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HexaLab.net: an online viewer for hexahedral meshes

Matteo Bracci1 Marco Tarini2 Nico Pietroni3 Marco Livesu4 Paolo Cignoni1

Abstract

We introduce HexaLab: a WebGL application for real time visualization, exploration and assessment of hexahedral
meshes. HexaLab can be used by simply opening www.hexalab.net. Our visualization tool targets both users and
scholars. Practitioners who employ hexmeshes for Finite Element Analysis, can readily check mesh quality and assess
its usability for simulation. Researchers involved in mesh generation may use HexaLab to perform a detailed analysis of
the mesh structure, isolating weak points and testing new solutions to improve on the state of the art and generate high
quality images. To this end, we support a wide variety of visualization and volume inspection tools. Our system offers also
immediate access to a repository containing all the publicly available meshes produced with the most recent techniques
for hexmesh generation. We believe HexaLab, providing a common tool for visualizing, assessing and distributing results,
will push forward the recent strive for replicability in our scientific community.
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1. Introduction

Hex-meshes, i.e. volumetric meshes composed of hexa-
hedral cells, are one the of most used 3D representations
for numerical simulation, most notably by Finite Element
Analysis (FEA). Application domains include structural5

mechanics, heat, electricity transfer problems and simula-
tion of other physical phenomena. In order to be usable
in a simulation, a hex-mesh must fulfill a number of re-
quirements, both hard and soft in nature. In other terms,
it must have a sufficiently high “quality”.10

The construction of simulation grade hex-meshes for a
given shape is a long standing, extremely arduous problem,
which has continuously attracted interest from industry
and fuels a constant (and still ongoing) research effort by
more than one scientific community (Sec. 2.1). The faced15

tasks are cast, for example, as the automatic and reliable
construction of a hex-mesh of an object given its surface
(hex-meshing); the “clean up” of a given hex-mesh form
pathological configurations that prevent usability (untan-
gling); or the conversion of a tetrahedral mesh into a hex-20

mesh (hex-remeshing).
We introduce HexaLab, an Open-Source software tool

designed to help researchers and practitioners. HexaLab
is both an advanced hex-meshes visualizer, and a portal
to an online database of results produced with existing25

techniques. It is provided as a Web Application, and can
be used by simply connecting to www.hexalab.net.
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Figure 1: A screen-shot of HexaLab running inside Chrome under
macOS. Model courtesy of [1].

1.1. Intended usages

Visualization: the main function of HexaLab is to serve
as a advanced 3D visualizer for hex-meshes, for the pur-30

pose of providing a visual insight on the inspected mod-
els, and thus, indirectly, on the algorithms that produced
them. The visualization of a hex-mesh is complicated by
the resolution of the model and, even more so, by the
presence of non-trivial 3D internal structures. HexaLab35

faces this task by offering a set of interactively controlled
tools (cutting planes, etc), a shape-revealing realistic light-
ing (drastically improving the readability of images), novel
modalities specifically designed to better communicate the
shape of the cells, as well as colormaps and spatial glyphs,40

to reveal the quality, the topological characteristics, and
so on.
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Assessment: for the same purpose, HexaLab can be used
to assess the quality of the inspected models, by providing
interactive and automated techniques to perform numer-45

ical measurements and plotting histograms over a set of
models. A wide array of established measures are included.

Presentation: although they are produced in real-time
in the context of an interactive application, images pro-
duced by HexaLab have publication-grade quality and are50

intended to be used for presentation and dissemination,
e.g. in scientific publications. The high lighting quality
helps to making 3D rendering intelligible even as static
(e.g. printed) images. This function relieves researchers
from the tedious task of implementing ad-hoc visualization55

method for the presentation of their results; also, such vi-
sualizations are often comparatively less effective, and are
inhomogeneous across works from different authors.

Comparisons: HexaLab also implements mechanisms to
ease comparison between hex-meshes, e.g. between results60

of competing methods over the same input, or, between
“before” and “after” datasets of a hex-mesh optimization.
All visualization settings can be easily shared between vi-
sualization sessions. This applies to sessions being run
at the same time, for interactive side-to-side comparisons,65

and just as well to sessions executed much later in time.
The visualization settings are also recorded in all produced
images as metadata, to allow reproducibility of these im-
ages, and, thus, direct comparisons with new results in the
future. Potentially, comparison is also indirectly fostered,70

even by results not directly dealing with each other, by
their adoption of a shared visualization style.

Benchmarking: lastly, but perhaps most crucially, Hexa-
Lab is also a easily accessible portal to a new online repos-
itory of hex-meshes, which is already fairly complete, and,75

we believe, is destined to grow over time with the contin-
ued usage of the tool. Direct contributions of new datasets
from authors of new methods is made simple and, in our
intentions, encouraged (among other things) by the result-
ing visibility offered by HexaLab to any such works. The80

original source of any work in the repository is reported to
all future users.

2. Background and Related Work

2.1. Hex-Mesh Generation and Processing

Hex-meshes are often preferred to other polyhedral85

based representations, such as tetrahedral meshes, because
arguably they offer advantages in terms of numerical ac-
curacy [3] or, equivalently, simulation speed for the same
level of accuracy (due to the smaller number of degrees of
freedom). Hex-meshes generation, however, is notoriously90

difficult.

