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Abstract. In social network analysis, community detection is a basic step to 
understand the structure and function of networks. Some conventional 
community detection methods may have limited performance because they 
merely focus on the networks’ topological structure. Besides topology, content 
information is another significant aspect of social networks. Although some 
state-of-the-art methods started to combine these two aspects of information for 
the sake of the improvement of community partitioning, they often assume that 
topology and content carry similar information. In fact, for some examples of 
social networks, the hidden characteristics of content may unexpectedly 
mismatch with topology. To better cope with such situations, we introduce a 
novel community detection method under the framework of non-negative 
matrix factorization (NMF). Our proposed method integrates topology as well 
as content of networks and has an adaptive parameter (with two variations) to 
effectively control the contribution of content with respect to the identified 
mismatch degree. Based on the disjoint community partition result, we also 
introduce an additional overlapping community discovery algorithm, so that our 
new method can meet the application requirements of both disjoint and 
overlapping community detection. The case study using real social networks 
shows that our new method can simultaneously obtain the community structures 
and their corresponding semantic description, which is helpful to understand the 
semantics of communities. Related performance evaluations on both artificial 
and real networks further indicate that our method outperforms some state-of-
the-art methods while exhibiting more robust behavior when the mismatch 
between topology and content is observed. 
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1   Introduction 

As a common example of complex systems, social networks can be represented as 
graphs with sets of nodes and edges, in which community is a significant substructure. 
Generally, typical communities can be described as subsets of nodes within which the 
connections are dense, but between which are sparse [1]. The identification of 
communities can help finding groups of users with similar interests, backgrounds or 
purposes, which can effectively support the advanced applications of social networks 
such as recommender systems, sentiment analysis and user profiling. As a result, 
community detection is a basic and essential step in social network analysis [2]. 

Since community is originally defined based on linkage structure, conventional 
community detection methods tend to purely focus on the network’s topology 
[1,16,17,18,19]. However, these methods may have limited performance, because in 
social networks there is a complicated relationship between topology and content 
(which is another significant source of information). For example, users may choose 
different communities for different interests or reasons, which is more likely to be 
reflected in the content posted by users rather than the linkage structure. Moreover, 
two users in the social network may also belong to the same community even though 
they have not had any direct contact [5] (but they may have similar interests which 
can be encoded in content). 

In order to compensate for the possible deficiencies of only using the topological 
information, one can supplement it by incorporating network’s attribute. In practice, 
content can be effectively used to improve community partition results since it 
provides orthogonal information to network topology [4]. Moreover, the content 
information can also help semantically annotate the communities during the process 
of community detection [5,32]. For the above reasons, some state-of-the-art 
community detection methods have started to integrate these two aspects of the social 
networks' related information [3,23,24,25,26]. 

Although the content in social networks may contain additional characteristics that 
cannot be reflected in networks’ topology, most of the existing community detection 
methods which incorporate both aspects of the information are based on the 
assumption that the topology is compatible with the content. In other words, they 
assume that both structure and content carry the same information from the 
perspective of network analysis. In fact, there is no evidence that such two sources of 
information must share the same characteristics in any case, and the mismatch 
between them is common in real social networks. For instance, according to [3], in 
Twitter the real social relationship reflects the community structure more directly than 
the content, as the messages generated by users are very diverse. Moreover, our pre-
experiment presented in Section 4.3 also indicates the mismatch between topology 
and content. When these two types of information do not match well, methods 
attempting to integrate the topology and content may lack the required robustness and 
often lead to poor results. 

In spite of the mismatch between topology and content, our pre-experiment also 
shows that if we effectively control the contribution of content, the community 
structures can still be accurately extracted. Based on such conclusion, we propose a 
novel Adaptive Semantic Community Detection (ASCD) method, which integrates 
topological structure and node attributes of social networks under the framework of 



non-negative matrix factorization (NMF) [6]. Different from some other state-of-the-
art methods integrating these two sources of information, our method obtains better 
robustness, as we introduce a novel adaptive parameter to control the trade-off 
between topology and content according to the identified mismatch degree. Especially 
for the adaptive parameter, we have designed two variations, which are respectively 
based on (i) a monotone decreasing function with arctan as the core part and (ii) the 
normalized mutual information (NMI) [7] between topology and content. By utilizing 
such two different variations of the adaptive parameter, we have finally deduced two 
derivative forms of our ASCD model named as ASCD-ARC and ASCD-NMI. 
Moreover, we also derive an effective solving strategy for our method to facilitate the 
extraction of communities as well as their semantic interpretation at the same time. 

Additionally, as the overlapping community structures, where each node in the 
network can simultaneously belongs to multiple communities, are more ubiquitous in 
reality [8], we introduce an extended overlapping community detection algorithm 
based on our method’s original disjoint community partition result (where each node 
would only belong to one community). Different from some other threshold-based 
overlapping community discovery methods [14], our extended algorithm can directly 
extract the overlapping community structures from the disjoint community partition 
result derived by our method without adjusting any additional thresholds. 

More importantly, the experiment on a set of artificial networks reveals that our 
ASCD method exhibits a more robust behavior in presence of mismatch between 
topology and content. The case study on a real social network [9] demonstrates that 
the proposed method is also able to simultaneously obtain the corresponding semantic 
descriptions when communities are partitioned. Finally, the evaluation on real 
network datasets [10,11,12,13] for both disjoint and overlapping community detection 
also show that our method outperforms some state-of-the-art approaches. 

The rest of this paper is organized as follow. We first discuss related work in 
Section 2 and give formal definitions about community detection as well as the 
mismatch effect in Section 3. Then, in Section 4 we present our ASCD method in 
details. Specifically, in this section we first model the network’s topology and content 
respectively. By using a simplified unified model, we introduce a pre-experiment to 
illustrate the mismatch effect in real social networks. Finally, we propose our ASCD 
method with two different variations (ASCD-ARC and ASCD-NMI) and then derive 
the algorithms for disjoint and overlapping community detection. Thereafter, four 
evaluation experiments are described in Section 5, including: (i) a parametric analysis 
about the appropriate setting of the model’s hyper-parameters; (ii) an evaluation on 
artificial networks about the attribute refining (AR) and the mismatch effect; (iii) a 
case study concerned with semantic description; and (iv) a performance evaluation on 
real social networks for both disjoint and overlapping community detection. 

2   Related Work 

For the last few decades, several methods have been proposed for the task of 
discovering the community structure in networks. A comprehensive review of 
different community detection methods can be found in [2], [14] and [35]. Especially, 



[15] gives an overview about some state-of-the-art methods that incorporate both 
topology and content to extract communities in attributed networks. 

Based on the definition of community in complex networks introduced in [1], 
conventional methods mainly explore the topological structure of the network to 
achieve the community partition. For example, on the basis of edge betweenness and 
modularity optimization respectively, methods proposed in [1] and [16] both consider 
community detection as a graph cut problem. Also, for the strategy of modularity 
maximization, authors of [17] introduce a fast hierarchical clustering method. In [18], 
the optimization of modularity is transformed into a relaxed spectral problem, and a 
novel spectral clustering method is then proposed to extract community structures in 
the network. Moreover, for some other model-based methods, authors of [19] propose 
the well-known stochastic block model and it is utilized in [20] to infer the 
community partition of uncertain networks, while in [21] and [22], the identification 
of community is modeled under the framework of non-negative matrix factorization 
(NMF) [6]. However, such conventional methods may have limited room for the 
improvement of community partition as they only focus on the structural information 
of the network while entirely neglecting the content information. In fact, content can 
provide additional information that cannot be encoded in topology. 

Therefore, some of the recently developed state-of-the-art methods use both 
topology and content to detect communities. For instance, the method proposed in [23] 
partitions community structure by defining a uniform signal strength which fuses the 
link strength with the content similarity between each pair of nodes. In [24], the 
authors introduce an effective algorithm with two main phases, including a hill-
climbing phase to explore the structural information of the network and a description 
induction phase to adjust the community partition in a supervised way. Research 
presented in [3] tries to combine topology with content by using graph regularization 
method. With regard to some probabilistic methods, authors of [25] propose a joint 
generative model to combine the links and content in networks while authors of [26] 
considering the integration of topology and content from the perspective of the 
discriminant model. Moreover, a general framework for graph clustering (namely the 
community detection problem) in attributed networks is proposed in [27] from the 
perspective of Bayesian model. By incorporating topological and content information, 
such state-of-the-art methods only aim at improving the community partition. In order 
to understand the semantic of certain communities, additional steps still need to be 
taken to infer relevant attributes for each community. But method introduced in [5], 
which combines the network’s topology and content based on NMF, can 
simultaneously obtain the community partition and the corresponding semantic 
description for each community. 

However, most methods that incorporate topology and content are based on the 
match assumption. In other word, they tend to simply assume that the topology and 
the content share the similar information, but such assumption is not sufficient. As 
stated in [4], the mismatch between these two types of information is common in real 
social networks. Especially, when the mismatch effect occurs, methods with the 
match assumption may result in poor community partition, and this is the problem 
which forms the main focus of this paper. 



3   Problem Definition 

Definition of Community Detection Incorporating Topology and Content. 
We use a 4-tuple  , , ,G V E W A  to represent a network with node attributes, where 

 1, , NV v v   is the set of nodes,   , , ,i j i jE v v v v V i j    is the set of edges, 

 1, , MW w w   is the set of attributes, and     , ,i NA a v a v   represent the 

attributes of each node. Especially,  ia v W  is the set of node i's attributes. 

