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ABSTRACT 

In practical sound power measurements in an anechoic room, a baffle sometimes has to 

be used to support the sound source under test so that the anechoic room can be used as a 

hemi-anechoic room by laying a reflecting plane. To understand the effects of a finite size 

reflecting plane on measurements quantitatively, this paper investigates the effects of a disk 

on sound power measurements by formulating an exact solution to the problem based on the 

spheroidal wave functions. Three practical measurement cases are considered and the 

correction terms for the cases are presented based on numerical simulations. Experiments are 

conducted to validate the analytical solutions and numerical results.  
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1. Introduction 

Sound power level (SWL) is an important parameter for characterizing a noise source 

and can be determined based on the sound pressure method [1], sound intensity method [2] or 

other indirect methods [3] in practical measurements. SWL measurements of a sound source 

can be conducted in an anechoic room or a hemi-anechoic room (free field over an infinite 

size reflecting plane) based on the sound pressure method [4]. In some practical situations, 

sound sources need a baffle to support them when they are measured in a full anechoic room, 

and a full anechoic room sometimes has to be used as a hemi-anechoic room by laying a 

reflecting plane. Therefore, the effects of a finite size reflecting plane on measurements need 

to be quantitatively investigated, which is the aim of this technical note.  

The image source method has been used to analyze the effects of the infinite size 

reflecting plane in sound power measurements [5, 6]. However, when the size of reflecting 

plane is comparable to the wavelength of sound, considerable error occurs in the power 

estimation, so further study is needed [7]. A finite size circular disk is often used in an 

anechoic room as a reflecting plane, so the sound reflection and scattering from a circular 

disk is calculated in the note to understand the effects of a finite size reflecting plane on 

measurements. 

A circular disk was first considered as a degenerate oblate spheroid in acoustics in 1933 

[8], then Bouwkamp developed the diffraction theory by circular disks in the oblate 
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spheroidal coordinate system in 1950 [9], and an analytical solution of the Green’s function 

with an oblate rigid boundary can be found in [10]. The solution involves two special 

functions named as radial and angular spheroidal wave functions which are difficult to 

compute accurately in 1970s. Based on the asymptotic forms of these two functions, Lauchle 

studied the far field directivity of a monopole above a disk and conducted experiments using 

a loudspeaker in 1979 [11].  

In recent years, with the progress of computation methods and resources, some software 

or codes are available for calculating these two functions accurately [12,13]. Based on that, 

Adelman computed near field sound pressure scattered by a rigid disk in 2014 [14]. In our 

previous work, a circular disk was introduced to support a sound source in free space and the 

measurement correction term was simulated and computed according to the computation 

methods [15]. However, little attention has been paid to the calculation of sound power 

output of sound sources near a finite size disk. 

This paper derives the exact solutions to three practical measurement cases based on the 

spheroidal wave functions. Three cases include: (1) a supporting baffle has to be used in 

measurements in a full anechoic room and the sound pressure on spherical measurement 

surface is obtainable; (2) a supporting baffle has to be used in measurements in a full 

anechoic room and only the sound pressure on the hemi-spherical measurement surface 

above the disk is obtainable (this case occurs in practice when it is difficult to install 
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microphones below the wire-meshed floor in a full anechoic room or there are not enough 

microphones); and (3) an anechoic room is used to simulate the environment in a hemi-

anechoic room by laying a finite size rigid disk on the wire-meshed floor. The correction 

terms for the cases are provided based on simulations, and experiments are conducted to 

validate the analytical and numerical results. 

