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ABSTRACT

Recently, the primal-dual method of multipliers (PDMM) has been
proposed and successfully applied to solve a number of decompos-
able convex optimizations distributedly and iteratively. In this work,
we study the gradient based PDMM (GPDMM), where the objective
functions are approximated using the gradient information per itera-
tion. It is shown that for a certain class of decomposable convex op-
timizations, synchronous GPDMM has a sublinear convergence rate
of O(1/K) (where K denotes the iteration index). Experiments on
a problem of distributed ridge regularized logistic regression demon-
strate the efficiency of synchronous GPDMM.

Index Terms— Distributed optimization, ADMM, PDMM,
convergence analysis

1. INTRODUCTION

In recent years distributed optimization has attracted increasing at-
tention driven by two main motivations. Firstly, various types of net-
works have been proposed and employed for collecting data, moni-
toring the environment, and managing facilities such as wireless sen-
sor networks, smart grid and Internet of things. In the above situa-
tion, distributed optimization is desirable to perform distributed sig-
nal processing, network resource allocation, and utility maximiza-
tion [1]. Secondly, processing of big data usually requires many
computing units (e.g., a computer or a GPU) to work jointly, where
each unit processes a portion of the data. Distributed optimization is
then required for coordination among the computing units [2].

One approach in designing the distributed methods is to treat or
reformulate an optimization problem as performing inference over a
probabilistic graphical model see ( [3–5]). Another approach is to
treat or reformulate an optimization problem as a decomposable op-
timization over a graphical model directly instead of relying on prob-
ability theory. Various methods have been proposed in the literature
for solving decomposable convex optimizations, such as the dual-
averaging algorithm [6], the subgradient algorithm [7], the diffusion
adaptation algorithm [8], the exact first-order algorithm (EXTRA)
[9], and the alternating direction method of multipliers (ADMM)
[10]. In addition, several research attempts have been made to tackle
decomposable nonconvex optimizations (see [11–13]).

Due to the generality and effectiveness of ADMM, extensive
studies have been conducted for the method in the last few years.
The research activities on ADMM can be roughly classified as con-
vergence rate analysis (e.g., [14, 15]), computational simplifications
by using gradient information [16, 17], and its applications to real
world problems [10]. It is analyzed that the effectiveness of ADMM
might be due to the fact that the method belongs to the primal-dual

approaches [18,19], which attempt to solve both the primal and dual
problems simultaneously.

Recently, we have proposed the primal-dual method of multipli-
ers (PDMM) [20, 21] for solving a general class of decomposable
convex optimizations over a graphical model G = {V, E}, which
takes the form:

min
∑
i∈V

fi(xi) s.t. Ai|jxi +Aj|ixj = cij ∀(i, j) ∈ E , (1)

where s.t. stands for “subject to”, each function fi is assumed to be
closed, proper and convex, and the two matrices (Ai|j ,Aj|i) and
the vector cij are known a priori for each edge (i, j) ∈ E . The
above formulation (1) enforces partial consensus between neigh-
bouring nodes through the general equality constraints. It becomes a
full consensus problem when the set of edge constraints are reduced
to {xi = xj |(i, j) ∈ E}. In the literature, a majority of research
has focused on the full consensus problem, such as the aforemen-
tioned work [6–9, 11–13]. In recent years, new applications over
WSNs have emerged which only impose partial consensus among
neighbouring nodes as represented by (1) (see [1, 21–24]).

Theoretical convergence analysis of synchronous and asyn-
chronous PDMM is provided in [20] and [25] for decomposable
convex functions. [20] makes use of variational inequality (VI) to
conduct the analysis while [25] relies on the monotonic operator
theory. The algorithm has been applied successfully for solving a
number of practical problems, which include distributed dictionary
learning [26], distributed support vector machine (SVM) [27], dis-
tributed speech enhancement over a wireless microphone network
(see [24, 29]), and distributed image fusion [22].

Our recent work [23] has considered simplifying the com-
putation of synchronous PDMM for solving a subclass of the
optimization (1) with the set of equality constraints {Bi|jxi =
Bj|ixj |(i, j) ∈ E}. One simplification made in [23] is to approx-
imate each individual function fi in (1) by a quadratic function in
the updating procedure of PDMM. The approximation is realized
by making use of the gradient information of the objective func-
tion at each iteration. The motivation behind this is that quadratic
functions are computationally cheaper to handle than other func-
tions (see [17] for simplifying ADMM using gradient information).
Convergence analysis has been provided in [23] for approximating
strongly convex functions with Lipschitz continuous gradient.

