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Abstract—A generalized continuous wave synthetic aperture
radar (GCW-SAR) concept is proposed in this paper. By using
full-duplex (FD) radio frontend and continuous wave (CW)
signalling, the GCW-SAR system can overcome a number of
limitations inherent within existing SAR systems and achieve
high resolution and wide swath remote sensing with low power
signal transmission. Unlike the conventional pulsed SAR and the
frequency modulated continuous wave SAR (FMCW-SAR), the
GCW-SAR reconstructs a radar image by directly correlating
the received one-dimensional raw data after self-interference
cancellation (SIC) with predetermined location dependent refer-
ence signals. A fast imaging algorithm, called piecewise constant
Doppler (PCD) algorithm, is also proposed, which produces the
radar image recursively in the azimuth direction without any
intermediate step, such as range compression and migration com-
pensation, as required by conventional algorithms. By removing
the stop-and-go assumption or slow time sampling in azimuth, the
PCD algorithm not only achieves better imaging quality but also
allows for more flexible waveform and system designs. Analyses
and simulations show that the GCW-SAR tolerates significant
self-interference and works well with a large selection of various
system parameters. The work presented in this paper establishes
a solid theoretical foundation for next generation imaging radars.

Index Terms—Synthetic aperture radar (SAR), full-duplex
(FD), continuous wave (CW), high resultion and wide swath,
frequency modulated continuous wave SAR (FMCW-SAR) and
self-interference cancellation (SIC).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is capable of generating
high-resolution remote sensing images in all-day and all-

weather conditions and has been widely used in many civil and
defense applications [1]–[3]. Mounted on a moving platform,
SAR transmits a wideband signal and receives the echoes
reflected from the observed targets. High range resolution can
be obtained from the wide bandwidth of the transmitted signal,
and high azimuth resolution relies on the Doppler frequency
shift presented in the received signals due to the relative
motion between platform and targets.

In a conventional pulsed SAR, the platform moves with a
constant velocity and transmits a pulse train with appropriate
pulse repetition frequency (PRF). It then receives and stores
the echoes from the observed scene. During the reception
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mode, the transmission must be stopped to prevent interfer-
ence to the received echoes. Switching between transmission
and reception modes alternately not only makes the system
operation complicated but also increases the peak transmission
power [4]. In addition, the pulsed SAR system also suffers
from some inherent weaknesses, such as the constraint on
PRF selection [5]. On one hand, to achieve wider swath
radar image, a lower PRF is required. On the other hand, to
achieve higher azimuth resolution, the PRF should be higher.
Such conflicting requirement known as the minimum antenna
area constraint [5] renders it necessary to have a trade-off
between azimuth resolution and swath width. Moreover, the
PRF should be also properly selected to avoid the interference
from the nadir reflectors as well as those with echo propagation
delays longer than a pulse repetition interval due to the
sidelobes of the transmission signal beam. Consequently, it
is much more difficult for a conventional SAR to reconstruct
radar images with both wider unambiguous swath and higher
azimuth resolution.

A number of new SAR systems and novel imaging algo-
rithms have been proposed over the past decades to solve the
above mentioned problems. An idea solving the high peak
transmission power problem is the combination of frequency
modulated continuous wave (FMCW) signalling and SAR
techniques, leading to a lightweight cost-effective imaging
sensor, i.e., FMCW-SAR [4], [6], which can operate at a
constant low transmission power. In the FMCW-SAR system,
the radar transmits linearly frequency modulated (LFM) signal
periodically, and then the received signal is mixed with a
replica (reference signal) of the transmitted signal and down-
converted to baseband to produce the beat signal via low-
pass filtering. The frequency in the beat signal determines the
range of a target. Although FMCW-SAR is a continuous wave
(CW) system, it is nowadays processed like a pulsed SAR,
adopting separate range compression and slow time sampling
in azimuth, which introduces unnecessary azimuth ambiguities
and range restrictions.

The classical methods dealing with the restrictions for
achieving high resolution and wide swath are spotlight SAR
and ScanSAR respectively. Spotlight SAR improves the az-
imuth resolution at the cost of noncontiguous coverage along
the track [7], while ScanSAR achieves wider swath at the cost
of impaired azimuth resolution [8]. In recent years, multiple-
input and multiple-output (MIMO) technology has been ap-
plied to SAR imaging, and more degrees of freedom and
improved spatial resolution are obtained from the advantages
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of MIMO architecture [9]–[15]. For example, displaced phase
center antenna (DPCA) technique [12] is adopted to enable
an efficient suppression of azimuth ambiguity that allows an
unambiguous wider swath imaging. The digital beamforming
technique with multiple receivers [13]–[15] separates the wide
swath into multiple subswaths so that the echo delay differ-
ence is essentially reduced. Unfortunately, these techniques
still adopt the stop-and-go assumption and the slow time in
azimuth. Therefore, they cannot break the trade-off between
azimuth resolution and range ambiguity.

