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Decentralised Mission Monitoring with
Spatiotemporal Optimal Stopping

Graeme Best1,2, Shoudong Huang3 and Robert Fitch3,2

Abstract— We consider a multi-robot variant of the mission
monitoring problem. This problem arises in tasks where a robot
observes the progress of another robot that is stochastically
following a known trajectory, among other applications. We
formulate and solve a variant where multiple tracker robots
must monitor a single target robot, which is important because
it enables the use of multi-robot systems to improve task
performance in practice, such as in marine robotics missions.
Our algorithm coordinates the behaviour of the trackers by
computing optimal single-robot paths given a probabilistic
representation of the other robots’ paths. We employ a decen-
tralised scheme that optimises over probability distributions
of plans and has useful analytical properties. The planned
trajectories collectively maximise the probability of observing
the target throughout the mission with respect to probabilistic
motion and observation models. We report simulation results
for up to 8 robots that support our analysis and indicate
that our algorithm is a feasible solution for improving the
performance of mission monitoring systems.

I. INTRODUCTION

Mission monitoring is a problem in which one mobile
robot must observe the progress of another robot that is
performing a given task. This problem was first introduced in
the context of monitoring an underwater robot with a surface
vessel [1], but is applicable in general to a wide variety of
task scenarios and types of robots, including environmental
monitoring, agricultural robotics, and aerial vehicles [2].

One defining characteristic of mission monitoring is that
the tracker robot must stop for a period of time in order to
observe the target robot, whose intended trajectory is known
in advance but subject to stochastic disturbances. The physi-
cal motivation for this property is that the tracker may need to
deploy communication equipment that is most efficient while
stationary. The algorithmic problem, then, is how to choose
a sequence of stopping locations and durations such that the
probability of successfully observing the target is maximised.
This problem is important because it is an essential part of
employing outdoor robots for certain real-world tasks, such
as various underwater missions [3], that depend on timely
transmission of sensor observations or system faults. It is
also interesting in broader contexts because it applies to
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Fig. 1. The multi-tracker mission monitoring problem. A probabilistic
prediction model for a robot trajectory (30 min AUV mission) is shown as
blue sample trajectories. A plan for tracker team (3 surface vessels) is shown
in black. Cylinders represent probabilistic monitoring regions at stopping
locations. The objective can be interpreted geometrically as maximising the
expected overlap between the cylinders and the prediction model.

systems that must stop periodically to conserve energy [4],
to provide imagery taken from a stationary viewpoint [5],
and for acoustically covert surveillance [6].

Although optimal algorithms exist for the case of a single
tracker and target [2], the multi-robot case is not well studied.
Various multi-robot problem settings are possible, but the
case of multiple trackers observing a single target is of
immediate practical value. Optimal single-tracker algorithms
guarantee the best solution given a stochastic target trajec-
tory, but do not necessarily guarantee any absolute level of
quality. The target trajectory or communication channel may
be subject to severe uncertainty that limits the probability of
success of any single-tracker solution, or the tracker may be
relatively slow-moving. Utilising multiple trackers provides
a pathway for improvement by enabling the observation of
multiple disparate possible target positions simultaneously.

One challenge in considering the multi-tracker case is
that single-tracker algorithms do not extend naturally. It
is not useful for trackers to plan independently, because
it is likely that all trackers would choose to make the
same, rather than complementary, observations. Instead, each
tracker must compute its actions jointly with the actions
of the others. Hence, it is necessary to solve the resulting
coordination problem. Ideally, this problem should be solved
in a decentralised and asynchronous manner to distribute the
computational effort, to avoid having a single point of failure,
and to be robust to unreliable communication links.



In this paper, we formulate the multi-tracker variant of
mission monitoring and propose a decentralised solution
algorithm. Our solution is loosely based on our optimal
single-robot planner in [2], which comprises of finding the
maximum-weight path through a spatiotemporal graph. For
the multi-tracker scenario, the algorithm must be extended to
consider the trajectories of the other agents. However, this
alone is not enough to ensure successful coordination due
to the cyclic dependencies between agents. We overcome
this challenge by defining plans as probability distributions
over trajectories that are optimised in a decentralised manner;
this formulation reduces the likelihood of the algorithm
getting stuck in a cycle of suboptimal solutions [7]. While
it is difficult to obtain global optimality guarantees for
decentralised algorithms, our analysis shows optimality with
respect to the current plans of the other robots, and we
have the proposition that the plans converge towards the
probability distribution that minimises the KL-divergence to
the optimal joint distribution. The algorithm also has the
useful properties of being any-time, polynomial runtime per
iteration, and small communication bandwidth usage.

