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The purpose of speech enhancement algorithms is to improve speech quality, naturalness 

and intelligibility by eliminating the background noise and improving signal to noise ratio. 

There are several objective measures predicting the quality of noisy speech enhanced by 

noise suppression algorithms, and different objective measures capture different 

characteristics of the degraded signal. In this paper, the multiple linear regression analysis is 

used to obtain a composite measure which has high correlation with subjective tests, and the 

performance of several speech enhancement algorithms under car noise conditions is 

compared. The uncertainty of the results of the proposed measures on different speech 
enhancement algorithms is analyzed, and the reliability of the results is discussed. 

0 INTRODUCTION 

Speech enhancement is concerned with improving perceptual aspects of speech that is degraded by background noise, 

and the main aim of speech enhancement is to improve speech quality and signal to noise ratio (SNR) level while 

preserving speech intelligibility. A large number of speech enhancement algorithms have been proposed such as the 

spectral-subtractive algorithms, the wiener algorithm, the minimum mean square error (MMSE) algorithms and the 

subspace algorithms [1]. 

Speech enhancement algorithms typically degrade the speech signal component while suppressing the background 

noise, particularly in low SNR conditions, which complicates the subjective evaluation of speech enhancement 

algorithms. It is not clear whether listeners evaluate their overall quality judgments basing on the signal distortion 

component, noise distortion component, or both, and this uncertainty decreases the reliability of the rating. Hence, ITU-

T Rec. P.835 has been designed to lead the listeners to rate the speech signal, the background noise, and the overall 

effect of speech and noise separately [2]. 

Listening tests are usually time-consuming and expensive to conduct [3], so several objective measures have been 

proposed. However, most of these objective measures were developed for the purpose of evaluating the distortions 

introduced by speech codecs and communication channels, and it is not clear whether these objective measures are 

suitable for evaluating the speech quality enhanced by speech enhancement algorithm [4-5]. As a result, only a small 

number of studies were presented to examine the correlation between objective measure and the subjective quality 

evaluation of enhanced noise speech, such as the perceptual evaluation of speech quality (PESQ) for speech codec [6-

11], the log likelihood ratio (LLR), the cepstrum (CEP) and segmental SNR (segSNR). However, the PESQ measure did 

not yield as high correlation coefficients with speech quality as that found with speech transmitted through network, 

whose correlation efficient was about 0.65 in term of signal distortion. The other conventional objective measures (CEP, 

LLR and segSNR) performed moderately well (by about 0.60) with overall quality whereas yielded poor correlation 

coefficient (by about 0.30) with ratings of background noise distortion [1]. 

Aiming to further improve the correlation coefficients for different types of distortion introduced by speech 

enhancement algorithms, a multiple linear regression analysis is used to obtain a new composite measure, which only 

consisted of five different objective measures. Then the measurement uncertainty of the proposed measure under 

different speech enhancement algorithms is investigated, and the reliability of the results is discussed.  

1 A COMPOSITE MEASURE 

Several existing objective measures have been combined to form a new measure by utilizing the linear regression 

analysis or nonlinear techniques [13]. Five widely used objective speech quality measures are selected in this paper, and 
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they are the perceptual evaluation of speech quality (PESQ), the log likelihood ratio (LLR), the cepstrum (CEP), the 

frequency-weighted segmental SNR (fwSNRseg) and the frequency-variant fwSNRseg with 25 bands (fwSNRsegVar). 

As mentioned above, these different objective measures only capture different characteristics of the distorted signal 

which is monotonous to rate different kind of distorted signal [1]. 

The PESQ measure described in the ITU-T P.862 is capable of performing reliably across a wide range of codecs and 

network conditions. However, the performance of PESQ is found to be sensitive to measurement noise when clean 

reference samples were used [14]. The range of PESQ score is [0.5, 4.5]. The log likelihood ratio (LLR) measure and 

the cepstrum (CEP) measure are proposed based on the dissimilarity between all-pole models of the clean and enhanced 

speech signals, which assume that speech can be represented by a p-th order all-pole model over short time intervals. 

The LLR measure represents the ratio of the energies of the prediction residuals of the enhanced and clean signals. The 

range of LLR score is [0, 2]. The CEP measure provides an estimate of the log spectral distance between two spectra 

with a score range of [0, 10]. The advantage of using the fwSNRseg is the flexibility of assigning different weights for 

different frequency bands. The range of fwSNRseg score is [10 dB, 35 dB]. Alternatively, the weights for each band 

can be obtained using the regression analysis to obtain fwSNRsegVar, which has a range of [10 dB, 35 dB].  

