stiffness, the damping, the mass and the load functions, 

respectively, expressed by: 

⎩
⎪
⎨

⎪
⎧𝑘൫𝛷ణ

ெ, 𝐮ణ
ெ, 𝐯ణ

ெ, 𝐄ణ
ு൯ = න 𝜺൫𝐮ణ

ெ൯𝐄ణ
ு൫𝐮ణ

ெ, 𝛷ణ
ெ൯𝜺൫𝐯ణ

ெ൯𝐻൫𝛷ణ
ெ൯𝑑Ωெ

஽ಾ

      

𝑚൫𝛷ణ
ெ , 𝐮ణ

ெ, 𝐯ణ
ெ, 𝐄ణ

ு൯ = න 𝜓ణ
ு𝐮ణ

ெ𝐯ణ
ெ𝐻൫𝛷ణ

ெ൯𝑑Ωெ

஽ಾ

                                   

𝑐൫𝛷ణ
ெ, 𝐮ణ

ெ , 𝐯ణ
ெ, 𝐄ణ

ு൯ = 𝒜𝑚൫𝛷ణ
ெ, 𝐮ణ

ெ , 𝐯ణ
ெ, 𝐄ణ

ு൯ + ℬ𝑘൫𝛷ణ
ெ, 𝐮ణ

ெ , 𝐯ణ
ெ, 𝐄ణ

ு൯

(18) 

where 𝜓ణ
ு is the homogenized mass density of the 𝜗௧௛ representative microstructure, and the simple but 

efficient “ersatz material” model [12] is applied to evaluate it, given by: 
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𝜓ణ
ு =

1

หΩణ
௠ห

න 𝜓଴𝐻(𝛷ణ
௠)𝑑Ωణ

௠

஽ഛ
೘

(19) 

where 𝜓଴ is the mass density of the material. 𝐄ణ
ு denotes the homogenized elasticity tensor of the 𝜗௧௛ 

representative microstructure evaluated by the homogenization [61], as: 

𝐸ణ(௜௝௞௟)
ு =

1

หΩణ
௠ห

න ൬𝜀௣௤
଴(௜௝)

− 𝜀௣௤
∗ ቀ𝑢ణ

௠(௜௝)
ቁ൰ 𝐸௣௤௥௦ ൬𝜀௥௦

଴(௞௟)
− 𝜀௥௦

∗ ቀ𝑢ణ
௠(௞௟)

ቁ൰ 𝐻(𝛷ణ
௠)𝑑Ωణ

௠

஽ഛ
೘

(20) 

where 𝐸௣௤௥௦ is the constituent elasticity property of the material. 𝜀௣௤
଴(௜௝)

 is the initial unit test strain. 𝜀௣௤
∗  

is the locally varying strain field induced by 𝜀௣௤
଴(௜௝)

. The unknown displacement field 𝑢ణ
௠(௜௝)

 is calculated 

by solving the micro elastic equilibrium equation, given as: 

⎩
⎪
⎨

⎪
⎧𝑎(𝛷ణ

௠, 𝐮ణ
௠, 𝐯ణ

௠) = න 𝜀௣௤
∗ ቀ𝑢ణ

௠(௜௝)
ቁ 𝐸௣௤௥௦𝜀௥௦

∗ ቀ𝜈ణ
௠(௞௟)

ቁ𝐻(𝛷ణ
௠)𝑑Ωణ

௠

஽ഛ
೘

𝑙(𝛷ణ
௠, 𝐯ణ

௠) = න 𝜀௣௤
଴(௜௝)

𝐸௣௤௥௦𝜀௥௦
∗ ቀ𝜈ణ

௠(௞௟)
ቁ𝐻(𝛷ణ

௠)𝑑Ωణ
௠

஽ഛ
೘

                      

(21) 

where 𝐯ణ
௠ is the virtual displacement field of the 𝜗௧௛ representative material microstructure belonging to 

the kinematically admissible displacement space U(Ωణ
௠). 

5 Sensitivity analysis for the dynamic multiscale design 

The dynamic multiscale topology optimization formulation can be directly solved by many well-established 

gradient-based algorithms [22,23]. Hence, sensitivity information of the objective and constraint functions 

with respect to the design variables are required. In the proposed formulation, there exist three kinds of the 

design variables, namely the element densities in the FMDO, the macro and micro expansion coefficients 

of the CSRBFs in the concurrent topology optimization. 

5.1 Sensitivity analysis of the FMDO 

In the FMDO, the first-order derivatives of the displacement response with respect to the element densities 

are computed based on the adjoint variable method [62], and the final form is given as: 

𝜕𝐔

𝜕𝜌௘
= −(𝐊ௗ)ିଵ

𝜕𝐊ௗ

𝜕𝜌௘
𝐔 (22) 

According to the chain rule of the differential, the first-order derivatives of the objective with respect to the 

element densities are written as: 

𝜕𝐽

𝜕𝜌௘
=

𝜕𝐽ோ

𝜕𝜌௘
+ 𝒾

𝜕𝐽ூ

𝜕𝜌௘
= 𝐅𝑻

𝜕𝐔

𝜕𝜌௘
= −𝐔𝑻

𝜕𝐊ௗ

𝜕𝜌௘
𝐔 (23) 
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We can obtain the first-orders of the real and image of the dynamic compliance with respect to the design 

variables. The first-order derivative of the dynamic stiffness matrix can be derived by: 

𝜕𝐊ௗ

𝜕𝜌௘
= −𝜔ଶ

𝜕𝐌

𝜕𝜌௘
+ 𝒾𝜔

𝜕𝐂

𝜕𝜌௘
+

𝜕𝐊

𝜕𝜌௘

(24) 

where 

⎩
⎨

⎧
𝜕𝐊

𝜕𝜌௘
= 𝐊଴;  

𝜕𝐌

𝜕𝜌௘
= 𝐌଴  

𝜕𝐂

𝜕𝜌௘
= 𝒜

𝜕𝐌

𝜕𝜌௘
+ ℬ

𝜕𝐊

𝜕𝜌௘

(25) 

where 𝐊଴ and 𝐌଴ are the stiffness and mass matrices of the solid element, respectively. In Eq. (13), the 

first-order derivatives of the objective function can be derived, given by: 

𝜕𝐽ௗ

𝜕𝜌௘
=

1

𝐽ௗ
൬𝐽ோ

𝜕𝐽ோ

𝜕𝜌௘
+ 𝐽ூ

𝜕𝐽ூ

𝜕𝜌௘
൰ (26) 