 

2. Theory 

The model of sound power measurements is shown in Fig. 1, where a monopole is 

placed on the axis of a finite size rigid disk with a radius of a, and the acoustic center of the 

source locates h meters above the disk. Measuring microphones are installed on a spherical or 

hemi-spherical measurement surface to obtain the sound pressure. The sound power of the 

noise source is determined according to the surface averaged sound pressure as [4] 
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where LW,m denotes the measured SWL, N is the total number of measuring microphones, Lp,n 

is the sound pressure level (SPL) at the nth microphone, S = 4πR2 or 2πR2 for the spherical or 

hemi-spherical measurement surface respectively, R is the radius of measurement surface, 

and S0 = 1 m2.  
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Fig. 1. Sketch of sound power measurements with a finite size rigid disk based on the sound pressure 

method in a full anechoic room  

The total radiated sound with the disk, pdisk, is the superposition of the direct sound from 

the monopole source and the scattering sound due to the disk respectively. The governing 

equation of sound field can be solved by using the boundary condition on the disk surface,  
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where the disk surface is assumed to be acoustically hard, ξ is the radial oblate spheroidal 

coordinate in the oblate spheroid coordinate system, ξb represents the boundary surface, and 

the oblate coordinates (η, ξ, φ) are related to the Cartesian coordinates (x, y, z) by [10] 
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(3) 

 

When the radial coordinate ξ = 0, the oblate represents an infinitely thin disk with a radius of 

a on the plane z = 0 in the Cartesian coordinate system [10]. When ξ is sufficiently large, the 

oblate tends to be a sphere and the angular coordinate η and ξ can be related to the spherical 
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coordinates (r, θ, φ) as aξ → r and η → cosθ, where r is the radial coordinate, θ is zenith 

angle and  is the azimuth angle [10]. 

The total sound pressure solution at an arbitrary field point (η, ξ, φ) is [10] 
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 (4) 

where the notations adopted follow that used by Flammer [10], ρ is the density of air, ω is the 

angular frequency of the sound emitted by the source with real volume velocity Q and the 

harmonic term exp(−jωt) is omitted, k is the wavenumber, εm = 1 for m = 0 and εm = 2 for m ≠ 

0. The oblate wave function Smn(−jka, η) is the angular oblate spheroidal wave function and 

Nmn(−jka) is the normalization factor of Smn(−jka, η). ( ) j j )( ,i

mnR ka   and ( ) ( j ), ji

mn kaR    

represent the ith kind of the radial oblate spheroidal wave functions and their derivatives with 

respect to ξ, i = 1, 3 [10], ξb is the radial coordinate of the boundary (ξb = 0 for a disk), (ηs, ξs, 

φs) are the oblate coordinates of the source, ξ< = min(ξ, ξs) and ξ> = max(ξ, ξs). 

In the far filed where ξ is sufficiently large, the radial functions (3) ( j , j )mnR ka   have 

asymptotic values as (kr)−1exp[jkr – jπ(n + 1)/2] [10], and Eq. (4) can be written in the 

spherical coordinate system as 
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The sound power can be calculated using the radiation impedance and the strength of the 

acoustic source. By substituting Eq. (4) into the sound power formulation W = 0.5Re(Zs)Q
2, 

where Zs is the radiation impedance of the source at (ηs, ξs, φs) and related to the sound 

pressure as Zs = pdisk(ηs, ξs, φs)/Q [3], the sound power of the source with the disk can be 

expressed by  
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Although the solution of the sound pressure in Eq. (4) was published by many researchers, 

the solution of sound power for a disk in Eq. (6) has not been found in literatures. Consider 

that the monopole source is located on the disk axis in Fig. 1, the mode parameter m = 0 and 

the angular coordinate η = 1, the sound power with the disk can be simplified as 
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If the monopole is located on the disk center, the distance h = 0, and Eq. (7) can be 

further simplified using the Wronskian relation as 

 
2

2

0
disk (3)

0 0 0

( j ,2
.

8 ( j ) ( j , j0

1

π )

)n

n n n

S ka
W

N

kQ

Rka ka

 







 
  (8) 

The sound power radiated into the upper half-space above the disk cannot be directly 

obtained using the radiation impedance. An alternative method is to integrate the sound 

intensity travelling out a hemi-spherical surface in the upper half-space. The sound intensity 
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in the far field can be approximately calculated by dividing the squared sound pressure by air 

density and sound speed. So, the discrete summarization form of the sound power in the 

upper half-space is  
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where L is the number of discrete field points, R is the radius of the hemi-spherical surface, 

pdisk,far(R, θl, φl) is the sound pressure at the center (R, θl, φl) of the lth area element on the 

hemi-spherical surface. 

