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Abstract: Direction of arrival estimation (DOA) of multiple acoustic sources has been used for a 13 

wide range of applications, including room geometry inference, source separation and speech 14 

enhancement. The beamformer-based and subspace-based methods are most commonly used for 15 

spherical microphone arrays; however, the former suffers from spatial resolution limitations, while 16 

the later suffers from performance degradation in noisy environment. This letter proposes a 17 

multiple source localization approach based on the maximum likelihood method in the spherical 18 

harmonic domain and implements an efficient sequential iterative search of maxima on the cost 19 

function in the spherical harmonic domain. The proposed method avoids the division of the 20 

spherical Bessel function, which makes it suitable for both rigid-sphere and open-sphere 21 

configurations. Simulation results show that the proposed method has a significant superiority 22 

over the commonly used frequency smoothing multiple signal classification method. Experiments 23 

in a normal listening room and a reverberation room validate the effectiveness of the proposed 24 

method. 25 

Keywords: multiple source localization; maximum likelihood; spherical harmonic domain; 26 

alternating projection 27 

 28 

1. Introduction 29 

The rotationally symmetric spatial directivity makes the spherical microphone array an 30 

appealing structure in many audio applications, among which the acoustic source localization, or 31 

the direction of arrival (DOA) estimation, plays an important role in speech enhancement [1], room 32 

impulse response analysis [2], and room geometry inference [3].  33 

Various DOA estimation methods have been proposed, which can be generally classified as 34 

beamformer-based [2-5] and subspace-based [6-7]. The beamformer-based methods, such as those 35 

based on plane-wave decomposition (PWD) [4] and the minimum variance distortionless response 36 

(MVDR) beamformer [3], have the benefit of straightforward implementation, but suffer from low 37 

spatial resolution. The subspace-based methods, such as the multiple signal classification (MUSIC) 38 

[6], provide a high spatial resolution; however, they suffer from severe performance degradation 39 

when the signal-to-noise ratio (SNR) is low [8]. In order to improve the robustness of the DOA 40 

estimation of coherent sources, wideband expansion based on focusing matrices or frequency 41 

smoothing (FS) techniques has to be employed [7]. 42 

We proposed a maximum likelihood DOA estimation method in the spherical harmonic 43 

domain (SHMLE) recently, which is an attractive alternative DOA estimation method with 44 
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advantages of high spatial resolution, strong robustness and straightforward wideband 45 

implementation [9]. The proposed SHMLE method only considered one source situation, while two 46 

or more sources often need to be localized in many practical applications. In this letter, the SHMLE 47 

method is extended to estimate the DOA of multiple sources. Generally speaking, the DOAs can be 48 

determined by searching maxima on the maximum likelihood (ML) cost function. However, the 49 

commonly used grid search method is only effective in finding the global maximum, which restricts 50 

its applicability in one source situation. To achieve effective DOA estimation of multiple sources, an 51 

efficient sequential iterative search method is introduced in the spherical harmonic (SH) domain. 52 

Experiments using a 32-element spherical microphone array validate the feasibility and superiority 53 

of the proposed method. 54 

2. Methods  55 

2.1. Signal model in the spherical harmonic domain 56 

The standard spherical coordinate system is utilized with r, θ and ϕ representing the radius, the 57 

elevation angle and the azimuth, respectively. The sound field is assumed to be composed of plane 58 

waves from L sources with Ψl = (θl, ϕl) (l = 1, 2, …, L) being the DOA of the l-th plane wave and sl(k) 59 

being its amplitude, where k denotes the wave number. The Q element spherical microphone array 60 

is distributed uniformly on a sphere with a radius of a centred at the origin of the coordinate system, 61 

and Ωq = (θq, ϕq) is the angle position of the q-th microphone [10]. 62 

The sound pressure of the q-th microphone for the incident waves can be expressed as [11] 63 

            
   

