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 A unified polynomial expansion is established for interval model, random model 

and hybrid uncertain model; 

 The arbitrary polynomial chaos is extended for interval analysis and hybrid 

uncertain analysis; 

 The method is applied to structure-acoustic problem with interval/random 

variables involving complex probability distribution;  

 The proposed method has been compared with the hybrid perturbation method; 

 The proposed method for three uncertain models has been compared with several 

widely used polynomial chaos methods. 

 

Highlights (for review)
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Abstract 

For structure-acoustic system with uncertainties, the interval model, the random 

model and the hybrid uncertain model have been introduced. In the interval model and 

the random model, the uncertain parameters are described as either the random 

variable with well defined probability density function(PDF) or the interval variable 

without any probability information, whereas in the hybrid uncertain model both 

interval variable and random variable exist simultaneously. For response analysis of 

these three uncertain models of structure-acoustic problem involving arbitrary PDFs, 

a unified polynomial expansion method named as the Interval and Random Arbitrary 

Polynomial Chaos method(IRAPCM) is proposed. In IRAPCM, the response of the 

structure-acoustic system is approximated by APC expansion in a unified form. 

Particularly, only the weight function of polynomial basis is required to be changed to 

construct the APC expansion for the response of different uncertain models. Through 

the unified APC expansion, the uncertain properties of the response of three uncertain 
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models can be efficiently obtained. As the APC expansion can provide a free choice 

of the polynomial basis, the optimal polynomial basis for the random variable with 

arbitrary PDFs can be obtained by using the proposed IRAPCM. The IRAPCM has 

been employed to solve a mathematical problem and a structure-acoustic problem, 

and the effectiveness of the unified IRAPCM for response analysis of three uncertain 

models is demonstrated by fully comparing it with the hybrid first-order perturbation 

method and several existing polynomial chaos methods.  

Key words: Interval model; Random model; Hybrid uncertain model; Arbitrary 

Polynomial Chaos; Gauss integration; Structure-acoustic system. 

1 Introduction 

The response analysis of structural-acoustic system is a key procedure for the 

control and optimization of the vibration and noise behaviors of engineering products, 

such as automobiles, steamships, aircrafts, submarines and spacecrafts. Traditional 

methods for response analysis of structural-acoustic system are deterministic 

numerical methods by assuming that all input parameters are fixed[1]. However, 

uncertainties related to material properties, boundary conditions and surrounding 

environment are unavoidable in the real engineering practices. Without considering 

these uncertainties, the results obtained by using deterministic numerical methods 

may be unreliable. Therefore, there is a growing interest for developing numerical 

methods for the response analysis of structural-acoustic system with 

uncertainties[2-6].  

The most widely used technique for uncertainty quantification is the probabilistic 

method, in which the uncertain parameter is represented by the random variable with 

well defined probability density function(PDF). During past decades, lots of methods 

have been proposed for random uncertainty quantification, such as the Monte Carlo 

method[7-9], the perturbation probabilistic method[10-13] and the polynomial chaos 

method[14,15]. Among these methods, the Monte Carlo method is the simplest and 

the most versatile method for uncertain problems. However, the Monte Carlo method 
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suffers from tremendous computational cost for large-scale engineering systems[7]. 

The perturbation probabilistic method is a very efficient way for random analysis, but 

it is only accurate for uncertain problems with small uncertainty level[10]. The 

polynomial chaos method is proposed based on orthogonal polynomial theory, which 

is free from small perturbation assumption and the efficiency is much higher than 

Monte Carlo method[14]. Thus, the polynomial chaos method has been widely used to 

solve random engineering problems[16-18]. 

The probabilistic method is established based on the condition that the precise 

probability distribution is obtained. However, at the early stage of design, the PDF of 

random variables may be not available due to the limited information. To model the 

uncertain problems with limited information, various of non-probabilistic 

mathematical frameworks have been developed, such as the interval analysis[19-21], 

the fuzzy theory[22, 23], the evidence theory[24-26] and the p-box set[27,28]. All 

these non-probabilistic mathematical frameworks have their own merit in application. 

The fuzzy theory is an effectively technique to model the subjective probability 

derived from the expert opinions. The evidence theory and the p-box set are suitable 

to represent imprecise probability. In the interval analysis, only the lower and upper 

bounds of an uncertain parameter are required. Thus, the interval analysis is most 

suitable to describe the uncertainties whose probability information is completely 

missing. As the determination of bounds for an interval may be easier and more 

straightforward than the identification of an imprecise probability distribution, the 

interval analysis is also a popular mathematical framework to deal with the 

uncertainties in engineering problems. Researches on uncertainty quantification of 

interval model is rather mature and different methods have been proposed, including 

the interval perturbation method[29-31], the interval Chebyshev method[32], the 

interval Legendre method[33], the interval factor method[34], the vertex method[35], 

the rational expansion method[36,37] and et al. More detailed review of interval 

methods can be found from Ref.[38].  

Obviously, the interval methods and the random methods aforementioned are 

focused on uncertain problem with either random or interval parameters. However, 
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the random and interval parameters may exist simultaneously in some engineering 

problems. To represent the hybrid uncertainties, Elishakoff and Colombi developed a 

hybrid uncertain model, in which some uncertain parameters with well defined PDFs 

are treated as random variables, whereas the others are described as interval 

variables[39]. The uncertainty quantification of the hybrid uncertain model is more 

challenging than the interval uncertainty quantification and the random uncertainty 

quantification, as the approximation for the response related to different types of 

uncertainty in the hybrid uncertain model should be properly integrated[40]. Up to 

now, the studies for uncertainty quantification of the hybrid uncertain model are 

relatively small. The perturbation technique is a general choice for the hybrid 

uncertain analysis in the last decades, but it is limited to hybrid uncertain problems 

with small uncertainty level[41-44]. Recently, the polynomial chaos method has been 

developed for hybrid uncertain analysis. By integrating the Chebyshev polynomial 

with the generalized Polynomial Chaos(gPC), Wu et al. proposed a hybrid method for 

uncertainty quantification and robust topology optimization [45, 46]. Subsequently, 

Yin et al. employed the Gegenbauer polynomial of gPC to construct a unified 

polynomial chaos expansion for structure-acoustic problems with interval and/or 

random uncertainties[47]. Wang et.al developed a response surface method for 

structural-acoustic systems with random and interval parameters based on the 

gPC[48]. To improve the computational efficiency for interval analysis of gPC 

expansion, Xu et. al developed a hybrid uncertainty analysis method by introducing 

the dimension wise analysis[49]. Compared with the perturbation technique based 

method, these gPC based methods have shown better accuracy for hybrid uncertain 

problem with large uncertainty level.  

The random model, the interval model and the hybrid uncertain model listed 

above can be used to describe the uncertain system with interval and/or random 

variables in different cases according to the available information. For the uncertainty 

quantification of these three uncertain models, the polynomial chaos method can be 

effectively used for the uncertain problem with large uncertainty level and the 

efficiency is much higher than the Monte Carlo method. Thus, this paper will focus on 
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the application of polynomial chaos method for uncertainty quantification of these 

three uncertain models. From the overall perspective, though the polynomial chaos 

method has gained a great achievement for uncertainty analysis, some important 

issues still remain unresolved. Firstly, as we mentioned before, the polynomial chaos 

methods for hybrid uncertain model are generally developed based on the polynomial 

basis of gPC. However, the accuracy and efficiency of these gPC based methods may 

be deteriorated for hybrid uncertain problem with the probability distribution out of 

Askey scheme, as the optimal polynomial basis of polynomial chaos expansion for 

uncertainty analysis with the probability distribution out of Askey scheme cannot be 

obtained by using gPC[50]. Secondly, there is little research on developing the unified 

polynomial expansion method for interval model, random model and hybrid uncertain 

model, especially when the random parameter of these uncertain models is following 

an arbitrary probability distribution. Recently, the Gegenbauer polynomial has been 

developed to construct the unified polynomial expansion for interval model, random 

model and hybrid uncertain model[47]. By using the unified Gegenbauer expansion, 

the response for these three uncertain models can be obtained by using a common 

numerical algorithm. However, unified Gegenbauer expansion method is only suitable 

for the uncertain problem with the bounded random variable following mono-valley 

or mono-peak probability distributions[47]. As regarding the engineering application, 

the PDF of random variable can be an arbitrary function, sometimes may be very 

complex. Therefore, it is desirable to develop new unified polynomial expansion 

method that can be used for three uncertain models with interval variable and/or 

random variable following arbitrary probability distributions. 

