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Abstract 26 

Shifting environmental conditions are known to be important triggers of oyster diseases. The 27 

mechanism(s) behind these synergistic effects (interplay between host, environment and 28 

pathogen/s) are often not clear, although there is evidence that shifts in environmental 29 

conditions can affect oyster immunity and, pathogen growth and virulence. However, the 30 

impact of shifting environmental parameters on the oyster microbiome and how this affects 31 

oyster health and susceptibility to infectious pathogens remains understudied. In this review, 32 

we summarise the major diseases afflicting oysters with a focus on the role of environmental 33 

factors that can catalyse or amplify disease outbreaks. We also consider the potential role of 34 

the oyster microbiome in buffering or augmenting oyster disease outbreaks and suggest that a 35 

deeper understanding of the oyster microbiome, its links to the environment and its effect on 36 

oyster health and disease susceptibility, is required to develop new frameworks for the 37 

prevention and management of oyster diseases.  38 

Key words: aquaculture, climate change, pathogen, oyster disease, microbiome 39 

1.0 Introduction 40 

Oysters are filter-feeding bivalve molluscs that inhabit estuarine and coastal environments. 41 

They encompass a number of different species, many of which are heavily farmed for human 42 

consumption, supporting valuable aquaculture industries. In 2005, global bivalve aquaculture 43 

was responsible for 13.6 million metric tons of production, valued at $1.82 billion USD, with 44 

oysters responsible for 4.8 million metric tons of production (Pawiro, 2010). Four oyster 45 

species, namely, Crassostrea gigas (the Pacific oyster), Saccostrea glomerata (formerly S. 46 

commercialis and also known as the Sydney rock oyster), Ostrea edulis (the European flat 47 

oyster) and Crassostrea virginica (the Eastern oyster or American cupped oyster) are amongst 48 

the most heavily cultivated historically and/or currently across different regions of the world. 49 

Infectious diseases have become a major obstacle for the successful growth and sustainability 50 

of oyster aquaculture industries, with a range of diseases having severe detrimental effects on 51 

oyster yields. For example, historical outbreaks of C. virginica diseases contributed to 52 

hundreds of millions of dollars in economic losses (Ewart and Ford, 1993). While diseases of 53 

S. glomerata in Australia, and O. edulis in Europe, have also severely diminished their 54 

production capacity (René Robert and O'Mahoney, 2013; Schrobback et al., 2015; FAO, 55 

2016c). Another species of oyster, Crassostrea angulata, was extensively cultivated in France 56 
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prior to the 1970’s before the industry was completely wiped out as a consequence of infectious 57 

disease outbreaks, resulting in this species being replaced by imported C. gigas (Roch, 1999). 58 

These few examples highlight just some of the impacts that infectious diseases have had on 59 

global oyster cultivation. 60 

Since oysters are typically reared in uncontrolled and often dynamic coastal and estuarine 61 

environments, it is often difficult to predict, manage and control infectious disease outbreaks. 62 

Management strategies designed to control the spread of pathogens are further constrained by 63 

the ability of marine pathogens to rapidly spread over large distances, due to reduced dispersion 64 

barriers in aquatic habitats, relative to terrestrial environments (McCallum et al., 2003). 65 

Increasing evidence is showing that oyster diseases have strong environmental drivers such as 66 

temperature. Notably, outbreaks are often more severe closer to the tropics (Leung and Bates, 67 

2013) likely due to the preference of many pathogens to grow in warmer waters (Leung and 68 

Bates, 2013), or the exertion of temperature stress as oysters reach their thermal limits 69 

(Bougrier et al., 1995). Within the context of temperature driven disease outbreaks, the 70 

implications of climate change (i.e. warming waters in non-tropical areas) on pathogen spread, 71 

transmission and virulence are a concern for future food security (Harvell et al., 2002). Specific 72 

examples supporting this concern include warming oceans driving the geographic spread of 73 

Perkinus marinus, the parasite responsible for dermo disease in C. virginica (Ford, 1996; Cook 74 

et al., 1998) and, the enhanced replication and transmission of the C. gigas disease-causing 75 

herpesvirus OsHV-1 and growth of Vibrio species in C. gigas tissues at warmer temperatures 76 

(Petton et al., 2013; Renault et al., 2014). 77 

The disease process has traditionally been viewed as a ‘one pathogen one disease’ system, a 78 

classical view pioneered by Robert Koch now known as Koch’s postulates (Koch, 1884; 79 

Löffler, 1884). Since that time, our understanding of infectious disease processes has evolved 80 

from a ‘classical view’ to one of an ‘ecological view’, in which multiple factors contribute to 81 

or amplify the disease process (Wilson, 1995). As with most infectious processes, many oyster 82 

diseases appear to be complex and often proceed as a result of a shift or fracture in the interplay 83 

between environmental (e.g. temperature, salinity, pH, nutrients) and biological factors, 84 

including oyster fitness, the oyster microbiome, the abundance and virulence of external 85 

pathogens and their potential vectors (e.g. phytoplankton). Detangling the causative 86 

mechanisms of disease from this complex “interactome” (the suite of biotic and abiotic factors 87 

that participate in disease processes) is not trivial – in particular, little information is known 88 

regarding the role of the microbiome in disease protection or susceptibility. In order to develop 89 
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more effective strategies for managing infectious outbreaks within oyster harvesting practices, 90 

a new understanding of the interactome and the role of the microbiome is necessary. In this 91 

review, the major diseases affecting oyster aquaculture will be covered and in particular, the 92 

potential synergistic importance of the oyster microbiome and local environmental parameters 93 

in these infectious outbreaks will be evaluated.  94 

2.0 The oyster life cycle, anatomy and distribution 95 

In this section, we will focus on four major commercial oyster species, including C. gigas, S. 96 

glomerata, O. edulis and C. virginica, which are harvested in a number of regions across the 97 

globe (Figure 1). C. gigas is the most widely grown species, with commercial industries in the 98 

USA, Canada, Mexico, Chile, Argentina, South Africa, Namibia, China, Japan, Australia and 99 

a number of European countries, in particular France (FAO, 2016a). C. virginica is grown 100 

exclusively in the USA, Canada and Mexico (FAO, 2016b), while S. glomerata is only grown 101 

in Australia (FAO, 2016d). The limited production of O. edulis is restricted to several European 102 

nations, the USA, and South Africa (FAO, 2016c). 103 

 104 

 105 
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Figure 1: Global cultivation of four oyster species. C. gigas is grown in the largest number of 106 

countries, spanning North and South America, Western Europe and Australia. While S. 107 

glomerata is only grown in Australia. C. virginica is exclusively grown in North America, 108 

whereas O. edulis is grown in the USA, a number of European countries and South Africa. 109 

There are numerous microbial and viral diseases that can infect one or more stages of the oyster 110 

life cycle. Across all species of oysters, the general oyster life cycle is relatively consistent 111 

(Figure 2). The life cycle begins with spawning, which is dependent on temperature and 112 

location (Fujiya, 1970; Wallace, 2001; FAO, 2016a; d; c). Following spawning events, 113 

fertilisation occurs, resulting in the development of a free-swimming planktonic larva 114 

(trochophore) (Wallace, 2001). At this stage, the oyster larvae are particularly vulnerable to 115 

infection by mostly viral and bacterial pathogens (Hine et al., 1992; Luna-González et al., 2002; 116 

Elston et al., 2008). After settlement on a hard surface, metamorphosis occurs developing into 117 

a juvenile oyster form called spat (Wallace, 2001). Similar to the larval form, spat are prone to 118 

infection by bacterial and viral pathogens (Waechter et al., 2002; Friedman et al., 2005). After 119 

12-40 months of growth, the spat grows into a commercially harvestable adult oyster. Relative 120 

to the earlier forms, adult oysters are more resistant to viral infection (Dégremont, 2013) with 121 

infections from protozoan parasites more likely (Friedman and Perkins, 1994; Green and 122 

Barnes, 2010). 123 

The oyster possesses a number of specialised tissues and organs to help it survive in its 124 

environment (Figure 2). The gills draw in water and directs the collected food particles (such 125 

as phytoplankton) to the palps, which sort the food particles before they enter the digestive 126 

system. The digestive gland is a common site for protozoan parasite infection often culminating 127 

in oyster starvation (Alderman, 1979; Ewart and Ford, 1993; Kleeman et al., 2002). The mantle 128 

acts as a sensory organ to initiate opening and closing of the shell, and forms the oyster’s shell 129 

(Quayle, 1988; FAO, 2016e). Shell infections are observed from some bacterial species, 130 

resulting in mantle lesions and abnormal shell deposits (Bricelj et al., 1992). The heart is 131 

responsible for circulating the oyster hemolymph, a clear fluid that acts as the oyster ‘blood’ 132 

and contains cells called hemocytes with immune functions (Bachere, 1991). Previous research 133 

has indicated that viral pathogens are able to invade and replicate within these hemocytes 134 

