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Abstract: Graphs are often used to model data with a relational structure and graphs are usually
visualised into node-link diagrams for a better understanding of the underlying data. Node-link
diagrams represent not only data entries in a graph, but also the relations among the data entries.
Further, many graph drawing algorithms and graph centrality metrics have been successfully applied
in visual analytics of various graph datasets, yet little attention has been paid to analytics of scientific
standard data. This study attempts to adopt graph drawing methods (force-directed algorithms) to
visualise scientific standard data and provide information with importance ‘ranking’ based on graph
centrality metrics such as Weighted Degree, PageRank, Eigenvector, Betweenness and Closeness
factors. The outcomes show that our method can produce clear graph layouts of scientific standard
for visual analytics, along with the importance ‘ranking’ factors (represent via node colour, size etc.).
Our method may assist users with tracking various relationships while understanding scientific
standards with fewer relation issues (missing/wrong connection etc.) through focusing on higher
priority standards.

Keywords: visual analytics; graph drawing; graph centrality metrics; scientific standard datasets;
force-directed algorithms

1. Introduction

Standard-making and standardisation are key processes for the sharing and reuse of data in
contemporary scientific research [1]. Scientific standards are established as references to calibrate
measurements and modern standards. An ISO standard is published by the International Organization
for Standardization (ISO), an IEC standard is published by International Electrotechnical Commission
(IEC), and an ISO/IEC standard is published by ISO and IEC together. Those standards are designated
using the format ISO[/IEC] [/ASTM] [IS] nnnnn[-p]:[yyyy], where nnnnn is the number of the standard,
p is an optional part number and yyyy is the year published. In particular, those scientific standards
are normally internationally recognised and defined under controlled conditions. For example,
ISO/IEC 12207:2008 is defined and applied in the Information Technology field for software lifecycle
processes [2], and ISO/IEC 29110 standard manages lifecycle profiles for very small entities instead [3].

Standards can be normative or informative. Normative standards contain clauses that can become
contractually required. An example is ISO 9001 which contains a number of compulsory requirements
for standards to be accredited to ISO 9001. Informative standards are there to give advice. Standards
can be referred to other standards normatively or informatively. A normative reference is where the
referred standard is a required part of this standard. An example is a vocabulary standard that is
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referred to in order to define some terms. Informative references are there just in case more information
is needed [4–8].

Much of the scientific standard analytics at this stage usually adopts the traditional spreadsheet
to analyse raw data [1]. A general problem associated with the scientific standard analytics is that this
particular standards committee has a large number of standards and is losing track of how they all
relate to each other. It is a basic configuration management problem, such as the impact of change.
It is generally acknowledged that visualisations have some benefits when it comes to making sense
of large and complex non-visual datasets [9–12]. To improve the situation, the scientific standards
management section at the University of Technology Sydney (UTS) has initiated a joint project with the
authors to investigate how graph (or network) visualisation and graph centrality metrics can be used
to help analysts make sense of scientific standards data sets quickly and accurately. In the following
subsections, we briefly review some related work about graph visualisation and graph centrality
metrics, provide more details of scientific standards and present motivations and contributions of
our work.

1.1. Graph Visualisation

A great deal of real-world data has a relational structure. Often, they are too large and complex
to understand in their original format. This type of data can be modelled as graphs or networks
and visualised into node-link diagrams for a better understanding of them [10,13–15]. In graph
visualisation research, the focus has been on how the elements are connected as a system, not just
individual elements [16]. The process of investigating graph structures is normally carried out through
the use of graph theory, which characterises networked structures in terms of nodes and edges [17].
Many algorithms have been developed so that graphs can be laid out in a visually pleasing and
perceptively effective way that helps users understand the structure and relationship patterns of the
underlying graphs [11].

There are also many tools for graph visualisation. The Visone software of Brandes and Wagner [17]
adopts graph theoretic concepts to describe, explain and understand network structure. It integrates
analysis and visualisation of networks facilitated by tailored means of graphical interaction, which
produces radial and spectral layouts. Handcock et al. [18] created a suite of software packages in R
called Statnet, and it focuses on statistical modelling of network data. It implements network modelling
based on exponential-family random graph models, and its broad functionality is powered by a central
Markov chain Monte Carlo algorithm [18]. Other similar software packages include RSiena [19],
igraph [20], UCINET [21], Pajek [10], NodeXL [22], and Gephi [23,24]. Rossi and Ahmed [25] claimed
that they built up the first web-based real-time interactive graph analytics platform called NR which
allows users to interactively analyse and visualise data online. NR also gives users the ability to
explore, compare and share data along different dimensions to improve and facilitate the scientific
study of networks and other datasets [25].

1.2. Modelling Scientific Standards into Graphs

Each standard has information about its identification, referenced standard and reference type.
For the purpose of this research, each standard is treated as a ‘node’. Further, a relation between a
standard and its referenced standard can be established, and the relation is represented as an ‘edge’.
Hence, raw data can be transferred into directed graph models. For example, in Figure 1a, “12207:2008”
is a normative ISO/IEC standard. It has a referenced standard—“9126:1991”, which is an informative
reference standard. Then in a graph model, the description involving those two standards and one
connection is shown Figure 1b. More details are given in the ‘Method’ section.
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1.3. Graph Centrality Metrics

In the scientific impact analysis, a variety of new impact measures have been proposed on the
basis of network analysis and usage log data, to better capture the impact of scientific publications in
the digital era. Bollen et al. [26] conducted research that investigates connections between the impact
measures and those measures’ accuracy and completion. The authors applied four graph centrality
metrics to analyse publication citation and usage networks. Degree centrality is used to present a
number of connections that point to or emerge from a journal in the network; Closeness centrality
shows the average length of the geodesic that connects a specific journal to all other journals in the
network; Betweenness centrality represents the number of geodesics between all pairs of journals in
the network that pass through the specific journal; and PageRank forms a probability distribution
of links and is applied to citation networks. Their experimental results indicate that the notion of
scientific impact is a multi-dimensional construct that cannot be adequately measured by any single
indicator, although some measures are more suitable than others [26]. Similarly, graph centrality
metrics have also long been used in social network analysis (SNA) to provide different perspectives on
the social relationships within the network, hence offering a rich description of social structure [17].
Social networks are examples of graph data. A social network includes a set of actors and relationships
among the actors. SNA has experienced tremendous advances in recent years, and much research has
been reported in the literature [10,27–31].

