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Abstract—Active control of impulsive noise has been of 
increasing interest due to high impact of such noise on humans. 
The algorithm with logarithmic transformation, developed by 
Wu, et al. has been found particularly interesting. In this paper 
this idea is continued, and an extension to this algorithm is 
proposed to improve its convergence properties and allow for 
successful control if the noise has also another type of noise 
together with the impulses. A number of simulations are 
performed to validate the algorithm and compare it with 
algorithms leading in the literature. Additionally to simulated 
benchmark impulsive noises, real recordings are considered, 
which bring another insight into efficiency of the algorithms.  

Keywords—Active noise control; impulsive noise; mixed noise; 
FxLogLMS; NSFxLogLMS. 

I.  INTRODUCTION  
Active Noise Control (ANC) is usually explained by 

destructive interference between original primary noise and 
secondary sound generated by a control algorithm [1]. Most 
commonly used ANC algorithm is the Filtered-x LMS 
(FxLMS), thanks to its low computational complexity, 
robustness, good convergence properties and satisfactory 
performance [2]. However, there are several noise types, for 
which the FxLMS algorithm is not suitable. One of them is 
impulsive noise, for which FxLMS exhibits convergence 
problems or even can make the overall system unstable [8]. 
ANC for impulsive noise is thus particularly challenging [5]. 

A typical single-channel feed-forward ANC system is 
presented in Fig. 1. It consists of a reference signal x(n), an 
error signal e(n), a primary path P(z), a secondary path S(z), 
and an adaptive control filter W(z); z is a complex variable 
and the paths are assumed linear. The control filter can be 
presented as a tap weight vector of length Lw: 

         . (1) 

(z) stands for the secondary path model. An update equation 
for the FxLMS algorithm is as follows: 

             , (2) 

where μ is step size parameter responsible for convergence 
rate adjustment, and xs is a vector of filtered reference signal: 

.   (3) 

 
 

Fig. 1. Block diagram of a single-channel feedforward ANC system with the 
FxLMS algorithm. 

 

Impulsive noise, due to its properties, is often described 
using symmetric -stable distribution with the following 
characteristic function: 

                     , (4) 

where parameter  is referred to as a characteristic 
exponent (or stability parameter), and it is responsible for 
width of the tails, a is a location parameter and  is a scale 
parameter [3], [4]. Parameter  can vary from 0 to 2, and its 
smaller values indicate a more impulsive character. 

For acoustic impulsive noise, modeling with the standard 
distribution is used, i.e. parameters =1 and a=0. Probability 
distributions for several values of  are presented in Fig. 2 and 
an exemplary time plot for =1.7 is shown in Fig. 3.  In case of 
signal obeying alpha stable distribution, only moments of order 
less than the characteristic exponent exist, what means that if 

<2 then the variance of the signal does not exist. Since 
optimization criterion of the standard FxLMS algorithm 
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depends strongly on the error signal variance, it may become 
unstable for impulsive noise. 

 
Fig. 2. Probability density functions for several values of the characteristic 
exponent. 

 
 

Fig. 3. Exemplary time plot for α-stable process =1.7 

 

II. SOLUTIONS FOR ACTIVE CONTROL OF IMPULSIVE NOISE  
In this Section the Normalized FxLMS and Normalized 

FxLMP algorithms are presented. Moreover, several variations 
of the FxLMS algorithm are briefly described for reference. 

Akhtar et al. [6] proposed Modified Normalized version of 
the FxLMS algorithm (MNFxLMS). It takes advantage of 
normalization of the step size, which was proposed for the 
LMS algorithm in [7]. Akhtar et al. modified the 
normalization factor to take into account not only energy of 
the reference signal, but also energy of the error signal, which 
may contain impulses if they have not been reduced yet. Those 
impulses might force the algorithms to correct the control 
filter in a wrong direction. Resulting update equation and 
normalization equation are then as follows: 

         , (5) 

                  , (6) 

where Ee(n) is an estimate of the residual error signal: 

                , (7) 

and  is a forgetting factor of value between 0.9 and 1, 
 represents L2 norm of the filtered reference signal 

and  is a small positive number added to avoid division by 
zero. 

Since for alpha stable distributions, moments higher than 
characteristic exponent do not exist, a minimization criterion 
basing on lower order moment was proposed in [12]. The 
Filtered-x Least Mean p-Power algorithm (FxLMP) update 
equation is as follows: 

 (8) 

where the sign function is defined as: 

                             (9) 

Similarly to MNFxLMS, a normalization procedure was 
proposed by Akhtar et al. for the FxLMP algorithm, resulting 
in the Modified Normalized FxLMP (MNFxLMP) algorithm 
[4]. The update equation takes the following form: 

    (10) 

where 

                            , (11) 

and  represents the p-th norm of the filtered reference 
signal. It is assumed that p should be smaller than the value of 
characteristic exponent of alpha stable distribution. 