Given the above network, a typical community detection process is to partition the 
node set V into K subsets (communities)  1, , KC C C   according to the linkage 

structure E and the node attributes A such that: (i) within each subset the linkage is 
dense and the content is similar; but (ii) between any subsets the linkage is relatively 
loose and the content is distinct. For any r k  (1 ,r k K  ), if r kC C   , then 
we called the above process as disjoint community detection. If there exist r k  
( 1 ,r k K  ) that satisfy r kC C   , we called the process as overlapping 
community detection. 

In this paper, we utilize a label sequence  1, , NL l l   to represent the partition 

result of disjoint community detection, where 
il  is the community label of node i, 

(each node in the network can only belong to single community). While we use a set 
 1, , KL L L   to describe the overlapping partition result, where rL  is the node 

set of community r’s node members. 

Since the purpose of community detection is to discover substructures that 
correspond to distinct groups or organizations in real social networks, in this paper, 
we evaluate the community partition given by a certain method by comparing the 
correspondence between the partition result and the ground-truth (provided by the 
testing dataset). Usually, better correspondence means better performance. 

Definition of Match (Mismatch) between Topology and Content. 
If we partition the node set V into K subsets (communities) respectively according to 
the linkage and the node content, we can obtain two clustering structures with 

 1, , KT T T   corresponding to topology and  1, , KS S S   corresponding to 

content, where nodes in the same cluster r ( rT  or rS ) tend to have similar property 
(dense linkages or similar content). Therefore, an appropriate definition of the match 
degree (mismatch degree) between topology and content can be described as the 
correspondence between the two clustering structures represented by T and S, in 
which better correspondence represents higher match degree (lower mismatch degree). 



4   The Model 

Generally, we consider the case of an undirected and unweighted network G with N 
nodes. Taking the content information into account, we assume the nodes attributes 
and communities’ semantic description are represented by the Bag-of-Words model 
with M keywords in total. We use an adjacency matrix N NA  to represent the 
network connectivity, where 1ij ji A A  when there is an edge between node i 

and j, and otherwise 0ij ji A A . To represent content of individual nodes, we 

introduce a node attribute matrix N MC , where 1is C  when node i’s attribute 

has keyword s, and otherwise 0is C . As in our method, the number of communities 

needs to be set in advance, so we generally assume there are K communities in the 
network. 

4.1   Modeling Topological Structure  

For an appropriate representation of the community partitions, we introduce 
a community membership matrix N KX , where irX  is defined as the propensity 
that node i belongs to community r. Since the number of edges between any pair of 
nodes is either 0 or 1, the expectation of the number of edges between nodes i and j in 

community r is ir jrX X . Accordingly, 
1

K

ir jrr X X  represents the expected number 

of edges between such pair of nodes in the network. In fact, the expectation should be 
as close as possible to the real value of ijA , so we have the following objective 

function related to the topological structure: 

 
2

arg min T

F


X
A XX   s.t. 0ir X . (1) 

Note that when the optimal solution of the above NMF problem is obtained, one can 
directly use X to extract the corresponding disjoint community partition by assigning 
the column index with maximum propensity value in the i-th (1 i N  ) row of X to 
be node i's community label. 

4.2   Modeling Content Information  

In order to give the corresponding semantic description of each community, we define 
a community attribute matrix M KY , where srY  represents the propensity that 
the community r can be described by the keyword s. Similarly, from the perspective 
of a generative model, the expectation that the node i belongs to the community r and 

can be described by the keyword s is ir srX Y , so 
1

K

ir srr X Y  represents the 

expectation that node i’s content has the keyword s in the network. Since the real 
value of isC  should also be as close as possible to such expectation value, we then 
have the following objective function related to the content information: 



 
2

,
arg min T

F


X Y
C XY   s.t. 0ir X , 0sr Y . (2) 

On the other hand, the same as the modeling process in [5], if the semantic 
description of the node i is highly similar to that of the community r, then the node i 
should have high propensity of belonging to the community r (which is based on the 

match assumption). Namely, the value of 
1

M

is srs C Y  should be as close as possible 

to irX . Therefore, we can formulate another objective function as: 

 
2

,
arg min

F


X Y
X CY   s.t. 0ir X , 0sr Y . (3) 

Although the premise of (3) that topology match with content may not be valid, 
and it is also not strictly an NMF problem, since the base matrix C in (3) is the known 
quantity when a network is given (the base matrix and the coefficient matrix are 
defined in [6]), we still use it as a candidate for further discussion. 

According to our definition in Section 3, for the semantic description, the 
keywords used to describe the same community should be semantically similar, but 
the description between different communities should be distinguishable. To satisfy 
such property, we introduce another sparsity penalty for Y, based on the work of 
Sparse Non-Negative Matrix Factorization (SNMF) [28].  

However, the objective function in (2) is not suitable to introduce such sparsity 
item for Y. As X and Y are both the unknown quantities that need to be determined, 
the sparsity of the coefficient matrix Y is closely related to the value of the base 
matrix X. In this case, besides Y, additional effort should be taken to ensure the 
sparsity of X, which may result in unnecessary complexity to the model.  

But for (3), the base matrix C is the known quantity and is sparse as it’s used to 
describe individual node attributes. Under such circumstance, to satisfy the sparsity 
constraint of the community attribute matrix Y, we only need to add a 1-norm sparsity 
penalty item for Y with the following formula: 

   22

1
,

arg min :,
F

r 
X Y

X CY Y   s.t. 0ir X , 0sr Y , (4) 

where λ is a non-negative parameter to adjust the contribution of the sparsity item. For 
the above objective function, when the optimal solution is obtained, besides extracting 
the community partition result from X, the semantic description of community r can 
also be generated by extracting the top l words (with top l propensity values) in the r-
th column of Y. 

4.3   The Pre-experiment for Mismatch Effect (Based on A Simplified Model)  

The Simplified Unified Model.  
Based on the models derived above, in this section, we introduce a simplified unified 
model that integrates topology as well as content to conduct a pre-experiment about 
the mismatch effect, and the experiment results will form the basic concept of our 
formal unified model, which will be introduced in Section 4.4. 



To construct the simplified unified model, we combine (1) with (3) to achieve the 
following optimization problem with its objective function: 

 
2 2

,
arg min T

FF
   

X Y
A XX X CY   s.t. 0ir X , 0sr Y . (5) 

where α is the parameter to adjust the trade-off between the first and second term. 
Especially, in the first term, X corresponds to the topological structure. In the second 
term, Y corresponds to the content information while X plays the role of bridging 
such two aspects. Our goal is to find the optimal X and Y that minimize the objective 
function (5). 

The general solution strategy of an NMF problem is to properly initialize the 
unknown quantities and then use certain rules of iteration to continuously update their 
values until convergence. Moreover, for most NMF unified models, before formally 
updating, additional initialization steps usually need to be taken to speed up 
convergence and help avoid getting the local minimum solution. Hence, to obtain the 
solution of the simplified model defined in (5), we need to first initialize the unknown 
quantities X and Y respectively. 

For the initialization of the community membership matrix X, we utilize (1) as the 
objective function. Note that such initialization problem is also an NMF problem, and 
we can directly use the following updating rule provided by the supplementary 
information of [29] to update the value of X in each iteration: 

 
 

 
ir

ir ir T

ir


AX

X X
XX X

. (6) 

To initialize X, we first set its entries to be random nonnegative values, and use (6) to 
update it until converges. 

Similarly, we initialize the community attribute matrix Y by solving the following 
optimization problem (7), where we replace the X which encoded the information 
about topology in (2) with another matrix N KZ  to eliminate the influence of 
topological structure. 

 
2

,

arg min T

F


Y Z

C ZY   s.t. 0ir Z , 0sr Y . (7) 

Under such circumstance, itZ  represents the propensity that the node i belongs to 
the “topic” t, so we name it as the “topic” membership matrix. As (7) is also a 
standard NMF problem, after randomly setting Z and Y with nonnegative values, we 
adopt the following updating rules given by [34] to respectively update their values in 
turn: 

 
 

 
ir

ir ir T

ir


CY

Z Z
ZY Y

, 
 
 

T

sr
sr sr T

sr


C Z

Y Y
YZ Z

. (8) 

When update Z we fix the value of Y, and it’s the same for the updating of Y. 

For the formal solving strategy of the unified model (5) which is not convex, we 
use the same solution strategy as in [29] to, in turn, take the following two steps. First, 



we fix the value of Y and update X with rule (9). Secondly, we fix X and update Y 
with rule (10). (Note that that the derivation processes of (9) and (10) are similar to 
(18), which will be discussed later in Section 4.4.) 

 
 

 
2

2
ir

ir ir T T

ir










AX CY
X X

XX X XY Y
 (9) 

 
 
 

T

sr
sr sr T

sr


C X

Y Y
YX X

 (10) 

Basic Proof-of-Concept for the Mismatch Effect.  
Based on the unified model introduced above, we designed the following pre-
experiment to illustrate the different influences of semantic information with different 
trade-offs between topology and content. 