The derivatives of the objective function with respect to the element densities can be derived by Eqs. (23), 

(25) and (26). Meanwhile, the derivative of the volume constraint is given as: 

𝜕𝐺ௗ

𝜕𝜌௘
= 𝜕 ቌ෍ 𝜌௘𝜐଴

ே೐

௘ୀଵ

− 𝑉ௗቍ 𝜕𝜌௘൘ = 𝜐଴ (27) 

5.2 Macro sensitivity analysis in the concurrent topology optimization 

The macro expansion coefficients of the CSRBFs are the design variables in the macro optimization. In the 

LSM, the material derivative [63] is employed to calculate the derivatives of the objective and constraint 

functions with respect to the macro design variables. Firstly, the dynamic compliance can be transformed 

a form based on the macro elastic equilibrium state equation, given as: 

𝐽(𝐮, 𝛷) = ෍ න ൛(1 + 𝒾𝜔ℬ)𝜺൫𝐮ణ
ெ൯𝐄ణ

ு𝜺൫𝐮ణ
ெ൯ + (𝒾𝜔𝒜 − 𝜔ଶ)𝜓ణ

ு𝐮ణ
ெ𝐮ణ

ெൟ𝐻൫𝛷ణ
ெ൯

஽ಾ

𝑑Ωణ
ெ

௵

ణୀଵ

(28) 

The material derivative of the structural dynamic compliance is derived as: 

𝐽̇ = ෍

⎩
⎨

⎧2 න ൛(1 + 𝒾𝜔ℬ)𝜺൫𝐮̇ణ
ெ൯𝐄ణ

ு𝜺൫𝐮ణ
ெ൯ + (𝒾𝜔𝒜 − 𝜔ଶ)𝜓ణ

ு𝐮̇ణ
ெ𝐮ణ

ெൟ𝐻൫𝛷ణ
ெ൯

஽ಾ

𝑑Ωణ
ெ

+ න ൛(1 + 𝒾𝜔ℬ)𝜺൫𝐮ణ
ெ൯𝐄ణ

ு𝜺൫𝐮ణ
ெ൯ + (𝒾𝜔𝒜 − 𝜔ଶ)𝜓ణ

ு𝐮ణ
ெ𝐮ణ

ெൟ𝜐𝐧
ெ

୻ಾ

𝑑Γெ         
⎭
⎬

⎫௵

ణୀଵ

(29) 

Taking the material derivative on both sides of the state equation, the following equation is obtained as: 
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෍

⎩
⎪
⎨

⎪
⎧(1 + 𝒾𝜔ℬ) ቈ𝑘൫𝐮̇ణ

ெ , 𝐯ణ
ெ൯ + 𝑘൫𝐮ణ

ெ, 𝐯̇ణ
ெ൯ + න 𝜺൫𝐮ణ

ெ൯𝐄ణ
ு𝜺൫𝐯ణ

ெ൯𝜐𝐧
ெ

୻ಾ

𝑑Γெ቉

+(𝒾𝜔𝒜 − 𝜔ଶ) ቈ𝑚൫𝐮̇ణ
ெ, 𝐯ణ

ெ൯ + 𝑚൫𝐮ణ
ெ, 𝐯̇ణ

ெ൯ + න 𝜓ణ
ு𝐮ణ

ெ𝐯ణ
ெ𝜐𝐧

ெ

୻ಾ

𝑑Γெ቉  
⎭
⎪
⎬

⎪
⎫௵

ణୀଵ

=

⎩
⎨

⎧න 𝑝𝐯̇ெ𝐻(𝛷ெ)
஽ಾ

𝑑Ωெ + න 𝑝𝐯ெ𝜐𝐧
ெ

୻ಾ

𝑑Γெ + ⋯            

න 𝑓𝐯̇ெ

୻ಾ

𝑑Γெ + න [∇(𝑓𝐯ெ) ∙ 𝐧 + 𝜅(𝑓𝐯ெ)]𝜐𝐧
ெ

୻ಾ

𝑑Γெ

⎭
⎬

⎫

                                   

(30) 

where 𝐮̇ణ
ெ  𝑎𝑛𝑑 𝐯̇ణ

ெ  are the partial derivatives of 𝐮ణ
ெ 𝑎𝑛𝑑 𝐯ణ

ெ  with respect to the time variable 

respectively. Considering that 𝐯̇ణ
ெ ∈ U(Ωெ), we would gain the following vibrational state equation, as: 

෍ൣ(1 + 𝒾𝜔ℬ)𝑘൫𝐮ణ
ெ, 𝐯̇ణ

ெ൯ + (𝒾𝜔𝒜 − 𝜔ଶ)𝑚൫𝐮ణ
ெ , 𝐯̇ణ

ெ൯൧

௵

ణୀଵ

= ቊන 𝑝𝐯̇ெ𝐻(𝛷ெ)
஽ಾ

𝑑Ωெ + න 𝑓𝐯̇ெ

୻ಾ

𝑑Γெቋ (31) 

Substituting Eq. (31) into Eq. (30) and eliminating all the terms that contains 𝐯̇ణ
ெ, it yields: 

෍ൣ(1 + 𝒾𝜔ℬ)𝑘൫𝐮̇ణ
ெ, 𝐯ణ

ெ൯ + (𝒾𝜔𝒜 − 𝜔ଶ)𝑚൫𝐮̇ణ
ெ , 𝐯ణ

ெ൯൧

௵

ణୀଵ

                                           

= න ൞
− ෍ൣ(1 + 𝒾𝜔ℬ)𝜺൫𝐮ణ

ெ൯𝐄ణ
ு𝜺൫𝐯ణ

ெ൯ + (𝒾𝜔𝒜 − 𝜔ଶ)𝜓ణ
ு𝐮ణ

ெ𝐯ణ
ெ൧

௵

ణୀଵ

+{𝑝𝐯ெ + [∇(𝑓𝐯ெ) ∙ 𝐧 + 𝜅(𝑓𝐯ெ)]}                                               

ൢ 𝜐𝐧
ெ𝑑Γெ

୻ಾ

(32) 

Because the problem for the dynamic compliance is the self-adjoint [52–54], the material derivative of the 

structural dynamic compliance can be transformed into a new form, defined as: 