Various statistics have been used to evaluate interrater reliability. The most common statistic is the Pearson’s 

correlation coefficient between the first and second ratings. To obtain the Pearson’s coefficient, listeners are presented 

with the same speech samples at two different testing sessions, and the Pearson’s correlation between the subjective 

quality measure 
dS  and the objective measure

dO , is given by [1] 
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where 
dS  and 

dO  are the mean values of 
dS  and 

dO , respectively. 

The standard deviation of the error when the objective measure is used in place of the subjective measure is given by 

[1] 

2ˆ ˆ 1e s                                                                (2) 

where ˆ
s  and ˆ

e  are the standard deviation of
dS and error. A smaller value of ˆ

e  indicates that the objective measure 

is better at predicting subjective quality [13]. 
The first five columns (excluding the title column) in Table 1 show the correlation coefficients and standard 

deviations of the error for the five objective measures above, where the correlations were run between the objective 

measures and the subjective rating scores. A total of 43008 subjective scores were included in the correlations 

computation, encompassing two SNR level (5 dB and 10 dB). And the noisy database contains 30 IEEE sentences, 

which were produced by three male and three female speakers and recorded in a sound-proof booth using Tucker Davis 

Technologies (TDT) recording equipment, and sampled at 25 kHz and then down sampled to 8 kHz [1].  

 

Table 1. Correlation coefficients and standard deviations of the error (shown in parenthesis) for the five 

objective measures and the proposed measure 

 PESQ LLR CEP fwSNRseg fwSNRsegVar 
proposed 

measure 

SIG 0.57(0.65) 0.66(0.59) 0.65(0.60) 0.67(0.56) 0.73(0.54) 0.673(0.253) 

BAK 0.48(0.51) 0.26(0.56) 0.22(0.57) 0.27(0.59) 0.51(0.50) 0.609(0.308) 

OVL 0.65(0.46) 0.63(0.47) 0.60(0.49) 0.64(0.47) 0.70(0.43) 0.674(0.298) 

From Table 1, it can be found that the fwSNRsegVar measure yields the highest correlation with the three subjective 

scales in terms of OVL (overall quality), SIG (signal distortion) and BAK (background distortion). The second best 

measure is the PESQ measure, and it is also found that the LLR, CEP and fwSNRseg measures performed best in terms 

of predicting overall quality and signal distortion, but with a large standard deviation. 

In order to improve the correlation coefficients, a multiple linear regression analysis is used to obtain a new 

composite measure. Basing on the database mentioned above, a total of 14 listeners (22-50 years old) were recruited for 

the listening test. No listeners participated in a listening test in the previous 3 months before this test. Correlations are 

calculated between the objective measure and the three subjective rating scores. A total of 5040 subjective listening 

scores for three rating scales are obtained, including two SNR levels (5 dB and 10 dB) and two different types of 

background noise. The regression analysis is applied on the objective scores of five measures above and the subjective 
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scores for the three scales based on least square method by using the best fitting straight line. The weighting coefficients 

of each parameter are obtained, and the derived composite measures for signal distortion (CSIG), noise distortion (CBAK), 

and overall quality (COVL) are as follows, 

 

    SIG SIG SIG SIG

SIG SIG

1.856 0.135 1.569 0.338

0.044 0.224 ,

C PESQ LLR CEP

fwSNRseg fwSNRsegVar

   

 
         (3) 

BAK BAK BAK BAK

BAK BAK

0.343 0.484 2.548 0.646

0.049 0.520 ,

C PESQ LLR CEP

fwSNRseg fwSNRsegVar
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OVL OVL OVL OVL

OVL OVL

0.835 0.610 3.229 0.804

0.313 0.008 .

C PESQ LLR CEP

fwSNRseg fwSNRsegVar

    

 
    (5) 

 

where the PESQ, LLR, CEP, fwSNRseg and fwSNRsegVar indicate the objective scores, and the subscript indicates 

objective measure derived for signal distortion (SIG), background noise distortion (BAK) and overall quality (OVL). 

The last column in Table 1 shows the correlation coefficients and standard deviations of the error for the proposed 

composite measures. Compared with other five objective measures, the proposed composite measures show moderate 

improvements over the existing objective measures in correlation, whereas the standard deviations of the error are 

smaller than other objective measures. The highest correlation (  =0.674) is obtained with the COVL measure. Being 

compared with the fwSNRsegVar method, the correlation of CSIG and COVL declines slightly, however, smaller standard 

deviations of the error are obtained with the proposed measure. This property might be better for evaluating subjective 

quality of distorted speech [13]. 