In order to get a better grip on all the scientific standards (121 ISO/IEC standards in this study)
collected, we conducted a study to determine which standards are at the centre of all standards, and
what all the normative relations are to help users know what and where to pay attention to while
revising them. Therefore, graph centrality metrics are to discover relationships among the ISO/IEC
scientific standards. Note that centrality metrics can be influenced by taking into account the direction
of edges and the weightings that are applied to them [32]. More specifically, six metrics are adopted
based on graph models produced in our experiments, namely, Eigenvector centrality, PageRank,
Weighted In-Degree, Weighted Out-Degree, Closeness and Betweenness metrics.

1. Eigenvector centrality. It is a natural extension of degree centrality. Not all nodes are equivalent.
Some are more relevant than others, and reasonably, endorsements from important nodes
are counted more. In other words, a node is important if it is linked to other important
nodes [9,33–35].

2. PageRank. A node is important if it is linked from other important nodes, or if it is highly
linked [36,37].
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3. Weighted In-Degree centrality and Weighted Out-Degree centrality. Similar to degree centrality
but edge weight is taken into account [38–40]. Here, In-Degree metric computes the number of
incoming nodes of a vertex, and Out-Degree calculates the number of outgoing neighbours of
a node.

4. Closeness centrality. For one node it can be calculated as the average distance of all distances
from this node to all other nodes in the network [41]. The highest closeness node can reach every
other node in a network on a short path [42].

5. Betweenness centrality. A node has high betweenness centrality if it serves as an intermediate
between many other nodes, that is, it lies between them with respect to their shortest path.
In other words, if we calculate the total set of shortest paths, then a node with high betweenness
centrality is present with a large proportion of this set. Again, the higher this metric is, the more
important the node is, since it controls the flow of information between many other nodes [41].
The highest betweenness node is on the closest link between other nodes [42].

In addition to the above centrality metrics, Modularity is also applied to measure the strength of
division of a standard dataset into modules. Many graphs of interest in the science field are found
to divide naturally into communities or modules. The problem of detecting and characterising this
community structure is one of the outstanding issues in the study of networked systems. Modularity is
a powerful tool for studying the design of networks and a highly effective approach that analyses the
possible divisions of networks [43–46]. Note that in our experiment, only basic analysis of Modularity
is done since the emphasis of this study is to find out the ranking of standards.

1.4. Motivations and Contributions

Many visualisation tools have all been adopted to visually exploit data insights in many
application domains [47,48]. However, to the best of our knowledge, few attempts have been made
to conduct visual analytics of scientific standard datasets [1,3], although some similar studies in
other fields do analyse particular relevant standards. For the standard analytics in the healthcare
area, seven Electronic Healthcare Record (EHR) standards were compared by Eichelberg et al. [49].
In that survey, the Web Access to Digital Imaging and Communications in Medicine Persistent Objects
(WADO) standard requires a structured reporting document in HTML format, but visualisation is
not mentioned. In the general case, it is not possible to support advanced services beyond document
visualisation such as document processing, mediation, or automated translation services in this
area [49].

Currently, data analytics of scientific standard datasets are still conducted in the traditional
spreadsheet way. The study we report in this paper was originally encouraged by the actual demand
from the scientific standards management section at UTS (University of Technology Sydney); a general
problem they met in this area is that this particular standards committee has a large number of
standards and is losing track of how they all relate to each other. On the one hand, research has shown
that visualisation can be helpful for data sense-making [11,12]. On the other hand, to get a better grip
on all the standards, the centre standards and normative relations need to be determined [1,3]. Figure 2
shows a visualised result of the standard dataset that was finalised by UCINET. It shows overall
relationship patterns between individual standards, which is better than traditional spreadsheets but
does not bring out the importance of a standard and it also has duplicated references all over the
place. Hence, this study has been put on the agenda. Our proposed approach models the standard
dataset into directed graphs, adopts centrality measurement concepts for importance measurement of
standards, and combines two force-directed algorithms on weighted graphs to represent an overview
on the entire network of selected standards, as well as detailed views of standards.
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by UCINET).

The main contribution of our work is that we provide a supplementary method for analysis
of scientific standards. More specifically this method could assist particular standards committees
to get insight of complex relationships among multiple Scientific Standards; to keep track of how
standards are related to each other; to determine core standards that are at the centre of the network
for revising purposes and for undertsanding the impact of change. Our method combines graph
centrality measurements and interactive visualisation methods and applies them to practical standard
data. We performed experiments on a standard dataset to demonstrate that our method is feasible
and beneficial.

2. Method

2.1. Data Processing

All raw data were collected at UTS. One hundred and twenty-one scientific standards which
involve 248 relations among scientific standards were finalised. Data format examples are shown in
Table 1:

Table 1. Examples of standard data format finalised from excel files.

Standard Related Reference

Name Publisher Type Name Type Publisher Detail

12207:2008 ISO/IEC Normative 9126:1991 Informative ISO/IEC Bibliography

12207:2008 ISO/IEC Normative 61508:2010 Informative IEC Other citation

From Table 1, data attributes include:

1. Standard Name: The standard’s name. E.g. 12207:2008: It is a common framework for
describing the life cycle of systems created by humans, which defines a set of processes and
associated terminology.

2. Standard Publisher: Standard’s publisher. E.g. 12207:2008’s publisher is ISO/IEC.
3. Standard Type: Standards can refer to other standards normatively or informatively. Normative

standards contain clauses that can become contractually required; Informative standards are
there to give advice.

4. Related Reference Standard: Connected standards as references. For example, standard 9126:1991
is a reference to 12207:2008.
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5. Reference Type: Same as the standard type mentioned.
6. Reference Publisher: Same as the standard publisher mentioned.
7. Reference Detail: To show more information about the reference.

In this study, raw data attributes such as the standard name and related reference name are
kept as vertices. Edges have directions and are represented depending on their ‘reference’ relations.
Edge weights are calculated based on the standard/reference types defined in Table 2. Edges between
normative standards are the most important connections as normative standards contain a number of
compulsory requirements for other standards. Therefore, the weight of an edge between two normative
standards is defined as 3. For example, the weight of the edge that connects standard 12207:2008 and
9126:1991 is 2, since one standard is normative and the other one is informative.

Table 2. Edge weight description based on standard types.

Standard Relations Edge Weight

Normative Standard—Normative Standard 3

Normative Standard—Informative Standard 2

Informative Standard—Informative Standard 1

Final graph models are generated for further experiments following the GraphML (Graph
Mark-up Language) format, which is an XML-based format for the description of graph structures,
designed to improve tool interoperability and reduce communication overhead [13]. An XML graph
file sample is given in Appendix A that also represents a graph shown in Figure 3. Eventually, relevant
graph models are generated, and G1 = (V1, E1) (|V1| = 121, |E1| = 248) represents the entire network
of 121 scientific standards collected.