In this paper, the concept of continuous wave imaging is
revisited and a generalized continuous wave SAR (GCW-
SAR) is proposed for future high resolution remote sensing.
The GCW-SAR is a combination of full-duplex (FD) radio
technique and CW radar. In an FD system, transmission and
reception are conducted at the same time in the same frequency
band since the received signal can be extracted after self-
interference cancellation (SIC) [16]–[18]. Applying SIC to
SAR system, both transmission and reception modes can work
simultaneously and the image of an observed scene can be
recovered from the received CW echo signal. Unlike the
FMCW-SAR or conventional pulsed SAR, the slow time in
azimuth for the separation of range and azimuth information is
no longer adopted and various system restrictions are removed.
The new system obtains only one-dimensional raw data by
sampling the received echoes at an appropriate sampling rate
according to the signal bandwidth and then retrieves the
range and azimuth information jointly. Assuming the same
radar sensitivity, the GCW-SAR will offer lots of potential
advantages over conventional SARs. Firstly, transmitting CW
signal retains the same advantages of low power operation
as FMCW-SAR. Secondly, it breaks the trade-off between
azimuth resolution and range ambiguity since the azimuth
sampling rate is no longer swath dependent and can be as
high as the range one (i.e., no slow time any more). Thirdly,
jointly retrieving range and azimuth information removes some
unnecessary intermediate steps in SAR signal processing such
as range compression and migration. Moreover, the elimina-
tion of slow time in azimuth makes the transmitted waveform
design much more flexible.

Self-interference cancellation can be generally achieved in
three domains: propagation domain, analog-circuit domain,
and digital domain [18]. To ensure simultaneous transmission
and reception, the GCW-SAR system can adopt any or all
of the appropriate SIC techniques. In propagation domain,
if necessary, the system can use two separate antennas for
transmission and reception respectively, and provide as high
as possible isolation between transmitted and received signals
through exploiting various signal propagation characteristics
such as path-loss [19], [20], cross-polarization [21], [22], and
antenna directionality [21], [22]. In analog-circuit domain,
various cancellation techniques [23]–[25] can suppress self-
interference in the analog receive-chain circuitry before the
receiver’s analog-to-digital converter (ADC). In digital do-
main, the self-interference can be easily removed from the final
reconstructed image since it represents a near-field reflection
which is outside the transmission beam footprint. From the
analysis and simulation results, the self-interference in digital

domain has negligible impact on the imaging quality even at a
signal-to-interference ratio (SIR) of -45 dB in airborne case.
Consequently, the only requirement for SIC in GCW-SAR is
that the residual self-interference should be captured within
the receiver’s ADC dynamic range. For example, an ADC with
10 effective number of bits (ENoB) can have a dynamic range
of 60 dB. A number of SIC techniques [19]–[25] have been
proposed in recent years, and a total of 90 dB cancellation
can be achieved in propagation and analog-circuit domains,
which ensures that the GCW-SAR principle can be applied in
airborne based SARs. For example, in a practical FMCW-SAR
[6], the transmit power is 18 dBm, and the receiver noise floor
is at -90 dBm. The above mentioned -45 dB SIR requirement
implies that only 63 dB SIC is required before ADC. Consid-
ering the FM noise and other practical imperfection effects,
more SIC is necessary especially for spaceborne SARs due to
longer signal propagation and possibly higher transmit power.
We believe that the increasingly better suppression in self-
interference will enable the implementation of such systems
in the future.

Regarding imaging processing, the GCW-SAR in principle
adopts the same time domain correlation or matched-filtering
approach which is also known as back-projection [26]–[32].
However, unlike the back-projection algorithm (BPA) used in
conventional SAR, the stop-and-go assumption or slow time
concept is abandoned in GCW-SAR and the image is recon-
structed from the one-dimensional raw data directly without
the range compression as an intermediate step performed in
slow time [26]. In doing that, the GCW-SAR system produces
a set of reference signals over the aperture time based on
the transmitted signal and the locations of the pixels to be
imaged, and then focuses each image point by performing
cross-correlation of the received signal with the corresponding
reference signal. A piecewise linear approximation to the
range between radar transmitter and target within the synthetic
aperture is also adopted, leading to a complexity reduced
algorithm, called piecewise constant Doppler (PCD) algorithm.
Analysis and simulation demonstrate its superior performance
over conventional methods. Note that this paper only describes
the stripmap GCW-SAR (single-antenna, side-looking and
constant antenna pointing direction) to illustrate the proposed
principle. The other GCW-SAR modes will be studied in our
future work.

The remainder of this paper is organized as follows. In
Section II, the principle of GCW-SAR and the ideal matched
filtering based one-dimensional data structure are introduced.
The desired imaging ambiguity function is also analyzed
accordingly. The PCD algorithm is proposed in Section III
and its fast implementation and complexity analysis are also
presented in details. Section IV shows the simulation results of
GCW-SAR performance with the proposed PCD algorithm and
provides the performance analyses and comparisons, including
imaging qualities under various self-interference levels in
digital domain and the impacts of the parameters used in PCD
algorithm. Finally, Section V concludes this paper with a short
discussion.
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Fig. 1. GCW-SAR geometry and image reconstruction process in principle.

TABLE I
GCW-SAR PARAMETERS

Symbols Definitions
t Time variable
Rc Range from the antenna to the beam footprint center

r(t, x, y) Slant range from the antenna to an arbitrary point P (x, y)
σ(x, y) Radar cross section (RCS) of point P (x, y)
c, v Speeds of light and radar platform
T Traveling time over the synthetic aperture
Tr Transmitted chirp signal repetition interval
Ts Sampling interval of received signal
W , L Range and azimuth widths of the beam footprint respectively
Wa, La Height and width of the antenna aperture
∆x, ∆y Pixel spacings in x and y axies respectively

θ Beam incident angle
λ, fc Transmit carrier wavelength and frequency respectively
δx, δy Azimuth and range resolutions respectively

II. GCW-SAR PRINCIPLE

In this section, the geometry of a stripmap GCW-SAR is
presented, followed by the imaging algorithm description and
ambiguity function analysis.

