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Abstract—The superiority of exploring millimeter wave
(mmWave) frequencies for future wireless communication sys-
tems has pushed forward the development of large-scale antenna
arrays for achieving sufficient array gain and high spectral
efficiency. In this paper, we study the matrix normalization (MN)
based zero-forcing (ZF) hybrid precoding in multi-user multi-
input-multi-output (MU-MIMO) mmWave systems. We derive
the upper bounds of the achievable rate for two representative hy-
brid array structures, i.e., fully-connected structure and partially-
connected structure. Analytical and simulation results validate
the tightness of the proposed performance upper bounds for both
hybrid structures using massive array, and provide a comparison
of the achievable rate using MN and vector normalization (VN).

Index Terms—Matrix normalization, vector normalization, ZF
hybrid precoding, mmWave massive MIMO.

I. INTRODUCTION

To balance the system performance and hardware cost,
millimeter wave (mmWave) beamforming with massive hybrid
antenna array [1], [2] has been regarded as an attractive
solution for 5G wireless communication systems. In view of
the mapping from antenna elements to radio frequency (RF)
chains, hybrid array architecture can be classified into the
fully-connected structure [1] where each antenna connects to
multiple phase shifters and all RF chains, and the partially-
connected structure [2] where each antenna only connects
to one phase shifter and one RF chain. The fully-connected
structure employs full beamforming gain for each RF chain
such that it can approach the performance of a fully digital
scheme with much fewer number of RF chains [3]. On the
other hand, the partially-connected structure is more energy-
efficient [4], and hence preferable for practical deployment
with massive antennas at the cost of some performance loss.

Compared with the nonlinear precoding, e.g., optimal dirty
paper coding (DPC) [5] that is implemented with significant
additional complexity, linear precoding schemes such as zero-
forcing (ZF) [6] are considered as simple and near-optimal
methods in massive MIMO systems for multiuser interference
cancellation when the channel is available. For ZF precoding,
there are two power normalization methods, i.e., matrix nor-
malization (MN) and vector normalization (VN), commonly
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used in the practical case of power allocation among different
data streams. Matrix normalization regulates the precoding
matrix by multiplying a scalar such that the power constraint at
the base station (BS) is satisfied, which results in equal receive
power for each user. Therefore, it provides better trade-off in
fairness. Alternatively, equal transmit power can be imposed
across all data streams by normalizing the precoding matrix
with different scalars while meeting the power constraint,
known as vector normalization. The corresponding sum rate
performance was analysed and compared under Rayleigh
fading channels in [7], [8].

ZF hybrid precoding has been applied in MU-MIMO
mmWave systems [9], [10], which requires a small amount
of training and feedback overhead to obtain the equivalent
baseband channel state information. The results in [10] showed
that the performance of ZF hybrid precoding based on VN
approached that of the unconstrained digital block diagonal-
ization precoding with relatively small codebooks. However,
the performance analysis was only given in terms of the fully-
connected structure without any comparison with the partially-
connected structure. Also, the performance difference between
MN and VN for ZF hybrid precoding in MU-MIMO mmWave
systems with massive array has not been studied yet.

In this paper, with regard to fully-connected structure and
partially-connected structure, we derive the upper bounds of
achievable rate of matrix normalization based ZF hybrid pre-
coding in typical mmWave channels. Analytical and simulation
results show that the proposed performance upper bounds are
tight for both structures, particularly when the number of array
antennas is in the large dimensional regime. Additionally, we
present an analytical comparison between MN and VN, which
shows that MN provides a notion of fairness at a negligible
rate loss compared with VN.