The aim of the present study is to develop a new unified polynomial expansion 

method for response analysis of structure-acoustic systems with interval and/or 

random variables. For structure-acoustic systems with interval and/or random 

variables, three uncertain models will be considered, namely the interval model, the 

random model and the hybrid uncertain model. In order to construct the unified 

polynomial expansion for these three uncertain models, the Arbitrary Polynomial 

Chaos(APC) which has been successfully applied to uncertainty analysis with random 
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variable following arbitrary probability distributions[51-53], will be developed for the 

uncertainty quantification of interval model and hybrid uncertain model. With this 

development, the unified Interval and Random Arbitrary Polynomial Chaos 

method(IRAPCM) is proposed to predict the response of three uncertain models of 

structure-acoustic system. In IRAPCM, the response of three uncertain models is 

approximated by the APC expansion in a unified form. For different uncertain models, 

only the weight function of polynomial basis is changed to construct the APC 

expansion. The coefficients of APC expansion are calculated though the Gauss 

integration. Once the APC expansion for uncertain models is obtained, the uncertain 

properties of response can be easily computed. The proposed IRAPCM is applied to a 

simple mathematical problem and a structure-acoustic problem. The effectiveness of 

IRAPCM for response analysis of interval model, random model and hybrid uncertain 

model has been investigated by comparing it with the hybrid first-order perturbation 

method and several existing polynomial chaos methods. 

2 Fundamentals of the arbitrary polynomial chaos expansion 

This section will briefly summarize the fundamentals of APC theory. Besides, 

the Gauss integration will be introduced to compute the coefficient of APC expansion 

due to its robustness and good efficiency. Furthermore, in order to efficiently calculate 

the weights and nodes of Gauss integration, the polynomial basis of APC expansion is 

constructed based on the recursive relations of the monic orthogonal polynomial.  

2.1 Arbitrary polynomial chaos expansion for a function 

A function ( )Y  approximated by the APC expansion can be expressed as 

follows 

  
0

( ) ( )
N

i i

i

Y y  


                             (1) 

where N is the retained order of APC expansion, i
y  represents the expansion 
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coefficient to be estimated, ( )
i

   denotes the polynomial basis of order i, which 

satisfied the following orthogonality relation 

( ), ( )
i j i ij

h                           (2) 

where 
2( )

i i
h   , 

ij
  denotes the Kronecker delta and ,     denotes the inner 

product with respect to the weight function in a specific domain  . ( ), ( )
i j

     

can be expressed as 

( ), ( ) ( ) ( ) ( )d
i j i j

w         


                (3) 

where, ( )w   is the weight function. ( )w   in the framework of APC theory 

can be an arbitrary continuous or discrete function, such as the piecewise function. 

The free choice of the weight function of polynomial basis is the main advantage of 

APC expansion. 

 For multi-dimension uncertain problems, ( )Y ξ  can be approximated by using 

the tensor order APC expansion as follows 

1

1 1

1

,..., ,...,

0 0

( ) ( )
L

L L

L

N N

i i i i

i i

Y y 
 

 ξ ξ                      (4) 

where,  1 2
, ,...,

L
  ξ  is a L-dimension vector, ( 1,2,..., )

i
N i L  denotes 

the retained order of APC expansion related to i
 , 

1 ,..., Li i
y is the expansion coefficient 

to be estimated, 
1 ,..., Li i

 is the L-dimension polynomial basis, which is given by 

1 ,...,

1

( ) ( ),     1,2,..., ,   1,2,...
L j

L

i i i j j

j

j L i  


  ξ             (5) 

In the above equation, ( )( 1,2,..., )
ji j

j L    denotes the polynomial basis 

related to j
 , j

i  denotes the order of the polynomial basis ( )
ji j

  . 

2.2 Construction of polynomial basis for arbitrary given weight functions 

In APC expansion, the polynomial basis for a given weight function can be 
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numerically obtained based on several numerical theories, such as the Gram-Schmidt 

orthogonalization[51] and the recursive relations of monic orthogonal polynomials 

[54]. Gram-Schmidt orthogonalization is the most widely used technique to construct 

the polynomial basis of APC expansion. However, the polynomial basis obtained by 

using Gram-Schmidt orthogonalization is not unique for a given weight function. As a 

comparison, the unique polynomial basis that is orthogonalized to a given weight 

function can be obtained based on the recursive relations of monic orthogonal 

polynomials. In addition, the Gauss integration formula for calculating the 

coefficients of APC expansion can be easily computed according to the coefficients of 

recursive relations of monic orthogonal polynomials. Therefore, the polynomial basis 

of APC expansion will be constructed based on the recursive relations of monic 

orthogonal polynomials in this paper. 

Suppose ( )w   is a positive measure supported on an interval such that all 

moments ( )dk k w   


   exist and are finite. Then, there always exist a set of 

monic orthogonal polynomials that satisfied the following three-term recurrence 

relations[54]   

1

0

1 1

( ) 0,

( ) 1,

( ) ( ) ( ) ( ),   0,1,2,...
k k k k k

a b k

 

 

      



 





   

           (6) 

Where, ka  and ( 1,2,...)kb k   are the recurrence coefficients of the orthogonal 

polynomials. In the framework of gPC, the recurrence coefficient of the orthogonal 

polynomial from the Askey scheme is well defined. As a comparison, the recurrence 

coefficient of the orthogonal polynomials of the APC expansion should be estimated. 

According to the theory of orthogonal polynomial, ka  and ( 1,2,...)kb k   of the 

APC expansion can be determined by[44]  

( ), ( )
,    0,1,2,...

( ), ( )

k k

k

k k

a k
   

   
                     (7) 

1 1

( ), ( )
,     1, 2,...

( ), ( )

k k

k

k k

b k
   

   
 

                     (8) 
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with the coefficient 0
b  being arbitrary and set by convention such that 

0
( )db w x x  .       

2.3 Calculation of the expansion coefficient by using the Gauss integration 

Owing the orthogonality of the polynomial basis, the expansion coefficient i
y  

in Eq. (1) can be obtained via the following expression[54] 

( ), ( ) 1
( ) ( ) ( )d

( ), ( )

i

i i

i i i

Y
y Y w

h

  
    

    
                 (9) 

Lots of integration techniques can be employed to calculate the integral in the 

above equation, such as the Gauss integration technique[54], the Clenshaw–Curtis 

integration technique[58] and the Newton–Cotes integration technique[59]. The 

Gauss integration technique is a widely used integration method for calculating the 

coefficient of the tensor-order polynomial chaos expansion[16]. This is because the 

Gauss integration technique can generally achieve high accuracy for determining the 

integral of the polynomial function, when the number of Gauss nodes is up to a 

certain value[54]. In this paper, the Gauss integration technique is introduced to 

calculated the integral in Eq.(9) due to its robustness.  