(Morga et al., 2017). Finally, the gonad represents the reproductive system, which involves the 135 

production and release of gametes (spawning) (FAO, 2016e).  136 

 137 
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 138 

 139 

Figure 2: The basic anatomy A) and generalised life cycle of oysters B). Oyster pathogens 140 

infect various stages of the oyster life cycle. Bacterial and viral pathogens typically infect the 141 

spat and larval stages, while the protozoan parasites dominantly infect the adult stages. Black 142 

arrows depict the life cycle progression. Black hollow arrows highlight the known pathogens 143 

of commercial oysters at each life stage. (P), (B), and (V) represent parasites, bacteria, and 144 

viral agents respectively. Image produced by Sarah J Iwanoczko 145 
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3.0 Oyster immunology  147 

Oysters are filter feeders, filtering around 163 litres per day (Riisgård, 1988) and given that the 148 

average litre of seawater contains more than a billion microbes, oysters are constantly exposed 149 

to a large number of microorganisms present in seawater. In order to combat pathogenic 150 

microorganisms, the innate immune system of the oyster is its primary defence (Schmitt et al., 151 

2012a). This immunity is primarily facilitated by hemocytes (Figure 3), and molecules/proteins 152 

contained in both the hemolymph and epithelial mucus secretions (Cheng and Rodrick, 1975; 153 

Itoh and Takahashi, 2008; Pales Espinosa et al., 2014; Allam and Pales Espinosa, 2016). 154 

The oyster hemolymph is not sterile, with low concentrations (102-105 cells mL-1) of bacteria, 155 

primarily from the genera Vibrio, Pseudomonas, Aeromonas and Alteromonas, which appear 156 

to naturally reside within the oyster circulatory system (Olafsen et al., 1993; Garnier et al., 157 

2007). This raises the questions of how hemocytes differentiate between pathogens and 158 

“natural” inhabitants and may be related to the function of pattern recognition receptor proteins 159 

(e.g. peptidoglycan recognition proteins) and antimicrobial peptides (AMPs) produced by these 160 

cells. Pattern recognition receptors are produced by oyster epithelial cells and hemocytes (Itoh 161 

and Takahashi, 2008) and when stimulated (by microbial products such as peptidoglycan), 162 

activate hemocytes, allowing them to migrate to the invasion site and express AMPs for a rapid 163 

and effective defence against invading microbes (Schmitt et al., 2012b). Additionally, the 164 

epithelial layer constitutively expresses a number of AMPs to further reduce microbial loads 165 

(Schmitt et al., 2012b).  166 

Pathogens bypassing these initial defence strategies face phagocytosis by the circulating 167 

hemocytes in the hemolymph. Phagocytised pathogens (Canesi et al., 2002) are subsequently 168 

exposed to reactive oxygen species (ROS), enzymes and AMPs within the hemocyte 169 

(Labreuche et al., 2006a; Schmitt et al., 2012b). However, some bacterial and protozoan 170 

parasites are able to subvert intracellular degradation, effectively evading the oyster immune 171 

response (Schmitt et al., 2012c). This is primarily facilitated by the suppression of (ROS) 172 

generation, or reduced phagocytosis by the hemocytes (Schott et al., 2003; Labreuche et al., 173 

2006b).  174 

 175 
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 176 

Figure 3: An overview of the oyster cellular immune response (Schmitt et al., 2012c), published 177 

by Frontiers in Microbiology. Invading pathogens must first bypass the epithelial layer, which 178 

produces antimicrobial peptides (AMP; red circle). Following this, the circulating hemocytes 179 

in the hemolymph engulf the microbial pathogens. They are then exposed to reactive oxygen 180 

species (ROS), which are produced by either NADPH oxidase (green circle) or the 181 

mitochondria, and antimicrobial proteins such as lysozyme and AMPs. 182 

4.0 Diseases affecting oysters of economic importance 183 

There are a number of well-characterised microbial diseases affecting several different oyster 184 

species. A summary of the known oyster diseases for each species is provided in Table 1. 185 
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Table 1 Diseases of economically important oyster species, their affected life stage and the pathology seen for each disease. 186 

Oyster species Disease/pathogen (agent) Affected 

oyster stage 

Pathology Geographical 

distribution 

Mortality 

range (%) 

References 

The Eastern oyster 

(Crassostrea 

virginica) 

Dermo/Perkinsus marinus 

(Protozoan) 

 

Adult Tissue lysis, 

blockage of 

circulatory 

system 

USA East Coast 20-85 (Andrews and 

Hewatt, 1957; Ford, 

1996) 

MSX/Haplosporidium nelsoni 

(Protozoan) 

 

Spat and 

adult 

Epithelium 

infection, 

respiratory and 

digestive 

impacts 

USA East Coast 33-95 (Haskin et al., 1966; 

Ford and Haskin, 

1982; Ewart and 

Ford, 1993) 

ROD/Roseovarius crassostreae 

(Bacterium) 

 

Spat Mantle lesions, 

conchiolin 

deposits, tissue 

degradation 

USA East Coast 54-75 (Bricelj et al., 1992; 

Boardman et al., 

2008) 
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Sydney rock oyster 

(Saccostrea 

glomerata) 

QX/Marteilia sydneyi  

(Protozoan) 

Adult Digestive 

tubule 

destruction, 

starvation  

Australian East 

Coast 

22-99 (Kleeman et al., 

2002; Nell and 

Perkins, 2006) 

Winter Mortality/Bonamia 

roughleyi † 

(Protozoan) 

Adult Connective 

tissue 

disruption, 

ulcers, impaired 

muscle 

contractions, 

necrotic tissues 

Australian East 

Coast 

9-52 (Roughley, 1926; 

Mackin, 1959; 

Farley et al., 1988; 

Smith et al., 2000) 

European flat 

oyster (Ostrea 

edulis) 

Marteiliosis/Marteilia 

refringens (Protozoan) 

‡ Digestive gland 

infection, 

impaired 

growth, 

starvation 

France, Spain, 

Portugal and 

Greece 

50-90 (Alderman, 1979; 

Virvilis and 

Angelidis, 2006; 

Bower, 2011; 

López-Sanmartín et 

al., 2015) 
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Bonamiasis/Bonamia ostreae 

(Protozoan) 

Adult, 

larvae  

Gill and mantle 

lesions, parasite 

resides within 

hemocytes 

 

France, Spain, 

England, 

Denmark, the 

Netherlands, 

USA West Coast 

40-80 (Balouet et al., 

1983; Elston, 1986) 

Pacific Oyster 

(Crassostrea 

gigas) 

Denman Island disease/ 

Mikrocytos mackini  

(Protozoan) 

Adult Green pustules, 

ulcers and 

abscesses on 

oyster tissues 

 

USA Northwest 

Coast and 

Canadian 

Southwest Coast 

17-53 (Quayle, 1961; 

Farley et al., 1988; 

Elston et al., 2015) 

Nocardiosis/Nocardia 

crassostreae (Bacterium) 

Adult Green pustules 

and lesions on 

oyster tissues 

USA Northwest 

Coast and 

Canadian 

Southwest Coast 

47-50 (Friedman et al., 

1991) 
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Vibriosis (Bacillary necrosis)/ 

Vibrio spp.  

(Bacterium) 

Larvae, spat Abnormal 

swimming, 

necrosis, 

lesions 

Worldwide 76-100* (Jeffries, 1982; 

Sugumar et al., 

1998; Waechter et 

al., 2002; Elston et 

al., 2008) 

Pacific Oyster Mortality 

Syndrome/OsHV-1 and OsHV-1 

µ variant 

(Virus) 

Larvae, spat Lesions and 

cells with viral 

inclusions and 

hypertrophied 

nuclei. Reduced 

feeding and 

impaired 

swimming in 

larvae 

USA East Coast, 

Australia, New 

Zealand, France, 

Sweden and 

Norway 

40-100 (Hine et al., 1992; 

Friedman et al., 

2005; Segarra et al., 

2010; Jenkins et al., 

2013; Keeling et al., 

2014; Mortensen et 

al., 2016) 

Summer Mortality/Unknown or 

multifactorial§ 

 

All stages ill defined, 

characterised by 

high level 

mortalities 

during the 

warmer months  

USA, France, 

Australia, Japan, 

Germany, 

Ireland, Sweden 

and Norway 

30-100 (Mori, 1979; 

Soletchnik et al., 

2005; Burge et al., 

2007; Garnier et al., 

2007; Malham et al., 

2009) 
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†The aetiological agent of winter mortality may not be Bonamia roughleyi.  187 

‡Age not reported, likely adult oysters are affected by marteiliosis as seen in QX disease. 188 

§While no definite aetiological agent has been found, OsHV-1 and a number of Vibrio spp. have been associated with this disease usually during 189 

periods of host-stress (e.g. reproductive or heat stress). 190 

*Depending on the Vibrio strain and bacterial concentration used. 191 
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4.1 Parasitic aetiological agents 192 

Parasitic disease outbreaks have historically led to catastrophic losses of oysters, and large 193 

economic impacts. Dermo (also known as perkinsosis) and MSX are caused by the protozoan 194 

parasites Perkinsus marinus, and Haplosporidium nelsoni respectively (Mackin et al., 1950; 195 