A. System Geometry

The mathematical symbols and their definitions used in this
paper are given in Table I. The GCW-SAR system geometry
and image reconstruction process are illustrated in Fig. 1. The
radar, at a height h0, travels at a constant speed v in the
x-direction and the origin (0, 0) is located at the center of
the beam footprint, which is illustrated as the shaded area.
The coordinate of an arbitrary point P in the beam footprint
is (x, y) in Fig. 1. The round-trip delay time for the wave
propagation varies as a function of time t. For simplicity, the
difference between forward and back trips can be negligible
[33] and the instantaneous slant range is expressed as

r(t, x, y) =
√

(Rcsinθ + y)2 + (x− vt)2 + h2
0 (1)

where t ∈ (xv −
T
2 ,

x
v + T

2 ) and T is equal to L/v.
In a GCW-SAR, the baseband transmitted waveform s(t) is

up-converted to the carrier frequency and transmitted contin-
uously. After self-interference cancellation, the received raw
GCW-SAR data can be represented as a one-dimensional
continuous wave signal sr(t), which is a superposition of a
large number of reflected echoes from the beam footprint, i.e.,

sr(t) =

∫ vt+L
2

vt−L2

∫ W
2

−W2
σ(x, y)s(t− 2r(t, x, y)

c
)

e−j
4π
λ r(t,x,y)dydx

(2)

where the center of beam footprint is (0, vt) and σ(x, y) is
the radar cross section (RCS) of the image point (x, y). For
simplicity, we only consider the flat terrain in this paper. The
non-flat terrain may lead to the height-incurred error [13].
In conventional SAR, this problem can be resolved by using
antenna array on receiver with digital beamforming technique
[13], which can be also applied to GCW-SAR. Further three-
dimensional GCW-SAR imaging will be studied in our future
work.

B. Image Reconstruction

Following the stop-and-go assumption and the slow time
sampling in azimuth, the conventional SAR image reconstruc-
tion is generally made of two separate range and azimuth
compressions. Such imaging processing is not suitable in
GCW-SAR, since the one-dimensional raw data involve both
range and azimuth modulations which cannot be separated
over longer pulse repetition interval for wider swath imaging.
Therefore, both time delay and Doppler frequency shift of
the received raw data should be considered jointly during the
imaging process.

In the context of GCW-SAR, the ideal image reconstruction
process from the one-dimensional raw data is briefly described
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as follows. The complexity-reduced algorithm will be pre-
sented in details in the next section.

For an arbitrary point P (xm, yn) in the transmitted signal
beam footprint, GCW-SAR produces a location dependent
reference signal and then recovers the RCS, σ(xm, yn), by
passing the received signal through a matched filter, which is
expressed as

I(xm, yn) =

∫ xm
v +T

2

xm
v −

T
2

sr(t)s
∗(t− 2r(t, xm, yn)

c
)

ej
4π
λ r(t,xm,yn)dt

(3)

where I(xm, yn) is the output of the matched filter, the asterisk
∗ indicates complex conjugation and r(t, xm, yn) indicates
the range from the radar antenna to the point (xm, yn).
Based on (3), the image reconstruction process in principle
can be described as follows. Firstly, assuming that the beam
footprint is filled with a set of uniformly distributed point
scatterers, whose spacings along x and y axises are ∆x and ∆y
respectively, the pixels in the final image are arranged as a two-
dimensional matrix. Secondly, the expected received signals
from these pixels are used as the location dependent reference
signals to be used in the matched filters. Thirdly, after the radar
collects all the raw data over one synthetic aperture distance
in azimuth direction, a set of pixel values in range direction
for a given azimuth coordinate can be obtained by performing
correlation between the received signal and the corresponding
reference signals. Finally, as the GCW-SAR moves on in the
azimuth direction, consecutive sets of pixel values in range
direction can be obtained and a two dimensional image can
be finally reconstructed. This process is also shown in Fig. 1.

C. Ambiguity Function

Further analysis of (3) can be performed to relate the image
output to an ambiguity function which is defined as a two-
dimensional function showing a distorted image of a point
target [34], [35]. Substitution of (2) into (3) gives

I(xm, yn) =

∫ xm
v +T

2

xm
v −

T
2

∫ vt+L
2

vt−L2

∫ W
2

−W2
σ(x, y)s(t− 2r(t, x, y)

c
)

· s∗(t− 2r(t, xm, yn)

c
)ej

4π
λ (r(t,xm,yn)−r(t,x,y))

· dydxdt

=

∫ xm+L

xm−L

∫ W
2

−W2
Ax,y(xm, yn)σ(x, y)dydx

(4)

where

Ax,y(xm, yn)

=

∫ xm
v +T

2

xm
v −

T
2

s(t− 2r(t, x, y)

c
)s∗(t− 2r(t, xm, yn)

c
)

· ej 4π
λ (r(t,xm,yn)−r(t,x,y))dt

(5)

is the ambiguity function of the point (x, y), which can be
considered as a weighting function on the RCS σ(x, y). The
output of the matched filter is actually the weighted average

of RCS over two consecutive beam footprints along azimuth
direction.

With the slow time sampling in azimuth, the range and
azimuth resolutions in conventional SARs have been derived
in the literature [34]. However, under the one-dimensional data
structure without slow time involved, the derivation of the
range and azimuth resolutions requires a different approach,
which is provided as follows.

Firstly, the slant range defined in (1) can be approximated
as

r =
√
R(y)2 + (x− vt)2 ≈ R(y) +

(x− vt)2

2R(y)
,

t ∈ [
x

v
− T

2
,
x

v
+
T

2
]

(6)

where R(y) =
√

(Rcsinθ + y)2 + h0, which is valid when
|x− vt| � R(y) is satisfied.