In the pre-experiment, we applied the unified model (5) to two real network 
datasets: Cornell1 and Facebook [10] (the details about the datasets can be found in 
Section 5.1). Moreover, we adopt normalized mutual information (NMI) [7] between 
the label sequences given by the community partition result and the dataset’s ground-
truth as the evaluation metric, and higher NMI value means better community 
partition result. 

We executed above initialization step of X 10 times and adopted the NMI value 
with respect to the initialization setting that resulted in the minimum value of (1) as 
the baseline. To highlight the influence of different trade-offs between topology and 
content, we first set =1  to assign the same contribution of the topology and the 
content parts in the unified model (5). Then, we gradually increase the contribution of 
topology by respectively setting 20  , =40 , =60  and =80 .  

For each parameter setting, we used the solution strategy introduced above (namely 
(9) and (10)) to get the optimal solution. Especially, for the first 50 iterations, we 
calculated and recorded the NMI value in each iteration according to current X. 
Finally, we obtained the convergence curves of the NMI for both (a) Cornell and (b) 
Facebook datasets shown in Figure 1. 

For the result of Cornell shown in Figure 1 (a), when =1  and 20  , the NMI 
values both gradually increase in the first several iterations and finally stabilize at a 
level that outperforms the baseline. Moreover, when we set =40 , =60  and 

=80 , the corresponding NMI values do not have obvious increase and all of them 
stay at a level slightly better than the baseline. Note that such result is in line with the 
expectation of most state-of-the-art community detection methods that incorporate 
topology and content. The community partition of the Cornell dataset is further 
improved with the addition of content information, and the only difference among the 
convergence curves (excluding the baseline) is due to the different setting of the 
hyper-parameter  . In other words, under certain circumstances, the integration of 
topology and content can really help extract better community structures 
corresponding to real groups or organizations in social networks. 

                                                           
1 http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/ 



On the other hand, with regard to the result of Facebook in Figure 1 (b), when 
=1 , the corresponding NMI value decreases dramatically in the first iterations, and 

finally stays at a level that is much lower than the baseline. Such decrease of the NMI 
reflects the fact that the introduction of content in the unified model (5) has a very 
negative impact on the extracted community structure, which can be seen as a typical 
example of the mismatch between topology and content. Nevertheless, when 1  , 
although we can still observe a decrease of the NMI value in the first iterations, the 
degree of decrease is smaller than that when =1 , and the larger the value of   the 
less the NMI will decrease. Especially when =40 , =60  and =80  the 
corresponding NMI values all gradually recover to a level near to the baseline. 

 
(a) Cornell 

 
(b) Facebook 

Fig. 1. NMI convergence curves of the unified model (5) for the (a) Cornell and (b) Facebook 
datasets with respect to =1 , =2 , =40 , =60  and =80 . For the result of (a) 
Cornell the NMI values for all the parameter settings of α finally converge to levels larger than 
the baseline, which is in line with the expectation of some community detection incorporating 
topology and content. For the result of (b) Facebook, when =1  the NMI value dramatically 
decreases and finally converges to a low level having a big gap to the desirable baseline, which 
can be seen as a typical example of the mismatch between topology and content. When 1  , 
although the NMI value decreases in the first iterations, it finally recovers to a higher level. 

Note that Figure 1 do not contain all the details about the experimental result since 
the updating processes with respect to different parameter setting (except for the 
baseline) haven’t completely converged in the first 50 iterations. For each updating 



process with a certain set of  , we continuously recorded the NMI value in each 
iteration until it converged. In the pre-experiment on Facebook (Figure 1 (b)), the 
NMI value of the baseline was 0.2428. For different parameter settings of α, the 
converged NMI values were respectively 0.1350 ( =1 ), 0.2093 ( =20 ), 0.2647 
( =40 ), 0.2613 ( =60 ) and 0.2633 ( =80 ). Especially, when   is set to be a 
relative large value (such =40 , =60  and =80 ), the converged NMI value 
could even slightly outperform the baseline level rather than just recovering to the 
baseline. In other words, it is still possible for the unified model to achieve a result 
relatively better than the baseline even when the mismatch occurs (if the contribution 
of topology is large enough). 

Given the results in Figure 1 (b), we conclude that despite the mismatch between 
the topology and content, we can still control the negative impact resulted from the 
incorporation of content if we appropriately set the trade-off between them. More 
importantly, the greater the degree of mismatch, the greater contribution the topology 
part of the objective function should have. 

4.4   The Formal ASCD Model and Algorithm (Based on the Mismatch Effect) 

Based on the above conclusion we have reached in Section 4.3, we can now propose 
our formal unified model in this subsection. 

The Adaptive Parameters.  
As we respectively initialize X and Y in the solving process of (5), and use (3) but not 
(2) as the content part of the uniform model (5), when the initialization step finishes 
or after each iteration, (2)’s value can reflect the degree of mismatch between 
topology and content, namely the larger the value of (2), the greater the degree of 
mismatch. Because the (2)’s value is also related to the size of the network, we 
introduce the following formula to get an average value of (2), which can eliminate 
the effect of the network size: 

    2
, T

F
d NM X Y C XY . (11) 

Then we combine (11) with a monotonically decreasing function of arctan within 
the interval of [0, 1] to derive the following adaptive penalty parameter, which will be 
set as the coefficient of the content part in our model: 

     , 2arctan , 1f d    X Y X Y , (12) 

where   is the parameter to adjust the value of  ,d X Y . In fact, the value of 

 ,f X Y  is inversely proportional to the degree of mismatch between topology and 

content. In other word, if the mismatch degree is large, the parameter  ,f X Y ’s 

value will be small, and the contribution of the content in the model can be effectively 
controlled. On the other hand, when the degree of mismatch is small, the value of (12) 
will be relatively large, so the content part can fully play its role.  



Furthermore, different from the adaptive parameter (12), which focuses on the 
mismatch degree between topology and content, we also design another type of such 
parameter from the perspective of match degree. 

In the process of initializing the community attribute matrix Y (with (7) as the 
objective function and (8) as the updating rules) in the simplified model (5), we 
introduced another “topic” membership matrix Z to replace the community 
membership matrix X, in order to eliminate the influence of topology given by X. In 
fact, the original X and Z can be used to extract the clustering structure of topology 
and content. By utilizing the same method of extracting each node’s community label 
from matrix X, we can also get the “topic” label of each node from matrix Z. If we 
respectively organize the community labels and the “topic” labels of each node as two 
label sequences according to the node index, then the NMI [7] between such two label 
sequences may reflect the similarity between the clustering structures of topology and 
content, which can directly reflect the match degree. Namely, larger NMI value 
means better match correspondence between topology and content. Although the 
“topic” membership matrix Z may not be used and updated in the process of solving 
the unified model, we can still derive another matrix  Z CY  after each iteration to 
represent a similar clustering structure of content. In this way, we can still evaluate 
the match degree in a certain iteration by similarly calculating the NMI value.  

Therefore, based on the NMI value’s directly proportional relation to the match 
degree, we introduce the following adaptive parameter: 

            , NMI s ,s NMI s ,sf     X Y X CY X Z , (13) 

where  1 2NMI s ,s  is the function to calculate the NMI between label sequence 1s  

and 2s ,  s M  is the function to extract the top label sequence form matrix M, and 

δ is the parameter to control the value of NMI. Based on the above definition, relative 
small mismatch degree (large match degree) may result in a relative large value of 
(13), so the content part can fully play it role of improving the community partition. 
When the mismatch degree is large (the match degree is small), the value of (13) will 
be small, so the contribution of the content can be effectively controlled. 

The Objective Function (Based on the Adaptive Parameters).  
By adding additional adaptive parameter and the sparse item discussed in (4), we have 
formulated the following objective function of our Adaptive Semantic Community 
Detection (ASCD) method: 
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A X X X CY Y , (14) 

where f  is the simplified representation of     1 1,t tf  X Y , and the subscript of 

 tX  and  tY  represents their corresponding value in the t-th iteration. Especially, 

subscript 0 infers the value after initialization, and t in (14) should start from 1. Note 
that (14) is only defined for the t-th iteration in our ASCD model, since the value of 
f  is dependent on  1tX  and  1tY  which may differ in different iterations. 



In this paper, we use notation f  to represent the adaptive parameter in a general 

form, since the corresponding solving strategy is independent of the type of adaptive 
parameter. For the convenience of further discussion, we use ASCD-ARC to represent 
the condition that we use (12) as the adaptive parameter, while use ASCD-NMI to 
represent the condition when (13) is utilized. 

Basic ASCD Algorithm for Disjoint Community Detection.  
In order to achieve the solution of (14), we adopt the block coordinate descent 
approach as in [29] to solve such non-convex problem and take the following two 
steps in turns.  

1) Updating X with Y fixed 

First, we fix the value of Y and solve the following optimization problem only 
related to X: 
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By using the property that  2
tr T

F
M MM , we can get the partial derivative of 

 O X  with respect to X: 
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Here we use a simplified notation  +
  to represent all the terms with positive 

coefficient, and use    to represent those with negative coefficient. In the case of 

(16), we have  +
=2 2 Tf X XX X  and   2 4f


  CY AX . 