𝐽(̇𝐮, 𝛷) = න 𝜰(𝐮, 𝛷)𝜐𝐧
ெ

୻ಾ

𝑑Γெ (33) 

where 

𝜰(𝐮, 𝛷) = ൞
− ෍ൣ(1 + 𝒾𝜔ℬ)𝜺൫𝐮ణ

ெ൯𝐄ణ
ு𝜺൫𝐮ణ

ெ൯ + (𝒾𝜔𝒜 − 𝜔ଶ)𝜓ణ
ு𝐮ణ

ெ𝐮ణ
ெ൧

௵

ణୀଵ

+2{𝑝𝐮ெ + [∇(𝑓𝐮ெ) ∙ 𝐧 + 𝜅(𝑓𝐮ெ)]}                                            

ൢ (34) 

The Lagrange function 𝐿 for the concurrent topology optimization is defined by: 

𝐿 = 𝐽 + (1 + 𝒾𝜔ℬ)𝑘 + (𝒾𝜔𝒜 − 𝜔ଶ)𝑚 − 𝑙 + 𝜆𝐺ெ (35) 

where 𝜆 is the Lagrange multiplier, and the derivative of the Lagrange function 𝐿 is derived as: 

𝑑𝐿

𝑑𝑡
= න 𝜷(𝐮, 𝛷)𝜐𝐧

ெ

୻ಾ

𝑑Γெ (36) 

where 
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𝜷(𝐮, 𝛷) = 𝜰(𝐮, 𝛷) + 𝜆 ෍ ൥න 𝐻(𝛷ణ
௠)

஽ഛ
೘

𝑑Ωణ
௠൩

௵

ణୀଵ

(37) 

and 𝜅 is the mean curvature in two dimensions. Now, recalling the normal velocity field 𝜐𝐧
ெ in Eq. (12) 

and substituting it into Eq. (36), the derivative of the Lagrange function is further written as: 

𝑑𝐿

𝑑𝑡
= න ቊ𝜷(𝐮, 𝛷)

𝝋்(𝐱)

|∇𝝋்(𝐱)𝜶ெ(𝑡)|
ቋ

𝑑𝜶ெ(𝑡)

𝑑𝑡୻ಾ

𝑑Γெ (38) 

Eq. (38) can be expanded as a new form: 

𝑑𝐿

𝑑𝑡
= 𝒫்

𝑑𝜶ெ(𝑡)

𝑑𝑡
+ 𝒬்

𝑑𝜶ெ(𝑡)

𝑑𝑡
(39) 

where 𝒫்  𝑎𝑛𝑑 𝒬் are defined as: 

⎩
⎪
⎨

⎪
⎧𝒫் = න 𝜰(𝐮, 𝛷)

𝝋்(𝐱)

|∇𝝋்(𝐱)𝜶ெ(𝑡)|୻ಾ

𝑑Γெ                                  

𝒬் = ൝𝜆 ෍ ൥න 𝐻(𝛷ణ
௠)

஽ഛ
೘

𝑑Ωణ
௠൩

௵

ణୀଵ

ൡ න
𝝋்(𝐱)

|∇𝝋்(𝐱)𝜶ெ(𝑡)|୻ಾ

𝑑Γெ

(40) 

On the other hand, the derivative of the Lagrange function 𝐿 can be given based on the chain rule, as: 

𝑑𝐿

𝑑𝑡
= ൬

𝜕𝐽

𝜕𝜶ெ
+ 𝜆

𝜕𝐺ெ

𝜕𝜶ெ
൰

𝑑𝜶ெ(𝑡)

𝑑𝑡
(41) 

Thus, the first-order derivatives of the dynamic compliance and the constraint function can be obtained by 

comparing the corresponding terms in Eqs. (39) and (41), given as: 

⎩
⎪
⎨

⎪
⎧

𝜕𝐽

𝜕𝜶ெ
= න 𝜰(𝐮, 𝛷)

𝝋்(𝐱)

|∇𝝋்(𝐱)𝜶ெ(𝑡)|୻ಾ

𝑑Γெ                               

𝜕𝐺ெ

𝜕𝜶ெ
= ൝෍ ൥න 𝐻(𝛷ణ

௠)
஽ഛ

೘
𝑑Ωణ

௠൩

௵

ణୀଵ

ൡ න
𝝋்(𝐱)

|∇𝝋்(𝐱)𝜶ெ(𝑡)|୻ಾ

𝑑Γெ

(42) 

In order to improve the numerical efficiency, the design sensitivities expressed by the boundary integration 

scheme can be transformed into the following volume integration [16,17,24,29]. 

⎩
⎪
⎨

⎪
⎧

𝜕𝐽

𝜕𝜶ெ
= න 𝜰(𝐮, 𝛷)𝝋்(𝐱)𝛿(𝛷ெ)

ୈಾ

𝑑Ωெ                               

𝜕𝐺ெ

𝜕𝜶ெ
= ൝෍ ൥න 𝐻(𝛷ణ

௠)
஽ഛ

೘
𝑑Ωణ

௠൩

௵

ణୀଵ

ൡ න 𝝋்(𝐱)𝛿(𝛷ெ)
ୈಾ

𝑑Ωெ

(43) 

According to the sensitivity analysis in the FMDO defined by Eqs. (23) and (26), the first-order derivatives 

of the objective function in the concurrent topology optimization can be calculated, as: 
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𝜕𝐽ௗ

𝜕𝜶ெ
=

1

𝐽ௗ
൬𝐽ோ

𝜕𝐽ோ

𝜕𝜶ெ
+ 𝐽ூ

𝜕𝐽ூ

𝜕𝜶ெ
൰ (44) 

where 

𝜕𝐽

𝜕𝜶ெ
=

𝜕𝐽ோ

𝜕𝜶ெ
+ 𝒾

𝜕𝐽ூ

𝜕𝜶ெ
= න 𝜰(𝐮, 𝛷)𝝋்(𝐱)𝛿(𝛷ெ)

ୈಾ

𝑑Ωெ (45) 

5.3 Micro sensitivity analysis in the concurrent topology optimization 

The derivatives of the dynamic compliance with respect to the micro design variables are computed based 

on the chain rule, given as: 

𝜕𝐽

𝜕𝜶ణ
௠ =

𝜕𝐽ோ

𝜕𝜶ణ
௠ + 𝒾

𝜕𝐽ூ

𝜕𝜶ణ
௠ = ⋯                                                                                             

න ቊ(1 + 𝒾𝜔ℬ)𝜺൫𝐮ణ
ெ൯

𝜕𝐄ణ
ு

𝜕𝜶ణ
௠ 𝜺൫𝐮ణ

ெ൯ + (𝒾𝜔𝒜 − 𝜔ଶ)
𝜕𝜓ణ

ு

𝜕𝜶ణ
௠ 𝐮ణ

ெ𝐮ణ
ெቋ 𝐻൫𝛷ణ

ெ൯
஽ಾ

𝑑Ωణ
ெ

(46) 