By using Gauss integration rule, i
y  in Eq.(9) can be expressed as a weighted 

sum of a finite set of function evaluations, that is[54] 

1

1 1 ˆ ˆ( ) ( ) ( )d ( ) ( )
m

i i i i i i

ii i

y Y w Y w
h h

       




            (10) 

Where, ˆ
i

x  and i
w  are the nodes and weights of the Gauss integration rule, 

respectively; m is the total number of integration nodes. ˆ
i
  and i

w  of the m-point 

Gauss integration only depend on ( )w  . When ( )w   is a weight function of the 

orthogonal polynomial from the Askey scheme, ˆ
i
  and i

w  of the m-point Gauss 

integration can be determined by an explicit formula[14]. However, there is no 
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explicit formula to determine ˆ
i
  and 

i
w  of the m-point Gauss integration for 

arbitrary weight functions. According to Ref.[54], ˆ
i
  and 

i
w  of the Gauss 

integration with regard to an arbitrary weight function should be obtained from the 

eigenvalue decomposition of the Jacobi matrix nJ . The Jacobi matrix nJ  assembled 

with the recurrence coefficients ia  and ib  can be expressed as[54]   

0 1

1 1 2

2

2 1

1 1

n

n n

n n

a b

b a b

b

a b

b a

 

 

 
 
 
 

  
 
 
 
 

J                     (11) 

 

In particular, if T

1 2
( , , , )

n n
diag   V J V  and 

T V V I , in which I  is 

the n n  dimension identity matrix. Then, the desired i
x  and ˆ

i
w   can be 

determined by 

2

0 ,1
ˆ,    ,   1,2,...

i i i i
x w b v i  

                  
(12) 

where 
,1i

v  is the first component of the i-th column vector of V . 

Similarly, the expansion coefficient 
1 ,..., Li i

y  shown in Eq.(4) can be determined 

according to the orthogonality of the polynomial basis and expressed as 

1

1 1 1

11 1

,...,

,..., ,..., ,...,

,...,,..., ,...,

( ), ( ) 1
( ) ( ) ( )d

( ), ( )

L

L L L

LL L

i i

i i i i i i

i ii i i i

Y
y Y w

h




  
  

ξ ξ
ξ ξ ξ ξ

ξ ξ
    (13) 

where 

1 1,..., ,...,

1 1

,     ( ) ( )
L j L j

L L

i i i i i i j

j j

h h w w 
 

  ξ             (14) 

By using the Gauss integration, 
1 ,..., Li i

y  can be obtained and expressed as 
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1 1 1

1

1

1 1 1

11

,..., ,..., ,...,

,...,

,..., ,..., ,...,

1 1,...,

1
( ) ( ) ( )d

1 ˆ ˆ        ( ) ( )

L L L

L

L

L L L

LL

i i i i i i

i i

m m

j j i j j j j

j ji i

y Y w
h

Y w
h







 







 

ξ ξ ξ ξ

ξ ξ

           (15) 

where 

1 1 2 1,..., ,...,

1

ˆ ˆ ˆ ˆ, , , ,   
L L L k

L

j j j j j j j j

k

w w  


  
  ξ               (16) 

In the above equations, ˆ
kj

  denotes the k
j th integration nodes for k

 , and 

kj
w denotes the weight of Gauss integration related to ˆ

kj
 , ( 1,2,..., )

k
m k L  

denotes the total number of integration nodes related to k
 . 

3 Three uncertain models of structure-acoustic systems with interval 

and/ or random variables 

3.1 Dynamic equilibrium equation for structure-acoustic system with uncertain 

parameters 

Without considering the structural damping, the dynamic equilibrium equation of 

the structure-acoustic system under the time harmonic external excitation derived 

from finite element analysis can be expressed as 

2

2 2

ss s s

T
ff f f



  

     
     

      

FK M H u

FH K M p
                 (17)  

where ω is the angular frequency of external excitation; f  is the density of fluid in 

the acoustic cavity; sK  and sM  are the stiffness matrix and the mass matrix of the 

vibrating structure; fK  and fM  are the stiffness matrix and the mass matrix of the 

acoustic cavity; H  is the spatial coupled matrix; sF  and fF  are the generalized 

force vectors loading on the vibrating structure and the acoustic cavity, respectively; 
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su  and p  are the displacement vector of the vibrating structure and the sound 

pressure vector in the acoustic cavity, respectively.  

For the sake of simplicity, Eq.(17) can be rewritten as  

 ZU F                                    (18) 

where 

2

2 2
,  ,  

ss s s

T
ff f f



  

     
       

      

FK M H u
Z U F

FH K M p
          (19) 

In the above equations, Z , U  and F  denote the dynamic stiffness matrix, the 

response vector and the force vector of the structure-acoustic system, respectively.  

Due to the unpredictable environment and the manufacturing tolerance, the 

structure-acoustic system always involved uncertainties. By using the vector 

 1 2, ,..., Lx x xx  to represent the uncertain parameters, the dynamic equilibrium 

equation of the structure-acoustic system can be rewritten as 

( ) ( ) ( )Z x U x F x                       (20) 

Where ( )Z x  and ( )F x  denote the uncertain structure-acoustic dynamic stiffness 

matrix and the uncertain force vector, respectively. 

3.2 Definition of three uncertain models for uncertain structure-acoustic system 

In this paper, the uncertain parameter of structure-acoustic system is treated as 

either random or interval variable. When there is sufficient data to construct the PDF 

of ix , ix  can be modeled by a random variable R

ix  and denoted as R

i ix x . When 

the PDF of ix  is not available due to the limited information, the variable ix  can be 

described by an interval variable I

ix
 

and denoted as [ , ]I

i i i ix x x x  . According to 

the available PDF of uncertain parameters, the interval model, the random model and 

the hybrid uncertain model will be introduced to treat with the uncertain parameters.     
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Case1: the interval model 

In the interval model, each of the uncertain parameters is described as the 

interval variable. Accordingly, the uncertain vector x  can be described as an interval 

vector and expressed as  

1 2[ , ,..., ]I I I I

Lx x x x x                         (21) 

Case2: the random model 

In the random model, all of the uncertain parameters are described as the random 

variables and the uncertain vector x  can be the expressed as  

1 2[ , ,..., ]R R R R

Lx x x x x                     (22) 

Case3: the hybrid uncertain model 

In the hybrid uncertain model, the interval variable and the random variable exist 

simultaneously. In this case, the uncertain vector x  can be expressed as a hybrid 

vector, which can be expressed as 

1 11 2 1[ , ] [ , ,..., , ,..., ]I R I I I R R

L L Lx x x x x x x x                (23) 

Where, 
1L  denotes the number of interval variables of the hybrid uncertain 

model. From Eqs.(21)~(23), one can find that the interval model is a special case of 

the hybrid uncertain model when 
1=L L , while the random model can be viewed as a 

special case of the hybrid uncertain model when 
1=0L . 

4 Arbitrary polynomial chaos expansion for response analysis of 

structure-acoustic system with interval and random variables 

The APC has been previously applied for random analysis[18]. In this section, 
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the APC will be developed for response analysis of hybrid uncertain model of 

structure-acoustic system. As we mentioned in Section3.2, both the interval model and 

the random model can be viewed as the special case of the hybrid uncertain model. 

Therefore, through the extension of APC expansion for hybrid uncertainty analysis, a 

unified polynomial expansion approach is consequently established for response 

analysis of the interval model, the random model and the hybrid uncertain model of 

structure-acoustic system. In the following subsections, the procedure of APC 

expansion for hybrid uncertainty analysis of structure-acoustic problem will be 

deduced in detail.  