Since the received echoes are the far-field reflections,
and the slant range for any pixel satisfies the condition
r(t+ xm

v , xm, yn) = r(t, 0, yn), the ambiguity function of an
arbitrary point (xm, yn) can be related to the one of the origin
(0, 0) as Axm,yn(x, y) ≈ A0,0(x−xm, y−yn). For simplicity,
we only consider the ambiguity function at the origin (0, 0)
which can be expressed as

A0,0(x, y)

=

∫ T
2

−T2
s(t− 2r(t, 0, 0)

c
)s∗(t− 2r(t, x, y)

c
)

· ej 4π
λ (r(t,x,y)−r(t,0,0))dt

≈
∫ T

2

−T2
s(t+

2(r(t, x, y)− r(t, 0, 0))

c
)s∗(t)

· ej 4π
λ (r(t,x,y)−r(t,0,0))dt.

(7)

It is apparent that the ambiguity function closely relates to
the range difference r(t, x, y)− r(t, 0, 0). In this section, two
cases of the ambiguity function A0,0(0, y) and A0,0(x, 0)
are considered respectively: the first one indicates the range
resolution and the second one indicates the azimuth resolution.

1) Range resolution: When x = 0, r(t, 0, y)− r(t, 0, 0) ≈
(R(y)−Rc)(1− (vt)2

2R(y)Rc
) ≈ R(y)−Rc since the term (vt)2

2R(y)Rc
can be neglected as Rc >> L. Eq. (7) can then be expressed
as
A0,0(0, y)

≈ ej 4π
λ (R(y)−Rc)

∫ T
2

−T2
s(t+

2(R(y)−Rc)
c

)s∗(t)dt.
(8)

Assuming that s(t) is any normalized low pass baseband
signal,

∫ T
2

−T2
|s(t)|2dt = 1, with constant energy spectrum in

its bandwidth B, its auto-correlation function will be a sinc
function. Consequently, Eq. (8) can be further expressed as

A0,0(0, y) ≈ ej 4π
λ (R(y)−Rc) sin(π 2B

c (R(y)−Rc))
π 2B

c (R(y)−Rc)
. (9)

The range resolution δy is determined by R(y) − Rc = c
2B

which is the first null point in the ambiguity function. Given
that the beam incident angle is θ, we have

δy =
c

2Bsinθ
. (10)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, JULY 2017 5

2) Azimuth resolution: When y = 0, the range difference
can be approximated as r(t, x, 0) − r(t, 0, 0) ≈ x2−2vxt

2Rc
and

the ambiguity function can be expressed as

A0,0(x, 0) ≈
∫ T

2

−T2
ej

4π
λ
x2−2vxt

2Rc s(t+
x2 − 2vxt

cRc
)s∗(t)dt

=

∫ T
2

−T2
ej

4π
λ
x2−2vxt

2Rc s(t+
1

fc

x2 − 2vxt

λRc
)s∗(t)dt

(11)

where fc = c/λ is the carrier frequency. Assuming that s(t)
is a normalized phase only signal, s(t) = 1√

T
ejφ(t), Eq. (11)

can be simplified as

A0,0(x, 0)

=
1

T

∫ T
2

−T2
ej

4π
λ
x2−2vxt

2Rc ej(φ(t+ 1
fc

x2−2vxt
λRc

)−φ(t))dt

≈ 1

T

∫ T
2

−T2
ej2π

x2−2vxt
λRc ejφ

′
(t) 1

fc

x2−2vxt
λRc dt

=
1

T

∫ T
2

−T2
ej2π

x2−2vxt
λRc

(1+
φ
′
(t)

2πfc
)dt

≈ 1

T

∫ T
2

−T2
ej2π

x2−2vxt
λRc dt = ej

2πx2

λRc

sin(π 2L
λRc

x)

π 2L
λRc

x

(12)

where φ
′
(t) is the first order derivative of φ(t). Because 2πfc

is far larger than the maximum φ
′
(t) which is less than 2πB,

φ
′
(t)

2πfc
is neglected in deriving (12). The azimuth resolution δx

is determined by x = λRc
2L which is the first null point in the

ambiguity function and hence

δx =
λRc
2L

=
La
2

(13)

where λRc/L is equal to the antenna aperture La.
Though the range and azimuth resolutions of the GCW-SAR

are the same as those of the conventional pulsed SAR and
FMCW-SAR respectively, the above analysis clearly shows
the requirements of the transmitted signal, i.e., a constant
energy spectrum in the frequency domain and a constant signal
envelope in the time domain, under which the range and
azimuth resolutions are bounded by (10) and (13) respectively.
Note that in a conventional pulsed SAR and FMCW-SAR,
the transmitted signals must be a pulse train and a continu-
ous periodic CW with a carefully selected PRF respectively,
whereas for the GCW-SAR, the transmitted signal does not
have to be periodic. This enables great flexibility in signal
waveform design. With noise radar technologies, a noise
waveform can be also used as the transmitted signal [36].
However, it clearly does not satisfy all the above mentioned
requirements and hence cannot achieve the optimal range and
azimuth resolutions.

III. PIECEWISE CONSTANT DOPPLER ALGORITHM

With the general image reconstruction method described
in section II.B, integration over the entire synthetic aperture
time is necessary for each pixel in the GCW-SAR image. As
the amount of pixels in a high resolution and wide swath

image will be significant, the direct implementation of the
algorithm leads to a great computational complexity. However,
existing fast imaging algorithms designed for BPAs [26]–[32]
are not applicable to GCW-SAR, since they depend on the
two-dimensional raw data structure and also involve slow time
sampling in azimuth under the stop-and-go assumption. In this
section, we analyze the relationships between the correlations
of the adjacent pixels in azimuth direction and design a
complexity reduced approach which calculates the correlation
recursively after applying piecewise linear approximation to
the range curve.