There is also a group of ANC algorithms, which uses 
modified reference and error signals. First algorithm from this 
group was proposed by Sun, et al. in [11]. The idea is to ignore 
samples of the reference signal, i.e. substitute them with 0, if its 
magnitude is greater than some assumed value. An extension to 
this algorithm was proposed by Akhtar, et al. in [13], which 
neglects also samples with big magnitude in the error signal. 
Further improvement considered saturating reference and error 
signals at some level instead of ignoring them [10]. All of these 
algorithms show better robustness to impulsive noise than the 
FxLMS algorithm. However, these algorithms require proper 
selection of threshold parameters, which may not be possible in 
some applications. It has been shown in [6] that the normalized 
algorithms are faster than any algorithm from aforementioned 
group. 

 

III. LOGARITHMIC ALGORITHM, [3] 
Wu, et al., [3], analyzed logarithmic transformation of the 

impulsive noise samples and concluded that the transformed 
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process obeys the Gaussian distribution. Basing on these 
observations they proposed to minimize 

                           , (12) 

instead of the squared error itself. With this approach, the 
spread of the minimized signal is compressed, and the 
algorithm is not forced to dramatically change parameters of 
the control filter in response to an impulse in the noise. This 
brings a high progress to impulsive noise control. 
Minimization of the above cost function leaded to deriving the 
FxLogLMS algorithm of the following control filter update 
equation [3]: 

. (13) 

Wu et al. noticed that when the value of the error signal 
tends to zero, the logarithmic function tends to infinity. To 
cope with this problem they suggested to set |e(n)|=1 if |e(n)|<1, 
which resulted in stopping the control filter update for small 
values of the error signal (due to the logarithmic function). 
Impulsive noise control results demonstrated superiority of this 
algorithm over a number of other algorithms. However, no 
comparison between the FxLogLMS and the normalized 
algorithms was presented. Such comparison is presented 
further in this paper. 

IV. PROPOSED ALGORITHM  
Stopping control filter update in the FxLogLMS algorithm 

for |e(n)|<1 is an appropriate solution if only impulsive noise 
is concerned. However, for many active noise control 
applications like active device casings, there is another type of 
noise beyond impulses, due to working mechanisms or 
engines. It is thus beneficial to offer an algorithm, which could 
also successfully reduce that noise, in between the impulses as 
defined in [14]. Preliminary experiments have shown that the 
FxLogLMS algorithm might then behave less efficiently than 
the classical FxLMS algorithm. In this section, the idea of the 
FxLogLMS algorithm, originally developed in [3], is extended 
to offer a more general-purpose algorithm, appropriate for 
working in environments, where impulsive noise is 
accompanied by other noises. In order to improve stability and 
convergence speed of the algorithm, normalization of the step 
size parameter is introduced. This concept was used for the 
FxLMS algorithm in [6] and also for the FxLMP in [4]. 
Resulting update equation for Normalized FxLogLMS can be 
presented as: 

      (14) 

                  . (15) 

Another modification to the FxLogLMS algorithm is 
adding a “switching” filter, which improves algorithm 
convergence rate for signals that are not purely impulsive or 
even non-impulsive at all. The idea is to switch between the 
Normalised FxLogLMS algorithm when error signal values 
are large, and the Normalised FxLMS, when error signal 

values are small. As for the FxLogLMS, |e(n)|=t is assumed as 
the threshold. Noting also that 

                             , (16) 

the update equation can be written as: 

 

for e n >t

otherwise
       (17) 

In (17)  is the step size for the logarithmic algorithm update, 
and  is the step size for the classical update. Aforementioned 
algorithm may be referred to as the Normalized Switching 
FxLogLMS (NSFxLogLMS). 

For the same values of reference and error signals, the 
update term for each algorithm is different. In case of big error 
signal values the MNFxLMS algorithm has the biggest 
correction factor, although both the MNFxLMP and 
FxLogLMS algorithms update coefficients in much slower 
manner, what makes them more robust to impulses. 
Furthermore, since the update term in the proposed 
modification is even smaller than that for the MNFxLMP 
algorithm, one can impose bigger values of the step size, 
without worrying about the algorithm stability.  