It can be found that the key to solve the sensitivities from Eq. (46) lies in the derivatives of 𝐄ణ
ு  and 𝜓ణ

ு  

with respect to the micro design variables. The first-order derivative of the homogenized elastic tensor 𝐄ణ
ு 

with respect to time t is derived by: 

𝜕𝐸ణ(௜௝௞௟)
ு

𝜕𝑡
=

1

หΩణ
௠ห

න ൬𝜀௣௤
଴(௜௝)

− 𝜀௣௤
∗ ቀ𝑢ణ

௠(௜௝)
ቁ൰ 𝐸௣௤௥௦ ൬𝜀௥௦

଴(௞௟)
− 𝜀௥௦

∗ ቀ𝑢ణ
௠(௞௟)

ቁ൰ 𝜐ణ,𝐧
௠ |∇𝛷ణ

௠|𝛿(𝛷ణ
௠)𝑑Ωణ

௠

஽ഛ
೘

(47) 

Recalling the normal velocity field 𝜐ణ,𝐧
௠  of the representative microstructure in Eq. (12), and substituting 

it into Eq. (47), yields: 

𝜕𝐸ణ(௜௝௞௟)
ு

𝜕𝑡
=

1

หΩణ
௠ห

න ൬𝜀௣௤
଴(௜௝)

− 𝜀௣௤
∗ ቀ𝑢ణ

௠(௜௝)
ቁ൰ 𝐸௣௤௥௦ ൬𝜀௥௦

଴(௞௟)
− 𝜀௥௦

∗ ቀ𝑢ణ
௠(௞௟)

ቁ൰ 𝝋்(𝐲)𝛿(𝛷ణ
௠)𝑑Ωణ

௠

஽ഛ
೘

𝑑𝜶ణ
௠

𝑑𝑡
(48) 

On the other side, based on the chain rule, the first-order derivative of 𝐄ణ
ு with respect to time t is given: 

𝜕𝐸ణ(௜௝௞௟)
ு

𝜕𝑡
=

𝜕𝐸ణ(௜௝௞௟)
ு

𝜕𝜶ణ
௠

𝑑𝜶ణ
௠

𝑑𝑡
(49) 

According to the Eqs. (48) and (49), the first-order derivatives of 𝐄ణ
ு with respect to the micro expansion 

coefficients can be given as: 

𝜕𝐸ణ(௜௝௞௟)
ு

𝜕𝜶ణ
௠ =

1

หΩణ
௠ห

න ൬𝜀௣௤
଴(௜௝)

− 𝜀௣௤
∗ ቀ𝑢ణ

௠(௜௝)
ቁ൰ 𝐸௣௤௥௦ ൬𝜀௥௦

଴(௞௟)
− 𝜀௥௦

∗ ቀ𝑢ణ
௠(௞௟)

ቁ൰ 𝝋்(𝐲)𝛿(𝛷ణ
௠)𝑑Ωణ

௠

஽ഛ
೘

(50) 
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Similarly, the derivatives of the homogenized mass density 𝜓ణ
ு with respect to the micro design variables 

can be stated as: 

𝜕𝜓ణ
ு

𝜕𝜶ణ
௠ =

1

หΩణ
௠ห

න 𝜓଴𝝋்(𝐲)𝛿(𝛷ణ
௠)𝑑Ωణ

௠

஽ഛ
೘

(51) 

Finally, the first-order derivatives of the dynamic compliance 𝐽 with respect to the micro design variables 

are attained by substituting Eqs. (50) and (51) into Eq. (46). The derivatives of the objective function 𝐽ௗ 

with respect to the design variables can be computed by the chain rule, as follows: 

𝜕𝐽ௗ

𝜕𝜶ణ
௠ =

1

𝐽ௗ
ቆ𝐽ோ

𝜕𝐽ோ

𝜕𝜶ణ
௠ + 𝐽ூ

𝜕𝐽ூ

𝜕𝜶ణ
௠ቇ (52) 

Similarly, the first-order derivative of the micro volume constraint  is defined by: 

𝜕𝐺ణ
௠

𝜕𝜶ణ
௠ = න 𝝋்(𝐲)𝛿(𝛷ణ

௠)
஽ഛ

೘
𝑑Ωణ

௠ (53) 

6 Numerical Implementations 

6.1 Quasi-static Ritz vector (QSRV) method 

Usually, the dynamic topology optimization is computationally expensive due to a large number of degrees 

of freedom. Hence, many model reduction schemes, like the mode superposition method [5], the Ritz vector 

(RV) method [55] and the Quasi-static Ritz vector (QSRV) method [55], are required. Here, we adopt the 

QSRV method to approximate the dynamic responses since it can guarantee the numerical accuracy while 

reduces the computational demands. In the QSRV, the reduction bases 𝛹 are constructed considering the 

external force 𝐅, the excitation frequency (acting as the center frequency 𝜔), the mass matrix 𝐌 and the 

stiffness matrix 𝐊. The first basis 𝜁ଵ is developed by solving the dynamic equation and normalizing the 

dynamic displacement to the mass matrix, given as: 

𝜁ଵ =
1

(𝜁ଵ
∗)்𝐌𝜁ଵ

∗ 𝜁ଵ
∗ (54) 

where 

𝜁ଵ
∗ = (𝐊 − 𝜔ଶ𝐌)ିଵ𝐅 (55) 

The rest bases are sequentially constructed by considering the previously calculated bases, center frequency 

𝜔, mass matrix 𝐌 and stiffness matrix 𝐊, defined by: 

𝜁௝
∗ = (𝐊 − 𝜔ଶ𝐌)ିଵ൫𝐌𝜁௝ିଵ൯ (56) 
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By orthogonalizing: 

𝜁௝
∗∗ = 𝜁௝

∗ − ෍((𝜁௞
∗)்𝐌𝜁௞

∗)𝜁௞

௝ିଵ

௞ୀଵ

(57) 

By normalizing: 

𝜁௝ =
1

൫𝜁௝
∗∗൯

்
𝐌𝜁௝

∗∗
𝜁௝

∗∗ (58) 

The reduction bases are utilized to approximate dynamic response, which can transform a large number of 

system equations into a small number of equations. The approximated response can be written as: 

𝐔 ≈ 𝐔௥ = 𝛹𝑄 (59) 

where 

ቊ
𝐔௥ = ൛𝜁ଵ, 𝜁ଶ, ⋯ , 𝜁௝, ⋯ , 𝜁௡ೝ

ൟ   (𝑛௥ ≤ 𝑛)

{𝛹்(−𝜔ଶ𝐌 + 𝒾𝜔𝐂 + 𝐊)𝛹}𝑄 = 𝛹்𝐅
(60) 

where 𝐔௥ denotes the approximated displacement responses. 