Notations: A, a and a stand for a matrix, a column vector
and a scalar, respectively; Ai,j is the entry on the ith row
and jth column of A; AT and AH denote the transpose
and conjugate transpose of A, respectively. ‖A‖F is the
Frobenius norm of A, and IN is the identity matrix with N
dimensions; N (m,V) represents a complex Gaussian random
vector with mean m and covariance matrix V. Further, the
notations log(·), E[·], Tr(·) and |(·)| represent the logarithmic,
expectation, trace and absolute value of (·), respectively.
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Fig. 1. Two typical structures of the hybrid precoding: (a) Fully-connected
structure, where each antenna connects to multiple phase shifters and all RF
chains. (b) Partially-connected structure, where each antenna only connects
to one phase shifter and one RF chain.

II. SYSTEM MODEL

As in [10], we consider a narrowband multiuser downlink
transmission system, which consists of a BS and K users.
The BS is equipped with NRF RF chains and NB antenna
elements (K ≤ NRF � NB), and each user is equipped with
NM antennas. We assume that the BS processes only one data
stream with each user (i.e., the total number of data streams
equals K). For simplicity, we also assume that NRF = K, and
only one RF chain is used at each user side due to the limited
processing capacity. As shown in Fig. 1, we consider both
fully-connected and partially-connected structures, which use
different analog precoding structures thus leading to different
achievable rates.

We denote the transmitted symbols of K users as s =
[s1, s2, ..., sK ]T , where s ∼ N (0, PtK IK) and Pt is the
average total transmit power. Let Hk denote the NM × NB
mmWave channel matrix between the BS and user k, and
nk ∼ N (0, σ2INM ) denote the additive white Gaussian noise
of user k’s received signal. Therefore, the received signal
vector of user k after analog beamforming combination can
be expressed as

yk = vHk HkFDs + vHk nk, (1)

where D = [d1,d2, ...,dK ] is the K × K baseband digital
precoding matrix for multiuser interference cancellation, and

F is the NB ×K RF analog precoding matrix. For the fully-
connected structure, F = [f1, f2, ..., fK ], each entry with nor-
malized constant modulus

√
1/NB for implementing analog

phase shifters. For the partially-connected structure, F is block
diagonal, and expressed as

F =


f1 0 · · · 0

0 f2 · · · 0

...
...

. . .
...

0 0 · · · fK

 ,

where fK is an NB
K × 1 vector with |Fk,n| =

√
K/NB , and

NB
K is assumed to be an integer. To satisfy the total power

constraint, we have ‖FD‖2F = K. vk is the NM × 1 receive
analog beamforming vector, each entry with constant modulus√

1/NM .
It is assumed that the channel Hk can be decomposed into

a deterministic channel matrix HL
k induced by line-of-sight

(LOS) and a random channel matrix HN
k induced by scattering

components [9], [11],

Hk =HL
k + HN

k

=

√
NBNMηk

1 + ηk
ejβkaM (θLk )aHB (φLk )

+

√
NBNM

NcNsc(1 + ηk)

Nc∑
c=1

Nsc∑
p=1

αc,pk aM (θc,pk )aHB (φc,pk ), (2)

where ηk is known as the Rician factor of user k and
βk ∈ [0, 2π] is the random phase. The scattering component
HN
k consists of Nc scattering clusters and Nsc scatters within

each cluster. αc,pk ∼ N (0, 1), θc,pk and φc,pk are the complex
gain, angles of arrival and departure (AoAs/AoDs) for the
pth path in the cth cluster, respectively. Further, aM (θc,pk )
and aHB (φc,pk ) are the corresponding normalized antenna array
response vectors of the BS and user k, respectively. For an
uniform linear array (ULA), we have

aB(φ) =
1√
NB

[1, ej
2π
λ d sin(φ), ..., ej

2π
λ (NB−1)d sin(φ)]T , (3)

where λ is the carrier wavelength, and d is the adjacent
element spacing. aM (θ) can be written in a similar fashion.
The analysis in this paper can be also applied to an uniform
planar array.