4.1 Determine the polynomial basis with respect to the random variable 

Polynomial chaos method is an uncertainty propagation approach which has been 

used in many engineering problems. The key idea of polynomial chaos method for 

random analysis is to approximate the random response by a sum of orthogonal 

polynomials. In the infinite amount of orthogonal polynomials, there always exists an 

optimal orthogonal polynomial for a given random variable. In particular, the 

orthogonal polynomial whose weight function is identical to the PDF of random 

variable can be viewed as the optimal polynomial basis of the polynomial chaos 

expansion for the random variable[50]. When the optimal polynomial basis is 

obtained, the polynomial chaos method can achieve exponentially convergence rate 

for random problem. Thus, in this paper, the PDF is used as the weight function of the 

polynomial basis with related to the random variable. Once the weight function 

related to a random variable is determined, the polynomial basis can be calculated 

through Eqs.(6)~(8).   

Note that the widely used gPC can only provide the optimal orthogonal 

polynomial for the probability distribution in the Askey scheme[14]. As a comparison, 

the APC can provide the optimal polynomial basis for any probability distribution, 

which is the main advantage of the APC expansion for uncertainty analysis with 

random variable.  
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4.2 Determine the polynomial basis with respect to the interval variable 

Theoretically, an arbitrary orthogonal polynomial that is defined on a closed 

interval can be used as the polynomial basis of APC expansion for the approximation 

of response of uncertain system with interval variable. However, the accuracy of APC 

expansion for the interval problem may change with different polynomial bases. 

Therefore, it is necessary to determine a suitable polynomial basis of APC expansion 

for interval analysis. According to Section 2.2, the polynomial basis of APC 

expansion is determined by its corresponding weight function. In order to determine 

the polynomial basis of APC expansion for the interval problem, the effect of the 

weight function of polynomial basis on the accuracy of the APC expansion will be 

firstly investigated and discussed by a simple example as follows.  

Example. Consider 
2

( ) xy f x e  , where [ 1,1]x  . The APC expansions with 

different weight functions are used to approximate the original function ( )f x . The 

Legendre polynomial and the Chebyshev polynomial are widely used for interval 

analysis, thus the weight functions of Legendre polynomial and Chebyshev 

polynomial will be considered to construct the APC expansion in this numerical 

example. According to ref.[55], the weight functions of both Legendre polynomial 

and Chebyshev polynomial can be viewed as the special case of the   function. The 

  function is defined as follows[55] 

 
1

2 2
( 1)

( , ) 1 ,     1 1
(1 2) ( 1 2)

x x x


 


 
    
  

          (24) 

In particular, the weight function of Legendre polynomial and Chebyshev 

polynomial are ( ,0.5)x  and ( , 0)x   , respectively. In this paper, 

( , 0.01)x    is used instead of ( , 0)x   . Thus, APC expansions with the 

weight function ( , 0.01)x    and ( , 0.5)x    will be used for the 

approximation of y. For a comparison the APC expansion with the weight function 

( , 3)x    will also be considered. Three weight functions, namely ( , )x   with 
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0.01,  0.5   and 3, are plotted in Fig.1.  

 

Define the Relative error(Re) as 

( ) ( )
Re

( )

P x f x

f x


                       (25)                    

Where, ( )P x  denotes the APC expansion. The relative error of the fifth-order 

APC expansion with different weight functions is plotted in Fig.2.  

 

It can be found from Fig.2 that that the errors yielded by the APC expansions 

with the weight functions ( , 0.01)x    and ( , 0.5)x    are more uniformly 

distributed over the interval than the APC expansion with the weight function 

( , 3)x   . Especially, the accuracy of the APC expansion with the weight function 

( , 3)x    will be seriously deteriorated around the bounds of the interval. The main 

reason is that the values of ( , 3)x    at the neighborhood of bounds are very small. 

Note that the weight function is always used to minimize the residual error of APC 

expansion[56]. Thus the error of APC expansion may be relatively large on the region 

where the values of the weight function approach to zeros. Besides, we can find that 

the errors of APC expansion with the weight function ( , 0.01)x    around the 

bounds of interval are relatively smaller than those of APC expansion with the weight 

function ( , 0.5)x   . This is mainly because the values of ( , 0.01)x    around 

the bounds of interval are larger than those of ( , 0.5)x   . Thus, the APC 

expansion with the weight function ( , 0.01)x    can achieve relatively high 

accuracy around the bounds of interval. 

The interval analysis is to search the maximum and minimum of a function over 

the whole closed interval of uncertain input, and the maximum and minimum of a 

function may be obtained at any value of the closed interval of uncertain input. Thus, 
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it is ideal to use the approximation technique that can achieve the same accuracy over 

the whole interval of uncertain input for interval analysis. However, as is shown in 

Fig.2, the accuracy of APC expansion with each weight function will fluctuate in the 

interval. Namely, the ideal approximation for interval problems may be not available 

by using the APC expansion. But from an overall point of view, the accuracy of the 

APC expansions with the weight functions ( , 0.01)x    and ( , 0.5)x    is 

more uniformly distributed in the interval than the APC expansion with the weight 

functions ( , 3)x   . It indicates that it is more suitable to select ( , 0.01)x    or 

( , 0.5)x    rather than ( , 3)x    as the weight function of the polynomial basis 

of APC expansion for interval analysis. On the other hand, as regarding engineering 

problems, the maximum or minimum of the response is more likely to be obtained at 

the bounds of interval. Thus, the APC expansion with the weight function 

( , 0.01)x   , which can achieve relatively high accuracy at the bounds of interval, 

will be used for interval analysis in this paper. In other words, ( , 0.01)x   , namely 

the   function with 0.01  , will be adopted as the weight function of the 

polynomial basis of APC expansion for interval analysis. 

4.3 Construct the arbitrary polynomial chaos expansion for response with interval 

and random variables 

Based on the APC expansion, the response of the hybrid uncertain 

structure-acoustic system can be approximated as  

 
1

1 1 11 1

1

,..., ,..., ,...,

0 0

, ... ( ) ( )     1,2,...,
L

L L L L

L

N N
I R k I R

k k i i i i i i tot

i i

U U f k N 


 

   x x x x   (26)  

In the above equations, ( 1,2,..., )k totU k N denotes k-th element of the response 

vector U , totN
 

denotes the dimension of U ; ( 1, 2,..., )jN j L denotes the retained 

order of APC expansion related to jx ,  
1 , . . . ,L

k

i if  denotes the expansion coefficient to 
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be estimated. The coefficients 
1 ,..., L

k

i if  can be calculated according to section 2.3, 

which can be determined by 

 
1

1 1 1 11 1

1

,..., ,..., ,..., ,...,

1 11

1
ˆ ˆ ˆ ˆ... , ( ) ( ) 

...

L

L L L L L

L

m m
k I R I R

i i k i i i i i i

j jL

f U w
h h

 


 


 

  x x x x      (27) 

In the above equation, ˆ I
x  and ˆ R

x  denote the integration nodes related to the 

interval variables and random variables, respectively. 
1 ,..., Li iw  denotes the weight with 

respect to the integration nodes. The integration nodes and their corresponding weight 

can be calculated through Eqs.(11) and (12);  ˆ ˆ,I R

kU x x  denotes the responses of 

structure-acoustic system at the integration nodes, which can be calculate through 

Eq.(18).  