2.2. Data Visualisation

Force-directed layout algorithms use a physical analogy to draw graphs [11,12]. A graph is viewed
as a system of bodies with forces acting between the bodies. The algorithm seeks a configuration of the
bodies with locally minimal energy, that is, a position for each body, such that the sum of forces on
each body is zero. Graphs drawn with these force-directed algorithms tend to be aesthetically pleasing,
exhibit symmetries, and most likely to produce crossing-free layouts for planar graphs [11,12,50–54].
To discover the centrality metrics (relationship and importance) among scientific standards, two
force-directed algorithms are applied to weighted node-link graphs to represent standard network
structures. Those two algorithms have strong theoretical foundations and are easy to implement,
and produce good-quality results with interactive aspects. Although they tend to have a relatively
long running time on large datasets, they are suitable for our experiments to handle a few hundred
elements [12,55–58].

2.2.1. FR (Fruchterman and Reingold)

The Fruchterman and Reingold algorithm is a traditional force-directed layout algorithm, modified
from the spring embedder model of Eades [12]. FR excels at producing aesthetically pleasing,
two-dimensional graphs by doing simplified simulations of physical systems. It is simple, elegant,
conceptually intuitive, and efficient, and produces uniform edge length. It comes with a high running
time due to its big O notations though [55,56].

2.2.2. FA2 (ForceAtlas2)

The FA (ForceAtlas) layout algorithm [57,58] is a spatial layout method under the category of
force-directed algorithms. It aims at giving a readable shape to large real-world networks, such as web
networks etc. FA2 is based on FA but offers more options and innovative optimisations that make
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it a very fast layout algorithm. Its implementation of adaptive local and global speeds brings good
performances for a network of fewer than 100,000 nodes. It is empirically observed that FA2 is at its
best with strongly clustered networks [57].

2.3. Centrality Measure Model

In this study, a standard dataset is a labelled directed weighted graph G = (V, E, w), where V is the
set of nodes, E is the set of edges and w is the weight function (see Section 2.1). Six centrality metrics
are adopted in experiments to examine the standard’s network.

The Eigenvector centrality concept is adopted as a ranking measure to analyse the importance of
standards. It attributes a value that represents the connection intensity among nodes; a higher value
indicates a more important node, and a node with high eigenvector centrality is not necessarily highly
linked (the node might have few but important links) [9,33–35]. For example, Google’s PageRank
algorithm is a variant of eigenvector centrality. In this study, Eigenvector centrality measures the
extent to which a standard interacts with other standards in the network. The PageRank centrality
is also applied in graphs; it results from a random walk of a network. PageRank assigns probability
distributions to each node denoting the importance of the node [36,37] via measuring the probability
of being at that node during the random walk. At each node in a graph, the next node is chosen with
probability from the set of successors of the current node (neighbours for the undirected case). If a
node has no successors, the next node is chosen from all nodes, and nodes with higher importance are
more likely to be chosen. Both the Weighted In-Degree centrality and the Weighted In-Degree centrality
take into consideration the weights and direction of ties; both have been the preferred measures for
analysing weighted and directed networks [38–40]. Betweenness centrality is a measure of control
(nodes with high Betweenness can control other vertices more), and Closeness is a measure of access
(nodes with high Closeness can access other nodes more, thus having higher influence) [42,59].

2.4. Graph Layout Generation

Graph models are imported into the Gephi tool [58] to produce final layouts. Gephi comes with
interactive features such as zoom in/out, filtering, highlight etc. The entire network is laid out by the
FA2 algorithm. Besides, for the purpose of showing ‘clear’ detailed relationships of selected standards,
smaller graph models are represented through the FR method as well. Several visual attributes are
applied to show the scientific standard’s importance (centrality):

1. Node’s colour depth: Dark green indicates larger centrality values of Weighted Degree, PageRank
and Eigenvector etc., while light green represents smaller values on the opposite;

2. Node’s size: Larger size expresses larger centrality values, while smaller size indicates smaller
centrality values;

3. Edge thickness: To show the edge weights: thick edges represent stronger connections while thin
edges indicate weaker relations.

2.5. Hypotheses

To grasp deeper insights into the scientific standard collected, we examine the data structure and
determine which scientific standards are at the centre of the whole graph. To reduce possible chance
of losing track of how they relate to each other, we apply the centrality concept onto finalized graph
layouts and suppose that: Force-directed algorithms could be applied to provide visualised scientific
standard network representation; Centrality values could be applied to measure the importance of
scientific standards, and the measurements involve not only the connectivity among standards, but
also how important the related standards are. In other words, node importance is dependent on its
edge degree, and which nodes it connects as well. We hypothesise that our method may assist users
to track the relations among multiple scientific standards, and the users will be enabled to focus on
standards of priority while revising/tracking them.
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2.6. Procedure

In this study, firstly, raw data is collected in spreadsheets from UTS and then cleaned to remove
typo errors and correct values. Secondly, based on the scientific standards’ reference relations and
standard types, raw data is transformed into directed graph models in XML data formats. Thirdly,
relevant graph models are imported into the Gephi tool, and FR and FA2 algorithms are applied
to generate particular graph layouts, along with metrics attributes such as degree and eigenvector
centrality etc. for further analytics. Finally, based on generated visualisations, scientific standard
relations are analysed, and experimental results are discussed.

3. Results

Six visualisations that are generated for the six centrality metrics are shown in Figure 3. As can be
seen from Figure 3, minor differences are among all these layouts except the Weighted Out-Degree and
Closeness measurements. There is nearly 80% match in the PageRank, Eigenvector, Weighted In-Degree
and Betweenness centrality metrics, while the remaining two metrics represent different results.
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Figure 3. Visualisations of a standard graph for all measurements (FA2, |E| = 121, |V| = 248). Node
size, colour depth and label size indicate standard rankings. For example, nodes with the larger
size, darker green colour and larger label size are more important standards with higher rankings.
(a) PageRank measurement (25030:2007 is the highest-ranking standard); (b) Eigenvector centrality
measurement (25010:2011 is the highest-ranking standard); (c) Weighted In-Degree measurement
(12207:2008 is the highest-ranking standard); (d) Weighted Out-Degree measurement (12207:2008 is the
highest-ranking standard); (e) Betweenness measurement (12207:2008 is the highest-ranking standard);
(f) Closeness measurement (Top ten ranking standards have the same value).