Based on the standard gradient descent method, we can derive the following 
additive updating rule: 
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where ir  is the learning rate. Similar to the derivation discussed in [30], if we 

appropriately set   ir ir ir



 X , then we can derive the following multiplicative 

updating rule: 
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2) Updating Y with X fixed 

Next, we fix X and derive the updating rule of Y. Similarly, we get the following 
objective function only related to Y: 
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For the sparse item of 1-norm in (19), we used the same method of solving the SNMF 
problem as in [28] to derive another equivalent objective function: 
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where 1 K0  is a K-dimensional row vector whose elements all equal 0, while 1 Me  
is an M-dimensional row vector whose elements are all 1. We then derive the partial 
derivative of  O Y  with respect to Y: 
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Finally, by using the same derivation method as in (18), we derive the following 
updating rule for Y: 
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Therefore, we can in turns take the two steps introduced above and respectively use 
(18) and (22) to update the value of X and Y, until they converge. For the 
convergence criterion, we adopt the strategy based on the relative error of the value of 
objective function (14). In each iteration, we record current value of (14) and 
calculate the relative error with respect to last iteration. If the relative error is smaller 
than a pre-set threshold (such as -610 ), we determine that the model has converged. 
Otherwise, the updating process should continue. 

Especially, for the inequality constraint defined in the NMF problem (in our model 
the constraints are 0ir X  and 0sr Y ), [30] has proved that if we initialize X and 
Y as non-negative matrixes, then the non-negativity of them can be guaranteed by 
using their corresponding multiplicative updating rules ((18) and (22)). Furthermore, 
as the adjacency matrix A and the node attribute matrix C may be sparse matrixes, 
the multiplicative updating rule can also be computed efficiently in each iteration.  

Based on the above discussion, we can now conclude the basic ASCD algorithm 
for disjoint community detection in the form of pseudo-code in Table 1. 

The result of the proposed algorithm is two-fold: we can not only extract the 
community structures from X, but also can obtain the most relevant keywords for 
each community according to Y. In other words, the ASCD method has the powerful 
capacity to simultaneously obtain the community partition result and the 
corresponding semantic interpretation. 



Table 1. The pseudo-code of the ASCD algorithm for disjoint community detection, where N, 
M, K are respectively the number of nodes, attributes and communities, while A, C, X, Y and Z 
are respectively the adjacency matrix, the node attribute matrix, the community membership 
matrix, the community attribute matrix and the auxiliary “topic” membership matrix. 

ASCD Algorithm for Disjoint Community Detection 
Input: N, M, K, A, C

Output: X, Y  

Randomly set X, Y and Z to be non-negative values 

while (1) not converge //Initialize X 

Update X via (6) 

end while 

while (7) not converge //Initialize Y 

     Update Y and Z in turn via (8) 

end while 

while (14) not converge //Update the value of X and Y 

    Calculate f(X,Y) via (12) (ASCD-ARC) or (13) (ASCD-NMI) 

    Update X via (18) 

    Update Y via (22) 

end while 
 

Verifying the Algorithm’s Convergence.  
For the algorithm introduced above, if the value of the adaptive parameter f is fixed in 
all iterations, the convergence of the updating rules ((18) and (22)) can be ensured, 
because it’s based on the standard gradient descent process. But for a non-fixed value 
of f, the convergence of our algorithm needs to be specially discussed. 

We applied the two derivative forms of our ASCD method (ASCD-ARC and 
ASCD-NMI) to an artificial network that we used in the artificial network analysis 
experiment (which will be introduced in Section 5.1). For both ASCD-ARC and 
ASCD-NMI, we respectively recorded the values of objective function (14) in each 
iteration to draw two convergence curves, which are shown in Figure 2 (where (a) and 
(b) are respectively the curve of ASCD-ARC and ASCD-NMI). 

As shown in Figure 2, for both ASCD-ARC and ASCD-NMI methods, the values 
of the objective function converge fast straight from the beginning and ASCD-ARC 
converges faster than ASCD-NMI. Moreover, for each iteration, we also recorded the 
relative error of objective function (14) (corresponding to last iteration). With regard 
to ASCD-ARC, the relative error reached the precision of 410  after about the first 
70 iterations, and the precision reached 610  after about the first 130 iterations. For 
ASCD-NMI, the precision of relative error reached 410  after about the first 110 
iterations, and after about the first 250 iterations the precision reached the level of 

610 . As a further verification, we also applied the two derivative forms of our ASCD 



method to other artificial and real networks (whose details can be found in Section 
5.1), and the convergence we observed was similar to the results shown above.  

Therefore, the convergence of the above algorithm (with updating rules (18) and 
(22)) can still be ensured, even though the value of parameter f is non-fixed. 
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Fig. 2. The convergence curves of objective function (14)’s value for (a) ASCD-ARC and (b) 
ASCD-NMI. The curves in (a) and (b) both converge fast in the first serval iterations. 
Therefore, although the parameter f is non-fixed in the unified model (14), the convergence of 
our algorithm can still be guaranteed. 

Extended ASCD Algorithm for Overlapping Community Detection.  
The basic ASCD algorithm introduced above can only extract the disjoint community 
structures in a certain network, where each node can only be the member of single 
community. However, overlapping community detection is also another significant 
task of social network analysis, in which each node in the network can be assigned 
multiple (one or more) community labels. 

In fact, the above algorithm does not fully utilize the topological information 
encoded in the community membership matrix X, as we only focus on the element 
with maximum propensity value in each row. By further mining the information 
encoded in X, we can also introduce an extended algorithm to meet the application 
requirements of discovering overlapping communities. 

To determine the possible community labels of node i, we divide the elements of 
the i-th row into two disjoint sets, and respectively name them as the “accepted” set 
and the “rejected” set. When an element in the i-th row of X is partitioned into the 
“accepted” set, we tend to accept the column index of such element as one of the 
community labels of node i. But when the element is in the “rejected” set, we tend to 
reject its column index as the corresponding community label. Hence, the key of our 
extended overlapping community detection algorithm is to determine the boundary 
between the “accepted” set and the “rejected” set for each row. 



If we sort a row of X in descending order and list the elements from left to right, 
the elements close to left are more likely to be partitioned into the “accepted” set, and 
for those which are close to right are more likely in the “rejected” set. Hence, the 
boundary of such two parts should be at the position that has the maximum difference 
in the values of propensity.  

Table 2. The pseudo-code of ASCD extended algorithm for overlapping community detection, 
where N and K are respectively the number of nodes and communities, while X is the 
community membership matrix and Lr is the node membership set of community r. 

ASCD Extended Algorithm for Overlapping Community Detection 
Input: N, K, X 

Output: L={L1, L2, …, LK} 

  //Initialize the node membership set of each community 

for each community r 

Lr ←null 

end for 

for each node i 

sort X(i,:) by descending order 

//s and t are two auxiliary sequences 

assign the sorted result to s 

assign the corresponding row index sequence to t 

//Find the boundary between “accepted” and “rejected” parts 

pos ← 1 //Current boundary position 

max_dif ← (s(2)-s(1)) //Current maximum difference in s 

for r from 2 to (K-1) 

cur_dif ←(s(r+1)-s(r)) 

if cur_dif > max_dif 

max_dif ← cur_dif 

pos ← r 

end if 

end for 

for r from 1 to pos //Update the node membership set L 

add node i into Lt(r) 

end for 

end for 
 

According to the definition in Section 3, to represent overlapping community 
partition result, one can maintain a node membership set for each community, which 
can be notated as  1, , KL L L   where rL  is the node set of community r’s 



members. During the process of discovering overlapping communities, if node i is a 
member of community r, then we add it into the set rL . 

As a conclusion, we use pseudo-code to describe our extended algorithm of 
overlapping community detection in Table 2. 

5   Experimental Evaluation 

In this section, a series of experiments are conducted to comprehensively evaluate our 
method’s performance and the organization is as follow. Section 5.1 summarizes all 
the datasets and evaluation metrics we used in the following experiments. Section 5.2 
introduces a parametric analysis experiment to discuss the recommended setting of 
our model’s hyper-parameters. Section 5.3 discusses the results of the artificial 
analysis, including the special analysis about the attribute-refining (AR) effect, which 
can be used to further improve the community partition, and the general evaluation 
for our method’s capacity to resist the mismatch effect. Thereafter, Section 5.4 
introduces a case study to demonstrate our model’s ability to simultaneously obtain 
the community partition result and the corresponding semantic description. Finally, 
Section 5.5 presents the results of the performance evaluation on several real network 
datasets for both disjoint and overlapping community detection. 

5.1   Datasets and Evaluation Metrics  

The Artificial Networks.  
In order to generally evaluate our method's performance and robustness (such as the 
capacity to resist the mismatch effect) under an artificially controllable circumstance, 
we used the method proposed in [1] to generate the topological structure of a sort of 
random networks and used a binomial distribution to generate the corresponding 
content. 

For the topology, we generated 128 nodes and evenly partitioned them into 4 
communities, so each community has 32 nodes. For each node, we randomly generate 
8 edges ( inz ) that connected to other nodes in the same community, and also 

randomly generate 8 edges ( outz ) connecting to those in different communities, which 

can be seen as the noise of topology. Therefore, each node has 16 edges ( in outz z z  ) 
in total. 