Mmwave channel model is characterized by the LOS com-
ponent and non-negligible scattering components, where LOS
path dominates the power distribution across the multipath.
Especially when the Rician factor is large, it can be assumed
that the AOA of LOS signal is approximately regarded as
the AOA of received signals, which greatly simplifies signal
processing. On the other hand, αc,pk , θc,pk and φc,pk are more
randomly distributed [9], [11] between the BS and the users as
the number of scattering clusters increases. Accordingly, we
consider that the entries of random channel matrix HN

k are
approximately independent and identically distributed (i.i.d.)
random variables ∼ N (0, 1

1+ηk
).



III. HYBRID PRECODING

A. RF Beamforming

Since phase shifters are digitally implemented, RF beam-
forming angles may be chosen from finite-size codebook [10].
Specifically, in this paper, we use the beamsteering codebooks
for RF beamforming design, which have the same form as
antenna array response vectors in (3), to simplify the codebook
design due to single parameter quantization. Here, we also
consider that one RF chain precoding is designed for one
user only (i.e., each beamforming signal from one RF chain
potentially points at each user.) as in [10], thus maximizing
the desired signal power of each user, and ignoring the mutual
interference among users. Therefore, the optimal transmit
and receive RF beamforming vectors for user k, bB(φ∗k)
and bM (θ∗k), can be selected from W and V which are the
beamsteering codebooks of the BS and users respectively, such
that

{bB(φ∗k),bM (θ∗k)} = argmax
∀bB(φk)∈W
∀bM (θk)∈V

|bHM (θk)HkbB(φk)|. (4)

It is noted that the selection process can be implemented
by searching the codebooks with efficient beam training
algorithms developed in [12], such that the strongest path
AOA/AOD can be obtained. As shown in [13], the optimal
singular-value-decomposition (SVD) transmit and receive RF
beamforming vectors for the channel in (2) converge to
the array response vectors in the strongest direction with
massive array. Hence, the searching process can be regarded
as near-optimal searching to find the LOS direction. Let
vk = bM (θ∗k), fk = bB(φ∗k) for the fully-connected structure,
and fk =

√
Kb̂B(φ∗k) for the partially-connected structure,

where b̂B(φ∗k) is composed of the first NBK entries of bB(φ∗k).

B. Baseband ZF Precoding

We define that Heq = [heq,1,heq,2, ...,heq,K ]H is the
equivalent baseband channel matrix between the BS’s RF
chains and all users’ RF chains, where hHeq,k = vHk HkF. Heq

can be directly estimated by exploiting the channel reciprocity
[9], or estimated by the users and then fed back to the BS
[10]. Since the number of RF chains, NRF , is much smaller
than that of the transmit antennas NB , the required feedback
overhead and inverse matrix calculation complexity can be
greatly reduced. Assuming that Heq is perfectly estimated in
the high SNR regime, the non-normalized digital ZF precoding
matrix D1 is given by

D1 = HH
eq(HeqH

H
eq)
−1. (5)

To satisfy the power constraint, we have two normalization
methods (i.e., matrix/vector normalizations) to normalize D1.
To guarantee each user with equal receive power, MN is to
multiply d1,k by

√
K‖FD1‖−1F , whereas VN is to multiply

d1,k by ‖Fd1,k‖−1F to keep equal transmit power for each user,
where d1,k denotes the kth column of D1. Although they have
different normalization factors, multi-user interference can be
totally cancelled due to hHeq,idj = 0,∀i 6= j.

C. Asymptotic Downlink Achievable Rate

In the following, we derive the achievable rate upper bounds
according to MN assuming perfect equivalent baseband chan-
nel. For simplicity, we assume that all the users have the same
Rician factor, i.e., ηk = η,∀k. Using the ZF hybrid precoding
described in Section III, the average achievable rate per user,
RMN , is given by

RMN = E
[
log

(
1 +

Pt
σ2‖FD1‖2F

)]
, (6)

which is upper bounded by
1) For the fully-connected structure:

RMN
f ≤ Rupf = log2

[
1 +

Pt
σ2
· NBNMη +K

K(1 + η)