In this paper, we provide a new convergence analysis for the
gradient-based PDMM (GPDMM) considered in [23]. We show that
if each objective function fi in (1) has Lipschitz continuous gradi-
ent, synchronous GPDMM converges to an optimal solution at the
sublinear rate O(1/K) (where K denotes the iteration index). The
objective functions do not have to be strongly convex for the al-



gorithm to work in comparison to the analysis in [23]. The new
analysis makes use of the analysis approach in [30] developed for
the fast iterative-shrinkage thresholding algorithm (FISTA). Exper-
imental results on a problem of ridge regularized logistic regres-
sion (RRLR) show that synchronous GPDMM is computationally
much cheaper than synchronous PDMM per iteration. As a result,
synchronous GPDMM takes much less computational time to ob-
tain a satisfactory solution to the RRLR problem than synchronous
PDMM.

2. PROBLEM DEFINITION

We denote an undirected graph as G = (V, E), where V =
{1, . . . ,m} represents the set of nodes and E = {(i, j)|i, j ∈ V}
represents the set of undirected edges in the graph, respectively.
If (i, j) ∈ E , node i and j can communicate with each other di-
rectly along their edge (i, j). We use Ni to denote the set of all
neighbouring nodes of node i, i.e.,Ni = {j|(i, j) ∈ E}.

With the notation G = (V, E) for a graph, we consider a sub-
class of the decomposable convex optimization (1), given by

min
x

∑
i∈V

fi(xi) s.t. Bi|jxi = Bj|ixj ∀(i, j) ∈ E , (2)

where x = [x1,x2, . . . ,x|V|]
T , and each convex function fi :

Rni → R is continuously differentiable with the Lipschitz continu-
ous gradient Li(fi) > 0:

‖∇fi(xi)−∇fi(yi)‖ ≤ Li(fi)‖xi − yi‖ ∀xi,yi ∈ Rni , (3)

where ‖·‖ denotes the standard Euclidean norm. The vectorx is thus
of dimension nx =

∑
i∈V ni. For every edge (i, j) ∈ E , we have

(Bi|j ,Bj|i) ∈ (Rnij×ni ,Rnij×nj ). In general, Bi|j and Bj|i are
two different matrices. The matrix Bi|j operates on xi in the linear
constraint of edge (i, j) ∈ E .

We assume there exists an optimal solutionx? to the above prob-
lem (2). The research goal is to compute or obtain a good approxi-
mation of x? via local computation and transmission between neigh-
bouring nodes distributedly after a reasonably number of iterations.
To achieve the goal, the main challenge is to decide what informa-
tion should be sent from a node to its neighbours per iteration and
how to make use of the received information at each node for local
computation.

3. GRADIENT BASED PRIMAL-DUAL METHOD OF
MULTIPLIERS (GPDMM)

We first present the updating procedure of synchronous PDMM for
solving (2). To do so, we introduce a set of auxiliary variables for
the algorithm to work. Let λi|j and λj|i be two auxiliary variables
for every edge constraint Bi|jxi = Bj|ixj . The variable λi|j is
owned by and updated at node i and is related to neighbour j. We
denote by λi the concatenation of all λi|j , j ∈ Ni. Therefore each
node i carries two variables xi and λi. Similarly to x, we let λ =
[λT

1 , . . . ,λ
T
|V|]

T .
Synchronous PDMM updates x and λ simultaneously per it-

eration by performing node-oriented computation. At iteration k,
each i computes a new estimate xk+1

i by locally solving a small-
size optimization problem. In doing so, the neighbouring estimates
{xk

j |j ∈ Ni} and {λk
j|i|j ∈ Ni} from last iteration are used. Once

xk+1
i is obtained, the estimates {λk+1

i|j |j ∈ Ni} can then be com-
puted. The updating expressions for xk+1

i and {λk+1
i|j |j ∈ Ni} are

given by [23]

xk+1
i = arg min

xi

[
fi(xi) +

∑
j∈Ni

λk,T
j|i Bi|jxi

+
1

2
‖Bi|jxi−Bj|ix

k
j ‖2P ij

]
i ∈ V (4)

λk+1
i|j =P ij(Bj|ix

k
j −Bi|jx

k+1
i )− λk

j|i i ∈ V, j ∈ Ni (5)

where each P ij is a positive definite matrix (i.e., P ij � 0), and
‖ · ‖P represents the weighted Euclidean norm by the matrix P . We
let P = {P ij � 0|(i, j) ∈ E}, which remains to be specified.