First, it is reasonable that four metrics—PageRank, Eigenvector, Weighted In-Degree and
Betweenness centrality, perform well since nodes with high in-degree are in the centre that can
affect others easily [60]. The Weighted In-Degree is a measure of the system-wide influence that a
particular node has; PageRank is to define a link analysis method to evaluate a node’s influence [61];
Eigenvector of a directed graph is practical for nodes with high in-degree [62]; and Betweenness
centrality is a measure of control [59].

Second, it is not surprising that Weighted Out-Degree centrality and Closeness centrality are in
negative correlation with standards. Here, in this study, the emphasis is to find out the standards
that affect others more in the network. Nodes that have a larger Weighted Out-Degree value have
more influence than other nodes [60]. Weighted Out-Degree is a measure of the system-wide influence
that a node has, while Closeness indicates the access capability of a node that can be easily affected
by other core nodes [59]. For example, in all visualisations in Figure 3, standards 12207:2008 and
15288:2008 are the core (most important) standards (normative standards) except the Closeness metric,
yet they all have large Out-Degree as well. On the other hand, 15939:2007 plays an important role.
Although it comes with less Out-Degree, it is more stable in the network. Moreover, 25 groups of
similar comparisons have been processed between graph layouts and raw data collected, and they all
show the importance of normative standards.

In Table 3, the top 10 standards for the six centrality metrics are given. For each standard, the
standard name, centrality value and the catalogue it belongs to are included in the table. For the
centrality measure, a higher value indicates a higher ranking. For example, 12207:2008’s value for
the Weighted In-Degree metric is 66.0, which makes it the most ‘powerful’ node to control others.
All nodes with high centrality values in PageRank, Eigenvector, Weighted In-Degree and Betweenness
centrality are normative standards.
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Table 3. Top 10 standards with high centrality values for the six metrics.

PageRank Eigenvector Centrality

Standard Value Catalogue Standard Value Catalogue

1 25030:2007 0.074

Software engineering—Software
product Quality Requirements and

Evaluation (SQuaRE)—Quality
requirements

25010:2011 1
Systems and software

engineering—SQuaRE—System
and software quality models

2 12207:2008 0.072
Systems and software

engineering—Software life cycle
processes

12207:2008 0.981
Systems and software

engineering—Software life
cycle processes

3 15288:2008 0.071
Systems and software

engineering—System life cycle
processes

29148:2010 0.967

Systems and software
engineering—Life cycle

processes—Requirements
engineering

4 29148:2010 0.069

Systems and software
engineering—Life cycle

processes—Requirements
engineering

15939:2007 0.962
Systems and software

engineering—Measurement
process

5 20000-5:2010 0.064

Information technology—Service
management—Part 5: Exemplar

implementation plan for ISO/IEC
20000-1

15288:2008 0.956
Systems and software

engineering—System life cycle
processes

6 25010:2011 0.057
Systems and software

engineering—SQuaRE—System
and software quality models

25012:2008 0.798
Software

engineering—SQuaRE—Data
quality model

7 29110-4-1:2010 0.048

Software engineering—Lifecycle
profiles for Very Small Entities

(VSEs)—Part 4-1: Profile
specifications: Generic profile

group

20000-3:2009 0.700

Information
technology—Service
management—Part 3:

Guidance on scope definition
and applicability of ISO/IEC

20000-1

8 15939:2007 0.044
Systems and software

engineering—Measurement
process

29110-4-1:2010 0.656

Software
engineering—Lifecycle profiles

for VSEs—Part 4-1: Profile
specifications: Generic profile

group

9 25012:2008 0.035
Software

engineering—SQuaRE—Data
quality model

20000-5:2010 0.524

Information
technology—Service
management—Part 5:

Exemplar implementation plan
for ISO/IEC 20000-1

10 20000-3:2009 0.034

Information technology—Service
management—Part 3: Guidance on
scope definition and applicability

of ISO/IEC 20000-1

29110-2:2010 0.504

Software
engineering—Lifecycle profiles
for VSEs—Part 2: Framework

and taxonomy

Weighted In-Degree Weighted Out-Degree

Standard Value Catalogue Standard Value Catalogue

1 12207:2008 66.0
Systems and software

engineering—Software life cycle
processes

12207:2008 1
Systems and software

engineering—SQuaRE—System
and software quality models

2 15288:2008 65.0
Systems and software

engineering—System life cycle
processes

15504-2:2003 0.981

Information
technology—Process
assessment—Part 2:

Performing an assessment

3 25010:2011 46.0
Systems and software

engineering—SQuaRE—System
and software quality models

15288:2002 0.967 Systems engineering—System
life cycle processes

4 20000-1:2007 34.0 Information technology—Service
management 15289:2006 0.962

Systems and software
engineering—Content of

systems and software life cycle
process information products

(Documentation)

5 29110-2:2010 33.0
Software engineering—Lifecycle

profiles for VSEs—Part 2:
Framework and taxonomy

9001:2000 0.956 Quality management
systems—Requirements

6 25030:2007 31.0
Software

engineering—SQuaRE—Quality
requirements

2382-1:1993 0.798
Information

technology—Vocabulary—Part
1: Fundamental terms

7 15939:2007 29.0
Systems and software

engineering—Measurement
process

15288:2008 0.700
Systems and software

engineering—System life cycle
processes
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Table 3. Cont.

Weighted In-Degree Weighted Out-Degree

Standard Value Catalogue Standard Value Catalogue

8 29148:2010 29.0

Systems and software
engineering—Life cycle

processes—Requirements
engineering

15504-1:2005 0.656

Information
technology—Process

assessment—Part 1: Concepts
and vocabulary

9 29110-4-1:2010 26.0

Software engineering—Lifecycle
profiles for VSEs—Part 4-1: Profile

specifications: Generic profile
group

9000:2005 0.524
Quality management

systems—Fundamentals and
vocabulary

10 20000-3:2009 23.0

Information technology—Service
management—Part 3: Guidance on
scope definition and applicability

of ISO/IEC 20000-1

29110-1:2010 0.504
Software

engineering—Lifecycle profiles
for VSEs—Part 1: Overview

Betweenness Centrality Closeness Centrality

Standard Value Catalogue Standard Value Catalogue

1 12207:2008 297.4
Systems and software

engineering—Software life cycle
processes

25010:2011 1.0
Systems and software

engineering—SQuaRE—System
and software quality models

2 15288:2008 153.2
Systems and software

engineering—System life cycle
processes

20000-3:2009 1.0

Information
technology—Service
management—Part 3:

Guidance on scope definition
and applicability of ISO/IEC

20000-1

3 15939:2007 87.93
Systems and software

engineering—Measurement
process

20000-1:2007 1.0
Information

technology—Service
management

4 25010:2011 60.0
Systems and software

engineering—SQuaRE—System
and software quality models

29110-2:2010 1.0

Software
engineering—Lifecycle profiles
for VSEs—Part 2: Framework

and taxonomy

5 20000-3:2009 50.67

Information technology—Service
management—Part 3: Guidance on
scope definition and applicability

of ISO/IEC 20000-1

19011:2002 1.0 Guidelines for auditing
management systems

6 15504-1:2005 34.03
Information technology—Process
assessment—Part 1: Concepts and

vocabulary
27001:2005 1.0

Information
technology—Security

techniques—Information
security management

systems—Requirements

7 25000:2005 32.66

Software Engineering—Software
product Quality Requirements and

Evaluation (SQuaRE)—Guide to
SQuaRE

20000-2:2005 1.0

Information
technology—Service

management—Part 2: Code of
practice

8 15504-2:2003 21.73
Information technology—Process

assessment—Part 2: Performing an
assessment

17011:2004 1.0

Conformity
assessment—General

requirements for accreditation
bodies accrediting conformity

assessment bodies

9 20000-1:2007 15.17 Information technology—Service
management 17021:2005 1.0

Conformity
assessment—Requirements for

bodies providing audit and
certification of management

systems

10 29110-2:2010 6.17
Software engineering—Lifecycle

profiles for VSEs—Part 2:
Framework and taxonomy

27002:2005 1.0

Information
technology—Security

techniques—Code of practice
for information security

management

Figure 4 shows the networks of two specific standards. From Figure 4, it can be seen that the
standard which has the strongest connection to 12207:2008 is 15288:2008, followed by 29110-4-1:2010.
Also 12207:2008 has the highest correlation with 15288:2008, while 15939:2007 has the second highest
correlation with it. Figure 5 shows the network after these two most important nodes are removed.
In this entire network, 1.65% node deduction meant that 13.2% (16) other nodes lost connections, and
that 30.6% (76) edges disappeared, although those ‘lonely’ nodes are distributed peripherally and are
all informative standards.
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Figure 5. Standards’ network after removing 12207:2008 and 15288:2008 (FA2 applied, finalised by the
Weighted In-Degree measurement, |E| = 119, |V| = 172).

We also applied the Modularity measure in the standards dataset and six groups were identified.
Broadly speaking, those standards in our study are all in the Information Technology area. Regarding
the clustering of standards, nodes tend to be in the same group if they are in similar catalogues as shown
in Table 4. Figure 6 shows a visualisation of the six groupings for the Weighted In-Degree measurement.
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Table 4. Standard clustering description (modularity measurement applied, six groups finalised).

Group 0

12207:2008, 9126:1991, 25062:2006, 12207:1995, 13407:1999, 14764:2006,
15271:1998, 15288:2008, 15504:2003, 16085:2006, 18019:2004, 18152:2003,
18529:2000, 20000:2005, 24748:2007, 24774:2007, 25000:2005, 25030:2008,
42010:2007, 90003:2004, 9004:2000, 9241:1992, 9241-11:1997, 9294:2005,

10075:1991, 13335-1:2004, 14001:2004, 19760:2003, 26702:2007, 6385:2004,
7498-1:1994, 99-001:2004, 12119:1994, 25012:2008, 11179-1:2004, 2382-17:1997,

29148:2010, 1012:2002, 25060:2010, 26551:2008, 1028-2008, 14143-1:2007,
19759:2005, 20282-1:2006, 24748-1:2010, 24748-2:2010, 24766:2009,

29138-1:2009, 632:1999, 9241-210:2010, G-043:1992

Group 1
15288:2002, 15504-2:2003, 15939:2007, 15504-1:2005, 12207-1:2002,
15504-3:2004, 2382-1:1993, 2382-20:1990, 10017:2003, 14143-1:1998,

14143-6:2006, 15498:1996, 9126-2:2001, 2315-99:2007

Group 2

10007:2003, 9000:2005, 9001:2000, 20000-1:2007, 10002:2004, 19011:2002,
24765:2005, 27001:2005, 27005:2005, 31000:2005, 15504-3:2003, 19770-1:2006,
20000-2:2005, 27000:2009, 20000-3:2009, 17011:2004, 17021:2005, 27002:2005,

17000:2004, 20000-5:2010, 27013:2007, 17050-1:2004,
17050-2:2004, 20000-4:2009

Group 3
1517:1999, 15026:1998, 15504-4:2004, 15504-5:2006, 25010:2011, 24765:2008,

2382-14:1997, 24765:2009, 60050-191:1990, 610.12:1990, 7498-2:1989,
9241-110:2006, 9241-14:1997

Group 4 61508:2010, 9126-1:2001, 15939:2002, 9000:2000, 25030:2007, 14598-2:2000,
14598-4:1999, 14598-5:1998, 14598-6:2001, 25020:2007

Group 5 15289:2006, 29110-2:2010, 10000-1:1998, 15504-1:2004, 29110-1:2010,
29110-3:2010, 29110-4:2010, 29110-5:2010, 29110-4-1:2010
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4. Discussion

Scientific standard datasets are normally complex and come with different formats and contents.
More often there are multiple relations among standard items. How to track their connections has
become a challenge in managing and making sense of scientific standard datasets. Although data
visualisation methods have been widely applied in many sectors for decision-making purposes, they
have hardly been adopted in analysing scientific standard data. To fulfil the standards management
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purpose, we employed an approach that allows us to conduct analytical experiments in a more
practical/realistic environment.

The differences between this approach and other methods such as Excel spreadsheets that are
currently used in the scientific standard analytics are as follows: This approach uses pure mathematics
calculations; it addresses scientific standard relation analytics; it reduces the analytics complexity of
the traditional spreadsheet methodology; this approach applies five centrality measures onto practical
scientific standards analytics; it adopts two force-directed algorithms; and this approach provides a
comprehensive picture of relation representation, which also has the potential to be made interactive
for an overview and detailed/filtered views.