For the content information, we set the total number of attributes (keywords) to be 
128, and assumed that there were 4 topics which had a one-to-one correlation to the 4 
communities. Furthermore, we set the total number of attributes of each node to be 32 
( in outh h h  ), and only 24 ( inh ) of them were relevant to the node’s topic, so there 

remained 8 attributes ( outh ) that were irrelevant to the topic, which can be seen as the 
noise of content. For each node, we generated a 128-dimensional binary vector, in 
which the values of only 32 elements were one and others were zero. With respect to 
an arbitrary node i, if it belonged to community r, we set the values of elements in its 



attribute vector whose indexes ranged from  1r h   to r h  to be one with the 

probability of inh h , while we set the rest elements whose indexes were not in the 

range of  1 ,  r h r h      to be one with the probability of  out 3h h . 

Because of the one-to-one correlation between community and topic, the clustering 
structures of topology and content are consistent. To simulate the mismatch between 
topology and content, we randomly select a certain proportion of nodes to swap their 
attribute vectors, in which we introduced a parameter mis  to represent such 

proportion. In fact, mis  controls the degree of mismatch between topology and 

content. Namely, the larger the value of mis  is, the larger the degree of this 

mismatch will be. Especially, when mis 1  , all nodes in the network may be 
randomly selected to swap their attribute vectors, which represents the maximal 
degree of mismatch we can control. Hence, we set mis  to be values from 0 to 1 with 
step size of 0.1.  

Note that we randomly selected nodes, attribute elements and attribute vectors to 
be swapped according to certain probability distributions during the generative 
process. In order to achieve a relatively stable result, we finally generated 50 different 
networks for each setting of mis  (with 11 50=550  networks in total). 

The Real Network Datasets.  
Besides the artificial networks, we also collected and preprocessed 13 real social 
network datasets with topological structure and attribute information for our 
evaluation experiments, in which 12 of them provide the ground-truth about the 
number of communities and the corresponding community membership, while the rest 
one doesn’t have related ground-truth.  

Moreover, 8 of the 12 datasets with ground-truth were utilized for the evaluation of 
disjoint community detection, because their ground-truths are disjoint, in which each 
node only have single community label. On the other hand, the ground-truths of the 
rest 4 datasets are overlapping, since each node in the network can simultaneously be 
the member of multiple (one or more) communities according to the ground-truth. 

As a summary, we list the details of the above 13 real network datasets in Table 3, 
where N, E, M and K are the number of nodes, edges, keywords and communities 
after preprocessing, while G is the type of ground-truth. For the ground-truth type, we 
use “No” to represent the datasets without ground-truth, while those with disjoint and 
overlapping ground-truth are respectively notated as “D” and “O”. 

In the experiment, we used the last.fm dataset [9] to illustrate our method’s 
capacity to simultaneously derive the partition of communities and the corresponding 
semantic description. The dataset was collected from an online music platform last.fm 
(http://www.lastfm.com) which includes users’ friendships (topology) and interest 
tags (content). The friend relationship is represented as the undirected and unweighted 
edges in the network. After preprocessing, we derived a network of 1,829 nodes with 
12,712 undirected edges and a total of 9,749 keywords. Sine the dataset didn’t have 
the ground-truth about the number of communities (K), we used the Louvain 
algorithm [17] (which can automatically determine the number of communities and 



the corresponding community membership with optimal modularity) to determine the 
appropriate value of K, and we finally set K=38. 

Table 3.  Details of the real social network datasets we utilized in the experiment, where N, E, 
M and K are the number of nodes, edges, keywords and communities respectively, while G is 
the ground-truth type. “No”, “D” and “O” are used to described the dataset without ground-
truth, with disjoint ground-truth and with overlapping ground-truth.  

Datasets N E M K G Brief Description [9,10,11,12,13] 
Last.fm 1,892 12,712 9,749 38 No Dataset collected from an online music platform 

Cornell 195 304 

1,703 

5 

D 

Subnetworks of four American universities in the 
WebKB dataset 

Texas 187 187 5 
Washington 230 446 5 
Wisconsin 265 530 5 
Cora 2,708 5,429 1,433 7 A citation network 
Citeseer 3,312 4,732 3,703 6 A citation network 
Twitter 171 796 578 8 Largest subnetwork of Twitter dataset from SNAP 
Facebook 1,045 26,749 576 10 Largest subnetwork of Facebook dataset from SNAP 

Enron 974 1,557 15,382 13 

O 

Enron mail dataset 
Reddit25 1,314 1,339 4,616 3 Reddit dataset with time slice of 2012-8-25 
Reddit26 1,590 1,714 5,055 3 Reddit dataset with time slice of 2012-8-26 
Reddit27 2,143 2,290 6,635 3 Reddit dataset with time slice of 2012-8-27 

 

In the evaluation experiment of disjoint community detection, we applied our new 
method to 8 real social network datasets with disjoint ground-truth. In the 8 datasets, 
Cornell, Texas, Washington and Wisconsin are 4 subnetworks of American 
universities in the WebKB dataset1. Cora and Citeseer are two citation networks 
whose source details can be found in [11], while Twitter and Facebook are two largest 
subnetworks of the datasets named as ego-Twitter and ego-Facebook from the 
Stanford Large Network Dataset Collection (SNAP) [10]. As these datasets provide 
clear formats about the networks’ topology and attribute, we directly utilized them as 
the input of a certain method after some simple preprocessing.  

For the detection of overlapping communities, we selected two real network 
datasets (Enron [12] and Reddit [13]) with edge-induced content and overlapping 
node-induced ground-truth as the testing datasets. Since the type of content (such as 
node-induced content edge-induced content) is not our major concern in this paper 
(but we intend to consider the edge-induced content in our future work), we assume 
the content of an edge is shared by the edge’s two nodes and finally converted the 
edge-induced content into the node-induced form. 

Enron is a labeled subnetwork of the Enron corporation's email system. For each 
email in the dataset, we extracted the topological relations according to the addresses 
of the sender and the receiver(s) (an email can be sent to multiple users), and we 
considered the 13 categories of “primary topics” (which are manually annotated 
according to the content of emails) as the ground-truth. Since the content and ground-
truth are both edge-induced, we further transformed them into the node-induced forms 
by simultaneously assigning each email’s content and labels to its sender and 

                                                           
1 http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/ 



receiver(s). Finally, we derived a network with node attribute and overlapping node-
induced ground-truth. 

The Reddit dataset contains posts and comments of three sub-forums in the website 
of Reddit (www.reddit.com) from 2012-8-25 to 2012-8-31. In Reddit, a user can 
choose a sub-forum (such as Movies and Politics) to post content, and other users can 
then post comments on such content. Therefore, we extracted the topological relations 
according to the ID of the post author and the comment authors. Furthermore, the sub-
forums in which a user posts content (comments) can be seen as the ground-truth, and 
we further found that such ground-truth was overlapping (namely there exist users 
who have post comment in multiple sub-forums). For the edge-induced content, we 
also converted it into the node-induced form by simultaneously assigning the content 
to the nodes with respect to the post author and the comment authors. 

What’s more, in order to have more datasets to be evaluated, we extracted three 
time slices (2012-8-25, 2012-8-26 and 2012-8-27) of Reddit to get 3 different 
subnetworks, so we finally have 4 testing datasets (Enron, Reddit25, Reddit26 and 
Reddit27) for the evaluation of overlapping community detection. 

Evaluation Metric for Disjoint Community Detection.  
To evaluate the disjoint community partition result given by a certain method, we 
used the normalized mutual information (NMI) [7] and accuracy (AC) [7] as the 
evaluation metrics by comparing the method’s result with the corresponding ground-
truth. According to [7], NMI can be used to measure the similarity between two sets 
of clusters, while AC represents the percentage of correct labels obtained by the 
method to be evaluated. Generally, larger NMI or AC means better correspondence 
between the communities extracted and the groups (or organizations) in real networks. 

Let L be the community label sequence given by the method to be evaluated and R 
be the corresponding sequence with respect to dataset’s ground-truth. Also, we let the 
subscript i of iR  and iL  represent the community label of node i. The definitions 

of NMI and AC can be described as follows: 
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   is the entropy of the label sequence S. With 

regard to (24),  map   is a mapping function of the Kuhn-Munkres algorithm [31] 

to map a sequence to another equivalent form. 



Evaluation Metric for Overlapping Community Detection.  
Different from the representation of disjoint community partition, in the experiment 
of overlapping community detection, we maintained a node membership set for each 
community, namely  1, , KL L L  , to represent the overlapping partition result. 

Specially, if node i belongs to community r, then i is an element of the node set rL . 

Based on the above definition, we used the evaluation methods proposed in [32], 
which generalized the F-score and Jaccard metrics to the scenario of overlapping 
community detection with the following expression: 
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where  ,i jL R  is the similarity measure (F-Score or Jaccard), and L as well as R 

are respectively the overlapping partition results given by the method to be evaluated 
and the testing dataset’s ground-truth. Moreover, iL  is the node membership set of 

community i given by L, while jR  is community j’s node membership set according 

to R. Generally, the larger value of the generalized F-score (or Jaccard) means better 
performance of overlapping community partition. 

5.2   Parameter Adjustment Analysis  

As   and   are the hyper-parameters of our ASCD model, different settings of 
them may lead to different results. For both ASCD-ARC and ASCD-NMI, we use the 
parameter   to control the sparsity item of Y in the objective function (14). With 

regard to  , we utilize it to respectively adjust the value of  ,d X Y  in (12) (for 

ASCD-ARC) and NMI in (13) (for ASCD-NMI).  
So as to further analyze the effect of the hyper-parameters, we respectively applied 

ASCD-ARC and ASCD-NMI to some real network datasets used for the evaluation of 
disjoint community detection. Also, we adopted NMI as the metric to evaluate the 
results with respect to different parameter settings. 