4.4 Evaluate the uncertainty property of sound pressure of structure-acoustic system 

The response analysis of uncertain structure-acoustic system with interval and 

random variables includes two main steps. In the first step, the interval variables are 

regarded as constant parameters, and the response of hybrid uncertain 

structure-acoustic system can be rewritten as the following form 

11 1 1

1 1 11 1

1 11

11

1 11 1

11

,..., ,..., ,...,

0 0 0 0

,..., ,...,

0 0

... ... ( ) ( )

      ( )

L LL

L L L L

L L L

L L

L L L L

L L

N NN N
k I R

k i i i i i i

i i i i

N N
k R

i i i i

i i

U f

z

 











 



   

 

 
   

 



   

 

x x

x

           (28) 

Where 

1 1

1 1 11 1

1 1

,..., ,..., ,...,

0 0

... ( )
L

L L L L

L

NN
k k I

i i i i i i

i i

z f 


 

  x                      (29) 

Based on the APC expansion, the expectation of kU  can be determined by 

11

1 11 1

11

11

1 1 1 1 11 1 1

11

,..., ,...,

0 0

,..., ,..., 1 1

0 0

E ... ( )

     ... ( ) ( ) ( )

L L

k L L L L

L L

L L

L L L L L L

L L

N N
k R

U i i i i

i i

N N
k R R R R R

i i i i X L X L L L

i i

z

z P x P x dx dx

 





 





  



 

 

 
 

 

 
  

  

 
  

 
 

 

  

x

x
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   (30)  

In the above equation, 
1( )( 1,..., )

j

R

X jP x j L L   is the PDF of R

jx , and there is 

( ) ( )
j

R R

X j j jP x w x , where ( )R

j jw x  is the weight function of the polynomial basis 

related to R

jx . As the polynomial basis is orthogonal with respect to the PDF of the 

random variable, the analytical solution of the expectation of the APC expansion can 

be readily obtained[14]. According to Ref.[14], the expectation of the response 

approximated by APC expansion can be expressed as  

 

0,...,0
k

k

U
z                            (31) 

Before calculating the variance of the response, the expectation of mean square 

response should be obtained, which can be written as 

 
11

1 11 1

11

2

2

,..., ,...,

0 0

E E ( )
L L

L L L L

L L

N N
k R

k i i i i

i i

U z 


 

  

  
             

  x                (32) 

Based on the orthogonal relationship of polynomial basis, the expectation of 

mean square response can be finally obtained and written as [14] 

   
11

1 11 1

11

22

,...,

0 0

E ,...,
L L

L L L L

L L

N N
k

k i i i i

i i

U z h h


 

  

  
                      (33) 

Consequently, the variance of the response can be obtained and expressed as 

   

   
11

1 11 1

11

22
2

2 2

,..., 0,...,0

0 0

E

        = ,...,

k k

L L

L L L L

L L

kU U

N N
k k

i i i i

i i

U

z h h z

 



 

  

  
  

 
                (34) 

Owing to the orthogonality of the polynomial basis, the expectation and variance 

of the response can be determined and expressed as 

11

1 11 1

11

,..., ,..., 0,...,0

0 0

=E ( )
L L

L L L Lk

L L

N N
k R k

i i i iU
i i

z z 


 

  

 
 

  
  x                (35) 
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Substituting Eq. (29) into Eq. (35) and Eq. (36), the expectation and variance of 

the response can be rewritten as 
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In the second step, the lower and upper bounds of the expectation and variance 

can be calculated by the Monte Carlo simulation and expressed as 
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            (39) 

To obtain the maximum and minimum of the APC expansion shown in Eq.(39), 

various methods can be employed, such as the conventional optimization method[54], 

the Monte Carlo method[47], the interval arithmetic[37], and the dimension wise 

analysis[49]. The Monte Carlo method is the most accurate approach for interval 

analysis. However, a large number of sampling points is required to achieve a 

prescribed accuracy by using the Monte Carlo method. The interval arithmetic is the 

most efficient method for interval analysis, but its accuracy can hardly be evaluated 

due to the wrapping effect. The dimension wise analysis can also achieve high 

efficiency for interval analysis. However, the main potential limitation for dimension 

wise analysis is that the cooperative effects of multiple interval parameters acting 

together upon the system response are ignored. Thus, the accuracy of dimension wise 

analysis may be decreased in some cases[49]. The Genetic Algorithm(GA) algorithm 
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is a widely used method for solving complex optimization problems. Generally, the 

GA algorithm can achieve a prescribed accuracy for the interval analysis through an 

iterative process, and the computational efficiency of GA algorithm is much higher 

than the Monte Carlo method. Due to the good accuracy of GA algorithm, the GA 

algorithm will be employed to calculate the maximum and minimum of the APC 

expansion in this paper. Note that the APC expansion is a simple function, thus the 

computational cost suffering the GA algorithm is acceptable. 

4.5 Procedure of arbitrary polynomial chaos expansion for uncertainty analysis with 

interval and random variables  

This paper employs the APC expansion to approximate the response of uncertain 

structure-acoustic systems with interval and random variables. Based on the APC 

expansion, the interval and random analysis of uncertain structure-acoustic systems 

can be easily implemented. For structure-acoustic systems with different type of 

uncertain variables, only the weight function should be changed to construct the APC 

expansion. The proposed method, which can provide a unified approximation for the 

response of structure-acoustic systems with interval and random variables, is termed 

as the Interval and Random Arbitrary Polynomial Chaos Method(IRAPCM). The 

procedures of IRAPCM for structure-acoustic systems with interval and random 

variables can be summarized as follows 

Step1. Determine the weight function of polynomial basis with respect to each 

variable. For the random variable, the weight function is the same as the PDF; for the 

interval variable, the weight function is given as the   function with 0.01  ;  

Step2. Construct the polynomial basis that is orthogonalized with respect to the 

weight function related to each variable through Eqs.(6)~(8); 

Step3.  Compute the integration nodes and weights through Eq.(12); 

Step4. Calculate the response of structure-acoustic system at the interpolation 

points through Eq.(20); 

Step5. Calculate the coefficients of APC expansion through Eq.(27); 
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Step6. Calculate the response of structure-acoustic systems with interval and 

random variables through Eq.(39).  

The main difference between the proposed IRAPCM and the conventional gPC 

based method is that different types of orthogonal polynomials are used for the 

polynomial chaos expansion. In the gPC based method, the orthogonal polynomial is 

selected from the Askey scheme, while the orthogonal polynomial in the proposed 

IRAPCM is numerically generated. As the choice of polynomials in Askey scheme is 

limited to some well known orthogonal polynomials, the optimal polynomial basis of 

polynomial chaos expansion for a wide range of complex probability distributions is 

not available by using the gPC based methods[50]. As a comparison, the optimal 

polynomial basis for an arbitrary PDF can be constructed by using IRAPCM. In other 

words, the proposed IRAPCM has the ability to provide the optimal polynomial basis 

for the uncertain problem involving arbitrary probability distribution.  

5 Numerical examples  

In previous years, lots of polynomial chaos methods have been proposed for 

uncertainty quantification of interval model, random model and hybrid uncertain 

model. To verify the good accuracy of the proposed IRAPCM, several widely used 

polynomial chaos methods have been introduced for comparison. For the response 

analysis of interval model, the widely used Interval Legendre method(ILM[33]) and 

the Interval Chebyshev method(ICM[5]) are introduced. For the response analysis of 

random model, the gPC method(gPCM[14]) is introduced. For the hybrid uncertain 

analysis, the hybrid gPC and Interval Chebyshev method(gPC-ICM[46]) and the 

hybrid gPC and dimension wise analysis method(gPC-DWM[49]) are introduced. 

5.1 Mathematical problem 

Consider a function as follows 

2
1 2

1

x xy e x e                              (40) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

23 

 

 

1x  and 2x  are assumed as uncertain parameters. Table1 listed three uncertain 

models to describe 1x  and 2x .  