As demonstrated in our analysis in the previous section, the early outcomes of our experiments
showed that modelling scientific standard datasets into graphs offers capability of recognising
important standards, and that with our approach, it was possible to generate interactive and
comprehensive detailed/filtered graph layouts to provide “clear“ views for users to navigate and find
out item relationships they might be interested in (based on node colour, size and edge thickness etc.).
Importance of scientific standards could be grasped through centrality measures (degree, eigenvector
value etc.). It could also help to identify missed core (high centrality value) standards that could
damage the infrastructure of a scientific standard network (see Figure 5). Further, our experimental
results revealed that the standard’s importance was dependant on multiple factors. For example, nodes
with more connections did not necessarily act importantly; node degree was only one of multiple
metrics for importance measurement of standards.

The hypotheses were confirmed from those findings in this study. Force-directed algorithms could
be adopted well to provide visual representations of the interconnected standards. In regards to the
correctness of the relationship description, to be more specific, factors, such as degree and eigenvector
centrality values etc. have been taken into account as well, and a standard’s importance was found to
be dependent on multiple factors.

Compared to the traditional spreadsheet methodology in the scientific standard analytics, the
advantages of this proposed approach include: visualisations make connection patterns of standards
visual and easier to spot; the importance ranking values help identify main standard items for quick
decision making; combination of centrality metrics and data visualisation methods has not been
applied in analysis of scientific standard datasets to our best literature knowledge.

5. Conclusions

In this paper, an exploratory study that discovers scientific standard data is presented.
We demonstrated how a scientific standard dataset can be modelled into graphs and visualised
into graph drawings using force-directed algorithms with graph centrality metrics. The proposed
approach is based on a practical use purpose from UTS, which is to visualise complex connections
among scientific standards. Here, centrality measurement concepts and graph drawing methods
are applied to practical standard data, clear relations are presented to assist the particular standards
committee to track how those scientific standards relate to each other, and it is processed from a
quantitative perspective in a more practical experimental setting, hence, to improve the configuration
efficiency in the scientific standard management field.

More specifically, we collected sample raw data from practical scientific standards at UTS and
examined the data by producing visualisations of them. Based on related scientific standard datasets
collected, raw data was processed and imported for data visualisation experiments. The experimental
outcomes showed that graph visualisations provide clear relations among standards compared to
the spreadsheet methodology. We also showed in our visualisations the centrality measures from
a quantitative perspective in a more practical experimental setting. As a result of our approach,
it was shown that there are priority standards that might affect each other and could be difficult to
find otherwise.
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It is important to note that the benefits of applying graph centrality metrics in visual analytics
of scientific standard datasets need further investigations. This is because our study has limitations.
For example, raw data have not been examined via other methodologies except spreadsheet yet; data
sample size is small; the accuracy of outcomes is not persuasive enough. Further, to verify the benefits
of visualisations with metric measures, eye tracking studies, more well-defined interactive methods
and systems can also be useful [48,63].

In our future research, we will examine a wider range of scientific standard datasets with different
features. We also plan to use different visualisation algorithms and additional importance metrics to
examine the standard datasets so that we could have a more comprehensive understanding of these
types of datasets.
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Appendix A

//Graph model example.
<?xml version= “1.0 “ encoding= “UTF-8 “?>.
<graphml>.
<key id= “d0 “ for= “node “.
attr.name= “color “ attr.type= “string “>.
<default> yellow </default>.
</key >.
<key id= “d1 “ for= “edge “.
attr.name= “weight “ attr.type= “double “/>.
<graph id= “G “ edgedefault= “directed “>.
<node id= “12207:2008 “/>.
<node id= “9126:1991 “/>.
<node id= “25062:2006 “/>.
<node id= “61508:2010 “/>.
<node id= “10007:2003 “/>.
...
<node id= “632:1999 “/>.
<node id= “9241-210:2010 “/>.
<node id= “G-043:1992 “/>.
<edge id= “0 “ source= “9126:1991 “ target= “12207:2008 “>.
<data key= “d1 “> 2</data>.
</edge>.
<edge id= “1 “ source= “25062:2006 “ target= “12207:2008 “>.
<data key= “d1 “> 2</data>.
</edge>.
...
<edge id= “247“ source= “29148:2010 “ target= “G-043:1992 “>.
<data key= “d1 “> 1</data>.
</edge>.
</graph>.
</graphml>.



Symmetry 2019, 11, 30 17 of 19

References

1. Yarmey, L.; Baker, K.S. Towards Standardization: A Participatory Framework for Scientific Standard-Making.
Int. J. Digit. Curation 2013, 8, 157–172. [CrossRef]

2. International Organization for Standardization (ISO): ISO/IEC 12207:2008 Information Technology—Software Life
Cycle Processes; ISO: Geneva, Switzerland, 2008.

3. Ribaud, V.; Saliou, P.; Connor, R.V.O.; Laporte, C.Y. Software Engineering Support Activities for Very Small
Entities. In Proceedings of the European Conference on Software Process Improvement (EuroSPI 2010),
Grenoble, France, 1–3 September 2010; pp. 165–176.

4. Yergeau, F. UTF-8, A Transformation Format of ISO 10646 (No. RFC 3629); ISO: Geneva, Switzerland, 2003.
5. Milgram, S. Obedience to Authority. Available online: https://www.panarchy.org/milgram/obedience.html.

(accessed on 19 December 2018).
6. Woods, S.P.; Scott, J.C.; Sires, D.A.; Grant, I.; Heaton, R.K.; Tröster, A.I.; HIV Neurobehavioral Research

Center (HNRC) Group. Action (verb) fluency: Test-retest reliability, normative standards, and construct
validity. J. Int. Neuropsychol. Soc. 2005, 11, 408–415. [PubMed]

7. Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.J. The new international standards for life
cycle assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [CrossRef]

8. Kenny, D. ISO and CEN documents on quality in medical laboratories. Clin. Chim. Acta 2001, 309, 121–125.
[CrossRef]

9. Lohmann, G.; Margulies, D.S.; Horstmann, A.; Pleger, B.; Lepsien, J.; Goldhahn, D.; Schloegl, H.; Stumvoll, M.;
Villringer, A.; Turner, R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of
the human brain. PLoS ONE 2010, 5, e10232. [CrossRef] [PubMed]

10. Batagelj, V.; Andrej, M. Pajek—Analysis and visualization of large networks. In International Symposium on
Graph Drawing; Springer: Berlin/Heidelberg, Germany, 2001; pp. 477–478.

11. Battista, G.D.; Eades, P.; Tamassia, R.; Tollis, I.G. Graph Drawing Algorithms for the Visualization of Graphs;
PrenticeHall: Upper Saddle River, NJ, USA, 1999.