A. Principle

The time delay of the received signal from an imaging point
(x, y) changes in response to its slant range r(t, x, y). Assum-
ing that the platform is moving at a constant speed in a straight
line, the variation of the slant range is equal to a parabola. In
order to deal with this nonlinear range curve, the parabola
can be divided into multiple linear segments linked end to
end. Therefore, the Doppler frequency shift in each segment
can be considered as a constant. According to (3), the image
I(xm, yn) of the pixel (xm, yn) involves integration over an
entire synthetic aperture time [−T2 + xm

v ,
T
2 + xm

v ]. If we divide
the time interval [−T2 ,

T
2 ] into P segments and define the time

instants at the two ends of the interval as well as the segment
joint points as tp = pTP for p = −P2 ,−

P
2 + 1, ..., P2 , the

pth segment of the synthetic aperture time can be denoted as
(xmv + tp,

xm
v + tp+1] and the corresponding correlation value

over this time interval can be calculated as

Ip(xm, yn)

=

∫ xm
v +tp+1

xm
v +tp

sr(t)s
∗(t− 2r(t, xm, yn)

c
)ej

4π
λ r(t,xm,yn)dt.

(14)

The image I(xm, yn) of the pixel (xm, yn) is thus expressed
as

I(xm, yn) =

P
2 −1∑
p=−P2

Ip(xm, yn). (15)

Now, we derive the correlation value Ip(xm+∆x, yn) over
the pth segment of a synthetic aperture time for the image point
(xm + ∆x, yn) in relation to Ip(xm, yn). In this segment, the
received echo from the image point (xm+∆x, yn) is made up
of two parts: the first one is received during the time interval
(xmv + ∆x

v + tp,
xm
v + tp+1] which is also used to calculate

Ip(xm, yn); the second one is received during the time interval
(xmv +tp+1,

xm
v + ∆x

v +tp+1]. Since r(t+ x
v , x, y) = r(t, 0, y),
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Fig. 2. Segmentation, linearization and their relationship with image reconstruction.

the image Ip(xm + ∆x, yn) can be expressed as

Ip(xm + ∆x, yn)

=

∫ xm
v +tp+1

xm
v + ∆x

v +tp

sr(t)s
∗(t− 2r(t, xm + ∆x, yn)

c
)

· ej 4π
λ r(t,xm+∆x,yn)dt

+

∫ xm
v + ∆x

v +tp+1

xm
v +tp+1

sr(t)s
∗(t− 2r(t, xm + ∆x, yn)

c
)

· ej 4π
λ r(t,xm+∆x,yn)dt

=

∫ tp+1

∆x
v +tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r(t,∆x, yn)

c
)

· ej 4π
λ r(t,∆x,yn)dt

+

∫ ∆x
v +tp+1

tp+1

sr(t+
xm
v

)s∗(t+
xm
v
− 2r(t,∆x, yn)

c
)

· ej 4π
λ r(t,∆x,yn)dt.

(16)

The slant range r(t,∆x, yn) in the pth segment can be
approximated as a linear function of t as

r(t,∆x, yn)

≈ r(tp +
∆x

v
,∆x, yn)

+
r(tp+1 + ∆x

v ,∆x, yn)− r(tp + ∆x
v ,∆x, yn)

tp+1 − tp
(t− tp −

∆x

v
)

= r(tp, 0, yn)− λ

2
fDp(yn)(t− tp −

∆x

v
)

= r(t, 0, yn) +
λ

2
fDp(yn)

∆x

v
(17)

where fDp(yn) = − 2
λ
r(tp+1,0,yn)−r(tp,0,yn)

tp+1−tp is defined as
the constant Doppler frequency shift for segment p. For
the same R(yn), the time delay difference in the baseband
reference signal between two adjacent pixels (xm, yn) and
(xm + ∆x, yn) can be neglected since |x − vt| << R(yn),

indicating s∗(t+ xm
v −

2r(t,∆x,yn)
c ) ≈ s∗(t+ xm

v −
2r(t,0,yn)

c ).
Eq. (16) thus can be re-written as

Ip(xm + ∆x, yn)

=

∫ tp+1

tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r(t,∆x, yn)

c
)

· ej 4π
λ r(t,∆x,yn)dt

−
∫ ∆x

v +tp

tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r(t,∆x, yn)

c
)

· ej 4π
λ r(t,∆x,yn)dt

+

∫ ∆x
v +tp+1

tp+1

sr(t+
xm
v

)s∗(t+
xm
v
− 2r(t,∆x, yn)

c
)

· ej 4π
λ r(t,∆x,yn)dt

=

∫ tp+1

tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r(t, 0, yn)

c
)

· ej 4π
λ (r(t,0,yn)+λ

2 fDp (yn) ∆x
v )dt

−
∫ ∆x

v +tp

tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r(t,∆x, yn)

c
)

· ej 4π
λ r(t,∆x,yn)dt

+

∫ ∆x
v +tp+1

tp+1

sr(t+
xm
v

)s∗(t+
xm
v
− 2r(t,∆x, yn)

c
)

· ej 4π
λ r(t,∆x,yn)dt

=Ip(xm, yn)ej2πfDp (yn) ∆x
v −

∫ ∆x
v

0

sr(t+ tp +
xm
v

)

· s∗(t+ tp +
xm
v
− 2r(t+ tp,∆x, yn)

c
)ej

4π
λ r(t+tp,∆x,yn)dt

+

∫ ∆x
v

0

sr(t+ tp+1 +
xm
v

)

· s∗(t+ tp+1 +
xm
v
− 2r(t+ tp+1,∆x, yn)

c
)

· ej 4π
λ r(t+tp+1,∆x,yn)dt.