Our algorithm produces a trajectory for each tracker that
is optimised with respect to probabilistic communication and
target trajectory prediction models. Example trajectories for a
team of trackers is illustrated in Fig. 1. The trackers perform
a dynamic weighted coverage responsive to the probabilistic
models and dynamics constraints, which is distinctly differ-
ent to simple uninformed spatial coverage. We present simu-
lated experiments with realistic trajectory prediction [2] and
communication [8] models for an autonomous underwater
vehicle (AUV) and a team of monitoring surface vessels.
The results demonstrate that the trackers must coordinate to
adequately solve this problem, there is significant benefit of
using a probabilistic plan representation, and our algorithm
outperforms a generic planner. Overall, we show the ap-
proach is viable for use in multi-tracker mission monitoring.

Contributions: This paper presents the first formulation
and solution for decentralised multi-tracker mission monitor-
ing. While we borrow ideas from our previous work, namely
single-tracker mission monitoring [2] and Dec-MCTS [7],
this paper contributes more than simply a combination of
these two ideas. Relative to [2], this paper contributes a
multi-tracker formulation of mission monitoring, a modified
single-tracker algorithm for this setting, a decentralised gen-
eralisation of the single-tracker algorithm, and new analytical
and empirical results. Relative to [7], this paper contributes
a new decentralised algorithm designed for mission moni-
toring, has stronger analytical properties, and is empirically
demonstrated to outperform Dec-MCTS.

II. RELATED WORK

The mission monitoring problem was first posed in [1]
along with preliminary algorithms and field trials that demon-
strate its practical value in the case of AUV missions. In [9],
the problem was formulated as the spatiotemporal optimal
stopping problem and was generalised to admit stochastic
prediction models. The solution has guaranteed optimality

and polynomial runtime. In [2], experiments demonstrate
the value of planning while considering uncertainty in the
trajectory and communication models. In this paper, we
generalise the formulation for a team of trackers, and propose
a decentralised solution algorithm.

The mission monitoring problem has similarities to a va-
riety of related problems. The well-known optimal stopping
problem [10] requires the choice of when to take a particular
action in order to maximise an expected reward. Optimal
stopping has motivated other robotics formulations, including
selecting when to communicate [11] and sample [12] while
moving along a single dimension. Mission monitoring can
be described as a generalisation of these formulations where
decision points are described in both spatial and temporal
dimensions. The problem can be interpreted geometrically
(Fig. 1) and thus has similarities to problems in computa-
tional geometry [13], such as Voronoi decomposition and
the unions of rectangles. Sweep plane algorithms can be
used to solve these geometric problems, and this idea forms
the basis of the algorithms in [9] [2]. The general approach
can equivalently be interpreted as finding the longest-path
through a directed acyclic graph, similar to [14] but with a
different spatiotemporal graph.

However, all of the problems above are formulated as
single-agent problems, whose solutions do not naturally
extend to multi-agent scenarios. The dynamic coverage prob-
lem [15] is closely related in that a team of robots coordinate
to collectively observe a moving set of points. However, [15]
assumes the points are static and rely on replanning to react
to the dynamics. For mission monitoring, we have access to
a prediction model of the dynamics, and thus we can instead
plan with respect to this model. Also, [15] is centralised,
whereas the algorithms here are decentralised.

Decentralised planners have been developed for
many problems, including generic formulations such
as Dec-MCTS [16] [7] and max-sum [17]. Problem-
specific formulations include those for target search [18],
tracking [19], and exploration [20]. While the generic
planners may be applicable to mission monitoring,
the performance will be poorer than our problem-specific
solution; we conduct an empirical comparison to Dec-MCTS.

Coordination between trackers is achieved in our method
with a decentralised framework that optimises a product
distribution over the joint solution space. This optimisation
is performed by considering candidate solution trajectories
generated by spatiotemporal optimal stopping. The decen-
tralised framework is similar to the second component of
Dec-MCTS [7], which is an adaptation of probability col-
lectives [21]. This approach has been shown to be robust
to unpredictable communication loss [7], which is particu-
larly useful in marine operations, and can even incorporate
communication scheduling to enable more effective use
of communication resources [22]. This general approach
to decentralisation is analogous to the classic mean-field
approximation and related variation inference methods [23],
where a global likelihood function is approximated by a
collection of structurally simpler distributions.