6.2 Connectivity mechanism 

In the multiscale design with multiple material microstructures, the connectivity in adjacent microstructures 

is a critical issue in numerical implementation [26,35,46,48]. As discussed in [46], the connectivity should 

be kept well in nature in the multiscale design of cellular composites, due to the basic fact that a continuous 

loading transmission path should be occurred in the design domain. Meanwhile, a kinematically connective 

constraint approach [26,35,48] is developed to guarantee the connectivity between the adjacent material 

microstructures. In this work, the latter scheme is employed, a number of the connectors serving as the non-

design components are pre-defined within material microstructures, as clearly illustrated in Fig. 4, namely 

four connectors in 2D unit cells and eight connectors in 3D microstructures. 

 
Fig. 4. Predefined connectors (red dots) between adjacent microstructures in 2D and 3D 
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6.3 Updating scheme for design variables 

In this work, the OC algorithm is employed to update the design variables at two scales, owing to its superior 

features for problems with a large number of design variables but only with a single constraint [22]. Firstly, 

a heuristic updating scheme is established for the design variables in the FMDO, given as: 

𝜌௘
(𝒦ାଵ)

=

⎩
⎪⎪
⎨

⎪⎪
⎧max ቄቀ𝜌௘

(𝒦)
− ∆ிቁ, 𝜌୫୧୬ቅ 𝑖𝑓 ቀ𝐷௘

(𝒦)
ቁ

చಷ

𝜌௘
(𝒦)

≤ max ቄቀ𝜌௘
(𝒦)

− ∆ிቁ, 𝜌୫୧୬ቅ

ቀ𝐷௘
(𝒦)

ቁ
చಷ

𝜌௘
(𝒦)

                     𝑖𝑓 ቐ
max ቄቀ𝜌௘

(𝒦)
− ∆ிቁ, 𝜌୫୧୬ቅ < ⋯               

ቀ𝐷௘
(𝒦)

ቁ
చಷ

𝜌௘
(𝒦)

< min ቄቀ𝜌௘
(𝒦)

+ ∆ிቁ, 1ቅ
ቑ 

min ቄቀ𝜌௘
(𝒦)

+ ∆ிቁ, 1ቅ      𝑖𝑓 min ቄቀ𝜌௘
(𝒦)

+ ∆ிቁ, 1ቅ ≤ ቀ𝐷௘
(𝒦)

ቁ
చಷ

𝜌௘
(𝒦)

      ⎭
⎪⎪
⎬

⎪⎪
⎫

(61) 

where 𝒦 denote the current iteration step. ∆ி and 𝜍ி are the move limit and damping coefficient for the 

design variables in the FMDO, respectively. 𝐷௘
(𝒦) is the corresponding updating factor, given by: 

𝐷௘
(𝒦)

= − ቈ
𝜕𝐽ௗ

𝜕𝜌௘
(𝒦)

max ቆ𝜇, Λி

𝜕𝐺ௗ

𝜕𝜌௘
(𝒦)

ቇ൘ ቉ (62) 

where 𝜇 is a very small positive constant to avoid the denominator equal to 0, and Λி is the Lagrange 

multiplier in the FMDO. The bi-sectioning algorithm [8] is an efficient and simple scheme to calculate the 

Lagrange multiplier, where a lower and an upper bounds are repeatedly evaluated by pushing the volume 

back to satisfy the volume constraint. The details are given as follows: 

Step 1: Set lower bound Λி
୫୧୬ and upper bound Λி

୫ୟ୶ of the Lagrange multiplier Λி. 

Step 2: Let Λி
୲ୣ୫୮

= ൫Λி
୫୧୬ + Λி

୫ୟ୶൯ 2⁄ . 

Step 3: Set Λி = Λி
୲ୣ୫୮, and update the design variables by Eq. (61). 

Step 4: Calculate the volume constraint 𝐺ௗ. 

Step 5: Check 𝐺ௗ = 0? if yes, stop and return the design variables. If no, go to Step 6. 

Step 6: If 𝐺ௗ > 0, set Λி
୫୧୬ ← Λி

୲ୣ୫୮; Else if 𝐺ௗ < 0, set Λி
୫ୟ୶ ← Λி

୲ୣ୫୮. 

Step 7: Go to Step 2 and repeat until 𝐺ௗ = 0. 

In the concurrent topology optimization for the macrostructure and multiple microstructures, the two-scale 

design variables are contained, namely the macro and micro expansion coefficients. As already pointed out 

in several works [16,17,24,29,49,54], one of the most important contribution of the PLSM is the elimination 

of the limitation of the signed distance function, and which allow for a free surface evolution driven by the 

sensitivity information. On the other side, the interpolated coefficients for the LSFs, namely the macro and 

micro expansion coefficients in the concurrent topology optimization, working as the design variables do 
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not have the definite bounds in the updating by the sensitivity analysis, which might affect the numerical 

stability to some extent in the optimization [64]. In the current work, we introduce a normalization scheme 

for the two-scale design variables to force them into a lateral bound [0, 1]. 