       
Ti *

, , 
1 1 0

, l q
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l l n m n

p k s k e s k b k Y Y
k r

,         (1) 64 

where kl = k(cosϕlsinθl, sinϕlsinθl, cosθl)T and rq = a(cosϕqsinθq, sinϕqsinθq, cosθq)T denote the wave 65 

vector of the lth plane wave and the position of the q-th microphone in the Cartesian coordinate. Yn, m 66 

is the spherical harmonic of order n and degree m, N is the highest order number for the plane wave 67 

decomposition and satisfies (N+1)2 < Q. The superscript (*) denotes complex conjugation, and bn(k) is 68 

a function of array configuration [11]. Equation (1) can be expressed in matrix form as 69 

            T H,
q q

p k k ky B Y Ψ s ,                          (2) 70 

with 71 
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T

1 2
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L
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      1 2
, , ,

L
Ψ ,                                  (8) 77 

where the superscript (T) denotes the transpose. 78 

In the presence of additive noise, the sound pressure at all Q microphones can be expressed as 79 

             H,k k k kp Ω Y Ω B Y Ψ s ν ,                       (9) 80 

where 81 
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T

1 2
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Q
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p(k,Ω) = [p(k,Ω1), p(k,Ω2), …, p(k,ΩQ)]T is the vector of the sound pressure of Q microphones, and (k) 83 

= [𝜈1(k), 𝜈2(k), …, 𝜈Q(k)]T is the vector of the additive sensor noise added to the system. The 84 

uncorrelated noise is assumed to be zero mean complex Gaussian and, for simplicity, be spatially 85 

white with a covariance matrix   
 2

Q
k

ν
R I , where 


 2  is the unknown noise variance and IQ is 86 

the identity matrix of order Q×Q. 87 

For the uniformly spatial sampling configuration used in this letter, the following orthogonal 88 

relation holds (note that (N+1)2 ≤ Q) [10] 89 

    


 2

H

( +1)

4
NQ

Y Ω Y Ω I .                               (11) 90 

The SH transform can be carried out by multiplying both sides of Eq. (9) from the left with 91 

 
 H4

Q
Y Ω , which yields 92 

           Hk k k k
nm nm

p B Y Ψ s ν ,                        (12) 93 

where pnm(k) is a vector containing (N+1)2 SH domain coefficients, i.e., 94 

            
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The second term on the right side of Eq. (12) is the noise expressed in the SH domain, i.e. 96 

     


H4
=k k

Qnm
ν Y ν , with the mean 97 

      
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and the covariance matrix 99 

          
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where E(∙) denotes the statistical expectation. Apparently, the noise model in the SH domain is also 101 

zero-mean complex Gaussian. 102 

2.2. Sound source localization in the spherical harmonic domain 103 

Define    

T
2, ,T T

n
Θ Ψ S  as the vector of all unknown parameters, where 104 

    
  

T
T T

min max
, ,k kS s s

 

contains the amplitudes of the source signals with kmin and kmax
 

105 

representing the minimum and maximum wave numbers and satisfying ka ≤ N. Throughout this 106 

letter, Ψ, s and  2

v
 are assumed to be deterministic and unknown, while the observed data pnm is 107 

considered to be random [12]. The likelihood function of pnm given Θ in the SH domain can be 108 

expressed as [9,12] 109 
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,  (16) 110 

where Vnm(k,Ψ) = B(k)YH(Ψ), and |∙| denotes the matrix determinant. The solution to Eq. (16) is 111 

given by [9] 112 
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where (∙)† denotes pseudo-inverse operation. 114 

Define the cost function as 115 

          


 
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then the wideband estimator can be described as 117 

  ˆ arg max J
Ψ

Ψ Ψ .                             (19) 118 

The SHMLE has the remarkable benefit of easy wideband implementation as described in Eqs. 119 

(17)-(19). This is superior over the other methods in the spherical harmonic domain, which usually 120 

require a quite cumbersome frequency smoothing (FS) technique to realize wideband DOA [7]. 121 

Compared with the maximum likelihood method in Ref. 13, the division of bn(k) is avoided, which 122 

makes the method proposed in this letter suitable for both rigid-sphere and open-sphere arrays. 123 