Haskin et al., 1966). Specifically, historical outbreaks of dermo affecting C. virginica have 196 

contributed to hundreds of millions of dollars in economic losses (Ewart and Ford, 1993). Both 197 

dermo and MSX are responsible for extensive annual mortality outbreaks, particularly along 198 

the east coast of America (Encomio et al., 2005). For S. glomerata, Queensland unknown 199 

disease (QX) is caused by the protozoan parasite, Marteilia sydneyi (Anderson et al., 1994; 200 

Kleeman et al., 2002), while the aetiolgical agent of S. glomerata winter mortality is unclear 201 

with conflicting morphological, histological and molecular evidence from different 202 

laboratories (Carnegie et al., 2014; Spiers et al., 2014). These two diseases have reduced 203 

cultivation in some Australian estuaries by as much as 97% (Nell and Perkins, 2006; O’Connor 204 

et al., 2008; Dove et al., 2013b). QX disease has been particularly harsh with mortality rates as 205 

high as 85-95% (Anderson et al., 1994; Bezemer et al., 2006). The decline of the O. edulis 206 

industry in Europe has been attributed to two parasitic diseases, marteiliosis (also known as 207 

Aber disease) and bonamiasis (René Robert and O'Mahoney, 2013), caused by Bonamia 208 

ostreae and Marteilia refringens respectively (Alderman, 1979; Balouet et al., 1983; Elston, 209 

1986).  210 

4.1.1 Disease process of parasites 211 

Parasitic diseases are chronic, typically taking weeks or months to kill their host through 212 

disruption of different tissue(s) usually causing effects such as oyster starvation, and/or tissue 213 

lysis (Andrews and Hewatt, 1957; Haskin et al., 1966; Balouet et al., 1983; Adlard and Ernst, 214 

1995; Hervio et al., 1996). This section will review what is known about parasitic infections of 215 

oysters including the oyster tissue(s) where infection is initiated, the process(es) by which 216 

parasites move to other tissues/sites in the oyster and, process(es) that lead to oyster death.  217 

Of the various oyster parasites, the point/site of infection can vary and include the gill and palps 218 

for M. sydneyi (Kleeman et al., 2002), and the mantle epithelium for P. marinus (Allam et al., 219 

2013). However, for the remaining oyster parasites (H. nelsoni, M. refringens, B. ostreae, and 220 

M. mackini), the site(s) of infection are unknown and is an area that requires additional 221 

research. Despite this, gill infections are commonly observed for these parasites (Haskin et al., 222 

1966; Balouet et al., 1983; Farley et al., 1988; Kleeman et al., 2002; Ragone Calvo et al., 2003; 223 
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Carnegie and Burreson, 2011), indicating that oyster filter feeding is an important process for 224 

the transmission of the parasite into the oyster with the gills possibly acting as the point of 225 

infection. 226 

Following initial infection, subsequent dissemination to specific tissues or cells varies 227 

depending on the infecting parasite, with hemocytes, the digestive gland and connective tissue 228 

known targets. P. marinus and B. ostreae are phagocytosed by the circulating hemocytes 229 

(Balouet et al., 1983; Schott et al., 2003), and are both able to survive the process through 230 

degradation or preventing the formation of toxic reactive oxygen species inside the hemocyte 231 

(Schott et al., 2003; Morga et al., 2009). These parasites are able to proliferate within the 232 

hemocyte and use them as a vehicle to spread throughout the oyster (Montes et al., 1994; 233 

Perkins, 1996), resulting in the lysis of various host tissues and/or blockage of the oyster 234 

circulatory system thus culminating in mortality (Andrews and Hewatt, 1957; Balouet et al., 235 

1983; Choi et al., 1989; Encomio et al., 2005). For the two Marteilia parasites, M. sydneyi and 236 

M. refringens, both lead to an infection of the digestive gland resulting in disrupted growth and 237 

impaired nutrient uptake leading to oyster starvation and mortality (Alderman, 1979; Camacho 238 

et al., 1997; Kleeman et al., 2002; Green et al., 2011). Destruction of the digestive gland and 239 

tubules is also observed for oysters infected with H. nelsoni (Ford and Haskin, 1982), but it is 240 

not clear whether the parasite also affects nutrient uptake similar to the Marteilia parasites. 241 

While it is known that systemic dissemination of M. sydneyi cells follows on from the initial 242 

gill and palp infection (Kleeman et al., 2002), it is unclear whether M. refringens and H. nelsoni 243 

also disseminate towards the digestive gland/tubules from an initial infection site, or whether 244 

the infection is initiated in the digestive gland/tubules. Connective tissue cells (cells between 245 

organ tissues) of the oyster are infected by M. mackini causing mortality through tissue 246 

disruption and necrosis (Hervio et al., 1996; Bower et al., 1997). This process produces 247 

characteristic green pustules, ulcers and abscesses on several different oyster tissues (Figure 4) 248 

(Farley et al., 1988; Hervio et al., 1996). 249 
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 250 

Figure 4: Ulcerated lesions (black arrows) on the labial palps of Crassostrea gigas 251 

characteristic of Denman Island Disease (Elston et al., 2015), published by Diseases of Aquatic 252 

Organisms, © Inter-Research 2015. 253 

Since the aetiological agent(s) of winter mortality is still being debated (Spiers et al., 2014), 254 

the disease process remains poorly understood. Spiers et.al. (2014) carried out a longitudinal 255 

study with the aim of determining the aetiological agent of winter mortality. While the presence 256 

of a Bonamia spp. was confirmed by PCR, the occurrence of this parasitic organism was quite 257 

low (3% of all samples) and the 18S rRNA sequence of the observed protozoan was closely 258 

related to another organism, B. exitiosa which has previously been identified in S. glomerata 259 

(Carnegie et al., 2014) but not in association with clinical disease. The low prevalence of 260 

Bonamia spp. DNA in the Spiers et al. study was inconsistent with the high prevalence of 261 

pathological observations. Similarly, no Bonamia spp. was found within the lesions of the 262 

oysters (Spiers et al., 2014). While this research suggests that another organism may be causing 263 

or perhaps working with Bonamia spp. in winter mortality, this study only observed a 10% 264 

total mortality over the entire study period, which is not an extensive outbreak. As a result, 265 

further studies are required to elucidate the aetiological agent(s) of winter mortality before 266 

further research on the disease process can be elucidated. 267 

4.1.2 Environmental reservoirs and transmission of infectious parasites 268 

For the majority of infectious parasites, the environmental reservoir and details of transmission 269 

to and between oysters is not completely understood. On reservoirs, it is unknown whether the 270 

parasite is residing in the environment (i.e. the water column or in sediments), or whether an 271 

intermediate host is acting as an environmental reservoir. It may also be possible that the 272 

parasite is using the intermediate host for maturation and then residing in another unknown 273 
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organism. For example, M. sydneyi spores are only able to survive in the marine environment 274 

for up to 35 days, which is inconsistent with the yearly cycle of QX disease outbreaks (Wesche 275 

et al., 1999). It is therefore likely that an intermediate host exists as a reservoir of the parasite. 276 

Recent evidence suggests that M. sydneyi is present within the intestinal epithelium of the 277 

marine worm Nephtys australiensis and it has been proposed that this organism may act as a 278 

reservoir for M. sydneyi or may be critical for the maturation and transmission of M. sydneyi 279 

(Adlard and Nolan, 2015). Therefore, further research is necessary to determine where these 280 

parasites reside, and for those parasites with intermediate hosts, whether their intermediate host 281 

may act as that reservoir. 282 

In regards to transmission, parasites can either be transmitted directly or via an intermediate. 283 

Direct transmission of parasites between infected and naïve oysters has been observed for 284 

dermo, bonamiasis, and Denman island disease (Elston, 1986; Quayle, 1988; Ewart and Ford, 285 

1993; Hervio et al., 1996). While the causative agents of MSX, QX, and marteiliosis require 286 

an intermediate host(s) for the maturation and transmission of the parasite. 287 

For those directly transmitted parasites, P. marinus is shed into the water column from infected 288 

oyster hosts, which can then be ingested by neighbouring oysters (Ewart and Ford, 1993). 289 

Similarly, only cohabitation with infected oysters is necessary for the transfer of B. ostreae and 290 

M. mackini to naïve hosts (Elston, 1986; Quayle, 1988; Hervio et al., 1996). The larvae of O. 291 

edulis can also be infected with B. ostreae, potentially allowing them to act as a reservoir of 292 

the parasite in the environment (Arzul et al., 2011).  293 

For those parasites with no direct transmission, early laboratory-based studies were 294 

unsuccessful in transmitting H. nelsoni to uninfected oysters through co-incubation with 295 

infected oysters (Ewart and Ford, 1993). Later studies have demonstrated that an intermediate 296 

carrier capable of penetrating 1 mm2 filters is required for transmission to naïve oysters (Sunila 297 

et al., 2000). Similarly, while field studies investigating the transmission of M. refringens into 298 

O. edulis demonstrated that the parasite was transmissible through cohabitation of uninfected 299 

with infected oysters or by deploying uninfected oysters in areas known to contain the pathogen 300 