In 1998 Owen [4] pointed out that hex-meshing tech-
niques were not robust enough to be able to scale on com-
plex shapes. Two years later, Blaker [5] defined hexmesh
generation as the holy grail of meshing research. In the95

last decade, there has been a constant improvement in hex-
meshing algorithms, mainly tied to advancements in vol-
umetric parameterization techniques; yet, more research
is clearly needed before fully satisfactory solutions are
reached. Here we briefly summarize only a few of the most100

recent advances, and point the reader to [4] for a survey
on classical methods developed during 90’s. It is our opin-
ion that availability of powerful tools to visualize, inspect,
compare and analyze hex-meshes will help promoting fur-
ther advance the state of the art.105

Grid based approaches [6] subdivide the volume using a
regular grid. Elements are aligned to the global axes, and
external vertices are snapped to the surface to better ap-
proximate the original shape. The most recent advances
in the field regard the ability to project vertices on the110

surface while meeting per element quality bounds [7] and
the introduction of templated schemes to turn hierarchi-
cal grids (octrees) into full hex-meshes [8]. The resulting
meshes often expose a complex structure, which can be
simplified in post-processing [9][10].115

Advancing front approaches instead propagate element
generation from the boundary towards the interior [11].
While these methods generate high quality elements close
to the boundary surface, they tend to create badly shaped
elements or leave empty voids in the interior, where differ-120

ent fronts meets. Alternatively, the front propagation may
proceed top to bottom. In [12] the authors propagate the
front following the integral curves of a harmonic function.
Front splitting/merging at the saddle points of the guiding
function is also supported.125

One recent trend is based on volumetric parameteriza-
tions. The volume is first mapped on a space that ad-
mits trivial hexmeshing (e.g. via regular sampling); then
the connectivity is generated in parametric space and pro-
jected in object space using the inverse map. Mesh is130

eventually cured [13] to remove imperfections. Common
parametric spaces are cylinders [14, 15] and orthogonal
polyhedra (or polycubes [16]). Approaches differ to each
other on how the parametric space and the map are gen-
erated. High-quality polycubes should balance map dis-135

tortion with corner count [17, 18][19], achieving a good
singularity alignment [2]. As observed in [20], polycubes
can be seen as a special case of field-aligned methods
[21, 1, 22, 23]; the latter are more general, having inter-
nal singularities to improve the element shapes. In field-140

aligned methods, the mesh is generated by tracing inte-
ger iso-lines [24] of a volumetric parameterization aligned
with a frame-field [25, 26]. The structure and quality of
the mesh depends on the singularities and the smooth-
ness of the guiding field, respectively. Unfortunately, not145

all the possible field singularities are compatible with hex-
meshing, and a number of heuristics have been proposed
to remove incompatible configurations [1, 22, 27]. The ro-
bust generation of fields that admit a valid hex-mesh is an
open problem. Alternatively, recent field-aligned methods150

targeting the construction of hex-dominant meshes [28, 29]
can bypass this problem.
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Figure 2: Examples of HexaLab filters applied to an hex-mesh to reveal its interior. From left to right: complete, unfiltered model; slicing-
plane filter; peeling filter (two most external layers of cells removed); quality-thresholding filter (hexas with SJ < 0.96 are shown); and the
combination of all these filters. “Bunny” model courtesy of [2].

2.2. Hex-Mesh Software Tools

Alongside professional and well-established open
tools for solid mesh generation and processing, such as155

Gmsh [30] and ParaView [31], there exists a variety of
smaller tools being developed by researchers operating in
the field and released to the community [32]. We give here
a non comprehensive list of hex-mesh related software,
considering both libraries and desktop applications.160

A number of freely available libraries offer data struc-
tures [33][34][35] to import/export a hex-mesh and pro-
cess it. These tools usually have a dedicated visualization
front-end (e.g., Graphite [36] is the visual front-end of Ge-165

oGram [33]), but the functionalities they offer are more
limited if compared to the ones we offer in HexaLab (e.g.,
no histograms, no advanced lighting, no advanced inspec-
tion tools for the mesh interior and structure).

Other software tools focus on mesh synthesis and pro-170

cessing, such as Hexotic (which implements [8] and is
distributed by Distene within their MeshGems), Lib-
HexEx [24] (which enables the extraction of a hexmesh
starting from an integer grid map) or Mesquite [37] (which
serves to maximize per element quality). These tools are175

orthogonal to us, as they focus on the processing of a hex-
mesh but do not offer any visualization facility whatsoever.

Summarizing, our positioning is in-between professional
tools and tools being developed and maintained by pure
researchers: we offer high quality visualization and anal-180

ysis tools which are better than the ones provided by the
rest of the research community, at the expense of a simpli-
fied setup (we run on browser) which is much lighter than
the one usually required by professional software.

2.3. 3D Online Visualization185

Compared to desktop applications, web-applications are
by design lightweight and have many several desirable
characteristics, such as extreme portability (being based
on a natively cross-platform technology), immediate avail-
ability to users (due to the absence of an installation190

phase), safety (due to browsers being protected environ-
ments), amenability to online and distributed applications

(due to the inherent client/web-server setup), and easiness
of deployment and maintenance (due to instant updates).

Traditionally, high-quality real-time 3D rendering of195

complex scenes has been considered a computationally de-
manding task, requiring GPU support, and therefore ad-
vanced visualization tools have been limited to desktop
applications. In the last years, the arise of a widely sup-
ported web-based 3D API, WebGL by Khronos, fueled an200

increase of web-based 3D visualization tools.
Many of these tools target specific domains and are to

use, embedding a small set of advanced specialized func-
tionalities that are simple to understand. For example,
in the field of molecular visualization, after the first Java-205

based approaches, like JMol[38], a number of small special-
ized visualization tools have been proposed [39, 40, 41].
Similarly, various web-based applications have been de-
veloped for volume visualizations tasks [42, 43, 44], con-
firming the appeal of specialized, lightweight visualization210

tools.
General-purpose tools to display collections of 3D mod-

els has also been one of the most common tasks for web-
based visualization applications, such as Sketchfab or
3DHop [45], among many others; we refer the reader to215

[46] for a discussion of the possibilities and the issues of
delivering 3D collections on the Web.

3. Overview

HexaLab can be used to visualize and asses the quality
of hex-meshes either provided by the user in standard for-220

mats or downloaded from its own online integrated library
of reference hex-meshes from recent literature (Sec. 4).