2.3. DOA estimation of multiple sources 124 

For one source situation, Eq. (19) can be solved using the grid search method. For P grid points 125 

and L sources situation, the computational load of Eq. (19) is O(PL), which is computationally 126 

prohibitive. Moreover, effective discrimination of the multiple maxima in the cost function is very 127 

difficult even if repetitive traversal is feasible. To alleviate these problems, a nonlinear optimization 128 

algorithm is applied in the SH domain with implementation of the alternating projection method 129 

[14]. The alternating projection method avoids the multidimensional search by estimating the 130 

location of one source sequentially while fixing the estimates of other source locations from the 131 

previous iteration.  132 

For nonlinear optimization methods, the initial locations of the sound sources is critical to 133 

reach the global maximum. In this letter, the simplified gird search method is adopted to find initial 134 

locations, and the procedure of the method is described as follows. 135 

(1) Estimate the location of the first source s1 on a single source grid with 136 

    


  
1

0

1 1
arg max J .                            (20) 137 

(2) For l = 2, …, L, estimate the location of the lth source sl, assuming locations of the first l−1 138 

sources are fixed by using 139 

     
2

0 0

1
arg max ,

l l l
J




   
 
Ψ ,                      (21) 140 

where  0

1l
Ψ  denotes the initial locations of first l − 1 sources, i.e. 141 

        0 0 0 0

1 1 2 1
, , ,

l l 
    
 

Ψ .                        (22) 142 

In steps (1) and (2), Eq. (19) only needs to be calculated P × L times and the effective initial 143 

location information can be obtained. In some cases, this initialization process is not necessary since 144 

a good initial location estimate is available, for example, from the estimate of the previous data for 145 

slowly moving sources. 146 

After initialization, the accurate locations can be estimated using a nonlinear optimization 147 

algorithm with implementation of the alternating projection method [14]. The location of Ψl at the (i 148 

+ 1)th iteration can be estimated by solving the one-dimensional maximization problem 149 

     


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 

1
arg max , ,

l

i i

l l
J

s
Ψ ,                         (23) 150 
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where  i
s

Ψ  denotes the estimated locations of other L − 1 sources, i.e. 151 

           

 
     
 

1 1

1 1 1
, , , , ,

i i i i i

l l Ls
Ψ .                    (24) 152 

In Eq. (23), the Quasi-Newton (QN) method with Broyden-Fletcher-Goldfarb-Shanno algorithm 153 

[15] is used, and the QN method is available in MATLAB as in the fminunc function. For the 154 

beamformer-based and subspace-based methods, the localization results are acoustic maps [7]. An 155 

extra algorithm is needed to identify the location of the sound sources from the acoustic maps. On 156 

the contrary, the method proposed in this letter can automatically provide the localization results, as 157 

described in Eq. (23). Furthermore, the localization precision of the proposed method can be 158 

extremely high, as will be demonstrated in the following simulations and experiments. 159 

3. Simulations and experiments 160 

In this section, the performance of the proposed method, i.e., the multiple source SHMLE 161 

(MS-SHMLE), is investigated and compared to the FSMUSIC method [7], which has the benefits of 162 

high spatial resolution and easy implementation. The Eigenmike®  [16] microphone array model, 163 

with Q = 32 microphones arranged uniformly on a sphere with radius a = 4.2 cm (depicted in Fig. 1), 164 

was used in both simulations and experiments. Only two source cases were considered in 165 

simulations and experiments, and the proposed method can be easily utilized to other scenarios with 166 

more sources as described in Sec. 2.3. The source signals are independent white Gaussian noise 167 

sampled at a sampling rate of fs = 16 kHz, and a frame of 1024 samples is extracted from the 168 

recordings. The localization frequency range is ka ∈ [2.5 3.5]. The grid resolution of FSMUSIC is 1°. 169 

  170 
(a)                                      (b) 171 

Figure 1. Eigenmike®  and two sound sources in (a) normal listening room (b) reverberation room. 172 