In the interval model, both 1x  and 2x  are described as interval variables. As 

the PDF of the interval variable is not available, only the range of variation is given 

for the interval variable. In the random model, both 1x  and 2x  are described as 

random variables. In the hybrid uncertain model, 1x  is described as random variable, 

while 2x  is described as interval variable. In Table1, the PDFs of 1  and 2  are 

given as follows 

 
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In the above equations, 0a  can be determined by 
1

1

1
( )d 1p


 


 ;   is the 

distribution parameter, which can be any value of 0  . In this numerical example, 

  is taken as 2.5. Both PDFs of 1  and 2  are out of the Askey scheme. 1

cannot be represented by using the random variable with the PDF from the Askey 

scheme, while 2  can be represented by using the second order polynomial function 

of the random variable with   distribution from the Askey scheme[52], that is 

 
2

2 1 0.5 0.25 ,         [ 1,1] 

                           (43) 

Specially, 
  with the   distribution is related to the Gegenbauer polynomial 

in the Askey scheme, and the PDF of 
  is given by 
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In the proposed method, the Gauss integration method is adopted to calculate the 
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coefficient of APC expansion. The accuracy of the Gauss integration method depends 

on the number of integration nodes. Generally, the error of Gauss integration method 

can be reduced by increasing the number of integration nodes. However, the increase 

of the number of integration nodes will lead to the increase of computational burdens. 

Thus, to guarantee the accuracy of the Gauss integration and reduce the computational 

cost, it is important to determine the minimal number of required integration nodes. In 

order to determine the number of required integration nodes of Gauss integration for 

calculating the expansion coefficient, the effect of the number of integration nodes on 

the accuracy of the proposed IRAPCM will be firstly investigated. When the retained 

order of APC expansion of the IRAPCM is n=1, 2 and 3, the relative errors of the 

lower and upper bounds of interval model yielded by IRAPCM with different number 

of integration nodes are plotted in Fig.3. The reference result of the lower and upper 

bounds of y is calculated by using the GA algorithm. 

 

Fig.3 shows that the relative error of IRAPCM at a certain retained order is 

gradually decreased with the increase of the number of integration nodes. When the 

number of integration nodes is up to n+1, the relative error yielded by IRAPCM under 

a certain retained order almost no longer changed. In other words, the accuracy of 

IRAPCM at a certain retained order can be hardly improved by increasing the number 

of integration nodes when the number of integration nodes is up to n+1. Therefore, to 

minimize the computational burden without losing the accuracy, the number of 

integration nodes is set as n+1 in this paper. 

The proposed IRAPCM is employed to calculate the response of three uncertain 

models of the mathematical problem. In order to compare the accuracy of the 

proposed method to other polynomial chaos based uncertainty method, the ILM, the 

ICM, the gPCM, the gPC-ICM and the gPC-DWM will also be introduced for 

response analysis of different uncertain models. The relative errors yielded by 

different methods are plotted in Fig.4 for the interval model, in Fig.5 for the random 

model and in Figs.6~7 for the hybrid uncertain model. The reference result of the 

expectation and variance of y related to the random variable is obtained by using the 
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integration method[54], and the reference result of the lower and upper bounds of y 

related to the interval variable is calculated by using the GA algorithm[57].  

 

From Fig.4, we can find that the accuracy of IRAPCM is the same as that of the 

widely used ICM for interval analysis. The main reason may be that the weight 

function of the APC expansion in IRAPCM for interval analysis is approximately the 

same as the weight function of the Chebyshev polynomial in ICM. However, it should 

be noted that the polynomial basis of APC expansion in IRAPCM is different from 

that of the Chebyshev polynomial in ICM. For instance, the APC expansion is 

constructed based on the monic polynomial, while the high-order Chebyshev 

polynomial is not the monic polynomial[32]. Therefore, the Chebyshev polynomial 

cannot be viewed as a special case of the polynomial basis of the APC expansion.  

When compared with the ILM, it can be observed from Fig.4 that the error of the 

lower bound obtained by using IRAPCM is smaller than that of the ILM, while the 

error of the upper bound obtained by using IRAPCM is slightly larger than that that of 

the ILM at several retained orders. This is mainly because that the upper bound of y is 

obtained at the bounds of x, where the APC expansion can achieve higher accuracy 

than the Legendre expansion(Refer to Fig.2 in Section 4.2); while the lower bound of 

y is obtained around the mind-point of x, where the accuracy of APC expansion may 

be lower than that of the Legendre expansion. Therefore, the accuracy of IRAPCM is 

higher than that of ILM for calculating the upper bound of y, but is slightly lower than 

that of ILM for calculating the lower bound of y.  

 

From Fig.5, we can find that IRAPCM can converge exponentially. As a 

comparison, the convergence rate of gPCM is much slower than that of IRAPCM, and 

the accuracy of gPCM remains no longer changed when the retained order is up to 3. 

This is mainly because the weight function of polynomial basis of gPCM can not 

accurately represent the random variable whose PDF is a piecewise function. In other 

words, some errors have been introduced for the PDF of random variable by using 

gPCM. Consequently, the results obtained by gPCM cannot converge to the exact 
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result. In addition, the nonlinear transformation of the random variable may also 

degrade the convergence rate of the gPCM. Therefore, the accuracy of gPCM is much 

lower than that of the IRAPCM for random problems when the PDF of random 

parameters is out of the Askey scheme. 

 

From Figs.6 and 7, we can find that IRAPCM can also converge exponentially 

for hybrid uncertain analysis, while the gPC-ICM and gPC-WDM converges very 

slowly, especially when the retained order is up to 3. In other words, the IRAPCM can 

achieve much higher accuracy than the gPC-ICM and the gPC-WDM for hybrid 

uncertain analysis. As is addressed before, the accuracy of IRAPCM is the same as 

that of ICM for interval analysis, but is much higher than that of gPCM for random 

analysis. It indicates that the deterioration of the accuracy of gPC-ICM may be mainly 

caused by the use of the gPCM for random analysis. Therefore, it is more desirable to 

use the APC in the proposed method rather than the gPC for uncertainty quantification 

involving random variables.  

As a conclusion from Figs.4~7, the proposed IRAPCM can achieve the same 

accuracy as the widely used ICM for interval analysis, whereas the accuracy of 

IRAPCM is much higher than that of the gPC based methods for random analysis and 

hybrid uncertain analysis. In other words, the proposed IRAPCM can not only keep 

the good accuracy of ICM for interval analysis, but can also improve the accuracy of 

the gPC based method for random analysis and hybrid uncertain analysis. 

In addition, we can find from Figs.4~7 that the relative error of the proposed 

IRAPCM for response analysis of three uncertain models is gradually reduced with 

the increase of the retained order. It indicates that the proposed IRAPCM can achieve 

a high accuracy for response analysis of three uncertain models if the retained order of 

APC expansion is sufficiently large.     

5.2 Structure-acoustic problem  

5.2.1 Description of four cases of structure-acoustic system with interval and random 

variables 

Fig. 8 shows a shell structure-acoustic system, in which the shell is located at the 
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top of the acoustic cavity. The flexible shell is made of steel( 52.1 10E MPa  , 

0.3  , 37850kg / ms  ). The thickness of the shell is 2mm. The acoustic cavity is 

filled with air ( 31.225kg / mf   and 340.5m/ sc  ). All edges of the shell are 

fixed, while the walls of the acoustic cavity are rigid. The shell is excited by a unit 

normal harmonic point force at middle point denoted as Node B in Fig.8. The Finite 

Element(FE) method is used to analyze the response of structure-acoustic system. 

Particularly, the acoustic cavity and the shell structure are discretized by using the 

quadrilateral elements and the hexahedral elements, respectively. The total number of 

elements and nodes of the FE model of acoustic cavity are 1024 and 1337. The total 

number of elements and nodes of the FE model of shell structure are 128 and 153.  