The visualization and exploration process is based on a
very simple approach: in a trackball-controlled, real-time,
high quality 3D rendering of the inspected mesh (Sec. 5)225

the user can interactively apply on it three different kinds
of exploration tools:

Cell Filtering Tools: (Sec. 6) that allow users to hide
portions of the hexahedral mesh so to expose internal
structures which would otherwise be occluded. Crite-230

ria to hide cell can involve the use of a clipping plane,
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distance from mesh boundary, geometric quality, and
handpicking of specific cells;

Quality Assessment Tools: (Sec. 7) that allow users to
visually and numerically assess the geometric quality235

of the hexahedral cells, both individually (via color-
coding), and as aggregated measures (through his-
tograms and statistics), according to a number of
standard quality measure (Sec. 7.1). Inverted (and
concave) cells are treated and highlighted separately;240

Global-structure Visualization Tools: (Sec. 8) that
depict the configuration of irregular elements (espe-
cially edges) across the entire mesh under inspection,
thus revealing its global topological structure.

HexaLab offers visualization status management245

(Sec. 9): at any moment, the current status of the inter-
active visualization can be readily captured, stored, and
reused across visualization sessions. The status includes
the setting of every active tool, the trackball-determined
view-direction, any rendering parameters, the selected250

quality measure etc. This achieves reproducibility of any
previously obtained image and allows visual comparisons,
under the exact same conditions, of different datasets (e.g.
for comparing alternative meshings of the same object).

While in this work we do not focus on interfaces, we255

strive to complete HexaLab with a reasonably intuitive
Graphic User Interface (GUI). GUI elements will be de-
scribed in the following sections, contextually with the
mechanisms they control.

4. Online mesh repository260

HexaLab doubles as an easily accessible, online repos-
itory of the publicly available hex-meshes produced by
different techniques appeared in recent literature. Cur-
rently, the repository consists of a total of 260 hex-meshes,
from 14 different papers published in the last 7 years:265

[47, 1, 19, 18, 48, 20, 2, 49, 15, 50, 51, 52, 14, 53].

This collection of hex-meshes is stored, together with
the sources, on the git repository of HexaLab; it is made
available directly by the HexaLab GUI: the user can sim-
ply invoke the visualization of any stored hex-mesh, by se-270

lecting one source, and then one model from that source.
The requested hex-mesh is then automatically downloaded
from the repository, and presented to the user. Contextu-
ally, HexaLab fully reports the data source by providing
the bibliographic reference, a link to the DOI, and when275

available, to the PDF and the web page of the referenced
article.

The maintenance and updating of the repository, when
new results will appear, or other authors will make their
data available, will be done by relying on the well-known280

pull-request mechanism made available by the GIT dis-
tributed version control system. In this way, we offer to

the research community a direct and simple way of propos-
ing additions of results to the repository, which will in turn
foster comparisons against further advancements.285

5. Hexahedral Mesh Rendering

The core part of HexaLab consists in the visualization
of the inspected hex-mesh as a solid object with a set of
cells filtered out (see Sec. 6), so as to reveal the interior
structure.290

Typically, the visualization of a polyhedral volumetric
mesh MV renders just the boundary MS (a polygonal
surface), using a flat shading model and with mesh edges
overdrawn as line segments (see e.g. [36]). In our case,
MV is a pure hexahedral mesh, and MS is a pure quad295

mesh.
We observe that this common edge rendering choice has

a significant shortcoming: it is impossible to distinguish
how many different cells are incident to an edge. Indeed,
the edges ofMS which separate difference cells ofMV and300

the edges which just separate different faces of the same
cell of MV are depicted in the same way.

A brute force approach to overcome this edge ambiguity
problem appears in [29], and consists in drawing, instead
of just the surface, the whole hex-meshMV with each cell305

slightly smaller. This approach, that technically exposes
each face and therefore the local arrangement of cells near
the boundary, does not scale well in term of performances,
due to the cubic explosion of primitives to be rendered at
screen.310

In HexaLab we propose three visualization modes to dis-
ambiguate the surfaces representing the volumetric mesh:

Darkness-coded edges: in the wireframe, we color the
edges with thin, semi-transparent darker lines when
they just separate two faces of the same cell. Opac-315

ity is higher for edges separating different cells, and
progressively increased for any additional internal el-
ements sharing such edge. In other words, the opac-
ity of each edge on MS is made proportional to the
number of (non-hidden) cell elements in MV shar-320

ing the boundary edge. This method is undemanding
in terms of resources, and greatly helps disambiguat-
ing. On the downsides, it is not self-explicative, as the
mapping between line opacity and number of elements
is arbitrary (see Fig. 3, b).325

Fissure mode: we separate adjacent cells by a small fis-
sure so to reveal the local inner structure of the mesh.
For the sake of rendering speed, fissures are limited
to cells on the boundary of MV and, as explained in
Sec. 10.3.1, the rest of the mesh will remain occluded.330

Specifically, we only separate edges and faces of MV

which share at least one vertex onMS (see Fig. 3, c).
While this method helps solving the visual ambiguity
we are addressing, it tends to clutter the screen and
sometimes it is not readable.335
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(a) (b) (c) (d)

Figure 3: (a) the traditional rendering of MS to represent MV . (b) darkness-coded mode. (c) crack mode. (d) rounded mode. Bottom row:
the same modes, for a different selection of darkness/width/radius. Model courtesy of [1].

Figure 4: In this natural image of a stone brick structure, the edges
that separate faces belonging to the same volumetric cell (e.g. in cir-
cle A) are immediately recognizable from edges that separate distinct
volumetric cells (e.g. in circle B), although no line is explicitly added
and cells are in full side-to-side contact. This inspires our Rounded
mode for visualizing hex-meshes, which exploits a similar principle.

Rounded mode: we observe that there are real world
examples of cell arrangements (see Fig 4) where the
structure is immediately recognizable. This inspired
us to define an additional visualization technique
where each cell is rounded around the edge. Tech-340

nically, this leaves a small elongated gap around each
edge of the mesh. Similarly to the above mode, we
only render the surface of this gap in the immediate
proximity of the surface. More details are found in
Section 10.3. We found this method to produce the345

most readable images (see Fig. 3, d). On the other
hand, this mode is a bit more resource demanding
(the number of rendering primitives increases by an
average factor of 12), and it can be argued that this
adds geometric features (the rounded corners) which350

are non-existing in the input dataset.