6.3.1 The normalization of the two-scale design variables 

The maximum and minimum values of the initial LSFs at two scales are symbolled by 𝛷୫୧୬
ெ  and 𝛷୫ୟ୶

ெ ,  

𝛷ణ,୫୧୬
௠  and 𝛷ణ,୫ୟ୶

௠ , respectively. Based on Eq. (9), the lower and upper bounds for the initial values of the 

macro and micro expansion coefficients can be calculated, denoted by 𝛼୫୧୬
ெ  and 𝛼୫ୟ୶

ெ , 𝛼ణ,୫୧୬
௠  and 𝛼ణ,୫ୟ୶

௠ , 

respectively. The normalization for the two-scale design variables is defined by: 

⎩
⎪
⎨

⎪
⎧𝛼௜

ெ
=

𝛼௜
ெ − 𝛼୫୧୬

ெ

𝛼୫ୟ୶
ெ − 𝛼୫୧୬

ெ        

𝛼ణ,௝
௠

=
𝛼ణ,௝

௠ − 𝛼ణ,୫୧୬
௠

𝛼ణ,୫ୟ୶
௠ − 𝛼ణ,୫୧୬

௠

(63) 

We can easily see that all the normalized design variables will be evolved within the bound [0, 1]. After 

updating the normalized design variables, the actual design variables can be obtained by: 

൝
𝛼௜

ெ = 𝛼௜
ெ

× (𝛼୫ୟ୶
ெ − 𝛼୫୧୬

ெ ) + 𝛼୫୧୬
ெ             

𝛼ణ,௝
௠ = 𝛼ణ,௝

௠
× ൫𝛼ణ,୫ୟ୶

௠ − 𝛼ణ,୫୧୬
௠ ൯ + 𝛼ణ,୫୧୬

௠
(64) 

Hence, the updating of the macro and micro expansion coefficients is kept in the ranges 𝛼୫୧୬
ெ  and 𝛼୫ୟ୶

ெ , 

𝛼ణ,୫୧୬
௠  and 𝛼ణ,୫ୟ୶

௠ , respectively, which can avoid the high fluctuations of the LSFs during the optimization. 

The normalized design variables at two scales are also updated by the OC algorithm, and the bi-sectioning 

algorithm is also applied to evolve the Lagrange multipliers at two scales for the volume constraints in the 

macro and micro designs. The details are shown in Section 6.3. The only difference is that the move limit 

and damping factor should be chosen appropriately for the concurrent topology optimization. 

7 Numerical Examples 

In this section, 2D and 3D numerical examples are demonstrated to display the effectiveness of the dynamic 

multiscale topology optimization for cellular composites. In the homogenization [61], noting that material 

microstructures have no specific sizes but should ensure the periodicity condition within the macrostructure. 

For numerical simplicity, the sizes of material microstructures in all normal directions are defined to be 1 

mm. The material has the Young’s modulus 210 GPa, Possion’s ratio 0.3 and mass density 7800 kg/m3. The 

coefficients are defined as: 𝒜 = 0.03 and ℬ = 0.001, respectively. The damping coefficients and move 

limits for three kinds of the design variables are defined as: 0.5 and 0.2, 0.5 and 0.01, 0.5 and 0.002, 
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respectively. The termination criterion for the FMDO is that the difference of the design variables between 

two successive iterations is less than 0.001, and the concurrent topology optimization will terminate if the 

difference of the objective function between two adjacent steps is less than 1e-4 or the maximum 200 steps 

are reached. 

7.1 Clamped beam 

In Fig. 5, a clamped beam is fixed at both sides and loaded with a downward excitation force with a certain 

frequency 𝜔 = 80𝐻𝑧, namely 𝐅 = −1𝑒6𝑒𝒾଼଴௧. The design domain has the length L=1.05 m, the height 

H=0.15 m, which is discretized with 210×30 four-node finite elements. The discretization of all material 

microstructures uses a mesh of 30×30 finite elements. The maximum of the global volume fraction 𝑉ெ is 

set to be 30%, and the volume fraction 𝑉ௗ in the FDMO is set as 45%. 

 
Fig. 5. The clamped beam 

7.1.1 Dynamic multiscale topology optimization design 

(a) Stage 1: FMDO 

As shown in Fig. 6 (a), the continuous distribution of the element densities are obtained by the formulation 

in Eq. (13). It can be easily found that a huge number of the intermediate element densities are occurred in 

the design, and the number of the representative microstructures to be optimized is considerably increased. 

The scheme 1 (S1) of the regularization mechanism, defined in Table 1, is applied to process the element 

densities, and the regularized distribution of the densities is shown in Fig. 6 (b). As we can see, the discrete 

element densities with only a limited number (5) are distributed in the multi-regional manner, and each of 

them is uniformly filled within the corresponding sub area of the macrostructure. The macro design domain 

is divided into five different sub regions plotted by different colors, namely the white, blue, green, red and 

black. It should be noted that the regularized element densities are equal to zero (plotted by the white) if 

they are between 0.00 and 0.20 and the regularized element densities are equal to unit (plotted by the black) 

if they belong to the last group (0.8-1.0) to stable the numerical optimization. 

Table 1. Scheme 1 (S1) of the regularization mechanism 
Scheme The defined thresholds in different groups 

S1 
Group 1 Group 2 Group 3 Group 4 Group 5 

[0 0.2) [0.2 0.4) [0.4 0.6) [0.6 0.8) [0.8 1] 
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Fig. 6. Two distributions in the FMDO 

(b) Stage 2: Concurrent topology optimization 

The regularized densities are chosen as the maximum value of the volume constraints for the representative 

microstructures, as shown in the micro volume constraints 𝐺ణ
௠. The topologies of both the macrostructure 

and the representative microstructures are concurrently optimized, subject to the regularized distribution of 

the densities shown in Fig. 6 (b). The macro topology is optimized under the global volume constraint 𝐺ெ 

and the micro topologies are evolved subject to the local volume constraints 𝐺ణ
௠. The initial design of the 

macrostructure is defined in Fig. 7 (a), and the optimizations of material microstructures employ the same 

initial design displayed in Fig. 7 (b). The optimized topology of the macrostructure is indicated in Fig. 8, 

and the optimized results of four distinct microstructures (excluding void microstructure) are listed in Table 

2, including the topologies, the 5×5 repetitive microstructures and the homogenized elastic tensors. 

 
Fig. 7. Initial designs at two scales 

 
Fig. 8. The optimized topology of the macrostructure 

Table 2. The optimized results of material microstructures 

𝜗 𝜌ణ Material microstructure 5×5 microstructures 𝐄ణ
ு 

2 0.3 

  

൥
2.23 1.80 0
1.80 1.87 0

0 0 1.57
൩ 𝑒ଵ଴ 

3 0.5 

  

൥
6.97 2.08 0
2.38 3.22 0

0 0 2.36
൩ 𝑒ଵ଴ 
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4 0.7 

  

൥
12.73 2.87 0
2.87 5.21 0

0 0 3.41
൩ 𝑒ଵ଴ 

5 1 

  

൥
23.07 6.92 0
6.92 23.07 0

0 0 8.08
൩ 𝑒ଵ଴ 

Finally, the dynamic multiscale topology optimization design of the clamped beam is displayed in Fig. 9. 