(18)
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Fig. 3. Flow graph of PCD implementation for a given yn, where the ∆±τ denotes time delay or advance by τ .

Taking P = 4 as an example, the segmentation, linearization
and their relationship with the image reconstruction are shown
in Fig. 2. The dotted curves indicate the slant ranges of the
pixels (xm, yn) and (xm + ∆x, yn) respectively, which are
approximated as the solid linear segments. In any segment p,
the recursive imaging process is explained as follows:

1) Assume that the correlation Ip(xm, yn) in the interval
(tp + xm

v , tp+1 + xm
v ] has been obtained for the pixel

(xm, yn). To calculate the correlation in the integration
interval (tp+ xm

v + ∆x
v , tp+1+ xm

v + ∆x
v ] for the pixel (xm+

∆x, yn), we first compensate for the Doppler frequency
shift in the previously calculated Ip(xm, yn), which is
achieved by multiplying Ip(xm, yn) by ej2πfDp (yn) ∆x

v .
2) The second step is to remove the correlation obtained in

the interval (tp+ xm
v , tp+ xm

v + ∆x
v ] for the pixel (xm, yn).

3) Finally, add new signal correlation during the interval
(tp+1 + xm

v , tp+1 + xm
v + ∆x

v ] to obtain Ip(xm + ∆x, yn).

B. Implementation

To ensure the quality of the final image, we set the number
of pixels to N = 2W

δy
/ and M = L

Tsv
in range and

azimuth respectively. After the sampling of the demodulated
received signal, the data sequence is represented as sr(mTs)
and the coordinate of the pixel (xm, yn) can be rewritten as
(mTsv, yn). The number of samples of the received signal in
each segment is set to K, so that tp+1 = tp +KTs.

Based on (18) and letting ∆x = Tsv, the corresponding

recursive process is further derived as

Ip((m+ 1)Tsv, yn)

= Ip(mTsv, yn)ej2πfDp (yn)Ts − Tssr(mTs + tp + Ts)

· s∗(mTs + tp + Ts −
2r(tp + Ts, Tsv, yn)

c
)

· ej 4π
λ r(tp+Ts,Tsv,yn) + Tssr(mTs + tp+1 + Ts)

· s∗(mTs + tp+1 + Ts −
2r(tp+1 + Ts, Tsv, yn)

c
)

· ej 4π
λ r(tp+1+Ts,Tsv,yn)

= Ip(mTsv, yn)ej2πfDp (yn)Ts − Tssr((m+ 1)Ts + tp)

· s∗((m+ 1)Ts + tp −
2r(tp, 0, yn)

c
)ej

4π
λ r(tp,0,yn)

+ Tssr((m+ 1)Ts + tp+1)

· s∗((m+ 1)Ts + tp+1 −
2r(tp+1, 0, yn)

c
)

· ej 4π
λ r(tp+1,0,yn).

(19)

Taking P = 4 as an example, the flow graph of the PCD
implemention is shown in Fig. 3. We see that, instead of
performing correlation for each pixel individually, the PCD
algorithm updates the correlation recursively and thus saves
much data storage and reduces the computational complexity.

C. Complexity

Existing SAR imaging algorithms come in two broad
classes: frequency domain methods, e.g., range Doppler al-
gorithm (RDA), and back-projection algorithms. For the sake
of comparison, an N×N final image is reconstructed by using
RDA, conventional BPAs and PCD algorithm respectively.

The RDA adopts range and azimuth compressions with
range cell migration compensation (RCMC). The numbers
of complex multiplications required for one-dimensional fast
Fourier transform (FFT) are Nlog2N [37]. Hence, the range
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Fig. 4. SIR performance in an airborne GCW-SAR: (a), (b), and (c) show the GCW-SAR images of a point scatterer with PCD algorithm at SIR=−45dB,
−55dB, and −65dB respectively.

and azimuth compressions need totally 4N2log2N + 2N2

complex multiplications, including FFT and inverse FFT.
Supposing that the number of complex multiplications re-
quired to interpolate one data sample is Ninterp, the total
number of complex multiplications required for the RDA is
4N2log2N +N2 · (Ninterp + 2).

The conventional BPA reconstructs each pixel of the SAR
image individually from the range compressed SAR data. The
RCS of each image pixel can be obtained by the correlation
over the synthetic aperture, thus the azimuth compression
consists of N complex multiplications. Considering the in-
terpolation of data, the total number of complex multipli-
cations required to reconstruct an N × N final image is
2N2log2N +N3 +N2 · (Ninterp + 1).

The PCD algorithm updates the correlation recursively.
After the correlation for the first pixel, each pixel in azimuth
only needs 3P+2 complex multiplications as shown in Fig. 3.
Considering that GCW-SAR adopts the CW transmit signal,
the number of complex multiplications required to reconstruct
an N ×N final image is (3P + 2) ·N2. Note that the N ×N
final image is much smaller in terms of physical area than
that of pulsed SAR due to the sample-by-sample recursion. To
reconstruct the image of the same area, the GCW-SAR system
requires (3P + 2) · N3 complex multiplications assuming
that one synthetic aperture time has N2 samples. However,
a decimated PCD algorithm which performs recursion over
multiple samples can be developed to reduce the complexity.
By further exploring the signal correlation in range direction,
the complexity of the PCD algorithm can be reduced to a level
similar to that of BPA. This work is out of the scope of this
paper and will be reported separately.