What is also worth mentioning is that for an error signal 
value tending to infinity both the MNFxLMS and MNFxLMP 
algorithms update term would also tend to infinity, whereas 
for the FxLogLMS and NSFxLogLMS it tends to zero. For 
error values close to ±1 , both the MNFxLMS and MNFxLMP 
algorithms update coefficients with constant values, whereas 
the FxLogLMS algorithm stops the update since log|e(n)|/e(n) 
is very close to 0. Similar behavior is observed in case of the 
proposed modification. When magnitude of the error signal 
drops below 1, the algorithm becomes effectively the 
Normalized LMS algorithm, which updates coefficient very 
gently, and it is able to converge. The MNFxLMP correction 
term is much bigger, which may result in oscillations around 
optimal solution and an excessive mean square error. The 
FxLogLMS algorithm, on the other hand, cannot update 
coefficients if error value drops below 1, since logarithmic 
transformation tends to infinity then.  

This analysis shows, that the proposed modification 
combines robustness of the FxLogLMS algorithm for impulses 
in noise and the accuracy of the FxLMS algorithm for small 
values of the error. Normalization of the step size improves 
convergence speed in both cases. 

V. SIMULATIONS 
To examine properties of the proposed algorithm in 

comparison to other algorithms, and the FxLogLMS algorithm 
in particular, simulation analysis is performed.  

Acoustic paths are taken from the attachment to [2], which 
are considered as a benchmark for many publications on 
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impulsive noise control, e.g. [4], [5], [6], [8]. The acoustic and 
electric paths are then modeled as FIR filters with the order of 
256 for the primary path, P(z), and with the order of 128 for 
the secondary path, S(z).  

Several cases for the reference signal are investigated:  

• A: purely impulsive noises modeled using the alpha 
stable distribution with  = 1.3, 

• B: purely impulsive noises modeled using the alpha 
stable distribution with  = 1.7, 

• C: mixed noise consisting of component modeled 
using alpha stable distribution of  = 1.7, sinusoids of 
frequencies 165 Hz, 290 Hz and 410 Hz, 

• D: non-impulsive multi-tonal noise consisting of 
sinusoids of frequencies 200 Hz, 250 Hz, 300 Hz, 450 Hz, 550 
Hz and 600 Hz, distorted with random noise in 200-300 Hz 
band, 

• E: real recorded hammering noise, 

• F: real recorded shooting noise. 

The premise for using the non-impulsive noise is that for 
many applications, impulses appear from time to time and 
they supplement a high-level acoustic floor present due to 
operation of other devices or device parts. Finally, real life 
impulsive noises are also used. Two signals of hammering and 
shooting noise were recorded and then their amplitude was 
scaled to range from -100t to 100t. An interesting study was to 
fit recorded noise to alpha stable distribution and estimate its 
parameters. It shows that real impulsive noises have relatively 
small characteristic exponent, what is not concerned in the 
literature. The values for both signals are presented in Table 1. 
Every simulation was repeated many times and obtained 
results were averaged. All data used for simulation are 
available at [15]. 

TABLE I.  ALPHA-STABLE MODEL PARAMETERS. 

Real noise   a

Hammering 1.16 0.38 -0.47

Shooting 0.71 2.81 0.19

 

Parameters for every algorithm are chosen experimentally 
in such way that the algorithms are stable and converge as fast 
as possible, providing at the same time satisfactory noise 
reduction. It should be stressed that for simulations the 
parameter p can be estimated a priori, thanks to knowing the 
signal parameters. However, in practical applications it may 
not be possible. All parameters are presented in Table 2. 

For evaluating algorithms performance, the Averaged 
Noise Reduction (ANR) index is used, as defined in [10]: 

                       , (18) 

               (19) 

and =0.9.  
 

TABLE II.  ALGORITHM PARAMETERS USED FOR SIMULATIONS. 

Noise 
MN

FxLMS 

MN 

FxLMP 

FxLog 

LMS 

NSFx

LogLMS 

=1.3 =1·10-4 
=3·10-4 

p=1.2 
=2·10-5 

=7·10-3 

'=7·10-5 

=1.7 =5·10-4 
=1·10-3 

p=1.6 
=6·10-5 

=2·10-2 

'=2·10-4 

mixed =4·10-4 
=1·10-3 

p=1.6 
=6·10-5 

=2·10-2 

'=2·10-5 

non-imp =4·10-4 
=1·10-4 

p=1.9 
=1·10-4 

=1·10-2 

'=1·10-3 

hammering =2·10-4 
=5·10-3 

p=1.06 
=5·10-5 

=1·10-2 

'=1·10-3 

shooting =2·10-4 
=0.5 

p=0.6 
=2·10-5 

=1·10-2 

'=1·10-3 

 

A. S S with =1.3 
For case A (see Fig. 4), the proposed SNFxLogLMS 

algorithm converges the fastest among presented 
algorithms. MNFxLMP is slower than the proposed 
algorithm, but faster than any other algorithms. 
Performance of the FxLogLMS and MNFxLMS 
algorithms is comparable. All algorithms show good 
robustness to impulses. 