It can be seen that the optimized topology of the macrostructure comprises five sub different regions plotted 

with different colors, and each sub region is homogenously configured by the corresponding representative 

microstructure plotted with the same color. Five distinct material microstructures are listed below the macro 

topology. Hence, the effectiveness of the dynamic multiscale topology optimization for cellular composites 

with the multi-regional distributed material microstructures is demonstrated. Moreover, the upper and lower 

solid face-sheet of the optimized macro topology are featured with solid material microstructures to provide 

sufficient stiffness and prevent bending deformation. Hence, the FMDO with the generation of the multi-

regional element densities can provide an appropriate configuration of multiple microstructures within the 

macrostructure. Additionally, the connectivity between the adjacent material microstructures can be well 

maintained, owing to the predefined connectors in all material microstructures. 

 
Fig. 9. Multiscale design 1 of the clamped beam 

Finally, the convergent histories for the dynamic multiscale topology optimization of the cellular composite 

are displayed in Fig. 10, in which the objective and the total volume fraction are depicted in Fig. 10 (a) and 

the volume fractions of five representative material microstructures are displayed in Fig. 10 (b). Moreover, 

the intermediate topologies of both the macrostructure and the material microstructures are displayed in 

Fig. 10. The iterative curves have a clear, smooth and fast convergence, which displays the high efficiency 

of the proposed dynamic multiscale design method. 
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Fig. 10. Evolution histories. 

7.1.2 Discussions of the Influence of the regularization mechanism 

In this sub section, we discuss the influence of the FMDO on the optimized structural dynamic performance. 

four schemes (S2-S5) are defined in Table 3 to obtain different regularized distributions. The parameters 

are consistent with Section 6.1.1, including the structural sizes, the finite element meshes at two scales and 

so on. The initial continuous distribution of the material element densities still keeps unchanged, as clearly 

shown in Fig. 6 (a). The defined S2-S5 schemes are adopted to regularize the element densities, and four 

regularized distributions are achieved in Fig. 11. It can be easily found that the regularized element densities 

are also distributed in a multi-regional way, analogously to Fig. 6 (b). Moreover, the macro design domain 

will be configured by more discrete element densities with a finer group classification. 

Table 3. S2-S5 schemes of the regularization mechanism 

S2 [0 0.2), [0.2 0.8), [0.8 1]; S3 [0 0.2), [0.2 0.5), [0.5 0.8), [0.8 1]; 

S4 [0 0.2), [0. 2 0.3), [0. 3 0.4), [0. 4 0.5), [0. 5 0.6), [0. 6 0.7), [0. 7 0.8), [0.8 1]; 

S5 [0 0.1), [0. 1 0.2), [0. 2 0.3), [0. 3 0.4), [0. 4 0.5), [0. 5 0.6), [0. 6 0.7), [0. 7 0.8), [0. 8 0.9), [0.9 1]; 

 
Fig. 11 . four regularized distributions 

Based on the overall distributions of the regularized element densities in four cases provided in Fig. 11, the 

concurrent topology optimizations for the macrostructure and multiple representative microstructures are 
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performed in four cases. Four dynamic multiscale topology optimization designs of the clamped beam are 

displayed in Fig. 12 (a-d). It can be easily seen that the optimized dynamic multiscale designs in four cases 

are analogous to the result displayed in Fig. 9. That is, the proposed method can realize the optimization of 

the macro topology, micro topologies and the overall distribution of material microstructures in the macro 

topology in a unified framework, so that the structural dynamic performance can be improved from these 

design pillars. Additionally, as we can see, the optimized structural dynamic performance of the multiscale 

designs in four cases becomes much better with the increasing of the number of the representative material 

microstructures, namely 𝐽ଶ > 𝐽ଷ > 𝐽ସ > 𝐽ହ. The phenomenon related to the influence of the regularization 

mechanism is reasonable, owing to the fact that the finer classification of the element densities can generate 

a denser distribution for multiple microstructures. The design freedom and flexibility of the improvement 

of the structural dynamic performance are expanded. 

 
Fig. 12. Multiscale designs of the clamped beam 

7.1.3 Comparison with conventional multiscale design 

In order to further show the advantages of the proposed design method, the clamped beam is also optimized 

by the conventional multiscale topology optimization method, where the macrostructure is configured by 

only one identical microstructure. The dynamic multiscale topology optimization formulation in Eqs. (13) 

and (16) can naturally degrade to the conventional multiscale design when the regularized distribution only 

comprises a unique element density. The design parameters at two scales are consistent with Section 6.1.1. 

The final multiscale design of the clamped beam is shown in Fig. 13. 

It can be seen that only one distinct microstructure and the macrostructure are concurrently optimized in 

the final design, and the corresponding objective function (J0=688.53) is much higher than the optimized 

dynamic compliance in above five cases. Hence, the conventional multiscale design of the clamped beam 

might be featured with the worst structural dynamic performance. We confirm that the proposed dynamic 

multiscale topology optimization method can further improve the dynamic performance, and the number 
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of multiple microstructures and their overall distribution in the macrostructure have a notable effect on the 

structural dynamic performance. 

 
Fig. 13. Conventional multiscale design: J0 = 688.53 

7.2 3D supported structure 

In this example, we investigate the effectiveness of the proposed dynamic multiscale topology optimization 

design method in 3D scenario. In Fig. 14, a 3D supported structure with the dimensions of L=0.2m, W=0.2m 

and H=0.15 m is defined, and four corners located at the bottom surface are fixed. Five downward harmonic 

dynamic forces 𝐅 = −3𝑒5𝑒𝒾ଵ଴଴௧ are loaded at the top surface of the 3D structure. The macrostructure is 

discretized with 20×20×15 finite elements, and a mesh of 15×15×15 finite elements is employed to 

discretize material microstructures. The maximum volume fractions 𝑉ெ and 𝑉ௗ are defined as 25% and 

50%, respectively. 