12. Eades, P. A heuristic for graph drawing. Congr. Numer. 1984, 42, 149–160.
13. Huang, W.; Huang, M.L.; Lin, C.-C. Evaluating Overall Quality of Graph Visualizations Based on Aesthetics

Aggregation. Inf. Sci. 2016, 330, 444–454. [CrossRef]
14. Huang, M.L.; Huang, W. Innovative Approaches of Data Visualization and Visual Analytics; IGI Group: Hershey,

PA, USA, 2014; 464p.
15. Huang, T.-H.; Huang, M.L.; Nguyen, Q.V.; Zhao, L.; Huang, W.; Chen, J. A Space-Filling Multidimensional

Visualization (SFMDVis) for Exploratory Data Analysis. Inf. Sci. 2017, 390, 32–53. [CrossRef]
16. Hua, J.; Huang, M.L.; Huang, W.; Wang, J.; Nguyen, Q.V. Force-directed graph visualization with

pre-positioning-Improving convergence time and quality of layout. In Proceedings of the 16th International
Conference on Information Visualisation, Montpellier, France, 11–13 July 2012; pp. 124–129.

17. Brandes, U.; Wagner, D. Analysis and visualisation of social networks. In Graph Drawing Software; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 1–20.

18. Handcock, M.S.; Hunter, D.R.; Butts, C.T.; Goodreau, S.M.; Morris, M. Statnet: Software Tools for the
Representation, Visualisation, Analysis and Simulation of Network Data. J. Stat. Softw. 2005, 14, 1–11.
[CrossRef]

19. Ripley, R.; Boitmanis, K.; Snijders, T.A.B. RSiena: Siena—Simulation Investigation for Empirical Network
Analysis. R Package Version 1.1-232. 2013. Available online: http://CRAN.R-project.org/package=RSiena
(accessed on 19 December 2018).

20. Csárdi, G.; Nepusz, T. The igraph software package for complex network research. Int. J. Comp. Syst. 2006,
1695, 1–9.

21. Borgatti, S.P.; Everett, M.G.; Freeman, L.C. UCINET 6.0 Version 1.00; Analytic Technologies: Natick, MA,
USA, 1999.

22. Hansen, D.L.; Shneiderman, B.; Smith, M.A. Analyzing Social Media Networks with NodeXL: Insights from a
Connected World; Morgan Kaufmann: Burlington, MA, USA, 2010.

23. Kolaczyk, E.D.; Csardi, G. Statistical Analysis of Network Data with R. J. Stat. Softw. 2005, 14, 1–6.

http://dx.doi.org/10.2218/ijdc.v8i1.252
https://www.panarchy.org/milgram/obedience.html.
http://www.ncbi.nlm.nih.gov/pubmed/16209421
http://dx.doi.org/10.1065/lca2006.02.002
http://dx.doi.org/10.1016/S0009-8981(01)00508-3
http://dx.doi.org/10.1371/journal.pone.0010232
http://www.ncbi.nlm.nih.gov/pubmed/20436911
http://dx.doi.org/10.1016/j.ins.2015.05.028
http://dx.doi.org/10.1016/j.ins.2015.06.031
http://dx.doi.org/10.18637/jss.v024.i01
http://CRAN.R-project.org/package=RSiena


Symmetry 2019, 11, 30 18 of 19

24. Grunspan, D.Z.; Wiggins, B.L.; Goodreau, S.M. Understanding classrooms through social network analysis:
A primer for social network analysis in education research. CBE Life Sci. Educ. 2014, 13, 167–178. [CrossRef]
[PubMed]

25. Rossi, R.A.; Ahmed, N.K. The Network Repository: An Interactive Data Repository with Multi-scale Visual
Analytics. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015; pp. 4292–4293.

26. Bollen, J.; van de Sompel, H.; Hagberg, A.; Chute, R. A Principal Component Analysis of 39 Scientific Impact
Measures. PLoS ONE 2009, 4, e6022. [CrossRef] [PubMed]

27. Newman, J.R. Leonhard Euler and the Konigsberg Bridges. Sci. Am. 1953, 189, 66–70.
28. Huang, W.; Hong, S.H.; Eades, P. Effects of sociogram drawing conventions and edge crossings in social

network visualization. J. Graph Algorith. Appl. 2007, 11, 397–429. [CrossRef]
29. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 6684, 440–442.

[CrossRef] [PubMed]
30. Baraba, A.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–513.
31. Freeman, L. The Development of Social Network Analysis: A Study in the Sociology of Science; Empirical Press:

Vancouver, BC, USA, 2004.
32. Friedkin, N.E. Theoretical foundations for centrality measures. Am. J. Sociol. 1991, 96, 1478–1504. [CrossRef]
33. Eigenvector Centrality. Available online: https://www.sci.unich.it/~{}francesc/teaching/network/eigenvector.

html (accessed on 19 December 2018).
34. Du, D. Social Network Analysis: Centrality Measures. Available online: http://www2.unb.ca/~{}ddu/

6634/Lecture_notes/Lecture_4_centrality_measure.pdf. (accessed on 19 December 2018).
35. Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [CrossRef]
36. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The Pagerank Citation Ranking: Bringing Order to the Web; Stanford

InfoLab: Stanford, CA, USA, 1998.
37. Langville, A.N.; Meyer, C.D. Google’s PageRank and Beyond: The Science of Search Engine Rankings; Princeton

University Press: Princeton, NJ, USA, 2011.
38. Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks.

Natl. Acad. Sci. USA 2004, 101, 3747–3752. [CrossRef]
39. Opsahl, T.; Agneessens, F.; Skvoretz, J. Node Centrality in Weighted Networks: Generalizing degree and

shortest paths. Soc. Netw. 2010, 32, 245–251. [CrossRef]
40. Tang, X.; Wang, J.; Zhong, J.; Pan, Y. Predicting essential proteins based on weighted degree centrality.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 407–418. [CrossRef] [PubMed]
41. Newman, M. The Mathematics of Networks; University of Michigan: Ann Arbor, MI, USA, 2002.
42. Krebs, V. Power in Networks. 2004. Available online: http://www.orgnet.com (accessed on 12 December 2018).
43. Yoon, J.; Blumer, A.; Lee, K. An algorithm for modularity analysis of directed and weighted biological

networks based on edge-betweenness centrality. Bioinformatics 2006, 22, 3106–3108. [CrossRef] [PubMed]
44. da Silva, M.R.; Ma, H.; Zeng, A.P. Centrality, network capacity, and modularity as parameters to analyze the

core-periphery structure in metabolic networks. Proc. IEEE 2008, 96, 1411–1420. [CrossRef]
45. de Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M.A.; Gómez, S.; Arenas, A.