IV. PERFORMANCE ANALYSIS AND SIMULATION RESULTS

In this section, the GCW-SAR performance is evaluated
in an airborne simulation scenario and compared with con-
ventional FMCW-SAR, both using periodic chirp signals as
the transmitted signals. Denote Nr = T/Tr as the number
of chirp periods over the aperture time T , where Tr is the
period of the chirp signal. The FMCW-SAR and the GCW-
SAR are assumed to operate in the same stripmap mode with
the following airborne SAR parameters [6]: carrier frequency
10 GHz, speed of radar platform 70 m/s, platfrom altitude
7000 m, antenna aperture 0.9 m, and Rc = 8083 m. Moreover,

the y and x coordinates are normalized by the range and
azimuth resolutions δy and δx respectively.

A. Anti-Self-interference Performance in Digtal Domain

Due to the FD operation in the GCW-SAR, the interference
from the transmitted signal will impact on the imaging perfor-
mance. Assuming that sufficient self-interference cancellation
can be achieved by using existing joint propagation domain
and analog-circuit domain cancellation techniques so that the
reflected signal and self-interference are received within the
ADC dynamic range. We only consider the residual self-
interference in digital domain in this subsection.

To analyze the anti-self-interference performance, the re-
ceived signal with self-interference can be simply expressed
as

ssi(t) = sr(t) +

∫ τg

0

g(τ) · s(t− τ)e−j
4π
λ τcdτ (20)

where g(t) and τg denote the interference channel impulse re-
sponse and the maximum time delay of the self-interference re-
spectively. When reconstructing the image for a point (xm, yn)
in the beam footprint, the output of the matched filter can be
expressed as

Isi(xm, yn)

= I(xm, yn) +

∫ τg

0

g(τ)

∫ xm
v +T

2

xm
v −

T
2

s(t− τ)

s∗(t− 2r(t, xm, yn)

c
)ej

4π
λ (r(t,xm,yn)−cτ)dtdτ.

(21)

The integral with regard to t,
∫ xm

v +T
2

xm
v −

T
2

s(t − τ)s∗(t −
2r(t,xm,yn)

c )ej
4π
λ (r(t,xm,yn)−cτ)dt, represents an ambiguity

function of a hypothetical point scatterer with range 0 <
1
2cτ <

1
2cτg . Since 1

2cτg is much smaller than the slant range
r(t, xm, yn), only small sidelobes of the ambiguity function
will be superimposed on I(xm, yn).

In the first simulation experiment, the impact of the self-
interference on the GCW-SAR imaging performance is inves-
tigated. Firstly, we define the signal to interference power ratio
as

SIR = 10 · log10(
Pr
Pi

) (22)
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Fig. 5. Azimuth imaging comparison between GCW-SAR and FMCW-SAR with different PRFs: (a), (b), and (c) show the performance of GCW-SAR with
PCD algorithm at PRF = 0.26Hz, 39Hz, and 76.6Hz respectively; (d), (e) and (f) show the performance of FMCW-SAR at PRF = 13Hz, 39Hz, and
76.6Hz respectively.
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where Pr and Pi are the average powers of the received
echoes and the self-interference respectively. Assuming the
self-interference directly comes from the transmitter and ignor-
ing the white noise, Fig. 4 shows the imaging results for a point
at (0, 0) with SIR=−45dB, −55dB and −65dB respectively
in an airborne platform. It is seen that the GCW-SAR is highly
resistant to self-interference. With SIR higher than −45dB,
the self-interference is negligible. Due to the GCW-SAR’s
superb anti-self-interference ability, the SIC requirement in a
practical system can be surely satisfied even the actual SIC
level achieved in the analog-circuit domain is affected by some
negative effects such as non-linearity and phase noise in the
radar electronics.

B. Impact of Pulse Repetition Period

In the second simulation experiment, we investigate how the
period of the chirp signal Tr affects the imaging performance
in GCW-SAR and FMCW-SAR respectively. With the radar
parameters given at the beginning of this section, the length
of the synthetic aperture is almost 600 δx, the lowest possible

value of PRF is 0.26 Hz since in this case the period Tr is
equal to the aperture time T , and the unambiguous PRF for
the FMCW-SAR is 78Hz.

The PRF, which is equal to 1/Tr = Nr/T , has little impact
on azimuth resolution in GCW-SAR but significantly impacts
on FMCW-SAR. Fig. 5 shows the imaging performance with
different PRFs in GCW-SAR and FMCW-SAR systems for
a point source located at (0, 0). It is clearly seen that the
GCW-SAR performs much better than the FMCW-SAR which
adopts the slow time sampling in azimuth. The change in PRF
does not affect the azimuth resolution for the GCW-SAR, even
in the lowest PRF case as shown in Fig. 5 (a). However, in
FMCW-SAR, ambiguities will appear when the PRF is less
than 78Hz. For instance, as seen in Fig. 5 (c) and 5 (f), the
two ambiguities show up at −295δx and 295δx symmetrically
in FMCW-SAR image when the PRF is 76.6Hz, whereas
they are hardly noticeable in the GCW-SAR image. Fig. 5
(d) and 5 (e) show the low PRF cases in FMCW-SAR where
the PRFs are 13Hz and 39Hz respectively. It is apparent
that ambiguities will appear periodically, thus leading to much
deteriorated FMCW-SAR images. Therefore, GCW-SAR can
break the limitation of minimum antenna area constraint and
obtain a wide swath image with high azimuth resolution.

Low PRF may slightly degrade the mainlobe of the ambigu-
ity function in range direction, but as shown in the following
simulation, such degradation will be negligible after Nr is
larger than 3. With the same one-point imaging setup, Fig.
6 shows the image using PCD algorithm with P = 100, but
different Nr. We see that the range resolution is higher when
Nr is larger. When Nr is larger than 3, there is no significant
improvement any more.
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Fig. 7. Imaging performance with different number of segments P : (a) image in range direction; (b) image in azimuth direction.
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Fig. 8. A large image in azimuth.