III. PROBLEM FORMULATION

In this section we formulate the multi-tracker mission
monitoring problem. The problem involves a team of mobile
agents: 1) a target agent which follows a probabilistic
trajectory defined by a mission plan, and 2) a team of
tracker agents that seek to effectively monitor the target
throughout the mission. At each time instant, to monitor
effectively, at least one tracker must be stationary and within
observation/communication range of the target. The trajec-
tory for each of the trackers can therefore be characterised
as a sequence of stopping waypoints in time and space.
The optimisation problem is to find the trajectories for the
team of trackers that maximises the expected monitoring
effectiveness. This problem is to be solved in a decentralised
manner. We formally define this problem as follows.

A. Target

The predicted future trajectory of the target is represented
as a sequence of random variables X := (X1, X2, ..., XN )
with associated timesteps (t1, t2, ..., tN ) = T . The timesteps
are evenly spaced at ∆t intervals, with t1 = 0, and tN = T
is the mission duration or a time horizon. Each Xi represents
the predicted location of the target at time ti and has a known
probability density function ρi(Xi = x) over the domain X .

B. Tracker Team

The target is monitored by a team of R tracker agents
{1, 2, ..., R} = R. The trajectory of tracker r ∈ R is repre-
sented by a sequence of positions Y r = (yr1, y

r
2, ..., y

r
N ) and

states Sr = (sr1, s
r
2, ..., s

r
N ), with associated timesteps T (as

defined above). The trajectory of the tracker is characterised
as alternating between two states {STOPPED,MOVING}. If
sri = STOPPED, then at time ti tracker r is stationary at
position yri . Conversely, if sri = MOVING, tracker r is moving
between waypoints and therefore not monitoring.

The trajectory of tracker r is equivalently represented by
the tuple πr = [Ŷ r, T ar, T dr], where Ŷ r := (ŷr1, ŷ

r
2, ..., ŷ

r
Mr )

is a sequence of waypoint positions with sequences of asso-
ciated arrival times T ar := (tar1 , t

ar
2 , ..., t

ar
Mr ) and departure

times T dr := (tdr1 , t
dr
2 , ..., t

dr
Mr ). We have ŷrj ∈ Ŷ , where Ŷ

is a discrete set of positions where the trackers may stop.
During the time interval [tarj , t

dr
j ), tracker r is in the

STOPPED state and is stationary at the waypoint position
ŷrj ∈ Ŷ . During the time interval [tdrj , t

ar
j+1), tracker r is

in the MOVING state and is travelling between consecutive
waypoints ŷrj , ŷ

r
j+1. The sequences of arrival and departure

times satisfy the constraints: tdr1 ≥ 0, tarMr ≤ T, and tarj <
tdrj < tarj+1,∀j ∈ {1, 2, ...,Mr − 1}

The required travel time between two waypoints ŷra, ŷ
r
b

is defined by a function δ(ŷra, ŷ
r
b ) : Ŷ × Ŷ → R≥0. The

proposed algorithm does not depend on the exact trajectory
taken to achieve this travel time, but it may be computed by
considering the dynamics models of the tracker vehicles. We
require δ(ŷra, ŷ

r
b ) = 0 iff ŷra = ŷrb . For clarity, we assume

δ is the same for all trackers, although this could be easily
generalised. We do not plan for collision avoidance between

trackers; however, this could typically be handled by a low-
level controller during execution with only slight changes to
the travel times.

The start position ŷr1 for each tracker r is a known
constant, while the end position ŷrMr is to be selected by
the planner from a set Ŷend ⊆ Ŷ . Alternative start/end
assumptions are addressed in [2] with small modifications
to the algorithms.

The trajectories for the team of robots collectively is
denoted: π = {π1, π2, ..., πR}. The trajectory of all trackers
except r is denoted π(r), i.e., π(r) := π \ πr. These
superscript conventions are also used for all tracker variables:
si, S, yi, Y , ŷj , Ŷ , T a and T d.

C. Monitoring Effectiveness

At time ti, the instantaneous monitoring effectiveness for
tracker r only is described by a function fr. This function
is defined as the probability of monitoring effectively:

fr(Xi, y
r
i , s

r
i ) :=

{
f̃(‖Xi − yri ‖) if sri = STOPPED

0 if sri = MOVING
(1)

where f̃(d) : R≥0 → [0, 1] is the observation (or com-
munication) model. This model f̃ describes the probability
of successfully observing the target from a distance of d,
although other interpretations of f̃ are possible [2]. This
function may be defined as a simple binary r-disk model
or a more realistic observation model; we present example
definitions in Sec. VI and in [2]. For clarity, we define the
observation model as tracker-, translation-, orientation- and
time-invariant, however the approach can readily be extended
for more general models.