Visualization modes are offered to the user as three al-
ternatives, selectable via a combo-box. The three modes
can be further customized by editing one single parame-
ter, which determines respectively: an opacity multiplier355

for the Darkness-coded edges mode; the gap size for Fis-
sure mode; and round radius for Rounded mode (Fig. 3,
bottom). Since the meaning of these parameters is similar
across all the modes, we avoid cluttering the interface and
present the user a single slider to choose the parameter360

which is appropriate for the currently selected mode.

5.1. Lighting and Shading

It has been observed several times [54, 55] that a global
lighting model is extremely helpful to facilitate a thor-
ough comprehension of the shape of a 3D object. This365

is especially true when the depicted shapes are not nec-
essarily familiar to the observer, as it is the case for hex-
meshes under arbitrary filters. The problem is further ex-
acerbated for static images (for example, in a scientific
article) where the observer cannot rely on interactivity370

to disambiguate. For this reason, we consider rendering
hex-meshes with only a local direct illumination inade-
quate, and we employ a view-independent Ambient Oc-
clusion (AO) term [56, 57, 58] that can be pre-computed
and stored at vertices ofMS (Fig. 5). The computation of375

the AO terms happens automatically in background when-
ever is needed, and takes only a few seconds to complete
(less than 5s for the most complex model in the database,
on a 2012 MacBook Pro). For the sake of interactivity,
in the short time prior completion a screen-space approxi-380

mation is used [59, 60, 61] as a temporary fall-back mode.
This allows users, for example, to interactively sweep the
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Figure 5: The lighting modes offered by HexaLab. From left to right: direct illumination only, global illumination approximated with
Screen Space Ambient Occlusion (SSAO), and with Object Space Ambient Occlusion (OSAO), which is HexaLab default. Global illumination
schemas are more demanding, but are more effective at convening the 3D space, especially OSAO. Bottom: the improvement is further
enhanced when “rounded modes” is used to separate elements. Model courtesy of [1].

slicing plane through the volume while still seeing a com-
prehensible representation.

When the color is not used to map element quality385

(see Sec. 7), HexaLab defaults a simple yellow-white color
scheme to differentiate faces ofMS found on original mesh
boundary of the mesh (prior to any filtering operation)
from interior faces.

6. Cell filters390

HexaLab provides four ways to filter away elements. Fil-
ters all work in a consistent way, that is, by flagging certain
cells as hidden, and temporarily removing them from the
visualization. Filters differ to each other only on the way
they flag elements, and can be used either alone or through395

any combination of them (Fig. 2).

Slicing plane: any cell whose barycenter falls behind a
user specified “slicing plane” is filtered out from the
view. In other words, the mesh is intersected with a
half-space bounded by the slicing plane;400

Peeling: any cell with a hop distance from the original
mesh boundary smaller than a user-specified “mini-
mal depth” value is filtered away (Fig. 6); the hop
distance is computed using face-to-face adjacency. In
other words, a number equal to the “minimal depth”405

of successive peels are removed in succession from the
original mesh, A peel is defined as the union of the
cell elements with an exposed face (Fig. 6);

Quality Thresholding: any cell with a quality not worse
than a user-specified “quality” is removed. This is410

useful to isolate and highlight the problematic regions,
hiding the good ones;

Manual Selection: any selection obtained with the pre-
vious filters can be manually tweaked by using two op-
erations: addition and removal of manually selected415

elements. These operations are triggered by pointing
on a quad face f on the boundary of the currently
displayed mesh: the “dig” tool hides the non-hidden
cell that shares f ; the “undig” tool reveals the hid-
den cell that shares f (if it exists). In both cases,420

the selected cell is uniquely identified by f . Finally,
the “isolate” tool hides all cells except the selected
one (neighboring cells can then be progressively added
with the “undig” tools); this is intended as a way to
help users discerning the structure of intricate config-425

urations. An example is shown in Fig. 7, where, by
undigging a few hidden cells, it is possible to easily
understand the mesh configuration.

6.1. Filter regularization

The user can elect to automatically polish the selection430

by increasing the regularity of the resulting boundary (i.e.
the quad mesh) to some extent. We implement this with
a morphological approach. Specifically, the set of filtered
elements is first dilated n times and then eroded n times,
for a “strength” integer parameters n (ranging between 0435

and 5). An erosion consists in the removal from the filtered
set of any cell with a vertex on the current boundary, and
viceversa a dilation consists in the addition. When this
option is activated, the selection is regularized after every
change of the slicing plane or the peeling tool (the other440
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Figure 6: Several layers of peeling reveals hexahedral structure of the dragon follows the overall shape of the dragon. Model courtesy of [18].

filters are unaffected). A regularized selection can help
clarifying the mesh topology by revealing the structure of
internal planes (See Fig. 8).

6.2. Displaying filtered elements

The elements which are filtered out are (almost entirely)445

omitted from the rendering, in order not to clutter the
view and not impact the readability of the currently ex-
posed internal part. Optionally, they can be displayed as
a pale silhouette, either uniformly colored or with a very
light shading, for the purpose of providing a visual hint of450

the spatial context, in the original mesh, of the currently
visible parts (see Fig. 9).

6.3. GUI and customization

The user controls the visibility of the filtered elements
with one slider (labelled “silhouette”). The leftmost po-455

sition completely hides filtered elements, whereas sliding
to the right progressively shows the pale silhouette. By
default, the slider is at the rightmost position.