We note that for some objective functions {fi|i ∈ V} (e.g.,
softmax function in logistic regression), it might be expensive to
compute the exact solution {xk+1

i |i ∈ V} in (4). In those situa-
tions, GPDMM attempts to simplify the optimization (4) by using
the gradient information of the objective function computed at the
most recent estimate. To do so, an approximation of each individual
function fi at iteration k is defined as (see [23])

fk
i (xi)=fi(x

k
i )+(xi−xk

i )T∇fi(xk
i )+

Li

2
‖xi−xk

i ‖2 i ∈ V, (6)

where Li > 0. Replacing fi(xi) with the approximation fk
i (xi) in

(4)-(5) produces the updating expressions of synchronous GPDMM

xk+1
i = arg min

xi

[
fk
i (xi) +

∑
j∈Ni

λk,T
j|i Bi|jxi

+
1

2
‖Bi|jxi−Bj|ix

k
j ‖2P ij

]
i ∈ V (7)

λk+1
i|j =P ij(Bj|ix

k
j −Bi|jx

k+1
i )− λk

j|i i ∈ V, j ∈ Ni. (8)

With (6)-(8), the optimality condition for each xk+1
i can be easily

derived as

∇fi(xk
i ) + Li(x

k+1
i − xk

i ) =
∑
j∈Ni

BT
i|jλ

k+1
i|j i ∈ V, (9)

which will be used for the convergence analysis in next section.

Synchronous GPDMM converges to an optimal solution
limk→∞(xk,λk) = (x?,λ?) for the problem (2) if and only if
(x?,λ?) satisfies the following optimality conditions [20, 23]

∇fi(x?
i ) =

∑
j∈Ni

BT
i|jλ

?
i|j i ∈ V (10)

λ?
i|j = −λ?

j|i (i, j) ∈ E (11)

Bi|jx
?
i = Bj|ix

?
j (i, j) ∈ E . (12)

We will show in next section that if the set of parameters {Li|i ∈ V}
are properly chosen in (6), synchronous GPDMM would converge to
an optimal solution.

4. CONVERGENCE ANALYSIS

In this section, we present the new convergence analysis for syn-
chronous GPDMM in comparison to [23]. Inspired by the analysis
for FISTA [30], we first construct a special inequality for each xk+1

i

in (7) and then exploit it to analyze synchronous GPDMM.



4.1. Constructing an inequality

Before formally presenting the inequality, we first introduce a stan-
dard inequality for each fi with the Lipschitz continuous gradient
Li(fi) in (3):

Lemma 1 (Prop. A24 in [31]). Let each fi in (2) be a continu-
ously differentiable function with the Lipschitz continuous gradient
Li(fi). Then for any Li ≥ Li(fi),

fi(x)≤fi(y)+(x−y)T∇fi(y)+
Li

2
‖x−y‖2 ∀x,y ∈ Rn.

With Lemma 1, we are now ready to derive the inequality for
each xk+1

i in (7):

Lemma 2. LetLi ≥ Li(fi) in the approximation function (6). Then
for any xi ∈ Rni ,

fi(xi)−fi(xk+1
i )≥ Li

2
‖xk+1

i −xk
i ‖2−Li(xi−xk

i )T (xk+1
i −xk

i )

+ (xi−xk+1
i )T

∑
j∈Ni

BT
i|jλ

k+1
i|j . (13)

Proof. From (6) and Lemma 1, we have

fi(xi)− fi(xk+1
i )

≥fi(xi)− fk
i (xk+1

i )

(a)

≥fi(xk
i ) + (xi − xk

i )T∇fi(xk
i )− fk

i (xk+1
i )

=fi(x
k
i ) + (xi − xk

i )T∇fi(xk
i )

−
[
fi(x

k
i )+(xk+1

i −xk
i )T∇fi(xk

i )+
Li

2
‖xk+1

i −xk
i ‖2
]

=(xi−xk+1
i )T∇fi(xk

i )−Li

2
‖xk+1

i −xk
i ‖2

(b)
=(xi−xk+1

i )T
( ∑

j∈Ni

BT
i|jλ

k+1
i|j − Li(x

k+1
i − xk

i )

)

−Li

2
‖xk+1

i −xk
i ‖2,

where step (a) uses the property that fi is a convex function and step
(b) uses (9). By using algebra, the above expression can be further
simplified as (13). The proof is complete.