]
, (7)

and 2) For the partially-connected structure:

RMN
p ≤ Rupp

= log2

[
1 +

Pt
σ2
·
NBNMη‖FHf Fp‖2F +K2

K2(1 + η)

]
. (8)

The proof of (7) and (8) is provided in the Appendix.
Eq. (7) shows that, for the fully-connected structure, the
upper bound is irrelevant to analog precoding matrix F, but
for the partially-connected structure in (8), it depends on
F designed in Section III.A. On the other hand, the upper
bound depends on the Rician factor, and it is a monotonically
increasing function in term of η provided that NBNM ≥ K.
Particularly, when η → +∞ (i.e., single-path channels), the
upper bounds are approximated by log2

[
1 + Pt

σ2 · NBNMK

]
and

log2

[
1 + Pt

σ2 ·
NBNM‖FHf Fp‖2F

K2

]
, respectively. The proposed

upper bounds provide insights into the performance of the MN
based ZF hybrid precoding in MU-MIMO mmWave systems
which will be validated by the simulations in Section IV.

We are interested in the massive array as the transceiver
generally requires large antenna arrays to achieve received
power gain for typical mmWave channels. Therefore, it is
meaningful to evaluate the asymptotic upper bounds for the
case with a large number of antennas. When the number of
transmit antennas NB → ∞, we have ‖FHf Fp‖2F → 1 since
FHf Fp → 1√

K
IK , where Ff and Fp are analog precoding

matrices for two structures, respectively. It is worth noting
that the diagonal elements of FHf Fp are exactly 1√

K
while the

off-diagonal elements can be approximated as a summation of
NB
K independent unit-norm complex numbers, which suggests

that the norm of off-diagonal elements is much less than
1√
K

with very high probability when NB → ∞. As a
result, FHf Fp → 1√

K
IK . Therefore, the asymptotic achievable

rate per user for the partially-connected structure in (8) is
approximately bounded by log2

[
1 + Pt

σ2 · NBNMη+K
2

K2(1+η)

]
, and

the upper bounds gap, ∆Rup, between two structures satisfies

∆Rup =Rupf −R
up
p

(a)

. log2

(
NBNMηK +K2

NBNMη +K2

)
(b)
≈ log2K, (9)
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Fig. 2. Average achievable rate per user versus the SNR, where NB = 128,
NM = 4 and K = 4.

where (a) is derived by noting that any positive numbers a
and b with a ≥ b, satisfy log2

(
1+a
1+b

)
≤ log2

(
a
b

)
. (b) can be

obtained assuming NBNMη � K2.
Note that our proposed achievable rate upper bound

is tighter than the one proposed in [9, eq. (23)] since
‖FHf Ff‖2F ≥ K, which can be derived from the fact that if A
and B are real positive semi-definite matrices of the same size
then Tr(A2) Tr(B2) ≥ [Tr(AB)]2 and letting A = FHf Ff
and B = IK .

IV. ANALYTICAL AND SIMULATION RESULTS

The proposed schemes are simulated using a hybrid ULA
with d = λ/2. We assume that each user experiences multipath
fading channel in cluster, where the number of multipath
is 7 with one LOS path and the remaining scatters, and
the equivalent baseband channel is perfectly estimated. The
AoA/AOD of any user’s signal is assumed to be uniformly
distributed over [0, 2π].

Fig. 2 shows the average achievable rates and the corre-
sponding upper bounds versus the SNR, which is defined as
SNR = Pt

σ2 , for two structures respectively. It is observed that
the fully-connected structure performs better than partially-
connected structure, and their average achievable rates are
close to the proposed corresponding upper bounds in the large
numbers of antennas regime. The achievable rate gap between
two structures approaches log2K = 2bps/Hz with the increase
of SNR as expected in (9). With a sufficiently large Rician
factor, the higher average achievable rate can be obtained, as
the transceiver exploits more gain from the LOS component
and the interference from other users is further suppressed.