The peeling and quality trasholding are controlled with a
single slider determining the minimal depth and the max-460

imal quality respectively. The slicing plane tool requires
the user to identify the desired plane. Providing an intu-
itive interface for the selection of an arbitrary plane is not
straightforward; we bypass this problem by leveraging the
trackball, and simply providing a command (activated by465

a “set plane” button on the GUI) which uses the current
view direction as the normal of the slicing plane (option-
ally, shift clicking this button round this vector to the
closest axis-aligned direction). The facing of the plane is
selected so that the cut surface faces toward the user. The470

offset of the plane then is controlled with a slider, analo-
gous to the other two filters. To increase simplicity of use,
the full-scale values of the three sliders are normalized, at
both ends, so that the left extreme always means a null fil-
ter (all cells are visible), and the right extreme to mean a475

complete filter (all cells are hidden). To this end, HexaLab
silently computes, and keeps up-to-date, data for the cur-
rent mesh like maximal and minimal extension along the
slicing plane direction, depth of most internal element, and
quality range over all the elements.480

A potentially useful operation that the user might want
to perform is to invert the current orientation of the slicing
plane, so that the filtered portion of the mesh is reversed,
and the region of interest can be investigated “from the
other side”. This functionality can be accessed with a485

designated button, but is also be triggered by the set-plane
button (if, upon activating it, the current view direction
is detected to be close to opposite to the current slicing
plane direction—within a tolerance of 20 degrees—then
the slicing plane direction is exactly inverted).490

7. Cell Quality Visualization

The quality of individual cells is important in many
applications, like Finite Element Analysis where a single
badly-shaped element can impair the entire simulation.

HexaLab allows users to color hex-cells according to495

their quality using one of three color-maps, shown in
Fig. 10, bottom, that have been chosen for their read-
ability and wide circulation. The quality coloring works in
addition to the filtering mechanism which isolates badly
shaped elements by hiding all elements which are better500

than a prescribed threshold measure (see Sec. 6 and Figure
2, right).

We also display a histogram to show the distribution of
the quality values among all the elements (Fig. 10, bot-
tom right). The histogram, which consists of either ver-505

tical or horizontal bars (users’ choice), can be saved as
a subimage, it is color-coded using the currently selected
color-map, and doubles as a labelled legend for the current
color-coding on the 3D rendering.
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Metric ID Full Acceptable Value for Φ(q) Φ−1(q)
range range unit cube

Diagonal DIA [0, 1] [0.65, 1] 1 q q

Distortion DIS (−∞,∞) [0.5, 1] 1
q−qmin

qmax−qmin
qmin + q(qmax − qmin)

Edge Ratio ER [1,∞) — 1 qmax−q
qmax−1 1 + (1− q)(qmax − 1)

Jacobian J (−∞,∞) [0,∞) 1
q−qmin

qmax−qmin
qmin + q(qmax − qmin)

Maximum Edge Ratio MER [1,∞) [1, 1.3] 1 qmax−q
qmax−1 1 + (1− q)(qmax − 1)

Maximum Asp. Frobenius MAAF [1,∞) [1, 3] 1 qmax−q
qmax−1 1 + (1− q)(qmax − 1)

Mean Asp. Frobenius MEAF [1,∞) [1, 3] 1 qmax−q
qmax−1 1 + (1− q)(qmax − 1)

Oddy ODD [0,∞) [0, 0.5] 0 qmax−q
qmax

(1− q) qmax

Relative Size Squared RSS [0, 1] [0.5, 1] — q q

Scaled Jacobian SJ [−1, 1] [0.5, 1] 1 max(q, 0) q

Shape SHA [0, 1] [0.3, 1] 1 q q

Shape and Size SHAS [0, 1] [0.2, 1] — q q

Shear SHE [0, 1] [0.3, 1] 1 q q

Shear and Size SHES [0, 1] [0.2, 1] — q q

Skew SKE [0,∞) [0, 0.5] 0 qmax−q
qmax

(1− q) qmax

Stretch STR [0,∞) [0.25, 1] 1 q
qmax

q qmax

Taper TAP [0,∞) [0, 0.5] 0 qmax−q
qmax

(1− q) qmax

Volume (signed) VOL (−∞,∞) [0,∞) 1
q−qmin

qmax−qmin
qmin + q(qmax − qmin)

Table 1: List of per-element metrics supported in HexaLab. To offer a consistent color-coded quality visualization, we map each metric in the
normalized interval [0, 1], where 0 corresponds to the worst quality and 1 to the best quality. The functions we use to move from the native
range to the normalized range (Φ) and vice-versa (Φ−1) are shown in the two rightmost columns of the table. For unbounded metrics, qmax

and qmin refer to the highest and lowest quality values measured in the mesh. For details on the computation of each metric, the reader is
referred to [62].

7.1. Supported quality metrics510

There is a wide spectrum of different metrics that can
be useful to assess the quality and other characteristics of
a hex-mesh. Many of these metrics refer to the deviance
from the ideal shape, that is, a perfect cube having planar
faces, orthogonal angles and all edges with equal length.515

Broadly speaking, the larger the deviation from the ideal
shape, the more inaccurate the results produced by a FEA
simulations can be expected. In particular, elements with
nearly zero volume (i.e., degenerate) or negative volume
(i.e., inverted) may introduce a significant error, or even520

preclude the entire simulation [48]. For a discussion of
these metrics, the reader is referred to the recent interest-
ing study [63].

HexaLab supports all the quality metrics reported in
Verdict [62], that are the most widely adopted library in525

the field for the evaluation of finite elements. We report
them in Table 1.

7.2. Metric normalization

The supported metrics differ widely in range and be-
havior; for example the range is bounded for some mea-530

sure (for example, the Scaled Jacobian) and unbounded
for others (for example, cell volume); optimal value can be
the lowest or the highest value in the range.

In spite of this heterogeneity, in order to manage the
metrics in a consistent yet intuitive way, HexaLab inter-535

nally stores per-cell element values in a normalized inter-
val [0, 1], with the convention (where appropriate) that the
value 0 always corresponds to the worst quality, and the
value 1 to the best. To this end, we have designed, for
each metric i, an ad-hoc function Φi which maps the orig-540

inal range of that metric into the normalized interval. For
metrics with unbounded ranges, Φi is also a function of
the maximum and minimum values found in the current
mesh (which are updated at load time). All these mapping
functions are reported in Table 1.545

Thanks to this normalization, HexaLab will consistently
color the worst elements (for example, as red under “Jet”
color map), will consistently isolate the worst elements
with the quality filter, and will consistently account for
the worst elements in the right (or bottom) end of the his-550

tograms, regardless of the currently selected measure. The
normalized values, however, are only used internally and
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never directly exposed to the user: HexaLab always uses
the original values of the current metric on all histogram
labels, legends, and GUI elements (e.g. the box containing555

the threshold value of the quality filters). This is well-
defined as all our functions Φi are invertible (technically,
with the exception below).