2 UNCERTAINTY OF THE PROPOSED MEASURE 

2.1 Selection of Experiment Conditions and Results 

In order to evaluate the performance of the proposed composite measure for different speech enhancement algorithm, 

the same database mentioned above are selected, whose sentenses are corrupted only in car background noise 

environments. 

In the tests, six different speech enhancement algorithms are adopted, i.e., the minimum mean square error (MMSE-

SPU) algorithms [15], the logMMSE algorithm, the logMMSE algorithm with noise estimation (logMMSE_ne), the 

basic spectral-subtractive algorithms (Specsub), the subspace algorithm with embedded pre-whitening (Karhunen-Loeve 

Transform, KLT) and the wiener algorithm based on a priori SNR estimation (Wiener_as) [16].  

The noise-corrupted sentences are processed by the speech enhancement algorithms mentioned above. Tables 2 and 3 

present the objective scores obtained with the proposed measure, where the obtained average, the span of the objective 

values and the standard deviation are shown. 

Table 2. The objective scores of the proposed measures for different algorithms (10 dB) 

Algorithm 

CSIG
 

CBAK
 

COVL
 

Avg Span   Avg Span   Avg Span   

MMSE 3.932 0.593 0.1693 3.217 0.572 0.1421 3.263 0.816 0.2025 

Specsub 3.886 0.542 0.1458 3.035 0.548 0.1428 3.018 0.760 0.1860 

Wiener_as 3.949 0.602 0.1631 3.028 0.519 0.1342 3.099 0.564 0.1579 

logMMSE 3.975 0.557 0.1654 3.158 0.427 0.1246 3.237 0.696 0.1799 

KLT 3.646 0.721 0.2114 3.039 0.622 0.1581 2.937 0.817 0.2041 

logMMSE_n

e 
3.891 0.646 0.1609 3.134 0.553 0.1399 3.162 0.755 0.1917 
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Table 3. The objective scores of the proposed measures for different algorithms (5 dB) 

Algorithm 

CSIG
 

CBAK
 

COVL
 

Avg Span   Avg Span   Avg Span   

MMSE 3.661 0.512 0.1287 2.988 0.562 0.1441 2.899 0.779 0.1792 

Specsub 3.473 0.535 0.1349 2.792 0.681 0.1640 2.580 0.891 0.2105 

Wiener_as 3.649 0.505 0.1208 2.843 0.557 0.1471 2.761 0.654 0.1739 

logMMSE 3.689 0.565 0.1296 2.953 0.552 0.1518 2.882 0.761 0.1876 

KLT 3.357 0.547 0.1359 2.841 0.499 0.1313 2.610 0.568 0.1586 

logMMSE_ne 3.606 0.646 0.1410 2.892 0.754 0.1890 2.790 0.905 0.2096 

It can be found from the Tables that there is a large variability among different algorithms. The average objective 

score decreases for the low SNR condition, this is reasonable in terms of the perception of people under low SNR 

condition. The objective values vary significantly even under the same algorithm. For example, for the case of COVL at 

10 dB SNR, the span of the KLT is as large as 0.817. 

2.2 Statistical Analysis of the Uncertainty of the Proposed Measures Values 

To analyze the probability distribution of the objective values, the histogram of the data obtained with the 6 adopted 

algorithms are processed. For the sake of brevity, Fig. 1 only shows the histogram related to the algorithm of the 

Wiener_as on CBAK. It is obtained by dividing the horizontal axis into bins of constant width equal to 0.1 and by 

reporting on the vertical axis the frequencies of the whole objective results falling into each bin. 
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Fig. 1. Normalized histogram of the objective values for the Wiener_as algorithm (10 dB) 

The mean and variance are 3.028 and 0.1342 respectively. By using a normal distribution to fit the distribution, the 

probability density function shows that the mean is 3.05 with a variance of 0.1308 [17]. The good agreement between 

the two curves suggests that the measurement results can be considered as normal distribution. The normal distribution 

assumption can be formally analyzed with the Chi-square test, and result shows that the assumption is true under the 

significance level of 0.05. In order to avoid Type II error (the error of failing to reject a null hypothesis when it is false) 

in the normality test, the Skewness and Kurtosis parameters of the measurement results are calculated, and the results 

are shown in Table 4. 
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Table 4. Statistical parameters of different speech enhancement methods 

Algorithm Skewness Kurtosis 

MMSE -0.32 3.05 

Specsub -0.29 2.84 

Wiener_as 0.06 2.93 

KLT 0.02 2.90 

logMMSE -0.15 2.93 

logMMSE_ne -0.23 2.88 

 

The Skewness parameter is a well-known indicator of probability density function symmetry with respect to its center 

value, whereas the Kurtosis indicates if the probability density function if peaked or flat with respective to a normal 

probability density function. In particular, null Skewness and Kurtosis equal to 3 are expected for normally distributed 

data [17]. As illustrated in Table 4, the measurement results of the Wiener_as algorithm can be approximately 

considered as normal distribution. Similar calculations (not presented in the paper) shows that the conclusion can be 

extended to the other algorithms too. Basing on this conclusion, the performance of different algorithms under car 

background noise environments is compared, and the reliability of the results is analyzed. 