Mathematical formulation of multilayer networks. Phys. Rev. X 2013, 3, 041022. [CrossRef]
46. Newman, M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103,

8577–8582. [CrossRef] [PubMed]
47. Parsons, P.; Sedig, K.; Didandeh, A.; Khosravi, A. Interactivity in Visual Analytics: Use of Conceptual

Frameworks to Support Human-Centered Design of a Decision-Support Tool. In Proceedings of the
48th Hawaii International Conference on System Sciences (HICSS), Kauai, HI, USA, 5–8 January 2015;
pp. 1138–1147.

48. Sedig, K.; Parsons, P. Design of Visualizations for Human-Information Interaction: A Pattern-Based Framework;
Morgan & Claypool Publishers: San Rafael, CA, USA, 2016.

49. Eichelberg, M.; Aden, T.; Riesmeier, J. A Survey and Analysis of Electronic Healthcare Record Standards.
ACM Comput. Surv. 2005, 37, 277–315. [CrossRef]

50. Huang, W.; Huang, M.; Lin, C. Aesthetic of Angular Resolution for Node-Link Diagrams: Validation and
Algorithm. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’11), Pittsburgh, PA, USA, 18–22 September 2011; pp. 18–22.

http://dx.doi.org/10.1187/cbe.13-08-0162
http://www.ncbi.nlm.nih.gov/pubmed/26086650
http://dx.doi.org/10.1371/journal.pone.0006022
http://www.ncbi.nlm.nih.gov/pubmed/19562078
http://dx.doi.org/10.7155/jgaa.00152
http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1086/229694
https://www.sci.unich.it/~{}francesc/teaching/network/eigenvector.html
https://www.sci.unich.it/~{}francesc/teaching/network/eigenvector.html
http://www2.unb.ca/~{}ddu/6634/Lecture_notes/Lecture_4_centrality_measure.pdf.
http://www2.unb.ca/~{}ddu/6634/Lecture_notes/Lecture_4_centrality_measure.pdf.
http://dx.doi.org/10.1016/j.socnet.2007.04.002
http://dx.doi.org/10.1073/pnas.0400087101
http://dx.doi.org/10.1016/j.socnet.2010.03.006
http://dx.doi.org/10.1109/TCBB.2013.2295318
http://www.ncbi.nlm.nih.gov/pubmed/26355787
http://www.orgnet.com
http://dx.doi.org/10.1093/bioinformatics/btl533
http://www.ncbi.nlm.nih.gov/pubmed/17060356
http://dx.doi.org/10.1109/JPROC.2008.925418
http://dx.doi.org/10.1103/PhysRevX.3.041022
http://dx.doi.org/10.1073/pnas.0601602103
http://www.ncbi.nlm.nih.gov/pubmed/16723398
http://dx.doi.org/10.1145/1118890.1118891


Symmetry 2019, 11, 30 19 of 19

51. Huang, W.; Eades, P.; Hong, S.H.; Lin, C.C. Improving Force-Directed Graph Drawings by Making
Compromises Between Aesthetics. In Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2010), Leganes, Spain, 21–25 September 2010; pp. 176–183.

52. Huang, W.; Huang, M. Exploring the Relative Importance of Number of Edge Crossings and Size of Crossing
Angles: A Quantitative Perspective. Int. J. Adv. Intell. 2011, 3, 25–42.

53. Omote, H.; Sugiyama, K. Force-Directed Drawing Method for Intersecting Clustered Graphs. In Proceedings
of the 6th International Asia-Pacific Symposium on Visualization, Sydney, Australia, 5–7 February 2007;
pp. 85–92.

54. Lin, C.C.; Yen, H.C. A New Force-Directed Graph Drawing Method Based on Edge-Edge Repulsion.
In Proceedings of the Ninth International Conference on Information Visualisation, London, UK,
6–8 July 2005; pp. 329–334.

55. Kobourov, S.G. Force-directed drawing algorithms. In Handbook of Graph Drawing and Visualization (Discrete
Mathematics and Its Applications); CRC Press: Boca Raton, FL, USA, 2013; pp. 383–408. [CrossRef]

56. Gansner, E.R.; North, S.C. Improved force-directed layouts. In Proceedings of the International Symposium
on Graph Drawing and Network Visualization, Montreal, QC, Canada, 13–15 August 1998; pp. 364–373.

57. Jacomy, M.; Heymann, S.; Venturini, T.; Bastian, M. Force Atlas 2, A Graph Layout Algorithm for Handy
Network Visualisation. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0098679. (accessed on 19 December 2018).

58. Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating
Networks. In Proceedings of the Third International ICWSM Conference, San Jose, CA, USA, 17–20 May 2009.

59. Schiffer, E.; Hauck, J. Net-Map: Collecting Social Network Data and Facilitating Network Learning through
Participatory Influence Network Mapping. Field Methods 2010, 22, 231–249. [CrossRef]

60. Gao, Y.C.; Zeng, Y.; Cai, S.M. Influence network in the Chinese stock market. J. Stat. Mech. Theory Exp. 2015,
2015, P03017. [CrossRef]

61. Li, J.; Peng, W.; Li, T.; Sun, T.; Li, Q.; Xu, J. Social network user influence sense-making and dynamics
prediction. Expert Syst. Appl. 2014, 41, 5115–5124. [CrossRef]

62. Newman, M. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010.
63. Huang, W. An Eye Tracking Study into the Effects of Graph Layout. Available online: https://arxiv.org/

pdf/0810.4431.pdf. (accessed on 19 December 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.soncn.2011.02.001
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679.
http://dx.doi.org/10.1177/1525822X10374798
http://dx.doi.org/10.1088/1742-5468/2015/03/P03017
http://dx.doi.org/10.1016/j.eswa.2014.02.038
https://arxiv.org/pdf/0810.4431.pdf.
https://arxiv.org/pdf/0810.4431.pdf.
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Graph Visualisation 
	Modelling Scientific Standards into Graphs 
	Graph Centrality Metrics 
	Motivations and Contributions 

	Method 
	Data Processing 
	Data Visualisation 
	FR (Fruchterman and Reingold) 
	FA2 (ForceAtlas2) 

	Centrality Measure Model 
	Graph Layout Generation 
	Hypotheses 
	Procedure 

	Results 
	Discussion 
	Conclusions 
	
	References