Fig. 3 compares the average achievable rates for MN/VN
versus the number of BS’s antennas given SNR = 0 dB. It
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can be seen that the gap between the average achievable rate
and the corresponding upper bound becomes smaller with
the increase of the number of BS’s antennas for both hybrid
structures, which verifies the tightness of the derived upper
bounds in (7) and (8) with massive array. It is also shown that
the achievable rate with VN is higher than that of MN. The
reason is as follows.

For ZF hybrid precoding, the average achievable rate per



user with VN can be expressed as

RV N =
1

K

K∑
k=1

E
[
log2

(
1 +

Pt
Kσ2‖Fd1,k‖2F

)]

≥E

[
log2

(
1 +

Pt

σ2
∑K
k=1 ‖Fd1,k‖2F

)]
= RMN ,

(10)

where
∑K
k=1 ‖Fd1,k‖2F = ‖FD1‖2F . (10) can be derived by

using the Arithmetic-geometric Inequality defined in [14]. The
MN based ZF hybrid precoding presents a fairness provision-
ing precoder in spite of 2.5% average achievable rate loss
compared with VN.

Fig. 4 shows the average achievable rates for MN/VN versus
the number of users given SNR = 0 dB. As shown in Fig. 4, the
achievable rate per user decreases with the increasing number
of users, as the power allocated to each user is decreased. It
also shows that the performance of VN is better than that of
MN, and the gap between the average achievable rate and the
corresponding upper bound grows with the number of users.
The upper bounds gap between two structures shown in the
figure demonstrates the correctness of (9).

V. CONCLUSION

In this paper, in terms of the fully-connected structure and
partially-connected structure, we derive the achievable rate
upper bounds using MN based ZF hybrid precoding in typical
mmWave channels. Numerical results show the tightness of the
proposed performance upper bounds for both hybrid structures
using massive array. It is shown although MN has limited
performance loss compared with VN, it provides strict fairness
for all users.

APPENDIX

Using Jensen’s Inequality of concave function, we have

E
[
log2

(
1 +

Pt
σ2‖FD1‖2F

)]
≤ log2

(
1 +

Pt
σ2
· E
{

1

‖FD1‖2F

})
, (11)

where log2(1+x) is concave function and x is a random vari-
able. Therefore, the derivation of upper bound is equivalently
to obtain E

{
1

‖FD1‖2F

}
. By substituting (5) into it, we have

E
{

1

‖FD1‖2F

}
=E

{[
Tr[(HeqH

H
eq)
−HHeqF

HFHH
eq(HeqH

H
eq)
−1]
]−1}

(a)

≤ 1

K2
E{Tr[Heq(F

HF)−1HH
eq]}

=
1

K2
E

{
K∑
k=1

vHk HkF(FHF)−1FHHH
k vk

}

(b)
=

1

K2

{
K∑
k=1

vHk HL
kF(FHF)−1FH(HL

k )Hvk

+

K∑
k=1

vHk E[HN
k F(FHF)−1FH(HN

k )H ]vk

}
(c)
=

1

K2

{
NBNMη

1 + η

K∑
k=1

aHB (φLk )F(FHF)−1FHaB(φLk )

+
K

1 + η
Tr[F(FHF)−1FH ]

}
, (12)

where (a) holds due to the property of an N × N positive
definite matrix A with N

Tr(A−1) ≤
Tr(A)
N . By substituting (2)

into (12), we remove the cross terms between HL
k and HN

k

due to independent of each other and the entries of HN
k ∼

N (0, 1
1+η ), and thus (b) is derived. We assume that φLk ≈ φ∗k

and θLk ≈ θ∗k as in [9] since the LOS path rules the power
allocation among all paths, such that the estimated strongest
AOA/AOD is close to that of LOS and thus we have (c). By
substituting F of two structures into (12), we complete the
proof of (7) and (8).
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