(Berthe et al., 1998), laboratory-based cohabitation experiments and inoculations were 301 

insufficient to cause infections (Berthe et al., 1998). Later studies have identified two copepod 302 

species, Paracartia grani and Paracartia latisetosa, harbouring M. refringens and are 303 

implicated in the transmission of this parasite (Audemard et al., 2002; Arzul et al., 2014). This 304 

is similar for M. sydneyi, in which before an infected oyster dies, almost all of the M. sydneyi 305 
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sporonts (Figure 5) are shed into the environment (Roubal et al., 1989). However, direct 306 

transmission studies have been unable to transmit the parasite to naïve oysters (Lester, 1986). 307 

Likely the intermediate host, Nephtys australiensis, and possibly other unknown hosts, are 308 

needed to transmit M. sydneyi to naïve oysters (Adlard and Nolan, 2015).  309 

 310 

Figure 5: Purified Marteilia sydneyi sporonts, the causative agent of QX disease of Saccrostrea 311 

glomerata. Image is at 40x magnification. Image produced by Cheryl Jenkins and Jeffrey Go 312 

at the New South Wales Department of Primary Industries. 313 

4.1.3 Management strategies of parasitic diseases 314 

Attempts to reduce the impact of these parasitic diseases revolve around the development of 315 

breeding programs, modified husbandry practices, and quarantining affected areas (Nell et al., 316 

2000; Smith et al., 2000; Ragone Calvo et al., 2003; Green et al., 2011; Lynch et al., 2014). Of 317 

these strategies, breeding for disease-resistance has been the most successful (Ragone Calvo et 318 

al., 2003; Dove et al., 2013a; Dove et al., 2013b; Lynch et al., 2014). Dual resistance has been 319 

bred into C. virginica against dermo and MSX disease, leading to an improved survivability of 320 

approximately 30-60% when compared to control oyster stocks (Ragone Calvo et al., 2003). 321 
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Similarly, a breeding programme carried out in Ireland since 1988 has successfully mitigated 322 

the damage of B. ostreae on O. edulis populations, culminating in an increased survival rate of 323 

75% of market sized adult oysters, relative to 5-10% before the breeding programme began 324 

(Lynch et al., 2014). Breeding for disease-resistance has also been successful for S. glomerata 325 

against QX and winter mortality, with oyster mortality decreasing from 97% to 28% for QX, 326 

and 52% to 23% for winter mortality (Dove et al., 2013b). Modified husbandry practices are 327 

used to limit the exposure time of the oyster to the parasite, this can be done by altering the 328 

growing height of the oysters, or by transplanting oysters after the disease period has passed. 329 

Modified husbandry practices can be seen with winter mortality, in which S. glomerata are 330 

grown at a position located 15-30 cm higher in the tidal range than the typical growth height 331 

(approximately mid-tide level) (Smith et al., 2000). 332 

4.2 Bacterial aetiological agents  333 

4.2.1 Disease process of bacterial pathogens 334 

Bacterial disease outbreaks are often sudden, resulting in severe mortality in a matter of days 335 

or weeks (Jeffries, 1982; Friedman and Hedrick, 1991; Bricelj et al., 1992). Roseovarius 336 

crassostreae, the aetiological agent of ROD in C. virginica causes sporadic outbreaks during 337 

the summer months, with mortalities up to 75% (Bricelj et al., 1992). For vibriosis of C. gigas, 338 

mortalities can exceed 90% within a period of only 24 hours (Takahashi et al., 2000). While 339 

Nocardia crassostreae the causative agent of C. gigas acts slower, resulting in mortalities up 340 

to 47% over 34 days (Friedman and Hedrick, 1991). 341 

Lesions are common symptoms for oysters affected by ROD, nocardiosis, and vibriosis, and 342 

spat are often the most at risk for infection (Jeffries, 1982; Bricelj et al., 1992; Bower, 2006). 343 

In addition, R. crassostreae colonises the inner shell surface of C. virginica; the oyster responds 344 

to this intrusion through the formation of conchiolin (organic compound secretions involved in 345 

shell formation) deposits on the shell, which is thought to act as a barrier to contain further 346 

bacterial infection (Boardman et al., 2008). Additional pathological symptoms include lesions 347 

on the mantle, degradation of muscles and tissues, infiltration of hemocytes into the epithelium 348 

of the oyster, as well as lesions under the hinge ligament (Bricelj et al., 1992). Conchiolin 349 

deposits filled with bacteria and necrotic cells are also observed in vibriosis of C. gigas (Ralph 350 

et al., 1999). Conversely, conchiolin deposits aren’t seen in nocardiosis, instead oysters display 351 

green pustules and lesions on a number of different oyster tissues (Bower, 2006).  352 
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A number of different Vibrio species cause disease in C. gigas, resulting in either vibriosis or 353 

bacillary necrosis (Jeffries, 1982; Sugumar et al., 1998; Waechter et al., 2002). A summary of 354 

the known Vibrio pathogens can be seen in Table 2. C. gigas larvae and spat are typically 355 

affected by Vibrio infections (Jeffries, 1982; Elston et al., 2008). Vibriosis in oyster larvae 356 

involves tissue necrosis (Figure 6) and abnormal swimming culminating in mortality (Jeffries, 357 

1982). Vibriosis of spat can lead to lesions and necrosis of the tissues (Elston et al., 2008). As 358 

seawater temperatures rise with climate change, the spread and growth of bacteria such as 359 

Vibrio, which prefer warmer waters, has been predicted to be enhanced (Martinez-Urtaza et al., 360 

2010; Vezzulli et al., 2016). Notably, an elevation in surface seawater temperature was linked 361 

to the resurgence of the oyster pathogen Vibrio coralliilyticus on the North American Pacific 362 

Coast, where it was responsible for a major C. gigas mortality event (Elston et al., 2008; 363 

Richards et al., 2015).  364 

Table 2 Vibrio pathogens of Crassostrea gigas and their affected life stage. Bacterial pathogens 365 

are typically isolated from diseased oysters and used in virulence assays to determine 366 

pathogenicity.  367 

Bacterial agent Stage affected Reference 

V. tubiashii Larvae (Jeffries, 1982; Hada et al., 

1984; Takahashi et al., 2000) 

V. splendidus Larvae (Sugumar et al., 1998) 

Spat (Waechter et al., 2002) 

Adult (Garnier et al., 2007) 

V. alginolyticus 

 

Larvae 

Adult‡ 

(Luna-González et al., 2002) 

(Go et al., 2017) 

V. splendidus group Spat (Gay et al., 2004) 

Adult (Garnier et al., 2007) 

V. aestuarianus Spat (Saulnier et al., 2009; 

Saulnier et al., 2010) 
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Adult (Garnier et al., 2007; 

Saulnier et al., 2010) 

V. lentus 

 

Spat (Saulnier et al., 2010) 

V. harveyi 

 

Spat 

Adult‡ 

(Saulnier et al., 2010) 

(Go et al., 2017) 

V. coralliilyticus 

 

Spat (Elston et al., 2008; Richards 

et al., 2015) 

V. crassostreae Spat† 

 

Adult‡ 

(Lemire et al., 2015; Bruto et 

al., 2016) 

(Go et al., 2017) 

†Based on supplementary information for the production of specific pathogen free (SPF) 368 
oysters 369 

‡Used in an inoculation cocktail comprised of V. alginolyticus, V. splendidus, V. harveyi and 370 
V. crassostreae 371 

 372 
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 373 

Figure 6: Histological section of Crassotrea gigas larvae, with a persistent Vibrio infection 374 

(black arrows), as well as necrotic epithelial cells (white arrows). Larvae tissue are marked as 375 

S (shell), Mn (mantle) and Am (adductor muscle) (Elston et al., 2008). Published by Diseases 376 

of Aquatic Organisms, © Inter-Research 2008. 377 

While vibriosis tends to affect larvae and spat, experimental injections of adult oysters with 378 

Vibrio species, including V. aestuarianus, V. splendidus, V. harveyi and V. crassostreae 379 

(Garnier et al., 2007; Saulnier et al., 2010; Go et al., 2017) has also been shown to induce 380 

mortality, with a weakening of the adductor muscle and necrotic oyster tissues observed 381 

(Garnier et al., 2007). However, the injection of bacteria into oyster hemolymph/tissues may 382 

not be a good model for the natural transmission of Vibrio infections in the environment. Often 383 

Vibrio infections, particularly from the V. splendidus group, are found to occur concurrently 384 

with a herpesvirus infection (OsHV-1) (Segarra et al., 2010; Pernet et al., 2012; Keeling et al., 385 

2014; de Lorgeril et al., 2018) with a recent study highlighting a synergistic, polymicrobial 386 

infection process, in which the oyster immune system is suppressed following OsHV-1 387 

infection, allowing for bacteraemia to occur (de Lorgeril et al., 2018). 388 
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4.2.2 Environmental reservoirs and transmission of bacterial pathogens 389 

Often, bacterial infections are opportunistic, requiring an environmental stressor or immune 390 

suppression of the oyster host before infection occurs (Bricelj et al., 1992; de Lorgeril et al., 391 

2018). No studies have identified environmental reservoirs for N. crassostreae and R. 392 

crassostreae, while Vibrio species are ubiquitous in the environment and are commonly found 393 

in the water column, sediments, vegetation, and associated with other organisms (Vezzulli et 394 

al., 2010; Chase et al., 2015). Given the worldwide distribution of vibriosis, it is possible that 395 