B. S S with =1.7 
When noise tends to be less impulsive (see Fig. 5), 

the difference between the FxLogLMS and MNFxLMS 
algorithms is more visible than that in the previous case. 
For this noise, FxLogLMS is the slowest among the 
presented algorithms. The proposed SNFxLogLMS 
algorithm is the fastest, but its superiority over the 
MNFxLMP is not as visible as in more impulsive noise 
case. 

C. Mixed noise 
Under mixed conditions of the impulsive and non-

impulsive components in the noise, results are similar to 
previous cases (see Fig. 6). The MNFxLMS and 
FxLogLMS algorithms show almost identical 
performance, while the MNFxLMP algorithm is a bit 
faster. The SNFxLogLMS algorithm exhibits the fastest 
convergence rate and provides good noise reduction. 
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Fig. 4. ANR curves for S S noise with =1.3. 

 

 
Fig. 5. ANR curves for S S noise with =1.7. 

 

 
Fig. 6. ANR curves for mixed noise. 

 
D. Non-impulsive noise 
For the non-impulsive noise case (see Fig. 7), the 

FxLogLMS algorithm shows much worse performance 
than the other algorithms. This is caused by the 
logarithmic transformation, which implies stopping the 
adaptation for small values of the error. Performance of 

the MNFxLMS and proposed SNFxLogLMS algorithms 
is comparable. Interesting phenomenon is observed for 
MNFxLMP. Increasing the step-size even by a small 
value causes the algorithm to provide poor reduction, 
thus the step-size must be chosen as very small, resulting 
in slower convergence comparing to the MNFxLMS 
algorithm. 

E. Hammering noise 
For the real hammering noise (see Fig. 8), the 

MNFxLMS and FxLogLMS algorithms have almost 
identical performance. The same can be stated about 
MNFxLMP and SNFxLogLMS; however, these two 
algorithms converge significantly faster than the other 
two. On the other hand, the MNFxLMP algorithm 
converges much slower than that for the simulated 
noises and in this case even slower than the MNFxLMS 
and FXLogLMS algorithms. This is caused by the small 
value of p, which has to be smaller than the 
characteristic exponent. The proposed algorithm 
performs very well. It has the fastest convergence rate. 

F. Shooting noise 
The shooting noise is in turn very impulsive, with 

approximated characteristic exponent value around 0.7 
(see Fig. 9). In such case, the MNFxLMS and 
FxLogLMS algorithms show very similar performance. 
On the other hand, the MNFxLMP algorithm converges 
much slower than that for the simulated noises and in this 
case even slower than the MNFxLMS and FXLogLMS 
algorithms. This is caused by the small value of p, which 
has to be smaller than the characteristic exponent. The 
proposed algorithm performs very well. It has the fastest 
convergence rate. 

VI. CONCLUSIONS 
It follows from the simulations that the proposed 

SNFxLogLMS algorithm converges faster than other 
algorithms designed for impulsive noise, which is due to 
the normalization. Benefits of using this algorithm are 
particularly evident if the noise contains other, non-
impulsive high-level components. Then, it reduces them 
similarly as the MNFxLMS algorithm, whereas 
algorithms designed for the impulsive noise only yield 
significantly poorer performance.  

For real recorded noises, the proposed algorithm 
shows also very good performance. It does not require a 
priori knowledge about the signal, what the MNFxLMP 
algorithm needs to have, to estimate the p parameter. It 
is worth mentioning that real impulsive noises have 
relatively small characteristic exponent, what is not 
concerned in the literature, and thus validating of 
algorithms for such signals is very important to 
recognize their true properties. 
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Fig. 7. ANR curves for non-impulsive noise. 

 
Fig. 8. ANR curves for hammering noise. 

 
Fig. 9. ANR curves for shooting noise. 

 
The proposed algorithm can be applied to reduce 

impulsive device noise by controlling vibration of the 
device casing [15]. Such application can mitigate one of 
the main problems met in active noise control, and 
impulsive noise control in particular, which is generation 
of local zones of quiet of small dimensions. The active 

casing, as investigations reported in [15] demonstrate is 
able to provide global control in the whole environment 
around the casing. Because this application involves a 
number of sensors and actuators, its efficient 
implementation is important, still guaranteeing high 
convergence rate. A modification to the LMS adaptation 
rule as proposed, e.g., in [17] can be then useful.   
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