The Scaled Jacobian is one of the most widely adopted
quality measures for hexmeshes, and is the default mea-560

sure in HexaLab. For this measure, which is defined in
the range [−1, 1], Φi simply clamps negative values to 0.
We consider this mapping more useful than a linear map-
ping from [−1, 1] into [0, 1]. First of all, Φi correctly as-
signs a very poor quality to cells with a Scaled Jacobian565

value close to zero. Also, cells with inverted (or degener-
ate) corners, which can be argued to be equally invalid in
hexmeshes, are clustered in one histogram bin (zero); con-
sequently, the first bin of the histogram counts inverted
(and degenerate) cells, and pushing the quality filter all570

the way to the right hides every cell but inverted (and
degenerate) ones.

8. Mesh structure Visualization

In a structured hex-mesh, internal vertices are shared by
eight cells, and internal edges by four cells; boundary edges575

(edges lying on the boundary of a mesh) are shared by two
cells, and boundary vertices by four. Elements (vertices
or edges) with a mismatching number of adjacent cells are
termed irregular. Irregular edges are necessarily organized
in strips which traverse the mesh from an irregular vertex580

to another (either on the surface or in the interior of the
mesh).

Similarly to irregular vertices on quad meshing, irregular
elements on hex-meshes characterize how cells are globally
organized. For example, a particular class of hex-meshes,585

called generalized polycubes [64], have no internal irreg-
ular edges. Internal irregular elements, often referred to
as “meshing singularities”, have been closely investigate
for their direct relationship with the subdivision of hex-
meshes into fully structured sub-blocks [65, 9]. In general,590

Figure 7: Sometimes, revealing (undigging) a few hidden cells pro-
duce an image which communicates the structure of the meshing in
a very intuitive way. Model courtesy of [14].

the number, disposition and connection of irregular edges
are linked to important properties of the hex-mesh.

HexaLab offers a variety of visualization modalities to
depict irregular elements. In each variant, different prim-
itives are used to convey the presence of irregular edges,595

and (some of them) associated info like their valence. All
the modalities are illustrated in Fig. 11.

We offer a series of visualization modalities for irregular
elements which range from lightly hinted to most infor-
mative (but also potentially cluttering and confusing the600

rest of the visualization). In the most informative modal-
ity, the irregular structure is visible in semi-transparency
through the cell elements, whereas with the lighter modes
it is only exposed in areas where cells are hidden by fil-
ters. The user selects one modality through a slider having605

as many discrete steps as the number of possible choices.
The leftmost step disables the irregular-element visualiza-
tion entirely, while the rightmost step corresponds to the
most informative modality.

9. Status snapshots610

The current “status” of the application, which includes
current settings for all visualization tools and camera pa-
rameters, is unambiguously described in textual format,
as JSON object. This includes, for example, the orienta-
tion and position of the slicing plane, the view direction,615

the used colors, and so on. The main intended use is to
ease direct comparisons between different hex-meshes (see
Fig. 12), and it is also the base for a number of additional
mechanisms:

Manual status copy-pasting: the user can copy the620

status to and from the system clipboard (via the copy
and paste keyboard shortcuts), and thus manually
transfer the visualization settings across simultane-
ously open instances of HexaLab (or across consec-
utive visualization sessions, storing them for further625

reference);

Image reproducibility: the status is automatically at-
tached as meta-data to every produced image (via a
snapshot tool), for future reference. Dragging a snap-
shot of a previous session into HexaLab, meta-data630

will be read and the status of the web application
automatically updated so as to reproduce the same
visual contained in the image. All the images con-
tained in this paper have been produced with this
tool. Exporting images from the original version of635

the manuscript and dragging them into HexaLab will
allow readers to see the same images in their browsers;

Manual parameter tweaking: as the setup is saved on
a text file, the user can manually edit every parame-
ter. While not intended as the main way to interact640

with HexaLab, this allows for full control (e.g. to pin-
point the orientation of the cutting plane, to select
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Figure 8: An example of regularization filter in action, with strengths ranging from 0 (left) to 4 (right): the boundary of the set of the cells
removed by the slicing plane become increasingly clean. Model courtesy of [15].

Figure 9: Left: no silhouette. Middle: flat silhouette. Right: semitransparent silhouette. Model courtesy of [49].

Parula Jet Red-Blue

Figure 10: Different color mappings on hex quality (top), and asso-
ciated histograms (bottom). Model courtesy of [2].

certain cells by numeric ID, to choose colors). Secon-
darily, it partially exempts the graphic interface from
the need to provide full access to each parameter, al-645

lowing us to simplify it;

10. Implementation

The software architecture of HexaLab loosely follows the
Model-View-Controller design pattern [66]. Two modules
are integrated in a single web application: a back-end mod-650

ule that deals with mesh input/output, storage, and ma-
nipulation, and a front-end module for the rendering and
the GUI.

10.1. Internal hex-mesh representation

Different representations for polyhedral meshes offers655

several tradeoffs between navigation efficiency and mem-
ory footprint. Our requirements include the necessity
to keep the latency time low when the current filtering
changes and a new quad-mesh boundary of visible elements
needs to be produced. We rely on assumption that the660

mesh connectivity is fixed, and that the mesh resolution is
in the range of around 105 cell elements.

We opted to store the hex-mesh MV as a generalized
map. One reason is that homogeneous array sizes simplify
algorithms; also, this makes HexaLab amenable to include665

support of non hexahedral polyhedra in future expansions.