Vibrio bacteria are members of the oyster microbiome that are awaiting favourable conditions 396 

to cause disease, such as with OsHV-1 infection (de Lorgeril et al., 2018) or with the acquisition 397 

of virulence plasmids through horizontal gene transfer (Bruto et al., 2016). Whereas N. 398 

crassostreae and R. crassostreae are localised to the USA northwest coast and USA east coast 399 

respectively (Friedman et al., 1991; Bricelj et al., 1992), because of this, there likely exists an 400 

unknown seasonal environmental reservoir for these pathogens. 401 

Regarding transmission, laboratory transmission studies of ROD indicate that R. crassostreae 402 

is transmissible with symptoms arising 3 to 7 weeks after cohabitation with infected oysters 403 

(Lewis et al., 1996). Conversely, laboratory transmission of N. crassostreae, has not been 404 

successful (Friedman et al., 1991) suggesting either an unknown transmission element is 405 

required to infect new oysters, or that the infection is opportunistic, requiring environmental 406 

stressors such as the high temperatures typically seen during summer months, in order to induce 407 

disease (Friedman et al., 1991). Transmission of Vibrio species from infected to naïve oysters 408 

is likely bacterial species dependent. While one study was able to cause vibriosis in naïve 409 

animals by cohabiting them with oysters injected with a mixture of V. splendidus and V. 410 

aestuarianus (De Decker and Saulnier, 2011), another study was unable to transmit vibriosis  411 

when using a Vibrio cocktail made of V. alginolyticus, V. splendidus, V. harveyi and V. 412 

crassostreae (Go et al., 2017) possibly contrasting a difference in experimental methodology, 413 

or a difference between the transmission of different Vibrio species. 414 

4.2.3 Management strategies for bacterial pathogens 415 

No control measures are currently employed to contain nocardiosis of C. gigas or for ROD of 416 

C. virginica. Often vibrio blooms due to favourable environmental conditions (warm water and 417 

excess nutrients) are the cause of vibriosis for larvae and spat in hatchery settings (Elston et 418 

al., 2008). Monitoring environmental conditions and water quality may help predict Vibrio 419 
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outbreaks, possibly allowing farmers to change their water source in hatchery settings, or to 420 

remove oysters from the environment until the bloom has passed. 421 

4.3 Viral aetiological agents 422 

Of these economically valuable oyster species, only one virus, ostreid herpesvirus 1 (OsHV-423 

1), has been identified as a major disease-causing pathogen (Hine et al., 1992; Friedman et al., 424 

2005; Burge et al., 2006; Segarra et al., 2010; Jenkins et al., 2013; Lopez-Sanmartin et al., 425 

2016; Mortensen et al., 2016). OsHV-1 primarily infects and induces mortality in C. gigas 426 

larvae and spat, as well as young adult oysters, with observed mortality rates ranging between 427 

40 to 100% (Hine et al., 1992; Friedman et al., 2005; Segarra et al., 2010). OsHV-1 has been 428 

linked to a number of large mortality events across the globe and is continuing to spread (Burge 429 

et al., 2006; Segarra et al., 2010; Lopez-Sanmartin et al., 2016; Mortensen et al., 2016). Oysters 430 

infected with OsHV-1 display both lesions and cellular infections throughout the gills, mantle, 431 

digestive glands and in the hemocytes, whereby cells show altered cellular morphology, such 432 

as abnormal shapes, enlarged nuclei, nuclear fragmentation and nuclear inclusions (Hine et al., 433 

1992; Renault et al., 1994; Friedman et al., 2005). OsHV-1 infected larvae have also been 434 

observed to have reduced feeding capacity and impaired swimming abilities (Hine et al., 1992; 435 

Renault et al., 2001) 436 

Since its characterisation, a number of variant forms of OsHV-1 have been discovered (Arzul 437 

et al., 2001; Segarra et al., 2010; Martenot et al., 2011). Of these, a micro-variant form, named 438 

OsHV-1 μvar (Segarra et al., 2010), has been associated with mortality outbreaks in a number 439 

of countries (Segarra et al., 2010; Jenkins et al., 2013; Keeling et al., 2014; Mortensen et al., 440 

2016). This micro-variant form has a number of nucleotide substitutions and deletions that 441 

distinguish it from the original variant (Segarra et al., 2010). Infection by OsHV-1 μvar acts to 442 

suppress the oyster’s immune system thereby allowing opportunistic bacteria (such as Vibrio 443 

bacteria) to cause bacteraemia (de Lorgeril et al., 2018), and the oyster microbiome also shifts 444 

in response to viral infection (de Lorgeril et al., 2018). Furthermore, treating OsHV-1 μvar 445 

infected oysters with antibiotics significantly reduces the number of mortalities (Petton et al., 446 

2015). As the oyster microbiome can act as a source of opportunistic pathogens (Lokmer and 447 

Wegner, 2015), further studies are required to examine the relationship (and possible 448 

interactions) between OsHV-1 μvar and the oyster microbiome.   449 

 OsHV-1 has been experimentally transferred to naïve oysters within the laboratory 450 

(Dégremont et al., 2013; Petton et al., 2015). Notably, it has also been demonstrated that OsHV-451 



 
 

25 

1 resistant oysters infected with OsHV-1 are unable to transmit the virus to naïve oysters, and 452 

resistant oysters maintained an overall lower viral load than non-resistant oysters (Dégremont 453 

et al., 2013). Management strategies have been focused on movement controls (quarantining 454 

affected areas) and the production of genetic lines of oysters resistant to OsHV-1, that are able 455 

to reduce viral replication and more easily recover from viral infection (Segarra et al., 2014).  456 

4.4 Unknown aetiological agents 457 

In recent decades a phenomenon known as ‘summer mortality’ has heavily impacted the C. 458 

gigas aquaculture industry globally. These disease outbreaks have occurred all over the world 459 

including France (Garnier et al., 2007; Segarra et al., 2010), Australia (Jenkins et al., 2013; Go 460 

et al., 2017), the USA (Friedman et al., 2005), Germany (Watermann et al., 2008), Ireland 461 

(Malham et al., 2009), Japan (Mori, 1979) and in recent years Sweden and Norway (Mortensen 462 

et al., 2016). Summer mortality is marked by the loss of over 30% of oyster stocks (Soletchnik 463 

et al., 2005; Soletchnik et al., 2007) and in some instances has been observed to result in 100% 464 

mortality (Burge et al., 2007). Summer mortality has been responsible for catastrophic losses 465 

of C. gigas harvests since the 1960’s (Mori, 1979), but the mechanisms involved and if a  466 

pathogen(s) is responsible remains largely unknown. A number of different factors have been 467 

implicated in these mortalities, including rising seawater temperatures, eutrophication, 468 

infections by Vibrio species and the herpesvirus OsHV-1, but often the cause appears to be 469 

multifactorial (Malham et al., 2009; Dégremont et al., 2013; Lemire et al., 2015; Petton et al., 470 

2015), involving the interplay of multiple biotic and abiotic factors, which may affect the oyster 471 

immune system allowing opportunistic pathogens to take hold (Samain et al., 2007; Malham 472 

et al., 2009), and/or the abundance and virulence of pathogens. In this sense, summer mortality 473 

is an umbrella term that likely encompasses a number of different diseases with known or 474 

unknown aetiological agents. The bulk of recent research suggests a major role for OsHV-1 in 475 

summer mortality, with many research groups detecting this virus when disease outbreaks 476 

occur (Friedman et al., 2005; Burge et al., 2006; Burge et al., 2007; Segarra et al., 2010; Jenkins 477 

et al., 2013). It is notable however, that OsHV-1 was not detected in a recent summer mortality 478 

event in Australia (Go et al., 2017). Likely, periods of high temperature and low salinity acted 479 

to stress the oyster, resulting in immune suppression (Go et al., 2017), and allowing for 480 

bacterial infection to occur. This is evidenced with OsHV-1, in which infection acts to suppress 481 

the oyster’s immune system allowing for bacteraemia to kill the host (de Lorgeril et al., 2018). 482 

5.0 The role of the environment in facilitating disease outbreaks 483 
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The environment within which an organism resides, the pathogens to which it is exposed to, 484 

and the host’s physiology (including the microbiome) can be considered an “interactome” that 485 

influences disease dynamics (Figure 7) (Arthur et al., 2017). The concept of the interactome is 486 

particularly relevant to oysters given that they filter large quantities of water, thereby increasing 487 

the chance of exposure to pathogens. However, while there has been a substantial amount of 488 

research into the mechanisms behind diseases of oysters due to the global economic importance 489 

of these species, only recently have studies taken a more holistic approach to unravelling the 490 

interactome (Pernet et al., 2016). As a result, there is a need to move beyond viewing oyster 491 

diseases from a classical perspective (Koch’s postulates; one disease one pathogen), to a more 492 

ecological viewpoint of disease.  493 

 494 
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 495 

Figure 7: The interactome/synergism of oyster diseases. The outer rings are large scale 496 

environmental events (e.g. climate change) that influence the lower rings (e.g. temperature) 497 

allowing for a cascade effect that eventually influences microbial communities and pathogens 498 