For ASCD-ARC, we varied the value of   and   from 1 to 100 with the step 
size of 10. As for ASCD-NMI, we used the same adjustment setting of   as in the 
analysis of ASCD-ARC, but we set   within the range of [0, 1] with step size of 0.1. 
The results of different datasets to which we had applied our ASCD method gave 
similar results. Here, we select the results of two of them (Cornell and Washington) as 
the illustration to draw the corresponding heat maps, which are shown in Figure 3. In 
each heat map, color close to red indicates a relative high NMI value while color 
close to blue represent low NMI level. 

As shown in Figure 3, compared to  , the final results of both ASCD-ARC and 
ASCD-NMI are more sensitive to  , which can highlight the significance of the 
adaptive parameter in our ASCD model. 



 
(a) ASCD-ARC, Cornell              (b) ASCD-ARC, Washington 

 
(c) ASCD-NMI, Cornell              (d) ASCD-NMI, Washington 

Fig. 3. The heat maps of the parameter adjustment analysis for both ASCD-ARC and ASCD-
NMI with Cornell and Washington as the illustrated datasets and NMI as the metric. Different 
color corresponds to different NMI, and color close to red indicates high value. For both 
ASCD-ARC and ASCD-NMI, the results are more sensitive to   rather than  . 

More importantly, the results shown above also indicate the fact that it is hard to 
find a fixed setting of   and   that can ensure our ASCD method to get the best 
result for any datasets, but we can still give a recommended setting of such two 
hyper-parameters. With regard to the ASCD-ARC, we suggest to set   to be a value 

in the set of  1,  50,  100  and set   to be a value in the set of  0.1,  0.2, ,1.0 . 

As for ASCD-NMI, we also recommend to set   as a value in  1,  50,  100  and 

properly tune  1,  10, ,  100   . 

Besides the setting of the hyper-parameters, we also need to consider the effect of 
the initialization. Since the solution strategy of the ASCD method is based on the 
gradient descend method, it’s possible for the final result to converge to a local 
minima solution with a certain initialization setting of X and Y. For the sake of a 
relatively favorable result, we suggest to initialize X and Y (respectively according to 
(6) and (8)) at least 10 times, and use the initialization setting with minimum value of 
the objective function for the initialization process (with respect to (1) and (7)). 



5.3   Artificial Network Analysis 

Analyzing the Attribute Refining (AR) Effect (Based on the Artificial Networks). 
When the basic ASCD algorithm converges, an intuitive method to obtain the 
partition result is to directly utilize X to extract the community label of each node. In 
fact, we can also generate a new matrix X by using X CY , since we try to 

minimize 
2

F
X CY  when modeling the content information in the objective 

function (14). 

Compared to the former, the latter way may incorporate more attributes to the final 
community partition, and we also found that when topology and content match well, 
we can obtain better community structures by using X CY , so we name the latter 
way as attribute refining (AR). However, similar to the conclusion of our pre-
experiment in Section 4.3, when the mismatch between topology and content is 
serious, AR may result in poor community partition result, as it introduces irrelevant 
content information to the final result. For our ASCD method, we aim to achieve 
better community discovery result by utilizing AR when topology match well with 
content, but if there is a serious mismatch between them, we tend to directly extract 
community structures from the original X. In other words, we need to determine 
whether to utilize AR according to the mismatch degree. 

Inspired by the introduction of the adaptive parameter (13) (with respect to ASCD-
NMI), when the basic ASCD algorithm converges, the NMI value between the label 
sequences respectively extracted from the original X and X CY  can be a suitable 
numerical feature, and we name such value as the AR-NMI. Therefore, only when the 
AR-NMI is large enough, which means the topology and content match well, we tend 
to use AR.  

To further illustrate such effect, we compared the results with and without AR by 
applying both ASCD-ARC and ASCD-NMI to the artificial networks introduced 
above. For each value of mis , we recorded the corresponding AR-NMIs for both 
ASCD-ARC and ASCD-NMI, and we also adopted the NMI between the community 
discovery result and the ground-truth as the evaluation metric. With regard to the two 
hyper-parameters of two different forms of ASCD, we used the recommended setting 
with ( =50 , =1.0 ) for ASCD-ARC and ( =0.5 , =1.0 ) for ASCD-NMI. Finally, 
we respectively ran the algorithm of ASCD-ARC and ASCD-NMI on the artificial 
networks, and got the average result shown in Table 4, where we use NAR to 
represent the results of the methods without AR. 

In Table 4, the results of ASCD-ARC and ASCD-NMI are similar. Methods with 
AR achieve much better performance than those without AR when 0.0mis  . At this 
moment, the AR-NMIs of both ASCD-ARC and ASCD-NMI reaches a level of more 
than 0.6. However, as mis  increases, the performance of methods with AR 
dramatically decrease, which is in line with our previous discussion. On the other 
hand, the performance of the methods without AR is relatively poor when 0.0mis   
in comparison to those with AR, but the values of NMI keep at a relatively high level 
of 0.65 when mis 0.0  . Hence, we tend to utilize AR when mis 0.0  , as the 



performance can be further improved with the help of AR, but we should reject to use 
such effect when mis 0.0  , because it may introduce irrelevant content information. 

Table 4.  The analysis of AR by applying ASCD-ARC and ASCD-NMI in the artificial 
networks with NMI as the metric. AR represents the methods with attribute refining and NAR 
represents those without AR. mis  is the parameter to adjust the mismatch degree and AR-

NMI is the numerical feature we need to track. As mis  increases, the AR-NMIs for both 

ASCD-ARC and ASCD-NMI decrease, and NMI of methods with AR dramatically decrease 
while NMI of those without AR steadily keep at about 0.65. Only when mis =0.0 , methods 

with AR have much better performance than those without AR. 

ρmis 
ASCD-ARC ASCD-NMI 

AR-NMI NAR AR AR-NMI NAR AR 
0.0 0.6487 0.6631 0.8722 0.6474 0.6622 0.8729 
0.1 0.4754 0.6575 0.5880 0.4733 0.6562 0.5875 
0.2 0.3723 0.6593 0.4261 0.3734 0.6584 0.4281 
0.3 0.3159 0.6556 0.3338 0.3171 0.6565 0.3357 
0.4 0.3032 0.6576 0.2963 0.3063 0.6602 0.2975 
0.5 0.2918 0.6524 0.2651 0.2926 0.6558 0.2684 
0.6 0.2802 0.6609 0.2593 0.2831 0.6633 0.2614 
0.7 0.2734 0.6556 0.2447 0.2751 0.6573 0.2467 
0.8 0.2630 0.6504 0.2338 0.2624 0.6505 0.2331 
0.9 0.2614 0.6565 0.2343 0.2648 0.6595 0.2381 
1.0 0.2655 0.6540 0.2340 0.2632 0.6550 0.2353 

 

Moreover, for a criterion of determining whether to utilize the AR, a threshold of 
AR-NMI need to be further discussed. Namely, when current AR-NMI is larger than 
the threshold, one can utilize AR to extract better community structures, but when the 
AR-NMI is less than such value, one should reject the AR effect. For the result shown 
in Table 4, we can conclude that the threshold of the artificial network is about 0.5. 
Besides, we also studied the threshold of other real social network datasets with 
ground-truth introduced in Section 5.1 by comparing the NMI values corresponding 
to the results with and without AR. Finally, we found that the threshold of different 
datasets may be different. For example, the thresholds of Cornell, Texas, Washington, 
Wisconsin, Cora and Citeseer are about 0.1, but for Facebook and Twitter the 
corresponding values are about 0.6. In other word, the value of such threshold is 
related to concrete datasets, but it’s independent of the mismatch degree. Therefore, to 
recommend a value of the threshold of AR-NMI is another challenging problem.  

However, we can still reach the conclusion that such threshold is related to the 
topological clustering structures of a certain dataset. In fact, the parameter outz  we 
utilized to generate the artificial networks can control the quality of the clustering 
structures of topology, namely the larger the value of outz , the more noise of 
topology in the network. 

For a further study of such artificial network, we used the same fixed setting of inh  

and outh  with the networks introduced above, while setting the value of outz  to be 4 



and 12 (we have already had the results with respect to out 8z  ) to generate another 
two sorts of artificial networks. By using the same analysis method, we found that as 
the increase of zout (from 4 to 12 with step size of 4), the quality of the topological 
clustering structures became poorer and the threshold of AR-NMI decreased, where 
the thresholds were respectively 0.9 ( out 4z  ), 0.5 ( out 8z  ) and 0.2 ( out 12z  ). 

On the other hand, we also considered the quality of the clustering structures of 
content, where we fixed the value of outz  to be 8 and respectively set inh  to be 16 

as well as 8 (we have already had the results with respect to in 24h  ), but we found 
that the thresholds were all about 0.5. Therefore, the threshold of AR-NMI is related 
to the topological clustering structures (but independent to content according to our 
obersvation). For the convenience of understanding, we conclude different settings of 

inz , outz , inh  as well as outh  with the corresponding threshold values in Table 5. 