4.2. Convergence properties

In this subsection, we derive the convergence properties of syn-
chronous GPDMM based on Lemma 2. The derivation procedure is
similar to our early work [20] for analyzing synchronous PDMM.

Suppose (x?,λ?) is an optimal solution satisfying (10)-
(12). We first derive an upper and lower bound for a quantity∑

i∈V

[
fi(x

k+1
i )−fi(x?

i )−xk+1,T
i

∑
j∈Ni

BT
i|jλ

?
i|j

]
in a lemma

below.

Lemma 3. Let (x?,λ?) be an optimal solution satisfying (10)-(12).
The estimate (xk+1,λk+1) is obtained by performing (6)-(8) under

the condition that Li ≥ Li(fi), i ∈ V . Then there is

0 ≤ 2
∑
i∈V

[
fi(x

k+1
i )− fi(x?

i )− xk+1,T
i

∑
j∈Ni

BT
i|jλ

?
i|j

]
≤ 1

2

∑
i∈V

∑
j∈Ni

[
‖P−1/2

ij (λ∗i|j+λk
j|i)+P

1/2
ij (Bi|jx

∗
i−Bj|ix

k
j )‖2

−‖P−1/2
ij (λ∗i|j+λk+1

j|i )+P
1/2
ij (Bi|jx

∗
i−Bj|ix

k+1
j )‖2

−‖P−1/2
ij (λk+1

i|j +λk
j|i)+P

1/2
ij (Bi|jx

k+1
i −Bj|ix

k
j )‖2

]
+
∑
i∈V

Li‖xk
i − x?

i ‖2 −
∑
i∈V

Li‖xk+1
i − x?

i ‖2 (14)

where the equality for the lower bound holds if and only if
(xk+1,λk+1) satisfies

∇fi(xk+1
i )=

∑
j∈Ni

BT
i|jλ

?
j|i ∀i ∈ V. (15)

Proof. The complete proof for the upper bound takes a lot of space.
We therefore only explain the basic idea of the proof. It includes
two main steps. Firstly, we invoke Lemma 2 with xi = x?

i , and then
summarize the inequality over all i ∈ V . Secondly, we reformulate
the obtained inequality to produce (14) by using (8), (11)-(12) and
the identity

(y1 − y2)T (y3 − y4)

≡ 1

2
(‖y1 + y3‖

2 − ‖y2 + y4‖
2 − ‖y2 + y3‖

2 + ‖y2 + y4‖
2).

See a similar derivation for the proof for Lemma 8 in [20].
Next we prove the lower bound of (14).

2
∑
i∈V

[
fi(x

k+1
i )− fi(x?

i )− xk+1,T
i

∑
j∈Ni

BT
i|jλ

?
i|j

]
(a)

≥ 2
∑
i∈V

[
− f∗i

( ∑
i∈Ni

BT
i|jλ

?
i|j

)
− fi(x?

i )
]

(b)
= 0,

where f∗i (·) is the conjugate function of fi(·), step (a) uses
Fenchel’s inequality (see [32]), and step (b) uses (11)-(12) and
the definition of the conjugate functions {f∗i |i ∈ V}. The equality
in step (a) holds when (15) is satisfied. The proof is complete.

Next we show that the estimates (xk+1,λk+1) are always
bounded using the results of Lemma 3.

Lemma 4. Every pair of estimates (x̂i
k+1, λ̂

k+1

i|j ), i ∈ V , j ∈ Ni,
k ≥ 0, in Lemma 3 is upper bounded by a constant M under a
squared error criterion:∥∥∥P− 1

2
ij (λ?

i|j +λk+1
j|i ) + P

1
2
ij(Bi|jx

?
i −Bj|ix

k+1
j )

∥∥∥2 ≤M. (16)

Proof. One can first prove (16) for k = 0 by using (14). The in-
equality (16) for k > 0 can then be proved recursively.

Upon obtaining the results in Lemma 3 and 4, we are ready to
present the convergence rate of synchronous GPDMM.
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Fig. 1. Performance comparison of synchronous GPDMM and PDMM for the ridge regularized logistic regression. Subplot (b) and (c) were obtained by using
the optimal parameter ρ? = 2.4.