The sound power of the source without and with an infinite size reflecting plane is well 

known as [16] 
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where sinc(x) = sin(x)/x, and h is the distance between the source and the reflecting plane. 

For the convenience of the analysis, three types of correction terms are defined as the 

following, 

 
1 disk free10lg( / )C W W ， (12) 

 
disk,above d k2 is10lg( / )C W W ， (13) 

 
and  3 free inf10lg( / )C W W . (14) 

In case 1, a supporting baffle has to be used in measurements in a full anechoic room 

and the sound pressure on spherical measurement surface is obtainable, the correction term is 

C1. In case 2, a supporting baffle has to be used in measurements in a full anechoic room and 



10 

 

only the sound pressure on the hemi-spherical measurement surface above the disk is 

obtainable, the correction term is C1 + C2. In case 3, an anechoic room is used to simulate the 

environment of a hemi-anechoic room by laying a finite size rigid disk on the wire-meshed 

floor, the correction term is C1 + C2 + C3. The final SWL after corresponding corrections is 

 c
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where Nc represents the number of measurement case.  

 

3. Simulations and discussions 

A MATLAB program was developed to compute the numerical results. The subroutines 

of spheroidal wave functions were partly referred to the code provided by Zhang (Chap. 15 in 

[12]) and was modified for ξ = 0 (Sec. 4.6.2 in [10]). In the simulations, the sound source is 

placed on the axis of the disk, thus m = 0 and φ = φs = 0. Fig. 2 shows the calculated sound 

pressure level at some randomly chosen locations by using Eq. (4) and the boundary element 

method (BEM) simulation software (LMS Virtual.Lab Acoustics 12.0 [17]). The disk radius a 

is 0.5 m, and the source height h is 0.1 m. The source strength ρωQ/(j4π) is set as 1 kg/s2 for 

all frequencies. Fig. 2 shows that the maximal difference between the theoretical results and 

numerical results obtained by BEM is less than 0.1 dB from 63 Hz to 800 Hz.  
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Fig. 2. Calculated sound pressure level at 3 randomly selected field points using the theoretical solution 

and the BEM simulation (a = 0.5 m, h = 0.1 m, ρωQ/(j4π) = 1 kg/s2) 

If a supporting baffle has to be used in a full anechoic room measurement, the correction 

term is C1. Fig. 3 shows the correction terms (the ratio of sound power with and without the 

disk, i.e. C1) for different disk radii and source heights under this case. It can be seen that the 

correction term is nearly 0 dB when the disk radius is sufficiently small or when the source 

height is sufficiently large; however, the correction term fluctuates significantly when the 

disk radius and source height are comparable to the wavelength λ. 

Fig. 3(a) shows that for h = 0, the correction term increases to about 4.0 dB with the disk 

radius when a is below 0.35λ and then converges to 3.0 dB. For h = 0.5λ, the correction term 

decreases to about −1.2 dB with the disk radius when a is below 0.36λ, and then converges to 

0 dB. For h = 1.5λ, the correction term has a similar variation trend as that of h = 0.5λ but 

with smaller and slower fluctuations. Fig. 3(b) shows that the correction term decreases with 
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the source height first and then converges to 0 dB regardless of the disk radius. The maximal 

correction term at h = 0 is about 1.5 dB, 4.0 dB and 3.0 dB respectively when a = 0.2λ, 0.35λ 

and 1.5λ, while the minimal correction term is about −0.2 dB, −1.7 dB and −1.4 dB when h is 

around 0.53λ, 0.43λ and 0.36λ respectively. 