Root mean squared error (RMSE) is used to assess the performance of the localization results, 173 

which is defined as 174 

    
T

ˆ ˆRMSE E  Ψ Ψ Ψ Ψ .                        (25) 175 

3.1. Simulations with different SNR 176 

Figure 2 depicts the RMSE of the FSMUSIC and the MS-SHMLE as a function of SNR in a room 177 

with reverberation time of 0.3 s. In this simulation, the room dimensions are 6×7×5 m3, the 178 

microphone array is located at [3, 2.5, 1.5] m and the speakers are placed 1.0 m away from the array 179 

center. Sound sources incident from directions of (90°, 180°) and (90°, 120°). The RMSE is averaged 180 

over 100 different trials. The room impulse responses between the sound sources and the 181 

microphones positioned on the rigid sphere are simulated using the method proposed in Ref. 17. It 182 
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can be seen that the RMSE of the MS-SHMLE is better than that of FSMUSIC especially for the low 183 

SNR situations, and FSMUSIC fails to present meaningful DOAs when the SNR is lower than 2 dB. 184 

 185 

Figure 2. Localization RMSE of the FSMUSIC and the MS-SHMLE versus SNR in a room with 186 
reverberation time of 0.3 s 187 

3.2. Simulations under different reverberation time 188 

When the reverberation time is higher than 1.5 s, the method proposed in Ref. 17 is not suitable 189 

to simulate the room impulse responses because of its high computational burden and memory 190 

requirement. Therefore, an open-sphere array configuration is used in this simulation and the room 191 

impulse responses are simulated using the method proposed in Ref. 18. When then open-sphere 192 

configuration is used, the FSMUSIC method suffers from ill-conditioning around the zeros of the 193 

spherical Bessel function, and a mitigation method proposed in Ref. 19 is utilized. 194 

Figure 3 depicts the localization RMSE of the FSMUSIC and the MS-SHMLE as a function of the 195 

reverberation time T60. In this simulation, the SNR is fixed at 15 dB. It can be seen that the RMSE of 196 

the MS-SHMLE is better than that of FSMUSIC under different reverberation time. 197 

 198 

Figure 3. Localization RMSE of the FSMUSIC and the MS-SHMLE versus reverberation time with an 199 
SNR of 15 dB. 200 

3.3. Two-source experiments in a listening room 201 

The experiments for DOA estimation of two sources were carried out in a listening room with 202 

background noise less than 30 dBA as depicted in Fig. 1(a). The room dimensions are 5×8×4 m3 and 203 

the reverberation time is around 0.3 s. The microphone array was located at [2.5, 3, 1.5] m. Two 204 
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sound sources were placed 1.5 m away from the array with 7 different angle differences Δ𝜑. The 205 

sound pressure level (SPL) difference of the two sources at the array center is around 2 dB. 206 

Figure 4 depicts the localization results for two sources case using the FSMUSIC methods. The 207 

DOA of the sound source is denoted by a solid black circle in all these figures. It can be found that 208 

FSMUSIC can distinguish both sources when the angle difference between the two sources is larger 209 

than 20°, as depicted in Fig 4(a) and (b). When the separation angle between sources is close to 20°, 210 

FSMUSIC fails to identify two sources, as depicted in Fig 4(c), because the local maxima of the 211 

weaker source is totally merged into the main lobe of the stronger one. It should be noted that 212 

Vnm(k,Ψ) in Eq. (17) contains the steering vector of all sources. Therefore, the acoustic maps depicted 213 

in Fig. 4 are not suitable for the MS-SHMLE method. 214 

   215 
(a)                           (b)                           (c) 216 

Figure 4. Localization results for two sources case using the FSMUSIC method in a listening room 217 
with (a) Δ𝜑 = 60°, (b) Δ𝜑 = 40° and (c) Δ𝜑 = 20°. 218 

Table 1 shows the RMSE of the FSMUSIC and the MS-SHMLE for a 10 s recorded data. 219 

Although the RMSE of these two methods are close, the FSMUSIC can only locate the stronger one 220 

when the separation angle between the two sources is close to 20°, while the MS-SHMLE can 221 

distinguish both sources. The average RMSE of the MS-SHMLE is comparatively lower than 222 

FSMUSIC, which is in consistence with the simulations results. 223 

Table 1. RMSE of the FSMUSIC and the MS-SHMLE for two sources case in a listening room 224 