Generalized maps are a slightly more general but less
compact version of a combinatorial map; HexaLab uses
its own implementation, although other implementations
are available [67, 68]. They are formalized in [69, 70], and670

here we only briefly recap them. The mesh connectivity is
stored as a collection of “darts”, which are a generaliza-
tion of the half-edge structure commonly used for polyg-
onal meshes. A dart represents a topological location on
the mesh, and consists of a collection of four indices to one675

3D, 2D, 1D, and 0D element of the mesh (i.e. a cell, a face,
an edge, and a vertex). Additionally, each dart stores a set
of four indices (called “involutions”) pointing to the dart
reached if any of its four elements is swapped (invalid in-
dices are stored at darts at mesh boundaries). Involutions680

provide an efficient mean to navigate over the mesh. We
precompute and store darts immediately after mesh im-
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Figure 11: The sequence of visualization modes for the irregular structures. In increasing order of amount of information provided: “wire”
mode (default), i.e. as lines colored as a function of edge arity; “barbed wires” mode, i.e. with adding all edges stemming out from the
irregular edges; “paper” mode, where incident faces are also partially shown. In modalities variants shown on bottom, HexaLab reveals in
transparency elements which would otherwise be occluded by currently un-filtered hexas. Model courtesy of [1].

Figure 12: Two alternative meshings for the Rockerarm model (in
this instance, the input and output of the technique [2]) visually
compared in HexaLab by using with the same status. The status has
been copy-pasted across visualization sessions.

port, leveraging standard associative container structures
(such as black-red trees). Finally, we store attributes at
mesh elements, such as (x, y, z) positions at vertices, nor-685

mal vectors at faces, and “filtered-status” (a Boolean vari-
able) at cells.

10.2. Rendering algorithms

The extracted quad-mesh MS is stored as an indexed
triangular mesh, duplicating vertices when we have to rep-690

resent normal or color discontinuities along edges. Quads
are simply split into triangle pairs along an arbitrary diag-
onal (although rendering methods which bypass the need
for this arbitrary split have been proposed, [71]).

By default, Ambient Occlusion (AO) is the only illumi-695

nation component used in HexaLab and substitutes direct
illumination entirely. Similarly to [55], AO terms are it-
eratively computed in object space, by superimposing a
sequence of shadow-maps, one for each probe light direc-
tion: in our case, we accumulate unblocked light, weighted700

by the Cosine law, directly at vertices of MS ; note that
this potentially produces discontinuity of ambient occlu-
sion factors at normal discontinuities, as expected. We
use a set of 1024 probe lights directions, which sample
the unit sphere in an approximately uniform way, and are705

randomly constructed approximating a blue noise distri-
bution. All renderings, including of the shadow-map, and
the accumulate light on the per-vertex AO terms, are per-
formed in GPU, leveraging WebGL.

AO terms are updated in background, accumulating710

contributions from light probes without compromising
interactivity. After any user-triggered update of MS ,
buffered AO terms are discarded, and their computation
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Figure 13: Boundary polygons produced for a hexacell (to be ren-
dered and lit). Top: topological subdivision and geometrical dis-
placement. Bottom: examples of the produced polygons for four
different configurations of six, four, three, and one “exposed” ver-
tices.

restarted. We wait that at least six light probes are ac-
cumulated in the AO terms before using them in any ren-715

dering; before then, we fall back screen-space AO approx-
imation [59, 60, 61].

10.3. Polygonal mesh extraction

After each user filter operation, the hidden cells are re-
moved, then HexaLab dynamically extracts a polygonal720

surface-mesh MS to be globally lit and rendered from
MV .

In darkness-coded edges mode, MS is simply composed
of the quad faces of MV separating one filtered and one
unfiltered cell ofMV . In fissure and rounded mode, visible725

cells undergo certain spatial deformations, affecting both
the polygon connectivity and the geometry ofMS , and re-
quiring specialized algorithms to extract it. Specifically, in
fissure mode, cells are shrunk, forming gaps around quads
of MV ; in rounded mode, cells edges are rounded, form-730

ing, as a side effect, small tubular gaps around edges of
MV .

For the latter two modes, our mesh extraction algorithm
consists of two steps: first we identify the vertices of MV

which lie on its boundary (given the current filtering), and735

we label them as exposed ; next, we process any cell with at
least one exposed vertex, and we add vertices and polygons
toMS according to the exposed status of the eight corner
vertices of that cell, as detailed in Sec. 10.3.1 and 10.3.2
below.740

In all modes, MS is always a closed and geometri-
cally watertight polygonal mesh. Its vertices are pro-
duced with positions, base color, and normals (used by
the global lighting). In darkness-coded edges and fissure
mode, we employ flat shading, so each quad of MS in-745

dexes its own instances of the vertices (producing hard
creases between all neighboring faces). In rounded mode,
we employ smooth shading, and polygons of MS belong-
ing to the same cell index share vertices (so hard creases
only appears between cells).750

10.3.1. Mesh extraction in Fissure mode

We produce a quad for each cell face sharing at least
one exposed vertex (producing all four MS vertices for
that face, irrespective of the “exposed” status of the cor-
responding MV vertex). Exposed vertices only are then755

moved toward the barycenter of the cell, covering a small,
user-selected percentage of the distance. This way, inter-
cell gaps are formed, but only in the proximity of the
boundary of the visible parts of MV ; because the unex-
posed vertices are kept in their original positions, the gaps760

close going toward the internal portions of the hex-mesh,
and MS has no element at all in the more internal parts.

This introduces an approximation, as in reality every
side of every cell of MV would be exposed due to all fis-
sures forming one connected empty space. The visual ef-765

fect of the approximation is, however, extremely small, be-
cause it takes place in regions which are typically both oc-
cluded by more superficial elements and made dark by the
global lighting. The approximation drastically improves
performances.770

Because vertices are moved toward the barycenter of the
respective cell covering a fixed proportion of the distance,
the schema automatically adapts to varying sizes of the
cells (e.g. narrower gaps are formed around smaller cells).