(e.g. increased pathogen proliferation), that can then act on the oyster host.  499 

There is growing evidence that environmental factors are critical in the spread and severity of 500 

oyster diseases (Ford, 1996; Petton et al., 2013; Mortensen et al., 2016). A summary of the 501 

environmental parameters that have been found to influence oyster diseases is presented in 502 

Table 3.  503 
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Table 3 Environmental factors that influence oyster diseases 504 

Disease Influential environmental parameters References 

Dermo 

 

Increased winter temperature 

Increased salinity 

(Burreson and 

Ragone Calvo, 1996; 

Ford, 1996; Cook et 

al., 1998; Soniat et 

al., 2012) 

MSX 

 

Increased winter temperature 

Increased salinity 

(Haskin and Ford, 

1982; Ford et al., 

1999) 

ROD 

 

Increased temperature 

Increased salinity 

 

(Lewis et al., 1996) 

QX 

 

Increased temperature 

Decreased salinity for spores 

 

(Wesche et al., 1999) 

Winter mortality 

 

Dry autumns 

Increased salinity 

Decreased temperature 

(Roughley, 1926; 

Butt et al., 2006; 

Nell and Perkins, 

2006) 

Marteiliosis 

 

Increased temperature  (Berthe et al., 1998; 

Audemard et al., 

2001) 

Bonamiasis 

 

Decreased temperature 

Increased salinity 

Higher pH‡ 

(Arzul et al., 2009) 
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Denman Island 

disease 

Decreased temperature (Hervio et al., 1996; 

Bower et al., 1997) 

Nocardiosis 

 

Increased temperature 

Lower dissolved oxygen 

 

(Friedman et al., 

1991; Engelsma et 

al., 2008) 

Vibriosis 

 

Higher temperature to increase Vibrio growth 

Low salinity inhibits Vibrio infectivity 

(Lacoste et al., 2001; 

Elston et al., 2008; 

Richards et al., 2015) 

OsHV-1 

 

Increased temperature for viral replication 

Increased temperature for viral transmission 

Rainfall 

(Jenkins et al., 2013; 

Petton et al., 2013; 

Renault et al., 2014) 

Summer 

mortality 

 

Chlorophyll a 

Temperature 

Turbidity 

Salinity 

Nutrients (Ammonium, Phosphate, Nitrate, 

Nitrite, Silicate) 

(Soletchnik et al., 

2007; Malham et al., 

2009) 

‡Observation made by the authors that more acidic media increased parasite mortalities. 505 

5.1 Temperature  506 

In marine environments, sea temperature is a major driver of oyster disease outbreaks with 507 

temperature shifts mostly dictated by the seasons, although oceanic phenomena (such as marine 508 

heat waves) can also play a role (Table 3). Warmer temperatures are known to affect the 509 

severity and prevalence of dermo, MSX, ROD, marteiliosis, QX, nocardiosis, vibriosis, OsHV-510 

1 and summer mortality, while bonamiasis is most prominent during cooler water temperatures 511 

(Ford, 1996; Lewis et al., 1996; Wesche et al., 1999; Arzul et al., 2009; Malham et al., 2009; 512 
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Green et al., 2011; Petton et al., 2013). As a result, marteiliosis, nocardiosis, summer mortality 513 

(including OsHV-1), MSX and ROD disease outbreaks occur, or are more severe, during the 514 

summer months (Friedman et al., 1991; Berthe et al., 1998; Boettcher et al., 1999; Friedman et 515 

al., 2005; Soletchnik et al., 2007; Engelsma et al., 2008; Watermann et al., 2008), with 516 

outbreaks of vibriosis occurring during unusually warmer than normal summer temperatures 517 

(Lacoste et al., 2001; Elston et al., 2008). Where cooler temperatures would normally supress 518 

disease, there is evidence that unusually warm winters are a catalyst for increased intensity of 519 

dermo and MSX outbreaks in the following summer (Burreson and Ragone Calvo, 1996; Ford, 520 

1996; Cook et al., 1998; Ford et al., 1999). It’s not always clear why warmer temperatures 521 

induce disease outbreaks, but there is evidence that enhanced pathogen replication, 522 

transmission, and stress to the host are likely determinants (Taylor, 1983; Gilad et al., 2003; 523 

Lokmer and Wegner, 2015; Tout et al., 2015).  524 

Laboratory- and field-based studies have identified clear temperature thresholds that facilitate 525 

pathogen transmission. For the pathogens R. crassostreae, M. refringens and OsHV-1, the 526 

highest levels of transmission occur at temperatures greater than 18 °C (Lewis et al., 1996), 17 527 

°C, (Audemard et al., 2001) and 13.4 °C (Petton et al., 2013) respectively. In the field, disease 528 

outbreaks by these pathogens occur at slightly elevated temperatures, exceeding 20 °C for ROD 529 

and marteiliosis (Berthe et al., 1998; Boettcher et al., 1999), and 16 °C for OsHV-1 (Renault 530 

et al., 2014), indicating that pathogen colonisation is only one aspect of disease causation and 531 

that conditions that favour growth and increased host susceptibility also drive outbreaks. 532 

Consistent with this, ROD disease onset is reduced from 7 weeks at the temperature permissible 533 

temperature of 18 °C to only 3 weeks when the temperature is increased to 25.9 °C, following 534 

transmission at 18 °C (Lewis et al., 1996). Regarding effects on the oyster host, warmer 535 

temperatures of 21 °C are sufficient to reduce the numbers of hemocytes in the C. gigas 536 

hemolymph, as well as reducing their phagocytic ability, as was demonstrated by oyster 537 

hemocytes challenged with V. anguillarum (Malham et al., 2009).  538 

In contrast to the examples above, some pathogens have greater impacts under cooler 539 

temperatures. The viability of M. sydneyi spores is highest when temperature is reduced from 540 

25 °C to 15 °C (Wesche et al., 1999), while B. ostreae shows improved survivability at 4 °C 541 

compared to temperatures at 15 °C and above (Arzul et al., 2009). Furthermore, outbreaks of 542 

winter mortality disease routinely occur in late winter or early spring (Roughley, 1926; Spiers 543 

et al., 2014). 544 
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5.2 Salinity 545 

Salinity shifts have been implicated as key factors in outbreaks of dermo, MSX, ROD, QX, 546 

bonamiasis, vibriosis and summer mortality. Each oyster species has an optimal salinity 547 

concentration for growth, with 15-18 ppt (parts per thousand), 20-25 ppt, 20 ppt and 25-35 ppt 548 

being the optimal range for C. virginica, C. gigas, O. edulis and S. glomerata respectively (Nell 549 

and Holliday, 1988; Wallace, 2001; FAO, 2016a; c). Shifts from these optimal ranges can occur 550 

following rainfall events, periods of extended drought, tidal changes and from wind-driven 551 

flow (Geyer, 1997; Drexler and Ewel, 2001; Schmidt and Luther, 2002; Da Costa et al., 2016). 552 

Infections from dermo routinely occur at salinities above 9 ppt, with the greatest infections 553 

occurring above 15 ppt (Burreson and Ragone Calvo, 1996), which is within the optimal range 554 

of growth for C. virginica (Wallace, 2001), although once an oyster is infected, the infection 555 

can persist under salinity levels as low as 1-13 ppt (Andrews and Hewatt, 1957). Long periods 556 

of minimal rainfall, also lead to an increase in dermo disease intensity and prevalence, which 557 

is thought to be related to increased salinity levels (Soniat et al., 2012).  558 

For P. marinus (>15 ppt) and H. nelsoni (>15 ppt), infections occur within the optimal range 559 

of growth for their host (15-18 ppt for C. virginica). MSX disease severity is increased when 560 

the salinity is greater than 15 ppt, which is also within the optimal salinity range for C. virginica 561 

(Haskin and Ford, 1982). The protozoan, B. ostreae and the spores of M. sydneyi prefer high 562 

salinity (Wesche et al., 1999; Arzul et al., 2009). M. sydneyi spores showing heightened 563 

viability with increasing salinity, with an optimum viability at 34 ppt (Wesche et al., 1999) 564 

corresponding to the optimal salinity range of 25-35 ppt for S. glomerata. B. ostreae shows 565 

greatest survival in salinities greater than 35 ppt (Arzul et al., 2009), which is beyond the 566 

optimal salinity concentration (20 ppt) for O. edulis.  567 

Salinity levels can also impact bacterial diseases such as ROD and vibriosis. Transmission of 568 