The goal of the team of trackers is to collectively monitor
the target. At time ti, the monitoring effectiveness for the
team is described by a function f , defined as follows. There
is no additional reward for multiple trackers monitoring at
the same time. However, having multiple trackers STOPPED
at the same time increases the probability that at least one
tracker is effectively monitoring. By assuming observation
independence, we define f as

f(Xi, yi, si) := 1−
∏
r∈R

[1− fr(Xi, y
r
i , s

r
i )] , (2)

which specifies the probability that at least one tracker is
effectively monitoring at time ti. The motivation for this
formulation of f is that this model encourages the different
trackers to observe different parts of the prediction model
distribution Xi; if f was instead simply a sum of fr then
all trackers would aim to observe the most likely realisation
of Xi, which is likely to result in undesirable behaviour.

The objective function F is defined as the expected
monitoring time for the duration of the mission:

F (X,π) := EX

[
∆t

N∑
i=1

f (Xi, yi, si)

]
(3)

= ∆t

N∑
i=1

EXi
[f (Xi, yi, si)] (4)



where {yi, si} are the trajectories derived from π, and the
expectation is computed with respect to X . In our results,
we express F as a percentage of the mission duration tN .

D. Problem Statement

The optimisation problem to be solved is stated as follows.
Problem 1: For a given probabilistic model of the pre-

dicted target trajectory X , a set of possible waypoint loca-
tions Ŷ , the start locations ŷr1 ∈ Ŷ,∀r ∈ R, and the set
of feasible end locations Ŷend ⊆ Ŷ , find for each tracker
r the set of stopping waypoints πr with positions ŷrj ∈ Ŷ ,
ŷrMr ∈ Ŷend, arrival times T ar and departure times T dr, such
that the travel time constraints tarj+1−tdrj = δ(ŷrj , ŷ

r
j+1),∀j ∈

{1, ...,Mr − 1},∀r ∈ R are satisfied, and the expected
monitoring effectiveness for the team F (X,π), as defined
in (4), is maximised over the mission duration.

Problem 1 is to be solved in a decentralised manner.
Specifically, each tracker r optimises its own trajectory πr

based on only the information known to tracker r. We assume
tracker r knows the target prediction model X , but does not
necessarily know the trajectories π(r) selected by the other
robots. The trackers can communicate during planning-time
to improve coordination, but this communication channel
may be unpredictable and intermittent.

IV. DECENTRALISED PLANNING ALGORITHM

In this section we present our decentralised planning
algorithm as a solution to the multi-tracker mission monitor-
ing problem. The algorithm runs simultaneously and asyn-
chronously on all tracker robots; we present the algorithm
from the perspective of tracker r.

The algorithm cycles between three phases: (1) find the
optimal solution πr∗ with respect to the currently known
information about the other trackers’ plans, (2) maintain a
set Πr of possible solutions for πr and optimise a probability
distribution qr over the set Πr, and (3) communicate proba-
bility distributions with the other robots. These three phases
continue regardless of whether or not the communication was
successful, until a computation budget is met or the algorithm
converges. Pseudocode is provided in Alg. 1.

A. Probability Distributions over Trajectories

The algorithm maintains a probability distribution for each
tracker, which represents the predicted plan of each tracker.
We define a probability mass function qr, such that qr(πr)
defines the probability that robot r will select πr. The domain
of qr is restricted to a dynamically selected subset Πr of all
possible solution trajectories. As the algorithm progresses,
both the domain Πr and distribution qr are optimised. The
product distribution of all trackers is denoted (Π, q), and of
all trackers except r is denoted (Π(r), q(r)).

B. Phase 1: Spatiotemporal Optimal Stopping

The first phase of the algorithm finds the solution πr∗ that
is optimal with respect to the current information (proba-
bility distributions) available to tracker r. This solution gets
incorporated into the set Πr, which defines the domain of
the probability distribution that is optimised later in phase 2.

Algorithm 1 Optimising πr on-board tracker r.
1: G ← GENERATEGRAPH(X)
2: Πr ← ∅ . Set of solutions
3: define qr as a probability distribution over Πr

4: β ← β0 . Temperature parameter
5: loop
. Phase 1: Spatiotemporal optimal stopping

6: πr∗ ← OPTIMALSTOPPING(G,Π(r), q(r))
. Phase 2: Probability distribution optimisation

7: Πr.REMOVEMIN(qr) . Remove least likely πr

8: Πr.ADD(πr∗)
9: for each πr ∈ Πr do

10: qr(πr)← UPDATE(qr(πr), β) . Eqn. (6)
11: β ← COOL(β)

. Phase 3: Communication
12: COMMUNICATETRANSMIT(Πr, qr)
13: Π(r), q(r) ← COMMUNICATERECEIVE

return πr ← argmaxπr∈Πrqr(πr)

 

 

Target trajectory

Stopping locations

Fig. 2. Example showing possible stopping locations around a deterministic
target trajectory moving through 2 spatial dimensions. Also shown are the
boundaries of the monitoring region (pink) and convex hull (orange) used
for culling the search space. Figure sourced from [2].