  

  

(a)                                                                    (b) 

Fig. 3. The correction terms in case 1 as a function of (a) disk radius a with different source height h; (b) 

source height h with different disk radius a 

Take h = 0 as an example to explain the correction term fluctuation. When the sound is 

generated from the center of the disk, the sound waves traveling out radially along the surface 

of the disk meet with an abrupt change of curvature at the edge of the disk [11]. The wave 

reflects from the medium at the edges in antiphase, relative to the source point and the sound 

pressure of reflected wave is proportional to jQexp(j2ka) [11]. Because the total radiated 

sound is the superposition of the direct and reflected sound and the sound source is located on 
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the disk center, the change of the real part of radiation impedance is proportional to 

−sinc(2ka). The fluctuations of total radiation power are then caused by the behavior of 

function −sinc(2ka) according to the sound power formulation W = 0.5Re(Zs)Q
2. Therefore, 

the peaks and valleys of the curves with h = 0 correspond to the valleys and peaks of the 

function sinc(2ka) respectively. The first valley of sinc(2ka) appears when 2ka ≈ 1.4π, so the 

first peak of the curve h = 0 in Fig. 3(a) occurs at a ≈ 0.35λ. 

If measuring microphones cannot be installed under the rigid disk in the full anechoic 

room, the correction term is C1 + C2. Fig. 4 shows the correction terms for different disk radii 

and source heights under this case. The curves in Fig. 4 have the similar trends as those in Fig. 

3, except that the values of curves in Fig. 4 are generally smaller than those in Fig. 3. This is 

because the ratio of sound power above the disk to the total power is always less than 1. In 

general, the larger the radius a is, the larger this power ratio will be. Therefore the level 

differences between curves in Fig. 3(a) and Fig. 4 (a) decreases with the radius a. Particularly, 

when a is nearly 0, the sound power above the disk is half of the total sound power, which 

means C1 + C2  = 0 + 10lg(0.5) = −3 dB. Fig. 4(b) shows that the minimal correction term is 

−6.9 dB when a = 0.35λ and h = 0.41λ, and its absolute value is larger than the maximum of 

the correction terms, 4.0 dB, when a = 0.35λ and h = 0 in case 1. For other disk radii or 

source heights, the difference between the maximal and minimal value of the correction terms 

in case 2 are generally greater than those in case 1. 
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(a)                                                           (b) 

Fig. 4. The correction terms in case 2 as a function of (a) disk radius a with different source height h; (b) 

source height h with different disk radius a 

When a full anechoic room is used to simulate the acoustic environment of a hemi-

anechoic room by laying a finite size rigid disk, the correction term is C1 + C2 + C3. Fig. 5 

shows the correction terms for different disk radii and source heights under this case. The 

correction term is generally less than 0 dB which means the measured SWL under with this 

configuration is less than the desired SWL in a hemi-anechoic room. Fig. 5(a) shows that if 

the source height can be considered as 0, the correction term could be less than 1.1 dB when 

the disk radius is larger than 0.28λ. When the disk radius decreases from 0.28λ, the correction 

term decreases rapidly and becomes −6 dB when disk radius is nearly 0. This implies that the 

measured sound power by using a small disk to simulate the acoustic environment of a hemi-

anechoic room is 6 dB lower that than that obtained in a real hemi-anechoic room in the low 

frequency range. Fig. 5(b) shows that the correction term is within the range between −1.7 dB 
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and −0.4 dB when the disk radius approaches 1.5λ, which means that the fluctuations are 

moderately small regardless of the source heights. 

 

 

(a)                                                           (b) 

Fig. 5. The correction terms in case 3 as a function of (a) disk radius a with different source height h; (b) 

source height h with different disk radius a 

4. Experiments 

The ratio of sound power radiated by a monopole with a disk to that without disk (C1), 

the ratio of sound power radiated into upper half-space above the disk to the total power (C2) 

and the ratio of sound power radiated above an infinite size reflecting plane to that in free 

field (C3) were measured by experiments. Fig. 6 shows the experimental setup in a full 

anechoic room in Nanjing University with the dimension of 11.4 m × 7.8 m × 6.7 m and a 

hemi-anechoic room in National Institute of Metrology (China) with the dimension of 13.2 m 