ROD readily occurs at salinities greater than 18 ppt, the upper limit for C. virginica, and while 569 

infections do occur at lower salinities (10 ppt and 14 ppt) mortality rates are significantly 570 

decreased (Lewis et al., 1996). Conversely, mortality from V. coralliilyticus and V. tubiashii 571 

infection in C. virginica decreased from 100% and 70.7% respectively to 0% by reducing the 572 

salinity levels from 28 ppt to 9.6 ppt (Richards et al., 2015). Rates of summer mortality are also 573 

correlated with low salinity, with oyster mortalities the greatest during the low autumn-winter 574 

salinity period (Soletchnik et al., 2007).  575 
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With the exception of B. ostreae, the salinity concentrations that allow for infections by the 576 

protozoans are within the optimal range for their host. While bacterial infection and mortality 577 

caused by R. crassostreae (>18 ppt), V. coralliilyticus (28 ppt) and V. tubiashii (28 ppt) all 578 

occur outside the hosts optimal salinity range (15-18 ppt) possibly indicating that bacteria 579 

require an external stressor to allow for disease progression to occur, while protozoan parasites 580 

do not. 581 

5.3 Dissolved oxygen and pH 582 

N. crassostreae induced mortalities are correlated with lower dissolved oxygen concentrations, 583 

possibly through an impact on the hosts ability to combat this pathogen (Engelsma et al., 2008). 584 

In addition, hypoxic environments have been shown to increase the acquisition and infection 585 

intensity of P. marinus infections in C. virginica (Breitburg et al., 2015; Keppel et al., 2015), 586 

while pH does not appear to play a role in P. marinus infection dynamics (Keppel et al., 2015). 587 

Decreased pH levels also significantly affect the formation and dissolution of the C. virginica 588 

shell, which can potentially increase oyster susceptibility to disease and predation (Waldbusser 589 

et al., 2011a; Waldbusser et al., 2011b). The combination of decreased pH and a hypoxic 590 

environment reduces the ability of hemocytes to create reactive oxygen species (Boyd and 591 

Burnett, 1999), which would ultimately hamper their ability to combat microbial infections. 592 

Previous studies have shown that acidification of water (<pH 5.5) from acid sulphate soil runoff 593 

can reduce S. glomerata growth, degenerate oyster tissues and lead to higher mortality rates 594 

(Dove and Sammut, 2007a; b). In contrast, another study observed no correlation between pH 595 

and M. sydneyi infection of S. glomerata (Anderson et al., 1994), possibly indicating that pH 596 

is more influential on the S. glomerata oyster host, rather than influencing the protozoan 597 

parasite itself. In addition, S. glomerata acclimated to acidic water through the incorporation 598 

of CO2 into the oyster rearing tanks were shown to have a reduced tolerance to shifting salinity 599 

levels and temperature (Parker et al., 2017). 600 

5.4 Nutrients 601 

The possible role of nutrients in summer mortality disease outbreaks was first considered in 602 

the 1960’s, when outbreaks of summer mortality in C. gigas occurred in the Matsushima Bay, 603 

Japan, a region subject to heavy eutrophication (Mori, 1979). However, since this initial 604 

evidence, the role of nutrients in oyster disease and mortality events has rarely been directly 605 

studied. Concentrations of phosphate, nitrate, nitrite, silicate and ammonium were elevated 606 

during C. gigas summer mortality outbreaks in Ireland and Wales, while in subsequent 607 
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laboratory experiments mortality of oysters from these environments was only induced 608 

following the additions of elevated nutrient concentrations (Malham et al., 2009). To our 609 

knowledge, this is the only study to examine the role of nutrients on oyster disease in depth. 610 

Although, a previous study has shown that growing oysters in nutrient enriched seawater led 611 

to mortality rates five times greater than those oysters in non-enriched seawater (Lipovsky, 612 

1972). In a more general context, the role of nutrients, specifically from oyster feed, on oyster 613 

larval growth and survival has previously been reviewed (Marshall et al., 2010), with a general 614 

pattern of larvae diet strongly influencing larvae survival, as well as the need to supplement 615 

the larvae diet with protein as they progress through their life cycle (Marshall et al., 2010). 616 

5.5 Translocation  617 

While not an environmental factor, translocation is a common practice in the aquaculture 618 

industry and can unknowingly introduce pathogens to naïve areas. Examples of previous 619 

introductions of disease include marteiliosis and dermo (Alderman, 1979; Friedman and 620 

Perkins, 1994). Marteiliosis was spread from one affected area to other parts of France and then 621 

Spain, resulting in the introduction of M. refringens to these areas (Alderman, 1979). Dermo 622 

was historically located in the Chesapeake Bay, but persistent introductions of infected oysters 623 

to the north-eastern USA led to the establishment of dermo in these areas (Friedman and 624 

Perkins, 1994; Ford, 1996). Often though, translocation alone is not sufficient. Environmental 625 

conditions must be favourable to the pathogen to facilitate disease establishment and 626 

progression (Ford, 1996).  627 

6.0 The relationship between the oyster microbiome and disease 628 

Evidence for the importance of the microbiome has been building since the term “microbiome” 629 

was first coined in 1988 (Lisansky, 1988). Arguably, the bulk of the microbiome research has 630 

been focussed on humans, with specific compositions of the human gut microbiome correlated 631 

with a number of disorders/diseases (Turnbaugh et al., 2006; Abraham and Cho, 2009; Heijtz 632 

et al., 2011). In other organisms, the microbiome influences animal behaviour and their 633 

susceptibility to pathogens (Hosokawa et al., 2008; Koch and Schmid-Hempel, 2011), for 634 

example, the microbiome of Drosophila melanogaster (fruit fly) strongly drives the mating 635 

behaviour of this insect (Sharon et al., 2010). Using these examples, it is likely that the 636 

microbiome of oysters also plays a key role in oyster health, behaviour or through some 637 

contribution to the oyster disease process. 638 
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The role of the oyster microbiome in mortality outbreaks is an area of research yet to be fully 639 

explored. To date, previous research has shown that the microbiome can shift under a multitude 640 

of different stress treatments, such as translocation, starvation, temperature, infection and 641 

antibiotic stress (Green and Barnes, 2010; Wegner et al., 2013; Lokmer and Wegner, 2015; 642 

Lokmer et al., 2016a; Lokmer et al., 2016b). The microbiome also changes with different 643 

seasons (Pierce et al., 2016) and with translocation to laboratory conditions (Lokmer et al., 644 

2016a). Additionally, while external abiotic factors can influence the microbiome, the within 645 

microbiome-interactions (between microbial organisms within a microbiome) can also play a 646 

role in bacterial community composition (Lokmer et al., 2016a) and destabilisation of this 647 

community can facilitate infection by Vibrio pathogens (Lokmer et al., 2016b) – this raises 648 

questions regarding the role of the oyster microbiome in disease resistance and susceptibility. 649 

Studies exploring the oyster microbiome during disease events are biased towards C. gigas and 650 

further towards summer mortality and the Vibrio-specific community.  651 

The oyster microbiome is comprised of unique bacterial communities in each tissue, with the 652 

hemolymph bacterial community the most variable (King et al., 2012; Lokmer et al., 2016b). 653 

It has previously been proposed that destabilisation of the hemolymph microbiome can allow 654 

Vibrio bacteria to infiltrate the solid tissues causing a systemic infection (Lokmer et al., 2016b). 655 

There is increasing evidence that the microbiome of an organism plays an essential role in 656 

maintaining homeostasis (Shin et al., 2011; Earley et al., 2015). For instance, in humans the 657 

microbiome maintains immune homeostasis through reduction of inflammation (Kelly et al., 658 

2004), provides host microbial defence (Fukuda et al., 2011), assists in nutrient degradation 659 

and uptake (Turnbaugh et al., 2009) and microbiome imbalances have been linked to chronic 660 

diseases such as Crohn’s disease (Frank et al., 2007). The role of the microbiome in disease 661 

dynamics is emerging as an important factor in the progression and severity of oyster diseases 662 

(Petton et al., 2015). Reduced mortality in antibiotic-treated specific-pathogen-free (SPF) 663 

oysters subsequently exposed to OsHV-1 suggests an important role for the oysters microbiome 664 

in disease dynamics (Petton et al., 2015), in particular, the Vibrio community in healthy C. 665 

gigas harbours pathogens that can induce mortality in oyster larvae (Wendling et al., 2014). 666 

Furthermore, the non-virulent Vibrio portion of the oyster microbiome progressively shifts 667 

towards a virulent population during the onset of summer mortality while the remaining non-668 

virulent Vibrio population appears to aid in causing the disease (Lemire et al., 2015). When 669 

virulent Vibrio strains are injected into oysters, the oyster microbiome does not become 670 

dominated by Vibrio, in fact, organisms from the genus Arcobacter become dominant (Lokmer 671 
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and Wegner, 2015). Similarly, by growing the Vibrio-injected oysters at higher temperatures 672 

(22°C), the microbiome became more variable, with an increase in anaerobic bacteria, 673 

including members of the Clostridia, which were found to be a particularly large component 674 

of the microbial assemblage in dead oysters, possibly due to necrosis or anaerobic conditions 675 

(Lokmer and Wegner, 2015). From the few studies focussed on examining the C. gigas 676 

microbiome during a summer mortality disease outbreak, we can begin to make insights into 677 

how the native microbial community can facilitate disease progression. C. gigas cultivated at 678 

sites experiencing a summer mortality outbreak in Australia had a significantly different 679 

microbiome structure than specimens from sites unaffected by summer mortality (King et al., 680 