We find πr∗ by using a modification of the spatiotempo-
ral optimal stopping algorithm for the single-tracker prob-
lem [2]. The algorithm consists of generating a search graph
over time and space, followed by a longest-path search
through the graph to find the optimal trajectory for the
tracker. We extend [2] to also consider the current plans
for the other trackers when evaluating the new reward
function (2). We also modify the graph generation of [2] to
enable more efficient repeated queries, which is particularly
useful in the context of Alg. 1. We summarise the algorithm
as follows and highlight the main differences.

1) Graph generation: During a precomputation step
(Alg. 1 line 1), a graph G = (V, E) is generated such that
any path through this graph represents a trajectory πr for
tracker r. Each vertex vη ∈ V represents a potential stopping
location in time and space. The set V is generated by first
considering the set of potential stopping locations Ŷ . This set
is then culled by only keeping positions that are both within
the observation range of X , and within the convex hull of
X , where X is the set of all positions that have a non-zero
probability of occurrence in X . An example of these sets and
the resulting stopping locations P are depicted in Fig. 2.

Each vertex vη ∈ V represents a position pη ∈ P and
a time interval [τη, τη + ∆t] ⊆ T , denoted by the tuple
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Fig. 3. Example showing graph vertices overlaying the (sampled) prob-
abilistic trajectory of a target moving through a single spatial dimension.
Each vertical blue line segment is a vertex in the search graph. Each vertex
maps to a potential STOPPED position and time for the tracker.

vη := [pη, τη]. For each position pη ∈ P , a vertex is
created for each time step τη ∈ T where the target has a
non-zero probability of monitoring the tracker. An example
of this vertex generation is illustrated in Fig. 3 overlaying a
probabilistic target trajectory.

A solution trajectory is represented by a path through
the graph with consecutive vertices connected by directed
edges eη ∈ E . An edge eη = 〈vi, vj〉, where pi 6= pj ,
describes travelling from vertex vi at position pi to vertex
vj at position pj . Edges are connected between each pair of
vertices that have feasible travel times, i.e., edge 〈vi, vj〉 ∈ E
iff δ(pi, pj) ≤ τj − τi. The arrival time at pj is selected
as tarj = τj and the departure time from pi is tdri =
τj − δ(pi, pj). Any vertex that has no feasible path back
to the start vertex [ŷr1, 0] is excluded from V . Edges are also
included for cases where pi = pj , which represent stopping
at position pi for an extended period of time.

Unlike in [2], to make the repeated queries in Alg. 1
more computationally efficient, we make a further adjustment
to the set E . For a fixed vertex vj , if there are multiple
feasible edges 〈vi, vj〉 with different vi that all have the same
location pi, then only the edge with the latest τi is kept, while
all others are excluded. Optimality is maintained after this
adjustment (corollary of [2, Remark 2]). This improvement
yields a runtime complexity for phase 1 that is linear in the
resolution of the temporal discretisation (see Sec. V-A).

2) Graph edge weights: In the main loop of the algorithm
(line 5), rewards are assigned to the graph edges and then the
optimal πr∗ is found. This is performed while considering the
plans (Π(r), q(r)) of the other trackers, which change each
time a communication message is received.

The reward ωη for edge eη = 〈vi, vj〉 represents the
relative value of including edge eη in the solution path
πr∗. Specifically, we define ωη as the expected increase in
probability of effective monitoring if tracker r were to stop
at location pi at time τi, i.e.,

ωη := E
Xi,y

(r)
i ,s

(r)
i

[
f(Xi, yi, s

(r)
i ∪ s

r
i = STOPPED)

−f(Xi, yi, s
(r)
i ∪ s

r
i = MOVING)

]
(5)

where yri = pi, and f is defined in (2). The purpose of
computing the increase in probability rather than absolute
probability is to be less affected by noise caused by uncer-
tainty in the other trackers’ plans. During the timesteps that
tracker r is moving from pi to pj , ωη = 0, and thus these
timesteps do not need to be evaluated.