Table 5. Confidence interval of COVL values (10 dB) 

Algorithm CI 95% Margin of error CI 95%-lower limit MOS (OVL) 

MMSE (3.127,3.259) 0.0662 3.138 3.25 

Specsub (2.949, 3.088) 0.0694 2.961 2.56 

Wiener_as (3.041, 3.158) 0.0590 3.050 2.81 

KLT (2.860, 3.013) 0.0762 2.873 2.49 

logMMSE (3.169, 3.304) 0.0672 3.181 3.37 

logMMSE_ne (3.091, 3.234) 0.0716 3.103 3.13 

 

Table 6. Confidence interval of COVL values (5 dB) 

Algorithm CI 95% Margin of error CI 95%-lower limit MOS (OVL) 

MMSE (2.8321, 2.9660) 0.0669 2.8435 2.77 

Specsub (2.5014, 2.6586) 0.0786 2.5147 2.13 

Wiener_as (2.6961, 2.8260) 0.0649 2.7071 2.40 

KLT (2.5503, 2.6687) 0.0592 2.5603 2.13 

logMMSE (2.8122, 2.9523) 0.0700 2.8241 2.90 

logMMSE_ne (2.7115, 2.8680) 0.0783 2.7247 2.65 

For a random variable, the confidence coefficient (1-α) of the mean value can be calculated by [17],  

  / 2 1 /X s t n n                                               (6) 
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One-side confidence lower limit can be calculated by 

 1 /X s t n n                                                (7) 

where X  and s represent the means and standard deviation, n corresponds to the number of samples,  / 2 1t n   and 

 1t n   are percentiles of the T distribution [17], and  / 2 1 /s t n n   corresponds to margin of error at confidence 

coefficient (1α).  

For the sake of brevity, Table 5 only shows the confidence interval of COVL measure. In the second column of Table 5, 

the 95% confidence intervals of means are given. The third and fourth columns indicate the margin of error and the 95% 

confidence lower limit, whereas in the last column, the subjective MOS values in 10 dB car noise are obtained from 

Loizou [1]. Taking the MMSE algorithm for example, the average of the COVL values is between 3.127 and 3.259. If 

picking any value in this range as the approximation of the true value, the margin of error is not more than 0.1324 (two 

times of the margin of error). The reliability of the conclusion is 95%. Since the 95% confidence interval of the average 

estimate overlaps, z-test was performed to further investigate the performance of algorithms [17]. The results show that 

when the significance level is 0.05, there is no significant difference among the means of logMMSE, MMSE and 

logMMSE_ne; the same between the means of Specsub and KLT. Multiple COVL values of six algorithms indicate that 

the performance of different algorithms is significantly different. This conclusion is consistent to the 95% confidence 

lower limit. 

As can be seen from the last column, subjective scores are consistent to the objective conclusion. The performances 

of the logMMSE, MMSE and logMMSE_ne algorithms are superior to others. The Wiener_as algorithm is better than 

the Specsub and KLT algorithms. The same conclusion can be drawn for the case with 5 dB SNR according to Table 6. 

Therefore, these testing results illustrate the differences between the speech enhancement algorithms are significant in 

both the objective and subjective testings. It should be noted here that the actual values of objective measures and 

subjective measures in Tables 5 and 6 do not line up well in some cases. The reason is that the correlations between 

objective and subjective measurements are low, especially for distorted speech.  

3 CONCLUSIONS 

A multiple linear regression analysis is used in this paper to obtain a new composite measure which has high correlation 

coefficients with small standard deviations. With the proposed composite measure, the majority of the correlation 

coefficients in terms of BAK are improved by about 0.2, and the standard deviations of the error are declined by about 

0.2 to 0.4 in terms of OVL, SIG and BAK. Then, the uncertainty of the proposed measure under different test conditions 

is analyzed, and the values obtained by the proposed measure are shown to have almost normal distribution. Finally, 6 

speech enhancement algorithms are investigated with the proposed measure, and the result shows that the differences 

between the speech enhancement algorithms are significant in both the objective and subjective testings.  The composite 

objective measure can be regarded not only as subjective estimator but also as an overall system performance parameter 

for speech enhancement algorithms. 
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