Angle 

difference 

RMSE of FSMUSIC RMSE of MS-SHMLE 

Strong weak total strong weak total 

180° 0.73° 1.19° 0.99° 0.32° 1.66° 1.20° 

120° 0.59° 0.85° 0.73° 0.32° 0.91° 0.68° 

90° 0.76° 0.89° 0.83° 0.42° 0.90° 0.70° 

60° 0.77° 0.71° 0.74° 0.32° 0.79° 0.60° 

40° 0.83° 0.78° 0.81° 0.34° 1.05° 0.78° 

30° 1.08° 1.65° 1.39° 0.44° 1.76° 1.28° 

20° 1.66° - - 0.63° 1.54° 1.18° 

3.4. Two-source experiments in a reverberation room 225 

To further validate the robustness of the proposed algorithm in high reverberant environments, 226 

the experiments for DOA estimation of two sources were also carried out in a reverberation room as 227 

depicted in Fig. 1(b). The room dimensions are 5.9×7.35×5.22 m3. The reverberation time is around 3 s 228 

at frequency range ka ∈ [2.5 3.5]. In the experiments, the microphone array was located at [3 2.5 1.5] 229 

m, and the sound sources were placed 1.5 m away from the array.  230 

Figure 5 depicts the localization results for the two sources case using the FSMUSIC method. 231 

Similar to the results in the listening room, when the angle difference between the two sources is 232 

larger than 20°, FSMUSIC can distinguish both sources as depicted in Fig 5(a) and (b). When the 233 

separation angle between sources is close to 20°, FSMUSIC can only locate the stronger source while 234 

fail to identify the weaker one, as depicted in Fig 5(c). 235 
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 236 
(a)                          (b)                          (c) 237 

Figure 5. Localization results for two sources case using the FSMUSIC method in a listening room 238 
with (a) Δ𝜑 = 60°, (b) Δ𝜑 = 40° and (c) Δ𝜑 = 20°. 239 

Table 2 shows the RMSE of the FSMUSIC and the MS-SHMLE for a10 s recorded data. It can be 240 

seen that the localization RMSE in the reverberation room is higher than that in the listening room. 241 

The RMSE of these two methods increase significantly when the angle difference between the two 242 

sources is close to or lower than 30°. When the separation angle between the two sources is close to 243 

20°, the FSMUSIC can only locate the stronger one, while the MS-SHMLE can distinguish both 244 

sources. The superiority of the MS-SHMLE in high reverberant environment coincides well with the 245 

simulations presented in Sec. 3.2. 246 

Table 2. RMSE of the FSMUSIC and the MS-SHMLE for the two sources case in a reverberation room 247 

Angle 

difference 

RMSE of FSMUSIC RMSE of MS-SHMLE 

strong weak Total Strong weak total 

180° 1.38° 1.38° 1.38° 1.42° 1.22° 1.32° 

120° 1.25° 1.17° 1.21° 1.30° 1.19° 1.25° 

90° 1.49° 1.17° 1.34° 1.40° 1.07° 1.24° 

60° 1.54° 1.20° 1.38° 1.29° 0.98° 1.15° 

40° 1.53° 1.34° 1.44° 1.73° 1.42° 1.59° 

30° 4.22° 3.46° 3.86° 1.99° 2.02° 2.00° 

20° 4.57° - - 3.56° 4.02° 3.80° 

4. Conclusion 248 

This letter proposes a multiple source localization method in the spherical harmonic domain 249 

using the maximum likelihood strategy. To avoid high-dimensional grid search with extremely high 250 

computational burden, a nonlinear optimization algorithm with implementation of the alternating 251 

projection method is introduced, leading to an efficient MS-SHMLE method. The proposed method 252 

avoids the division of the spherical Bessel function, which makes it suitable for both rigid-sphere 253 

and open-sphere configurations. Simulations and experiments on a 32-microphone model 254 

demonstrate that the proposed MS-SHMLE method has very good spatial resolution and can 255 

distinguish two sources with 20° angle difference in both normal listening room and reverberation 256 

room. Furthermore, the performance is stable in low SNR environment, circumventing the problem 257 

faced by the subspace-based method. 258 
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