The expectation in (5) is computed with respect to sev-
eral random variables. The y(r)

i , s
(r)
i variables represent the

position and state of the other trackers, which can be con-
sidered by summing over the discrete probability distribution
(Π(r), q(r)), while evaluating the positions of π(r) ∈ Π(r) at
time τi. If the number of robots or the cardinality of Π is
large, then this summation becomes intractable, and therefore
should instead be approximated using sampling. The Xi

variable is considered by integrating with respect to the PDF
ρi. The best way to compute this integral would depend on
the representation; we use a sampled representation for X
and evaluate using Monte Carlo integration.

We note that, unlike the definition of ωη in [2], in (5) we
have ignored the effect of having departure times tdri that fall
between the discrete time indices. This reduces computation
time since edges 〈vi, va〉 and 〈vi, vb〉 will have the same
weight ωη , and thus (5) only needs to be evaluated once for
each vertex, rather than for each edge.

3) Graph search: The optimal tracker trajectory πr∗ is
found by searching for the longest-path through the graph
G. For general graphs, a longest-path search is NP-hard.
However, G is a directed acyclic graph, and thus we can
find the optimal longest-path in polynomial time. This search
can be thought of a sweep-plane moving forwards through
time. As each vertex vj is visited, the optimal edge 〈vi, vj〉
is stored, which represents the optimal path if the trajectory
were to finish at vj . The vertex with location in Ŷend that has
the largest accumulated reward at time tN is selected as the
end vertex. Finally, the trajectory πr∗ is found by backtracking
from the end vertex to the start vertex.

C. Phase 2: Decentralised Coordination

In phase 2, the trackers coordinate their plans by jointly
optimising a probability distribution over their trajectories
in a decentralised manner. The domain of the probability
distribution Πr for tracker r is constructed using trajec-
tories generated in phase 1. The probability distribution
qr optimised in phase 2 is communicated to the other
trackers during phase 3, then used by the other trackers when
planning their own trajectories.

The domain Πr is constructed by adding the trajectory πr∗
each time phase 1 is run. The set Πr should be a small set
to keep communication packets small and computation effi-
cient; thus, once a fixed size has been reached, a trajectory is
also removed each time one is added. The trajectory with the
lowest probability qr(πr) is selected to be removed. When
a new trajectory πr∗ is added, it is assigned a probability
qr(πr∗) = maxπr∈Πrqr(πr), and then qr is renormalised.
This is performed in Alg. 1 lines 7–8. This construction of
Πr is motivated by, but distinctly different to, Dec-MCTS
since the phase 1 of this algorithm generates a new, optimal



solution at each iteration; in contrast, Dec-MCTS periodi-
cally resets Πr since the equivalent phase 1 is an incremental,
converging planner. The benefits of defining Πr as a compact
set with cardinality greater than 1 is analysed in Sec. V and
demonstrated empirically in Sec. VI.

The probability distribution qr is optimised using a de-
centralised gradient descent scheme that is equivalent to the
second phase of Dec-MCTS [7], which is an adaptation of
probability collectives [21]. We chose to use this approach
since it has interesting theoretical and practical properties,
though other similar methods could also be considered here.
This descent scheme is formulated as finding the qr that
has minimum KL-divergence to the optimal joint probability
distribution. Thus, this formulation indirectly optimises the
joint plans of the team in a distributed manner. This is
performed in Alg. 1 lines 9–10.

Specifically, this optimisation is defined such that during
each phase 2, each component qr(πr) of qr is updated as

qr(πr)← qr(πr)− αqr(πr)

×
[
Eπ[F (X,π)]− Eπ(r) [F (X,π) | πr]

β

+ H(qr) + ln (qr(πr))

]
(6)

then qr is renormalised, where H is entropy, α is a small
constant, and β is a temperature parameter that is cooled
to slowly decrease the entropy of qr. The intuition behind
this update step (6) is that the probability of selecting πr is
increased if selecting πr would result in a larger expected
reward compared to the expected reward if tracker r were to
sample a trajectory from qr. The last two terms in (6) control
the entropy of the distribution, which is reduced slowly to
avoid making a decision too quickly and getting stuck in
local optima. The expectations in (6) are computed as

Eπ[F (X,π)] :=
∑
π∈Π

[
F (X,π)

∏
r′∈R

qr
′
(πr

′
)

]
(7)

and similarly for Eπ(r) [F (X,π) | πr] except tracker r’s
trajectory is fixed as πr. Typically, it is necessary to ap-
proximate these summations (7) by sampling from q.