Table 5.  The analysis of AR-NMI’s threshold by adjusting the quality of clustering structures 
of topology and content in the artificial networks. As the value of outz  gradually increase 

(with inh ( outh ) fixed), more noise is added into the clustering structure of topology, and the 

threshold gradually decrease. However, the thresholds keep as the same, even though 
increasingly noise is added into the content’ clustering structure. Therefore, the threshold is 
related to the clustering structure of topology. 

Parameter Settings 
hin=24, hout=8 

zin=12, zout=4 zin=8, zout=8 zin=4, zout=12 
Threshold Value 0.9 0.5 0.2 

Parameter Settings 
zin=8, zout=8 

hin=24, hout=8 hin=16, hout=16 hin=8, hout=24 
Threshold Value 0.5 0.5 0.5 

 

In a conclusion, for a certain network, to determine whether to utilize the AR effect, 
additional measure is needed to evaluate the quality of the dataset’s clustering 
structures. However, when such additional evaluation is costly, we recommend to 
omit the process of determining AR-NMI’s threshold and directly refuse to utilize the 
AR effect for the sake of a relatively robust result. 

Robustness Evaluation (Based on the Artificial Networks).  
Under an artificially controllable circumstance, we also evaluated our method’s 
performance on the above artificial networks to generally illustrate its capacity to 
resist the mismatch effect.  

In this experiment, we used the initialization result of X as the baseline (notated as 
the NMF method), since it’s only related to topology. We also used the SCI method 
[5], which integrates topology and content, as the comparative method. Because we 
evenly divided the nodes in the network into 4 communities, we can directly get the 
ground-truth of each node’s community label. Therefore, we adopted NMI and AC as 
the evaluation metrics. Especially, for the result of ASCD-ARC and ASCD-NMI, we 
determined whether to utilize AR according to the criterion proposed above. Finally, 



for each setting of ρmis, we got the average result of the 50 artificial networks which is 
shown in Figure 4. 

As shown in Figure 4, both metrics indicate similar results, and the metric curves 
of both ASCD-ARC and ASCD-NMI are almost the same. When mis 0  , as we 
utilized AR to extract the community structures, the performance of our ASCD 
method is competitive to the SCI method and much better than the baseline method. 
However, with the increase of mis , the performance of SCI seriously deteriorates 

and finally there is a big gap between the baseline level for large mis  values. In 
other words, methods (such as SCI) that give the same weight to topology and content 
may perform even worse than those which only depend on topology. On the other 
hand, the performance of both ASCD-ARC and ASCD-NMI is at a level that 
outperforms the baseline, even when mismatch between topology and content is large. 

In conclusion, by adding the adaptive parameter to control the trade-off between 
topology and content, our ASCD method robustly combines such two sources of 
information and maintains a high level of performance even when a significant 
mismatch between the topology and content exists. More importantly, when the two 
types of information match well in the network, one can further improve the 
community partition by utilizing AR, having a competitive performance to other 
methods that incorporate topology and content. 

 
(a) NMI                               (b) AC 

Fig. 4. Performance comparison of NMF, SCI, ASCD-ARC and ASCD-NMI for mis  varies 

from 0 to 1, with (a) NMI and (b) AC as the metrics. NMF is the baseline, which depends on 
topology alone. SCI is the comparative method that integrates topology and content. ASCD-
ARC and ASCD-NMI are our methods. ρmis is the parameter to control the degree of mismatch. 
Our methods steadily keep at a level that outperforms the baseline, but the comparative method 
seriously deteriorates as ρmis increases, which means both ASCD-ARC and ASCD-NMI can 
achieve a robust performance even when the mismatch is serious. 

5.4   The Case Study for Semantic Description  

We specially conducted a case study to illustrate our method’s powerful capacity to 
derive corresponding semantic descriptions as soon as the partition of communities is 
done, in which we used last.fm [9] as the testing dataset.  



For the hyper-parameters of ASCD-ARC, we used the recommended setting of 
=1.0  and =1.0 . With regard to ASCD-NMI, we set =1.0  and =1.0 . We 

applied such two methods to the last.fm dataset and selected the top 10 key words for 
each community to draw the corresponding word clouds. Finally, we display 4 
examples in Figure 5, with the first two corresponding to ASCD-ARC and the last 
two corresponding to ASCD-NMI. So as to analyze the semantic relation among the 
top words in a word cloud, we also used them as the query keywords of Wikipedia 
(https://en.wikipedia.org) to further looked up related materials.  

 
(a) ASCD-ARC, “hip hop music”           (b) ASCD-ARC, “pop music” 

 
(c) ASCD-NMI, “synth music”             (d) ASCD-NMI, “metal music” 

Fig. 5. Four examples of semantic description of ASCD-ARC ((a) and (b)) and ASCD-NMI 
((c) and (d)). The four communities are respectively with the topic of (a) “hip hop music”, (b) 
“pop music”, (c) “synth music” and (d) “metal music”. 

For the community in Figure 5 (a), the main topic is hip hop music, as the 
keywords “hip hop soul” and “alternative hip hop” are directly related to it. Moreover, 
“black eyed peas” is an American hip hop music group. According to the materials 
posted in Wikipedia, “mandopop” (which is short for mandarin popular music) and 
“pop-rap” are both musical genres originated from hip hop. 

Community shown in Figure 5 (b) may be related to pop music and female pop 
singers, because “kelly clarkson”, “miley cyrus” and “taylor swift” are all famous 
American female rock pop and country pop singers. And “guilty pleasure” may refer 
to the album of Ashley Tisdale, who is also known as a female rock pop singer. 

In the community of Figure 5 (c), synth music may be a distinct topic, just as 
“synthrock” is the most significant keyword. Originated from synth-pop, “electro-
industrial” is a music genre drawing on “ebm”, and “dark electro” is a derivative form 
of such genre. Furthermore, “information society”, “vnv nation” and “visage” are all 
typical synthpop bands. 

With regard to the community of Figure 5 (d), the topic is metal music, which is 
mainly indicated by “hair metal” and “metallica”. In addition, “sound garden”, 



“megadeth” and “queensryche” are all successful American band with different 
subgenre of metal music. And “nwobhm” may be the abbreviation of new wave of 
British heavy mental with respect to the query result of Wikipedia. 

In conclusion, the four communities shown in Figure 5 have distinct semantic 
descriptions with respect to a certain topic. By selecting the top keywords of a 
community, one can easily understand a community’s semantic. Therefore, our ASCD 
method has the powerful capacity to obtain corresponding semantic description as 
soon as the partition of communities is finished. 

5.5   Real Social Network Evaluation 

Evaluation of Disjoint Community Detection. 
In the evaluation experiment of disjoint community detection, we applied ASCD-
ARC and ASCD-NMI to 8 real social network datasets with disjoint ground-truth, 
including Cornell, Texas, Washington, Wisconsin, Cora, Citeseer, Twitter and 
Facebook [10,11]. 

For comparison, we utilized the initialization setting of X (notated as NMF) and 
other 4 state-of-the-art methods, including DCSBM [19], BLOCK-LDA [25], PC-
LDC [26] and SCI [5], as the baseline. In the 5 comparative methods, NMF and 
DCSBM are those only depend on structural information of the network, while 
BLOCK-LDA, PC-LDC as well as SCI are all existing methods that integrate 
topology and content. Especially, DCSBM, BLOCK-LDA and PC-LDC are 
probability-based, where DCSBM and BLOCK-LDA are two generative model, while 
PC-LDC is a discriminant model. Moreover, SCI is an NMF-based hybrid method. 

We adopted the default parameter settings of DCSBM, BLOCK-LDA and PC-
LDC. For SCI, there was a parameter adjustment process to get the best result. As for 
both ASCD-ARC and ASCD-NMI, we adjusted the hyper-parameters ( and  ), 
and finally adopted the parameter setting with minimum value of the objective 
function (14). Moreover, we also selectively utilized AR to achieve better 
performance when the AR-NMI was large enough. 

For each dataset, we set the number of communities K according to the ground-
truth and used NMI as well as AC as the metrics. The evaluation results of disjoint 
community detection are shown in Table 6, where the best metric values are in bold 
and the second-best are underlined. 

As shown in Table 6, for the metric of AC, ASCD-ARC and ASCD-NMI are 
respectively performs the best and second best on 5 of the 8 datasets (Cornell, 
Washington, Wisconsin, Cora and Citeseer). For the rest 3 datasets, ASCD-NMI also 
performs the best on Texas and second-best on Facebook, while ASCD-ARC 
performs the second-best on Twitter. 

Moreover, for the metric of NMI, ASCD-ARC has the best performance on 5 
datasets (Cornell, Cora, Citeseer, Twitter and Facebook) and has the second-best 
performance on the rest 3 datasets. For the datasets on which ASCD-ARC performs 
the second-best, ASCD-NMI has the best performance, while on the datasets where 
ASCD-ARC performs the best ASCD-NMI has the second-best performance. 
Namely, our method performs best on the 8 datasets compared to the other methods. 



For the sake of a better measure of the improvement degree, we calculated the 
percentage difference for the performance of both ASCD-ARC and ASCD-NMI (for 
AC and NMI) compared to the next best method. The result is shown in Table 7, 
where the maximum performance improvement for each method is in bold. 