C. Impact of Segmention on PCD Algorithm

The imaging performance of the PCD algorithm with dif-
ferent numbers of segments P is also investigated. With Nr
set to 100, the reconstructed images in the one-point imaging
simulation are shown in Fig. 7 (a) and (b) in range and azimuth
directions respectively. In range direction, Fig. 7 (a) shows
that the PCD algorithm performs well regardless of P since
the linear piecewise approximation is only applied in azimuth
direction.

The imaging performance in azimuth is closely associated
with the number of segments P since the range curve is
approximated as P linear segments. As seen from Fig. 7
(b), the azimuth ambiguities caused by linear approximation
are alleviated by the increasing number of segmentation P
since the shorter segments approximate the range curve more
accurately. On the other hand, the computational cost of PCD
algorithm strongly depends on the P . It is also noticed that the
unwanted spikes become weaker and can be neglected when
P ≥ 60, which is suitable for the implementation of a real
system.

D. Large Image Reconstruction in Azimuth

To achieve a large image in azimuth, conventional SAR
reconstructs images along the track block by block and then
performs image stitching and registration techniques to form a
large one [38]. In contrast, GCW-SAR image is reconstructed

recursively and such a large image can be achieved directly,
thus saving significant operations. For simplicity, we only
consider imaging three targets in the azimuth direction and the
three targets are located at −600δx, 0, and 600δx respectively.
Both P and Nr are set to 100. Fig. 8 shows the reconstructed
GCW-SAR image where x-axis spans from −610δx to 610δx,
almost twice as long as the synthetic aperture. It is evident that
the three targets are well distinguished without ambiguities.

E. Performance of PCD Algorithm

In the final simulation experiment, we compare the imaging
performance with the ideal matched-filtering based algorithm
and the PCD algorithm in GCW-SAR, and investigate the
ambiguities caused by linear approximation. The reconstructed
images with point targets and extended targets are shown
in Fig. 9 and Fig. 10 respectively. Nr is set to 100 in the
simulation.

Fig. 9 (a), 9 (b) and 9 (c) are the images of point targets
with PCD algorithm when P = 10, P = 20 and P = 50
respectively, and Fig. 9 (d) is the image of point targets
with the ideal matched-filtering algorithm. It is clearly seen
that the targets are correctly imaged based on the PCD
algorithm when P is increased to 50. Compared with the
image using the matched-filtering shown in Fig. 9 (d), the
only degradation of the image quality with the PCD algorithm
appears in the azimuth direction when P is small due to the
linear approximation. In range direction, the targets can be
distinguished clearly even when P = 10. Such degradation
can be neglected if a suitable number of segments P is used.

The extended target whose size is large compared with a
resolution cell can be also correctly imaged based on the PCD
algorithm when P is large enough. Fig. 10 (a), 10 (b) and 10
(c) show the imaging performance when P = 10, P = 20, and
P = 50 respectively, and Fig. 10 (d) is the image of extended
target with the ideal matched-filter algorithm. Apparently, the
PCD algorithm achieves the same performance for both point
target and extended target and the linear approximation can
only degrade the image quality in azimuth.

Therefore, the PCD algorithm is an effective method to
reduce the computational complexity while maintaining superb
image quality.
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Fig. 9. Imaging quality comparision between the PCD algorithm and the BPA with multiple point targets in GCW-SAR: (a) image with PCD algorithm where
P = 10; (b) image with PCD algorithm where P = 20; (c) image with PCD algorithm where P = 50; (d) ideal matched-filtering based image.
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Fig. 10. Imaging quality comparision between the PCD algorithm and the BPA with an extended target in GCW-SAR: (a) image with PCD algorithm where
P = 10; (b) image with PCD algorithm where P = 20; (c) image with PCD algorithm where P = 50; (d) ideal matched-filtering based image.
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V. CONCLUSIONS

We have proposed a novel SAR concept with full duplex
operation and continuous wave signalling. We have also
proposed a fast imaging algorithm to reduce the computa-
tional complexity. In this GCW-SAR system, transmission
and reception are conducted at the same time in the same
frequency band by employing appropriate self-interference
cancellation techniques and the continuously received signals
can be extracted and stored as one-dimensional raw data.
After correlating with location dependent reference signals,
the one-dimensional raw data can be efficiently processed
to reconstruct the image. The imaging performance is ana-
lyzed and simulated in terms of self-interference resistance
in digital domain, impacts of transmitted signal designs and
different parameters used in the different imaging algorithms.
As shown from the analytical and simulation results, the
proposed new SAR concept and PCD algorithm offer many
advantages over conventional pulsed and CW SARs. Firstly,
the radar receives more reflected signal energy with CW
signalling, hence retaining the same advantages as FMCW-
SAR; Secondly, the sampling in azimuth will no longer be
restricted, thus eliminating a number of inherent limitations
in conventional systems; Thirdly, the system configuration
and transmitted signal design are much more flexible. These
advantages make the new SAR system a significant advance
in SAR technology.

The work presented in this paper establishes a solid the-
oretical foundation for next generation imaging radars. The
proposed GCW-SAR can be combined with the multiple-
input and multiple-output radar to further improve the system
performance, such as 3-D imaging suitable for the non-flat
terrain. Based on the PCD algorithm, more new active and
passive SAR configurations can be further designed to suit
different performance requirements. In our future work, we
will continue new SAR system designs and develop more
practical algorithms for a wider range of applications.
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