2018) however, further research is required to determine the role of the whole microbiome in 681 

disease dynamics. There is evidence that shifts in the Vibrio community can increase the 682 

severity of disease, but it is unclear whether the whole microbial community, when stressed, 683 

provides a protective role against disease, or aids in disease progression (Thurber et al., 2009; 684 

Lemire et al., 2015; Tout et al., 2015).  685 

To our knowledge, there has only been one study characterising the microbiome of S. 686 

glomerata during a disease event, with evidence that infection by M. sydneyi reduces the 687 

diversity of the oyster microbiome, with sequences with high homology to Rickettsiale-like 688 

prokaryotes highly elevated in infected oysters (Green and Barnes, 2010). Changes in the 689 

microbiome of S. glomerata in response to infection by M. sydneyi could further aid disease 690 

progression but further studies are required to examine whether mortality can be reduced in 691 

infected oysters with a more ‘stable’ microbiome.  692 

The microbiome of C. virginica is understudied, particularly within the context of disease. To 693 

date, the culture-able bacterial community has been studied in regards to its oil degradation 694 

ability from the horizon oil spill in the Gulf of Mexico, with members of the Pseudomonas 695 

genus as the dominant oil-degrading isolate (Thomas et al., 2014), and the microbiome of C. 696 

virginica has been previously characterised using culture-independent techniques, in which the 697 

oyster gut microbiome (intestinal contents) was found to more diverse than the stomach 698 

microbiome, and the microbiome assemblage was influenced by spatial location (King et al., 699 

2012; Chauhan et al., 2014). A recent spatiotemporal study of the C. virginica microbiome 700 

considered the influence of Dermo (Pierce et al., 2016). The C. virginica microbiome was 701 

shown to change over seasons, with the microbial community composition significantly 702 

influenced by water temperature, but the infection and severity of Dermo disease was not found 703 

to be a significant determining factor of the microbiome (Pierce et al., 2016).  704 
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Similar to S. glomerata and C. virginica, studies of the O. edulis microbiome during disease 705 

events are lacking, indeed, studies characterising the healthy microbiome of O. edulis are also 706 

needed. To our knowledge, only one such study has examined the microbiome of O. edulis, 707 

with a focus on characterising the culture-able microbiome to examine shifts in the bacterial 708 

population over seasons, with isolates belonging to Vibrio harveyi dominant through the 709 

warmer months and Vibrio splendidus dominant during the colder months (Pujalte et al., 1999). 710 

6.1 Oyster microbiome - future directions and challenges 711 

Observational microbiome studies of C. gigas have begun to shed light on the dynamic 712 

interplay between the oyster microbiome, health, and disease. However, these studies are 713 

largely under-represented for S. glomerata, C. virginica, and O. edulis. It is becoming clear 714 

that applying stress to an oyster is sufficient to shift the oyster microbiome. This is seen with 715 

bacterial infection and temperature (Lokmer and Wegner, 2015), translocation (Lokmer et al., 716 

2016b), starvation (Lokmer and Wegner, 2015), antibiotic stress (Lokmer et al., 2016a), 717 

exposure to a disease outbreak (King et al., 2018), and parasite infection (Green and Barnes, 718 

2010). But it is not understood how the oyster microbiome responds before, during and after 719 

an environmental disease outbreak. Understanding this dynamic is crucial for determining the 720 

microbiome contribution to disease, and whether it can ‘stabilise’ following stress periods. 721 

However, carrying out environmental temporal studies are particularly challenging for a 722 

number of reasons: Firstly, in many cases the onset of disease can be very sudden and 723 

unpredictable. Secondly, holding/studying oysters in marine mesocosms (i.e. tanks or 724 

aquariums) significantly alters the oyster microbiome (Lokmer et al., 2016a) and will not be 725 

representative of an environmental outbreak. Thirdly, the oyster microbiome is highly 726 

heterogenous between replicate oysters (Lokmer et al., 2016a; King et al., 2018). Lastly, 727 

repeated hemolymph sampling of the same individual can cause local tissue infections resulting 728 

in an over-representation of bacteria assigned to the Tenericutes phylum (Lokmer et al., 2016a). 729 

To overcome these challenges, environmental temporal studies will need to have a high-730 

resolution sampling regimen to capture the mortality event, likely coupled with a large number 731 

of biological replicates to overcome the heterogeneity in the oyster microbiome. 732 

Breeding for disease resistance is a common aquaculture practice for the mitigation of oyster 733 

disease outbreaks (Dégremont, 2011; Dove et al., 2013b). Given the likely contribution of the 734 

oyster microbiome in oyster diseases (Lemire et al., 2015; Petton et al., 2015), there is a need 735 

to determine whether breeding for disease resistance also alters the oyster microbiome 736 
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composition and whether this alteration is, at least in part, responsible for disease resistance. If 737 

indeed the microbiome does play a role in disease resistance, another question is whether 738 

disease resistance oysters bred in one aquatic environment translate to another with different 739 

environmental parameters and likely microbiota? In the first instance, identifying whether 740 

disease resistance oysters have unique microbiomes will provide some insights into its 741 

protective role and stability after a disease event. Most importantly, characterising disease 742 

resistant oyster microbiomes may identify probiotic targets for the use in disease management 743 

strategies. However, as each tissue (including the hemolymph) has their own unique 744 

microbiome (Lokmer et al., 2016b), studies aiming to identify microbes unique to disease 745 

resistant oysters might need to homogenise the oyster or use a multi-tissue approach. 746 

Moving beyond observational microbiome studies to manipulative experiments is another key 747 

challenge. Observational studies can provide insights into which microbes are driving shifts in 748 

the microbiome and be correlated to factors such as disease resistance, but do not provide 749 

information on the functional genes playing a role in the interactome. Metagenomics has 750 

emerged as a potential but expensive replacement for 16S rRNA microbiome sequencing 751 

(Handelsman, 2004). This technique provides both observational and functional data for 752 

microbiome analysis (Quince et al., 2017). However, as extracted DNA will contain a high 753 

ratio of eukaryotic to prokaryotic DNA, enrichment of prokaryotic DNA is required before 754 

sequencing (Thoendel et al., 2016).  755 

Once the potential functional role of these microbes has been established, another key 756 

challenge is the cultivation and manipulation of specific members of the oyster microbiome. 757 

Cultivated organisms are required to characterise the interactions between these microbes (such 758 

as those correlated to disease resistance), the host, and pathogens (Bäumler and Sperandio, 759 

2016), and to examine the probiotic effect of these microbes (Kapareiko et al., 2011). This may 760 

identify specific genetic elements that amplify or suppress oyster diseases, allowing for the 761 

development of monitoring programs to examine the abundance of these microbes/elements in 762 

commercial stocks and breeding programs.  763 

7.0 Conclusions 764 

Infectious diseases afflicting oysters have remained a constant barrier for the successful growth 765 

and sustainability of oyster aquaculture industries around the world. It is becoming increasingly 766 

apparent that the environment is an important factor driving the progression and severity of 767 

numerous oyster diseases and therefore, it is vital to consider how the environment can affect 768 



 
 

38 

pathogen invasion and host physiology when studying oyster diseases. Oysters exist in an ever-769 

changing environment and are constantly exposed to new challenges. In fact, the history of 770 

oyster cultivation is riddled with attempts to overcome new and existing oyster diseases (René 771 

Robert and O'Mahoney, 2013). While the bulk of previous research has been focused on the 772 

presence of aetiological agents and their link to mortality outbreaks, future studies should begin 773 

to question why these mortality outbreaks happen, what stimulates them, and how can these 774 

mortality outbreaks be lessened by manipulating the conditions in which oysters are grown in. 775 

Furthermore, how does the microbiome fit into the disease process? Previous research has 776 

shown that the oyster microbiome can shift under a multitude of conditions, some of these 777 

conditions, such as infection stress, are able to completely replace commensal members of the 778 

microbiome with a more virulent community (Lemire et al., 2015), and microbiome 779 

destabilisation can facilitate pathogen spill over into different oyster tissues (Lokmer et al., 780 

2016b). This virulent state can then amplify the severity of oyster diseases. Disruption of the 781 

C. gigas microbiome during summer mortality outbreaks is emerging as an important factor 782 

determining the progression and severity of this disease. Yet, microbiome research in other 783 

oyster species, and their role in disease, is lacking. As an oyster is exposed to a dynamic 784 

environment, the microbes they are exposed to will change, both over seasons (Wendling et 785 

al., 2014) and with climate change. Will a changing environment completely change the oyster 786 

microbiome? Will it result in more microbiome disruptions, allowing diseases to take hold 787 

more frequently? Or perhaps the oyster microbiome is more resilient than previously thought? 788 

Here we have begun to tease apart the interconnectedness of the external environment and 789 

oyster diseases, yet it is still unclear whether the external environment acts directly on the 790 

oyster physiology and microbiome, allowing pathogens to take hold, or whether it only 791 

regulates pathogen proliferation and infection, which will cause disease regardless of the state 792 

of the oyster and its microbiome state. Answering these questions will provide vital insights 793 

into the complexity of oyster diseases and in turn, will guide management practices of oyster 794 

aquaculture to reduce the economic impact of these debilitating oyster diseases. 795 
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