Table 6.  The evaluation result of disjoint community detection on 8 real network datasets 
with AC and NMI as the metrics. For each dataset, the best performance value is in bold and 
the second-best is underlined. In majority of cases, our ASCD-ARC and ASCD-NMI performs 
the best or second-best. 

Metrics Methods 
Datasets 

Cornell Texas Washington Wisconsin Cora Citeseer Twitter Facebook 

AC 

NMF 0.3692 0.4866 0.4304 0.3925 0.4453 0.2622 0.4621 0.3559 
DCSBM 0.3795 0.4809 0.3180 0.0314 0.3848 0.2657 0.6049 0.4519 
BLOCK-LDA 0.4615 0.5410 0.3917 0.4962 0.2552 0.2435 0.3580 0.3766 
PCL-DC 0.3026 0.3880 0.2995 0.3015 0.3408 0.2485 0.5679 0.4038 
SCI 0.4564 0.6230 0.5115 0.5038 0.4062 0.2798 0.5062 0.5104 
ASCD-ARC 0.5128 0.6096 0.5261 0.5358 0.4826 0.3884 0.5758 0.4391 
ASCD-NMI 0.4872 0.6310 0.5348 0.5396 0.5041 0.3154 0.5682 0.4745 

NMI 

NMF 0.0759  0.0868  0.0545 0.0670  0.2665  0.0613  0.6355  0.5529  
DCSBM 0.0969 0.1665 0.0987 0.0314 0.1707 0.0413 0.5748 0.4338 
BLOCK-LDA 0.0681 0.0421 0.0369 0.1009 0.0141 0.0242 0.0000 0.0928 
PCL-DC 0.0723 0.1037 0.0566 0.0501 0.1754 0.0299 0.5265 0.3863 
SCI 0.1144 0.1784 0.1237 0.1704 0.1926 0.0488 0.4300 0.3001 
ASCD-ARC 0.1840 0.2025 0.1814 0.1989 0.3337 0.0805 0.6689 0.5841 
ASCD-NMI 0.1643 0.2264 0.1838 0.2078 0.3055 0.0690 0.6666 0.5829 

 

Table 7.  The percentage difference for the performance of ASCD-ARC and ASCD-NMI 
compared to the next best method in Table 6. For each method, the best performance 
improvement is in bold. Our method achieves a maximum performance improvement of 
38.83% for AC and 60.84% for NMI. 

Metrics Methods 
Datasets 

Cornell Texas Washington Wisconsin Cora Citeseer Twitter Fackbook 

AC 
ASCD-ARC 11.12% - 3.85% 6.35% 8.38% 38.81% - - 
ASCD-NMI 5.57% 1.28% 4.46% 7.1% 13.21% 12.72% - - 

NMI 
ASCD-ARC 60.84% 13.51% 46.65% 16.73% 25.22% 31.32% 5.26% 3.12% 
ASCD-NMI 43.62% 26.91% 48.59% 21.95% 14.63% 12.56% 4.89% 3.00% 

 
As shown in Table 7, the ASCD-ARC method has the best performance 

improvement (compared to the next best method excluding ASCD-NMI) of 38.81% 
(Citeseer) for the metric of AC and 60.84% (Cornell) for NMI. On the other hand, 
the corresponding best performance improvements of ASCD-NMI are 13.21% (Cora) 
for AC and 48.59% (Washington) for NMI. Hence, our method has a maximum 
performance improvement of about 38.83% for AC and 60.84% for NMI. 

In conclusion, in the evaluation of disjoint community detection, the ASCD 
method has a better performance than other state-of-art methods.  



Evaluation of Overlapping Community Detection.   
In the evaluation experiment of overlapping community detection, we utilized 4 
datasets with overlapping ground-truth as the testing datasets, which are Enron, 
Reddit25, Reddit26 and Reddit27 [12,13]. 

As for comparative method, we used the NMF method introduced in the evaluation 
of disjoint community discovery and other three state-of-the-art overlapping 
community detection methods, including BigCLAM [21], CESNA [32] and Circles 
[33]. Within these methods, NMF and BigCLAM use merely the topological strucutre 
of the network, while CESNA as well as Circles are methods incorporating topology 
and content. Especially, CESNA and Circles are two typical generative probabilistic 
methods, but BigCLAM is an NMF-based method. 

With regard to ASCD-ARC and ASCD-NMI (also for the NMF method), we 
applied the extended algorithm to the original X with best disjoint community 
partition result to extract the corresponding overlapping community structures. 

Moreover, we used the generalized F-score and Jaccard [32] as the metrics, and the 
corresponding result is shown in Table 8, where for each dataset the best metric value 
is in bold and the second-best is underlined. 

In Table 8, both metrics give similar results. For all the testing datasets, ASCD-
ARC performs the second-best while ASCD-NMI has the best performance. 

Furthermore, we also calculated the percentage difference for the performance of 
ASCD-ARC and ASCD-NMI compared to the next best method in Table 8. The 
corresponding results are shown in Table 9, where the best performance improvement 
for each method is in bold. 

Table 8.  The evaluation of overlapping community detection on 4 real network datasets with 
generalized F-Score and Jaccard as the metrics. For each dataset, the best performance value 
is in bold and the second-best is underlined. Our ASCD-ARC and ASCD-NMI methods 
performs the best or second-best on all the datasets. 

Metrics Methods 
Datasets 

Enron Reddit25 Reddit26 Reddit27 

F-Socre 

NMF 0.4764 0.5859 0.5549 0.5865 
BigCLAM 0.1890 0.2036 0.2429 0.1781 
CESNA 0.3015 0.3488 0.3396 0.2781 
Circles 0.4522 0.5023 0.5108 0.5255 
ASCD-ARC 0.5307 0.6181 0.5836 0.6218 
ASCD-NMI 0.5382 0.6339 0.5866 0.6810 

Jaccard 

NMF 0.3255 0.4371 0.4249 0.4406 
BigCLAM 0.1092 0.1263 0.1633 0.1058 
CESNA 0.2021 0.2593 0.2153 0.1715 
Circles 0.3211 0.3609 0.3728 0.3820 
ASCD-ARC 0.3727 0.4829 0.4497 0.4801 
ASCD-NMI 0.3793 0.4912 0.4507 0.5487 

 



Table 9.  The percentage difference for the performance of ASCD-ARC and ASCD-NMI 
compared to the next best method in Table 8. For each method, the best performance 
improvement is in bold. Our method achieves a maximum performance improvement of 
16.11% for generalized F-Score and 16.53% for generalized Jaccard. 

Metrics Methods 
Datasets 

Enron Reddit25 Reddit26 Reddit27 

F-Socre 
ASCD-ARC 11.40% 5.50% 5.17% 6.02% 
ASCD-NMI 12.97% 8.19% 5.71% 16.11% 

Jaccard 
ASCD-ARC 14.50% 10.48% 5.84% 3.95% 
ASCD-NMI 16.53% 12.38% 6.07% 10.81% 

 
In Table 9, ASCD-ARC has the best performance improvement of 11.40% (Enron) 

for generalized F-Score and 14.50% (Enron) for generalized Jaccard compared to 
the next best method (excluding the ASCD-NMI). With regard to ASCD-NMI, the 
corresponding best performance improvements are respectively 16.11% (Reddit27) 
for generalized F-Score and 16.53% (Enron) for generalized Jaccard. Therefore, in 
the evaluation of overlapping community detection, our method obtains a maximum 
performance improvement of 16.11% for generalized F-Score and 16.53% for 
generalized Jaccard.  

In summary, by applying the extended algorithm to the original disjoint community 
partition result, our method, in majority of cases, have better performance than other 
comparative methods.  

As a conclusion for the evaluation of both disjoint and overlapping community 
detection, because of the integration of topological and content information, the 
ASCD method has resulted in better performance than methods using only topological 
information. More importantly, by adding the adaptive parameter (with two different 
forms) to resist the mismatch effect, our new method performs better than most of the 
state-of-the-art methods incorporating topology and content.  

6   Conclusion 

In this paper, we proposed a novel ASCD model under the framework of NMF while 
introducing two different forms of the adaptive parameter to be applied in such model. 
Moreover, as we also introduced an extended algorithm to extract overlapping 
community structures, the proposed method can meet the application requirements of 
both disjoint and overlapping community detection. Our approach integrates the 
network's topology and content while taking the mismatch between them into account. 
In comparison to conventional methods that merely consider topology, our method is 
capable of improving the community detection accuracy as it further integrates 
additional information of content. Furthermore, when comparing to other state-of-the-
art methods combining topology and content, our method also achieves better 
performance, because we introduced a novel adaptive parameter with two different 
forms to effectively control the contribution of content information. More 
importantly, the new proposed method also has the powerful ability to simultaneously 
obtain the community partitions and corresponding semantic description.  



However, for real social networks, content may have various forms, where node 
attributes we considered in this paper is just one typical form. In fact, content related 
to edges is common in social networks. For example, in an e-mail system (like the 
Enron dataset [12] introduced in Section 5.1), the content of an email is related to the 
edge connecting from the sender to the receiver. Moreover, edge-based community 
partition can also help discover overlapping communities [30]. Therefore, we intend 
to further consider the comprehensive effect of incorporating both node-induced and 
edge-induced attributes in the process of community detection in our future work. 
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