Theorem 1. Let (xk,λk), k = 1, . . . ,K, be obtained by perform-
ing (6)-(8) under the condition that Li ≥ Li(fi), i ∈ V . The aver-
age estimate (x̄K , λ̄

K
) = ( 1

K

∑K
k=1 x

k, 1
K

∑K
k=1 λ

k) satisfies

0 ≤
∑
i∈V

[
fi(x̄

K
i )−fi(x?

i )−x̄K,T
i

∑
j∈Ni

BT
i|jλ

?
i|j

]
≤ O

( 1

K

)
(17)

lim
K→∞

Bi|jx̄
K
i = Bj|ix̄

K
j ∀(i, j) ∈ E (18)

lim
K→∞

λ̄
K
i|j + λ̄

K
j|i = 0 ∀(i, j) ∈ E . (19)

Proof. The proof is similar to that for Theorem 2 in [20].

The conditions {Li ≥ Li(fi)|i ∈ V} in Theorem 1 ensure
that synchronous GPDMM possesses the same convergence rate as
synchronous PDMM (see [20]). There is no additional requirement
on the matrix set P for GPDMM to work.

5. EXPERIMENT

In this section we consider solving the problem of ridge regularized
logistic regression (RRLR) over a chain graph of 5 nodes. The prob-
lem function at each node i is

gi(xi) =
1

10

10∑
p=1

log[1 + exp(−cipdT
ipxi)] + ‖xi‖22, (20)

where each node i holds 10 training points consisting of feature vec-
tor dip ∈ R10 and binary label cip for p = 1, ..., 10. The objective
is to perform distributed data training in the graph so that after con-
vergence all the nodes reach a common consensus of the optimal
solution, i.e., limk→∞ x

k
i = x? for all i.

We evaluated both synchronous GPDMM and PDMM using
Matlab code on a Windows computer. In the implementation of
synchronous PDMM, the L-BFGS algorithm [33] was used to solve
local subproblems involving the functions {gi(xi)|i ∈ V}. The
parameter Li in (6) for GPDMM was set as Li = 2 for all i. For
simplicity, we set all the matrices in P to be a constant scalar pa-
rameter ρ for both methods. That is P = {P ij = ρ|(i, j) ∈ E}. At
each iteration, the mean squared error (MSE) across all nodes in the

graph

MSEk =
1

|V|
∑
i∈V

‖xk
i − x?‖2,

was measured, where the global optimal solution x? was computed
beforehand.

Two simulations were conducted for performance comparison of
the two methods. In the first simulation, a range of ρ values between
[1.5, 4] with intervals of 0.08 were tested. For each ρ value, we
counted the number of iterations needed before each method reaches
an MSE of 10−8. The two curves in Fig. 1:(a) were obtained by
averaging the results of 20 instances. It is seen from Subplot (a) that
GPDMM has a slight performance degradation compared to PDMM
when ρ > 2.2. When ρ? = 2.4, both methods exhibit the fastest
converge speed.

In the second simulation, we studied the convergence speed of
the two methods versus the number of iterations and absolute run-
time (in units of second) by using ρ? = 2.4, respectively. The re-
sults are displayed in Fig. 1:(b) and (c), respectively. The curves in
both subplots are obtained by averaging the results of 500 instances.
It is clear that GPDMM is much faster than PDMM in terms of run-
time. This suggests that the gradient based distributed computation
is much cheaper than tackling the original function gi(xi) in (20)
for the RRLR problem.

Remark 1. More experiments have been provided in [23] for
synchronous GPDMM over random graphic models rather than
simple chain graphs. The results in [23] also confirm that syn-
chronous GPDMM is computationally more efficient than syn-
chronous PDMM.

6. CONCLUSION

In this paper we have provided a new convergence analysis for syn-
chronous GPDMM. The new analysis only requires the objective
functions to have Lipschitz continuous gradient while the analysis
in [23] additionally requires the functions to be strongly convex. A
sufficient condition on how to setup the parameters of synchronous
GPDMM has been provided. Experimental results for the RRLR
problem demonstrate that synchronous GPDMM is computation-
ally much cheaper than synchronous PDMM. This suggests that if
PDMM can not obtain a closed form solution in its updating expres-
sions for the considered objective functions, GPDMM should then
be considered for cheaper local computations.
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