 
Fig. 14. A 3D supported structure 

7.2.1 Dynamic multiscale topology optimization design 

(a) Stage 1: FMDO 

In Fig. 15, the continuous distribution and the regularized distribution of material densities are respectively 

displayed. Similar to Fig. 6 (a), the continuous distribution has a large number of the intermediate element 

densities, which causes the extensive increasing of the microstructures to be devised in the next concurrent 

topology optimization. It is imperative to introduce the S1 scheme to regularize material element densities, 

and we can see that the regularized distribution only has a limited number (5) of discrete element densities, 

as shown in Fig. 6 (b). Hence, the macro design domain is divided into five sub regions, and each of which 

is homogenously distributed by the corresponding discrete element density. 
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Fig. 15. Two distributions in the FMDO 

The concurrent topology optimization of the macrostructure and the representative material microstructures 

is performed, subject to the regularized distribution shown in Fig. 15 (b). The initial designs at two scales 

are defined in Fig. 16, where the distinct material microstructures are both evolved starting from the same 

design in Fig. 16 (b). As we can see, the two-scale initial designs are both featured with the homogeneously 

distributed holes, so as to easily to search for the optimal designs. The final topology of the macrostructure 

is displayed in Fig. 17, which has the smooth boundaries and the clear interface between solids and voids 

due to the use of the PLSM. Meanwhile, the similar features can also be easily seen in the optimized designs 

of the representative microstructures, as listed in the third column of Table 4. In order to display the detailed 

interior information of the micro topologies, the cross-sectional views of four material microstructures are 

also displayed in Table 4. 

 
Fig. 16. Initializations at two scales 

 
Fig. 17. The optimized topology of the macrostructure. 
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Table 4. The optimized numerical results of material cells 

𝜗 𝜌ణ Cross-sectional view Microstructure 10×10×10 microstructures 

2 0.3 

   

3 0.5 

   

4 0.7 

   

5 1 

   

In Fig. 18, the dynamic multiscale topology optimization design of the 3D supported structure is provided, 

which includes the macro topology, the topologies of five representative microstructures and their overall 

distribution within the macro topology. Analogously to the 2D design in Section 7.1, the macro topology 

can be viewed as a combination of all sub macro regions, and each sub region is periodically distributed by 

a kind of material microstructure with a large number. As defined in the first paragraph of Section 7.2, we 
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can easily achieve the normal dimensions of the macro finite element are equal to 1cm. It is noted that the 

normal sizes of the material microstructures are 1mm. Each macro finite element might consist of 10×10×

10 material microstructures, and the aspect ratio between the macrostructure and the microstructure is much 

less than 1. The material microstructures with the repetitive pattern are shown in the last column of Table 

4. Hence, three pillars in 3D cellular composites, are simultaneously considered in the multiscale topology 

optimization design to improve the dynamic structural performance. 

 
Fig. 18. Multiscale design 1 of the 3D supported structure 

Meanwhile, the convergent histories of the objective function and total volume fraction are shown in Fig. 

19 (a), and the volume fractions of five microstructures are depicted in Fig. 19 (b). The trajectories of the 

convergent processes illustrate that the objective function and volume fraction can rapidly converge to the 

optimal solutions within 20 steps and become plateau afterwards, which shows the high efficiency of the 

proposed dynamic multiscale topology optimization method. 

 
Fig. 19. Evolution histories 
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7.2.2 Influence of the post-processing mechanism 

In this sub section, the influence of the regularization mechanism in the FMDO on the optimized dynamic 

performance is also addressed in 3D scenario. The structural design parameters are consistent with Section 

7.2.1. S2-S5 schemes defined in Table 3 are respectively applied to regularize the continuously distributed 

element densities in Fig. 15 (a). Four regularized distributions of the element densities are clearly displayed 

in Fig. 20. The multi-regional distributed pattern of the element densities is also occurred. That is, the macro 

design domain is divided into several sub regions and each of them is uniformly configured with the same 

discrete element densities. 

 
Fig. 20. Four regularized distributions 

The concurrent topology optimization for the macrostructure and material microstructures is performed in 

four cases based on the pre-optimized distributions in the FMDO. Four dynamic multiscale designs of the 

3D supported structure are clearly shown in Fig. 21. Meanwhile, the macro topologies in four cases are also 

listed with the presentation of the multiscale design, as displayed in Fig. 21. It can be easily found that the 

dynamic performance in four cases is gradually improved with the finer distributions of the microstructures 

in the design domain, namely 𝐽ଶ > 𝐽ଷ > 𝐽ସ > 𝐽ହ. The main reason originates from that a finer distribution 

of the representative microstructures can expand the design freedom to enhance the capability to afford the 

dynamic loads. Hence, the multi-regional distribution of multiple microstructures has a significant impact 

on the structural dynamic performance. 
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(a) Multiscale design 2: J2 = 290.63 

 
(b) Multiscale design 3: J3 = 285.38 

 
(c) Multiscale design 4: J4 = 276.43 
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(d) Multiscale design 5: J5 = 272.58 

Fig. 21. Multiscale designs of the 3D supported structure in four cases 

7.2.3 Comparison with conventional multiscale design 

Analogously to Section 6.2.3, the conventional multiscale topology optimization design of the 3D supported 

structure is also addressed to show the superior ability of the current design method. The design parameters 

keep the same as Section 7.2.1, and the final multiscale design is displayed in Fig. 22. It can be easily found 

that only a representative microstructure is optimized and periodically distributed in the optimized macro 

topology. The multiscale design in Fig. 22 only improves the dynamic performance from two design pillars, 

namely the macro and micro topologies. Hence, the design flexibility to improve the performance might be 

compromised to a great extent. The phenomenon is also demonstrated by the optimized objective function, 

that the value is much higher than the above multiscale designs. Hence, the overall distribution for different 

multiple microstructures is also a key ingredient to improve the structural performance. 

 
Fig. 22. Conventional multiscale design: J0 = 711.34 

8 Conclusions 

In this study, a new dynamic multiscale topology optimization method that are more effective and efficient 

is proposed for cellular composites with multiple material microstructures. The numerical implementation 
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is mainly involved into two stages. Firstly, the FMDO formulation is developed to generate a distribution 

of multiple discrete element densities in the macro design domain, which represents the distribution of the 

distinct microstructures. Secondly, the PLSM combined with the homogenization is applied to develop the 

concurrent topology optimization formulation. 

2D and 3D numerical examples are performed to show the effectiveness of the proposed dynamic topology 

optimization method. The final multiscale topology optimization designs of cellular composites consist of 

the topology of the macrostructure, the topologies of the representative microstructures and their overall 

distribution in the macro topology. Meanwhile, it can be confirmed that the multi-regional distribution of 

multiple microstructures has a notable effect on the improvement of the structural dynamic performance. 

The dynamic multiscale topology optimization method can sufficiently make use of the specific functions 

of the PLSM and FMDO to perfectly serve for cellular composites with multiple microstructures. 

Finally, the developed dynamic multiscale topology optimization formulation should be also performed for 

the meaningful problems in microstructures, like the large deformation and thermal expansion. 
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