Considering the unpredictability of the environment temperature and the 

manufacturing errors of materials, the Young’s modulus E, the thickness t, the density 

of air f  and the speed of air c  are considered as the independent uncertain 

parameters. To validate the accuracy of the proposed method for uncertain problem in 

different cases, four cases of uncertain structure-acoustic system is considered. The 

uncertainty information of four cases is listed in Table2. In case1, all uncertain 

parameters are described as interval variables. In case2, all uncertain parameters are 

described as random variables. For convenience, the random variables are assumed as 

a linear function of the unitary random variable defined on [−1, 1]. In case3 and case4, 

both interval variables and random variables existed simultaneously. The uncertainty 

level of the uncertain variable of case4 is much smaller than that of cases1~3. In 

Table2, the unitary random variables 1 and 2  obey the   distribution[55].The 

value of   for 1 and 2  are 1 4.5   and 2 0.5  , respectively.  The PDF of 

3  is assumed as follows 
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5.2.2 Compared with the hybrid perturbation method 

In the last decade, the perturbation method and the polynomial chaos method 

have been widely used for uncertainty analysis of structure-acoustic system with 

interval and random variables[3,5,33,40]. Both the perturbation method and the 

polynomial chaos method have their own merits and application scope. The 

perturbation method can achieve high computational efficiency, but it is limited to 

uncertain problem with small uncertainty level. The polynomial chaos method can be 

employed to solve uncertain problem with large uncertainty level. However, the 

computational efficiency of the polynomial chaos method is lower than that of the 

perturbation method. The comparison between the perturbation method and the 

polynomial chaos method for structure-acoustic system with pure interval uncertainty 

has been fully discussed in the previous study[5,33]. In this paper, the proposed 

IRAPCM will be compared to the perturbation method for uncertainty analysis with 

both interval and random variables. Particularly, the Hybrid First-order Perturbation 

Method(HFPM) in Ref.[3] will be introduced for comparison. For uncertainty analysis 

of structure-acoustic system with interval and random variables, two cases with 

different uncertainty level will be considered. In case 4, the uncertainty level of the 

interval and random variables is very small, while the uncertainty level of the interval 

and random variables of case3 is much larger than that of case4. The first-order 

IRAPCM and the HFPM is employed to calculate the response of case3 and case4 at 

f=300Hz. In the first-order IRAPCM, the retained order of APC expansion for each 

uncertain variable is one. The lower and upper bounds of the expectation and variance 

of sound pressure distributing on the middle section obtained by the HFPM and the 

first-order IRAPCM are plotted in Figs.9 and 10. The reference results are obtained 

by using the Monte Carlo simulation. In Monte Carlo simulation, the sampling points 

for the random variables are 100000, and 10 uniformly distributed sampling points are 

used for each interval variable.  
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From Fig.9, we can find that the results obtained by the HFPM and the first-order 

IRAPCM are very close to the reference results. It indicates that both the HFPM and 

the first-order IRAPCM can achieve high accuracy for hybrid uncertainty analysis of 

structure-acoustic problem with small uncertainty level.  

From Fig.10, we can find that both the HFPM and the first-order IRAPCM will 

lead to large errors. Namely, the HFPM and the first-order IRAPCM are not suitable 

to solve the structure-acoustic problem with large uncertainty level. It can be seen 

from Figs.6 and 7 that the accuracy of the IRAPCM for hybrid uncertainty analysis 

can be improved by increasing the retained order. To reduce the computational error 

of IRAPCM, the high-order IRAPCM will be employed to calculate the response of 

case3. In the high-order IRAPCM, the retained orders of the APC expansion of 

IRAPCM are 3, 2, 1 and 5 for E, t, f  and c , respectively. The results obtained by 

the high-order IRAPCM are plotted in Fig.11.  

It can be seen from Fig.11 that the result obtained by high-order IRAPCM is very 

close to the reference result. It indicates that the proposed IRAPCM can achieve high 

accuracy for uncertainty analysis with large uncertainty level if the retained order is 

sufficiently large.  

Theoretically, the accuracy of the hybrid perturbation method can also be 

improved by using high-order expansion. However, the computation of the derivatives 

of the high-order expansion of perturbation method for engineering problem is rather 

difficult and extremely cumbersome. Thus, the perturbation method for most of 

engineering problems is developed by using the low-order expansion, such as the 

first-order expansion and the second-order expansion.  For uncertainty analysis of 

structure-acoustic problem with large uncertainty level, the accuracy of perturbation 

method cannot be significantly improved by using the second-order expansion instead 

of the first-order expansion. Therefore, up to now, the hybrid perturbation method is 

limited for structure-acoustic problem with small uncertainty level. 
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The computational time of the HFPM and the first-order IRAPCM is 12.8s and 

75.2s, respectively. Namely, the efficiency of the HFPM is much higher than that of 

the first-order IRAPCM for structure-acoustic problem with interval and random 

uncertainties. Note that the HFPM can achieve high accuracy for uncertain 

structure-acoustic problem with small uncertainty level. Therefore, to save the 

computational cost, it is more reasonable to use the HFPM rather than the IRAPCM 

for response analysis of structure-acoustic problem with small uncertainty level.  

5.2.3 Compared with several widely used polynomial chaos methods  

In this subsection, the proposed IRAPCM will be compared to several widely 

used polynomial chaos methods for response analysis of cases1~3. In particular, ICM 

and ILM are introduced to calculate the response of case1; the gPCM is introduced to 

calculate the response of case2; and the gPC-ICM and the gPC-WDM are introduced 

to calculate the response of case3. The retained orders of the polynomial expansion in 

the polynomial chaos methods are 3, 2, 1 and 5 for E, t, f  and c , respectively. The 

reference results are obtained by using the Monte Carlo simulation. In Monte Carlo 

simulation, the sampling points for the random variables are 100000, and 10 

uniformly distributed sampling points are used for each interval variable. The 

uncertainty property of the sound pressure distributing on the middle section at 

f=300Hz obtained by the proposed method and other methods are plotted in Fig.12 for 

case1, Fig. 13 for case2 and Fig.14 for case3. 

 

From Fig.12, we can find that all these three polynomial chaos based interval 

methods, including the proposed IRAPCM, the ICM and the ILM, can achieve high 

accuracy for the response analysis of case1, and the accuracy of these three interval 

methods are almost the same. It verifies that IRAPCM can be successfully used for 

the interval analysis of structure-acoustic problems. From Figs.13 and 14, we can see 

that the IRAPCM can achieve much higher accuracy than the other polynomial chaos 
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based methods for case2 and case3, which further verifies merits of the proposed 

method in accuracy for uncertainty quantification involving random variables. 

Computational efficiency is another important index to evaluate the performance 

of the numerical methods. For response analysis of three uncertain models of 

structure-acoustic system, there are three main steps in the proposed IRAPCM. Firstly, 

the polynomial basis is numerically constructed according to the PDF of random 

variables. Secondly, the polynomial chaos expansion is established for the 

approximation of the response of the uncertain structure-acoustic system. In particular, 

the coefficients of polynomial expansion are obtained through the response reanalysis 

of the structure-acoustic system. For brevity, the response reanalysis of the 

structure–acoustic system is denoted as RRSS. Finally, uncertainty property of 

response can be obtained through the interval and random analysis of polynomial 

chaos expansion(PCE). To illustrate the computational burdens of the proposed 

method in detail, the total computational time and the computational time of three 

main steps of the proposed method for three cases are listed in Table3. As a 

comparison, the computational time of ILM and ICM for Case1, the computational 

time of gPCM for Case2 and the computational time of gPC-ICM and the gPC-WDM 

for Case3 are also listed in Table3.All of the computational results are obtained by 

using MATLAB R2014a on a 3.20GHz Intel(R) Core (TM) CPU i5-3470. 

 

From Table3, we can find that the computational time of the RRSS of each 

polynomial chaos method is close to its total computational time. It indicates that the 

computational costs of the polynomial chaos methods for three cases mainly suffer 

from the RRSS. Besides, we can find from Table3 that the computational time of the 

RRSS by using different polynomial chaos methods are almost the same. This is 

mainly because the same retained order is used in these polynomial chaos methods. 