× 10.0 m × 7.2 m. The low frequency volume source VSS 058 made by BSWA Technology 

Co Ltd. is employed as the monopole sound source [18]. The frequency range of the volume 
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source is 50 ~ 800 Hz and the source strength can be calculated using the internal 

microphone inside the source. The acoustic center of the source is on the axis of the source 

and about 55 cm above the bottom shell. A wooden plate with a radius of 0.5 m and a 

thickness of 1.8 cm is used as the rigid disk. The surface density of the disk is about 15.30 

kg/m2. According to the Fig. 3 in [7], in such a case, the ratio of sound power reflected from 

the disk to the total sound power radiated from the sound source is larger than 96.6% above 

100 Hz.  

 

 

(a)                                                                  (b) 

 

(c) 
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Fig. 6. Experimental setup of the volume source and rigid disk in a full anechoic room: (a) the source and 

the disk are placed upward; (b) the source and the disk are placed downward. (c) Experimental setup of the 

volume source in a hemi-anechoic room 

The total sound power in the full anechoic room is determined according to Eq. (1) using 

the sound pressure at 40 measuring microphones on a spherical surface (with a radius of 1.5 

m), and the sound pressure at 20 measuring microphones below the disk are obtained by 

reversing the sound source together with the disk as shown in Fig. 6(b). The sound pressure 

at measuring microphones was sampled with a B&K PULSE system and the FFT analyzer in 

PULSE LabShop 12.6.1 was used to obtain the FFT spectrum. The frequency span was set to 

1.6 kHz with 1600 lines and the averaging type is linear with 66.67% overlap and 30 seconds 

duration. To obtain the SWL in the upper half space, 20 measuring microphones were 

installed on the hemi-spherical frame as shown in Fig. 6(a). Only 10 microphones could be 

mounted on the hemispherical frame adopted in the anechoic room at a time, therefore two 

10-point measurements were conducted for the 20-point measurement. The total sound power 

in the hemi-anechoic room was determined in a similar way on a hemi-spherical surface 

(with a radius of 2 m) as shown in Fig. 6(c). The locations of measuring microphones on the 

hemi-sphere frame are chosen according to Table E.1 – Microphones positions (general case) 

in ISO 3745 in the measurements [4].  

The three individual correction terms as well as the total correction terms for cases 1, 2 

and 3 are shown in Fig. 7, where the experimental results agree reasonably well with the 
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theoretical results. The differences between 200 – 270 Hz and 500 – 635 Hz might be caused 

by the acoustical properties of the real disk, the measurement errors and the directivity 

pattern of the sound source. The measured correction terms for the three cases at 50 Hz are 

nearly 0 dB, −3 dB and −6 dB respectively. The minima of measured correction terms appear 

around the frequency of 260 Hz, where the reflecting plane radius 0.5 m approximately 

equals 0.35 wavelength. The correction terms can be large. For example, the theoretical 

correction term for case 2 at 260 Hz shown in Fig. 7 (b) is −7.0 dB and the measured value is 

−5.3 dB. It is clear that the effect of the finite size baffle should not be neglected and the 

proposed correction terms can be used for the accurate measurements of the sound power.  

 

 

(a)                                                                   (b) 

Fig. 7. Comparisons of the correction terms calculated by theory and obtained by experiments for (a) C1, 

C2 and C3 (b) Cases 1, 2 and 3 

5. Conclusions 

This paper investigates the effects of a finite size reflecting disk on sound power 
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measurements by formulating an exact solution of sound power output based on the 

spheroidal wave functions. Three practical measurement cases are considered and the 

correction terms are presented based on the numerical simulations and validated by the 

experiments. It is found that the measurement error can be up to 7.0 dB without correction 

and the measured sound power level is generally less than the desired one when a full 

anechoic room is used to simulate the acoustic environment in a hemi-anechoic room by 

laying a finite size circular reflecting plane. Future work includes considering the effects of 

the locations of acoustic source deviated from the axis of the disk and the directivity of 

sources in the proposed models. 
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