10.3.2. Mesh extraction in Rounded mode775

In this mode, we subdivide each side of the processed
cell into into 3 × 3 squared sub-faces; this produces four
additional vertices at each cell face, and two additional
vertices at each cell edge (see Fig. 13). The vertices on
the edges and corners of the cell are displaced toward the780

barycenter of the respective edges to produce the actual
rounding (similarly to the previous case, this makes the
size of the roundings to automatically adapt to the local
size and shape of the processed cell).

A side face (blue in Fig. 13) is produced only when all785

the four corresponding MV vertices are exposed. A set
of three corner faces (red in Fig. 13) is only produced
when the corresponding cell vertex is exposed. A set of
two edge faces (green in Fig. 13) is only produced if either
or both the vertices on the corresponding cell edge are790

exposed; when only one is exposed, then the two faces
are reduced to triangles, and the unexposed vertex is not
displaced and kept to the original vertex position (Fig. 13,
bottom). In this way, the tubular gaps around edges are
artificially closed going toward the interior parts, leaving795

MS geometrically watertight.
Similarly to the fissure mode, we willingly introduce an

approximation to improve rendering performances. The
visual impact of such an approximation is completely or
almost completely negated both by occlusions and by lack800

of light reaching the affected parts.
A vertex is added to MS only if it belongs to at least

one produced face. The vertices of the side face (blue in
Fig. 13) are assigned constant normals, making that face
appear visually flat. The normal interpolation is limited805

to edges and corner faces (green and red in Fig. 13).
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10.4. Supported file formats

HexaLab supports two among the most widely used
file formats for the exchange of hex-meshes, namely the
MEDIT format [72] (.mesh filename extension) and the810

VTK library format [73] (.vtk filename extension). Cur-
rently, HexaLab importer parses only the hexahedral ele-
ments expressed in these two formats, ignoring any other
polyhedra (e.g., tetrahedra, pyramids and wedges).

10.5. Batch processing815

HexaLab can load a zipped archive containing a collec-
tion of hex-meshes, and produces a zipped archive contain-
ing one screenshot (and one quality histogram) for each
model, all sharing the same settings.

10.6. Employed Tools820

The back-end, that deals with mesh input/output and
geometric and topologic analysis, is developed in C++ us-
ing Eigen library [74] for the linear algebra computations;
for allowing the execution of C++ code on the browser
client we used Emscripten [75] to “transpile” it in asm.js825

(a low-level subset of JavaScript) that is recognized and
efficiently executed by modern js engines. The front-end,
shown in Fig. 1, is developed directly in JavaScript, using
standard web tools (HTML 5.0, CSS, AJAX, and jQuery)
for the GUI, webGL and Three.js for the rendering and830

the trackball, and Plotly.js [76] for the graph plots. The
code has no other dependencies. We use GitHub as a open-
source repository for the code and the meshes and, thanks
to the fact that it is a pure client web application, also for
the web hosting.835

11. Conclusions

We presented a novel tool for interactive hexahedral
mesh visualization and first analysis, which combines a
number of highly customizable tools to explore different
features and characteristics of the inspected mesh. It pro-840

duces readable images which convey both shape, quality,
and the topological structure of the inspected hex-meshes,
including its internal parts, plus simple numeric measures
in form of graphs and data (according to a number of
widely accepted measures). To this end, also HexaLab in-845

troduces several new visualization modalities specifically
designed for this purpose, and employs a real-time global
illumination model. It also provides direct access to a
repository of results from several recent State-of-the-Art
hex-mesh creation and processing solutions, thus easing850

further research by providing an easy way to compare
against them. All data and images produced with Hexa-
Lab are easily reproducible and can be streamlined, specif-
ically all the images shown in this paper can be re-created
by loading into HexaLab the appropriate model and drag-855

ging the png file of each figure over the application window.

The tool is immediately available to researchers and
practitioners in the form of an easily accessible 3D web-
application (which is cross-platform, cross-browser, and
cross- vendor, and requires no installation), and as an860

Open-Source project. We expect that it can be employed,
in research, as a tool to gain insights on hex-meshes and
therefore on the algorithms to produce, manipulate, and
process them, and also to help the dissemination of engi-
neering and scientific results (by producing high quality865

images fit for scientific articles and presentations).

11.1. Current limitations and future work

As mentioned in Sec. 4, one main planned activity con-
sists in keeping the repository of State-of-The-Art hex-
meshes up-to-date. There are several directions in which870

HexaLab can be expanded, overcoming a few existing lim-
itations.
Generalization to polyhedral meshes: currently
HexaLab only supports pure hex-meshes. Other impor-
tant classes of polyhedral meshes include (pure) tetraheda875

meshes, and hybrid hex-dominant meshes. These classes
are the focus of recent research works (e.g. [77] and [28] re-
spectively). Many of the mechanisms employed by Hexa-
Lab are, in principle, extendible to them, including the
filtering tools, the visualization modes, the internal data880

structures. Quality measures would have to be adapted,
and it is not clear how to do so for hex-dominant meshes.
GUI improvements: in this project, we did not focus
on GUI design, although preliminary testing with fellow
researchers indicates that our GUI performs satisfactorily885

for our purposes. A deeper design analysis, including user
studies, can be performed in the future to provide Hexa-
Lab with an improved interface. Note that this tool is in-
tended for practitioners (modellers, architects, structural
engeneer, resarchers on fields such as geometric processing890

and 3D computer graphics) and therefore its GUI targets
expert users.
Dynamic datasets: HexaLab currently only supports
static meshes. In reality, there is a research interest on
dynamic datasets, which could be for example provided895

for visualization as different key-frame meshes sharing the
same connectivity but different geometry, to be interpo-
lated.
Attributes: HexaLab currently focus on the shape of
the mesh only, and its visualization disregards attributes900

which are often defined on its elements (such as vertices,
or cells).
Trackball: HexaLab currently employs a standard
sphere-based trackball to let the user orient the mesh,
but a “generalized trackball” [78] could be employed in905

its place.
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