D. Phase 3: Communication

In phase 3 (Alg. 1 lines 12–13), tracker r broadcasts its
current probability distribution (Πr, qr) to the other trackers.
If tracker r receives an updated distribution (Πr′ , qr

′
) from

tracker r′, then this replaces the locally stored distribution
for r′. The updated distribution is used during phases 1
and 2 of the next iteration. If messages are lost, e.g. due
to an unreliable communication channel, then each tracker
will continue planning based on the most recently received
distributions. In [22], we present an extension to this com-
munication phase approach that incorporates communication
scheduling; this extended approach could also be directly
applied to our decentralised mission monitoring algorithm.

V. ANALYSIS

A. Runtime Complexity

The proposed algorithm is an iterative algorithm and a
feasible solution is computed at each iteration, and thus is
any-time. It is difficult to determine how many iterations are
required before the algorithm reaches a satisfactory solution
(as discussed in Sec. V-B), however we can analyse the
runtime per iteration as follows.

The computation time for the single-tracker spatiotemporal
optimal stopping algorithm is O(|P|2|T |2) where |P| is the
spatial resolution and |T | is the temporal resolution [2]. For
the multi-tracker problem, we have split this algorithm into
a precomputation step, which has runtime O(|P|2|T |2), and
phase 1, which has runtime O(ψ|V|+ |E|) = O(ψ|P||T |+
|P|2|T |) where |V| is the number of graph vertices, |E| is
the number of edges and ψ is the time taken to compute the
expectation (5). We note that this runtime for phase 1 is linear
in |T |, rather than quadratic as achieved in [2]; this improved
runtime is due to the removal of unnecessary edges from E .
While these runtimes are polynomial, ψ is exponential in
the number of robots if (5) is computed exactly, but can
be efficiently and adequately approximated using sampling,
as discussed in Sec. IV-B.2. The runtime of phase 2 is
dominated by computing the expectations (7) and thus should
also be approximated using sampling.

B. Optimality and Convergence

While, due to the inherent challenges of decentralised
planning, it is difficult to provide any guarantee of global
optimality, we analyse the two main components of the
algorithm and their interaction as follows to support the use
of these components in our algorithm.

The spatiotemporal optimal stopping algorithm is optimal,
including when performing the vertex culling in the graph
generation phase [2]. This optimality result directly applies
to our phase 1, where optimality is measured with respect to
the current information (distributions Π(r), q(r)) available to
the tracker. However, this optimality result does not imply
global optimality for the joint plan of the team. In fact, if
Π(r), q(r) changes then tracker r may change its decision
and vice versa, and this may continue indefinitely.

This observation motivates the need for phase 2 of the
algorithm. The probabilistic formulation of phase 2 ensures
that each tracker gradually settles upon a solution as the
entropy is lowered, rather than responding drastically to
changes in Π(r), q(r), and thus will typically overcome the
cyclic dependency problem. Additionally, our phase 2 is
similar to phase 2 of Dec-MCTS, and thus the analysis of [7,
Proposition 1] holds here: the product distribution q asymp-
totically converges to a distribution that locally minimises
the KL-divergence to the optimal joint distribution, assuming
that the sets Π are selected sufficiently. It is unclear what
defines a sufficient selection of solutions for Πr; however, we
argue that our method of using candidate solutions generated
by phase 1 is an appropriate heuristic for this purpose. The
following experiments empirically support these claims.



(a) With the proposed algorithm, trackers successfully coordi-
nate their actions to achieve a monitoring effectiveness of 60%.

(b) Without coordination, the monitoring regions significantly
overlap, resulting in a lower monitoring effectiveness of 37%.

Fig. 4. Comparing planning with and without communication by a team of 5 trackers. See Fig. 1 caption for a description of this graphical representation.

VI. EXPERIMENTS: AUV MONITORING

These experiments demonstrate the behaviour and perfor-
mance of the planning algorithm for AUV mission moni-
toring, and support our theoretical claims. We simulate a
scenario where an AUV is monitored by a team of surface
vessels that communicate with the AUV via acoustic commu-
nication. The AUV probabilistically follows a mission plan,
and the surface vessels coordinate using our approach.

A. Scenario

This scenario is a multi-tracker generalisation of the
AUV case study in [2]. The prediction model for the AUV
simulates the trajectory of a path-following mission. The
AUV follows a 7 km mission plan that was previously exe-
cuted in Middle Harbour, Sydney [1]. Random disturbances
are added to simulate realistic sources of uncertainty. The
sequence of spatial probability distributions of the AUV’s
position is represented as a set of sample trajectories. Each
sample trajectory is generated by iteratively: (1) updating
the state by sampling a stochastic kinematics model, (2)
adding localisation noise, and then (3) executing a control
policy. The kinematics uses the unicycle model with added
noise for modelling ocean currents and control uncertainty.
The AUV’s angular velocity is controlled using the policy
in [24, Ch. 9.3]. We add an adaptive behaviour such that there
are three decision points where the AUV may deviate by
200 m from the path. Observations are modelled as acoustic
communication between the AUV and the surface vessels.
We use the realistic underwater acoustic communication
model in [8], which defines the probability of successful
communication as a decreasing function of distance.