According to Eqs.(24) and (25), the total number of RRSS is determined by the 

retained order of polynomial chaos expansion. Therefore, computational time of 

RRSS by using different polynomial chaos methods will be very close when the same 

retained order is used in polynomial chaos expansion.  
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Furthermore, we can find that the execution time of the proposed IRAPCEM is 

relatively longer than that of the other polynomial chaos based methods under the 

same retained order. There are two main reasons for the increase of computational 

cost by using the proposed IRAPCM. First, the interval analysis of PCE in the 

proposed method is processed by using the GA algorithm. Generally, the 

computational efficiency of the GA algorithm is lower than the dimension wise 

analysis(in gPC-WDM and ILM). Second, the orthogonal polynomials in IRAPCM 

are constructed numerically, while the analytical expression of orthogonal 

polynomials of the other polynomial chaos methods has been well defined. Thus, in 

IRAPCM, additional computational time will encountered by constructing the 

orthogonal polynomial for random variable and interval variable. However, compared 

with the computational burden suffering from the response reanalysis of 

structure-acoustic system, the additional computational burdens for both the 

uncertainty analysis of PCE by using GA algorithm and the computation of 

polynomial basis are much less.  

6 Conclusion 

Through an extension of the APC expansion for interval analysis and hybrid 

uncertain analysis, a unified polynomial chaos method named as IRAPCM, is 

proposed for response analysis of the interval model, random model and hybrid 

uncertain model of structure-acoustic system. In IRAPCM, the response of three 

uncertain models is approximated by the APC expansion in a unified form. Based on 

the unified APC expansion, the uncertainty property of the response of 

structure-acoustic system can be efficiently obtained. In the procedure to construct the 

APC expansion for different uncertain models, only the weight function of 

polynomial basis is required to be changed. In particular, the   function with a small 

value of   is used as the weight function of polynomial basis for the interval 

variable, while the weight function of polynomial basis for the random variable is the 

same as the PDF. For a given weight function, the polynomial basis of APC expansion 
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is determined based on the recursive relations of monic orthogonal polynomials. As 

the weight function of polynomial basis of the APC expansion can be an arbitrary 

continuous or discrete function, the unified APC expansion can be effectively used for 

response analysis of three uncertain models of structure-acoustic system involving the 

random variable with arbitrary PDFs.  

The proposed IRAPCM has been employed to calculate the response of three 

uncertain models of a mathematical problems and a structure-acoustic problem. 

Different uncertainty properties have been obtained for three uncertain models, 

including the bounds of the response of interval model, the expectation and variance 

of the response of random model, and the bounds of the expectation and variance of 

the response of hybrid interval and random model. The merits of the proposed method 

is demonstrated by comparing it with the hybrid first-order perturbation method and 

several widely used polynomial chaos methods, including the interval Chebyshev 

method(ICM), the interval Legendre method(ILM), the generalized Polynomial Chaos 

method(gPCM), the hybrid generalized Polynomial Chaos and Interval Chebyshev 

method(gPC-ICM) and the hybrid generalized Polynomial Chaos and dimension wise 

analysis method(gPC-WDM). Numerical results have shown that: (1) the proposed 

IRAPCM can achieve high accuracy for interval and random analysis with large 

uncertainty level if the retained order is sufficiently large; (2)the accuracy of the 

proposed IRAPCM is the same as that of the widely used ICM for interval analysis; (3) 

the proposed IRAPCM can achieve higher accuracy than the gPC based methods for 

random analysis and hybrid uncertain analysis; (4) the computational efficiency of 

IRAPCM is lower than that of the hybrid first-order perturbation method, but the 

hybrid first-order perturbation method is limited for structure-acoustic problem with 

small uncertainty level. 

As a conclusion, the proposed method can not only provide a unified polynomial 

expansion for the response analysis of three uncertain models of structure-acoustic 

system with interval and/or random variable, but also can achieve better accuracy than 

the gPC based method for response analysis of random model and hybrid uncertain 

model of structure-acoustic problems with large uncertainty level. Note that the 
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computational cost of the proposed IRAPCM is relatively larger than that of the gPC 

based methods under the same retained order. However, compared with the 

improvement in accuracy, the increase of computational effort by using the proposed 

IRAPCM is deemed acceptable.   
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Fig.1 Three weight functions of the polynomial basis 
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Fig.2 The relative error yielded by the fifth-order APC expansion with different weight functions over 

the interval 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

x

R
e

la
ti
ve

 e
rr

o
r

 

 

λ=0.01

λ=0.5

λ=3

Figure2



 

 

 

 

 

  

Fig.3 Effect of the number of integration nodes on the accuracy of IRAPCM at different retained 

orders  
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Fig.4 Relative error of the lower and upper bounds of y: (a) lower bound; (b) upper bound. 
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Fig.5 Relative error of the expectation and variance of y: (a) expectation; (b) variance. 
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Fig.6 Relative error of the lower bound of the expectation and variance of y: (a) lower bound of 

expectation; (b) lower bound of variance. 
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Fig.7 Relative error of the upper bound of the expectation and variance of y: (a) upper bound of 

expectation; (b) upper bound of variance. 
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Fig.8 A shell structure-acoustic system 
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Fig.9 The bounds of expectation and variance of the sound pressure distributing along the top boundary 

line of case4 calculated by the first-order IRAPCM and the HFPM: (a) bounds of expectation, (b) bounds 

of variance. 
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Fig.10 The bounds of expectation and variance of the sound pressure distributing along the top boundary 

line of case3 calculated by the first-order IRAPCM and the HFPM: (a) bounds of expectation, (b) bounds 

of variance. 
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Fig.11 The bounds of expectation and variance of the sound pressure distributing along the top boundary 

line of case3 calculated by the high-order IRAPCM (a) bounds of expectation, (b) bounds of variance. 
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Fig.12 The bounds of the sound pressure distributing along the top boundary line of case1 
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Fig.13 The expectation and variance of the sound pressure distributing along the top boundary line of 

case2: (a) expectation, (b) variance. 
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Fig.14 The bounds of expectation and variance of the sound pressure distributing along the top 

boundary line of case3: (a) bounds of expectation, (b) bounds of variance. 
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Table 1 Three uncertain models for 1x  and 2x  

Interval model Random model Hybrid uncertain model 

1 [ 1,  1]x     
1 1x   1 1x   

2 [ 1,  1]x    
2 22 2.5x    2 [ 1,  1]x    

 

Table1



 

 

Table2 Uncertain parameters of four cases of uncertain shell structure-acoustic systems 

Uncertain 

parameters 
Case1 Case2 Case3 Case4 

(mm)t  [1.6,  2.4]  
32 0.6  12 0.6  12 0.1  

(m/s)c  [306,  364]  
3340 34  1340 34  1340 4  

(GPa)E  [168,  252]  1210 63
  1210 63

  1210 10
  

3(kg/m )f  [0.96,  1.44] 21.2 0.36
  [0.96,  1.44]  [1.08,  1.32]  

 

Table2



 

 
Table3 Execution time of different methods for response analysis of three cases 

Uncertain 

models 
Methods 

Time for construction 

of polynomial basis 
Time of RRSS 

Time for uncertainty 

analysis of PCE 
Total time 

Case1 

IRAPCM 4.1s 431.3 s 4.2s 439.6s 

ICM 0s 431.5s 3.1s 434.6s 

ILM 0s 431.5s 0.7s 432.2s 

Case2 
IRAPCM 4.3s 431.6 s 0s 435.9s 

gPCM 0s 431.2s 0s 431.2s 

Case3 

IRAPCM 4.1s 431.6 s 1.9s 437.6s 

gPC-ICM 0s 431.2s 1.1s 432.3s 

gPC-WDM 0s 431.5s 0.5s 432.0s 

 

 

Table3