Each scenario consists of 4 to 8 surface vessels. Parameters
are chosen such that the mission has 1 hour duration, the
AUV moves at 2 m/s, the trackers move at 3 m/s with a 60 s
time penalty for each occasion the tracker stops (e.g., for
deploying hardware), the trackers start near the AUV posi-
tioned 50 m apart, and the communication model parameters
are such that the probability of an observation is defined as
a continuous function with 100% probability at 0 m, 50% at
50 m and 0% for ≥ 250 m. The set Ŷ forms a grid with 50 m
spacing, and time is discretised at 60 s intervals.

B. Results

First we demonstrate that the trackers must coordinate
their actions in order to achieve a reasonable monitoring
effectiveness. Fig. 4(a) shows an example solution where the
trackers successfully coordinate to observe most of the pre-
diction model. In contrast, in Fig. 4(b) the trackers planned
independently, resulting in poor monitoring effectiveness due
to the trackers selecting overlapping observations.

The next results, shown in Fig. 5, demonstrate the benefit
of planning with a probabilistic representation of the plan.
When the set of trajectories Πr is restricted to only keeping
the current trajectory πr∗, the solution switches between mul-
tiple suboptimal solutions as each tracker reacts to the other
trackers changing their plan. The trackers do not settle on
a single solution, and the monitoring effectiveness remains
relatively low. In contrast, planning with a probabilistic
representation quickly converges to a stable solution that
clearly outperforms the deterministic case. Similar results
are achieved between using a distribution size limit of 5 or
unlimited; thus a smaller size is recommended for efficiency.

Finally, we compare our proposed approach to
Dec-MCTS [7] as an alternative decentralised algorithm.
Our planner and Dec-MCTS have a similar three-phase
cycle with similar phases 2 and 3. The key difference
is that in phase 1 Dec-MCTS employs a generally
applicable, incremental planner, which is a novel variant
of Monte Carlo tree search. In our algorithm, phase 1 is a
problem-specific solution that is optimal with respect to the
current information. The results are shown in Fig. 6. Our
proposed approach achieves the fastest convergence and
the best overall performance. The practical performance of
Dec-MCTS is largely dependent on the choice of rollout
policy; Dec-MCTS with a rollout policy equivalent to our
phase 1 was slower to converge but achieved similar results,
Dec-MCTS with a random rollout policy achieved the worst
results, and Dec-MCTS with a 50% mixture of the two
rollout policies achieved intermediate results. These results
show our approach outperforms a generic planner at this
problem, and also show that our approach can be used
as a guiding heuristic by generic planners. We note that
since the problem is new, we do not have algorithms for



Fig. 5. Convergence of the algorithm with different sizes of the trajectory
set Πr in the plan representation. Using 1 trajectory is a deterministic
representation, while 5 and ‘all’ are probabilistic. 8 robots were used in
this scenario. Averages and quartiles shown from 20 trials.

direct comparison other than generic planners. It would be
interesting to compare to an optimal centralised algorithm
though a key challenge that would need to be overcome
first is the intractability of searching over this joint solution
space that grows exponentially in the number of robots.

The experiments were simulated in MATLAB on a stan-
dard desktop computer, and the computation times were on
the order of several seconds to minutes for all scenarios. We
note that, in practice, computation time can be tuned by vary-
ing the number of iterations and the discretisation resolution
to meet the requirements of a real-time application.

VII. CONCLUSION AND FUTURE WORK

We have formulated and solved the multi-tracker mission
monitoring problem, which has broad practical applications,
especially for marine robotics operations. The solution is
a novel decentralised algorithm that inherits and extends
several useful properties from approaches for the single-
tracker problem and generic decentralised planning. In our
experiments, the solutions are reached after only a small
number of communication messages are broadcast. In future
work, we would like to consider other multi-robot variants,
such as where a team of surface vessels monitor a fleet of
AUVs. It would also be interesting to jointly optimise the
plans of the target and trackers. Our approach is fast enough
to accommodate online replanning for adapting to changes,
but planning an adaptive policy would also be an interesting
challenge. Centralised planners could also be considered,
where the key algorithmic challenge would be to develop
scalable algorithms for larger teams.
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