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Abstract: It has been demonstrated that a single shunted loudspeaker can be used as an effective low
frequency sound absorber in a duct, but many shunted loudspeakers have to be used in practice for
noise reduction or reverberation control in rooms, thus it is necessary to understand the performance
of an array of shunted loudspeakers. In this paper, a model for the parallel shunted loudspeaker
array for multi-tone sound absorption is proposed based on a modal solution, and then the acoustic
properties of a shunted loudspeaker array under normal incidence are investigated using both the
modal solution and the finite element method. It was found that each shunted loudspeaker can
work almost independently where each unit resonates. Based on the interaction analysis, multi-tone
absorbers in low frequency can be achieved by designing multiple shunted loudspeakers with
different shunt circuits respectively. The simulation and experimental results show that the normal
incidence sound absorption coefficient of the designed absorber has four absorption peaks with
values of 0.42, 0.58, 0.80, and 0.84 around 100 Hz, 200 Hz, 300 Hz, and 400 Hz respectively.

Keywords: shunted loudspeaker array; modal solution; multi-tone sound absorption

1. Introduction

The shunted loudspeaker, which consists of a closed-box loudspeaker and a shunt circuit, was
first proposed for resonant acoustic field control in 2007 [1]. The acoustic impedance at the loudspeaker
diaphragm and the resulting sound absorption coefficient can be adjusted by alternating the electric
parameters in the shunt circuit, so the shunted loudspeaker can be implemented for noise control
especially at low frequencies [2–4].

Early studies on the shunted loudspeaker mainly focus on normal sound absorption performance.
Černík et al. studied the effect of the shunt circuit on the sound reflecting performance of a shunted
loudspeaker in an impedance duct [2]. Zhang et al. employed the negative impedance converter
to counter the D.C. resistance and voice coil inductance of the loudspeaker to broaden the sound
absorption bandwidth [5]. Tao et al. proposed constituting a thin compound broadband absorber
by placing the shunted loudspeaker at the back of a micro-perforated panel [6]. Jing et al. designed
a shunt speaker with a sound absorption coefficient above 0.9 at both 100 Hz and 200 Hz to control
the noise of the power transformer [7]. Cho et al. replaced the closed box with a vented enclosure
to enhance the sound absorption performance at low frequency [8]. Boulandet et al. adopted the
response surface method to optimize the parameters of the shunted loudspeaker (such as the moving
mass, the enclosure volume, the filling density of mineral fiber, and the electrical load value) [9]. In the
studies above, analog components were used in the shunt circuit, and it was difficult to adjust the
electrical impedance precisely. Boulandet et al. employed the real-time field programmable gate array
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module and the voltage-controlled current source to constitute the shunt circuits [10]. Rivet et al.
proposed a hybrid impedance control architecture for an electroacoustic absorber that combines a
microphone-based feedforward control with a current driven electro dynamic loudspeaker system [11].
Considering the resonance characteristics of the mechanical system of the loudspeaker, the shunted
loudspeaker is a typical resonant sound absorber with adjustable feedback impedance [12–14].

For implementation, the performance of the array of shunted loudspeakers needs to be further
investigated. A linear array of 10 shunted loudspeakers was placed in the reverberant chamber, and a
sound pressure attenuation of 14 dB was achieved at 34.9 Hz [15]. Four shunted loudspeakers with
surface area of 0.05 m2 were placed in the corners of the rectangular room with dimensions of 3× 5.6×
3.53 m3 to reduce the sound pressure level between 70 Hz and 100 Hz [16]. Thirty 50 × 50 mm shunted
loudspeaker cells were assembled as liners inside a pipeline with air flow, and the obtained insertion
loss was 16 dB at the target frequency [17]. A surface array of shunted loudspeakers could control
the refracted direction of the incident sound around 350 Hz [18]. However, the sound absorption
performance of the surface array of shunted loudspeakers has not been investigated.

In this paper, a modal expansion method is proposed to calculate the normal sound absorption
coefficient of the array of shunted loudspeakers with different acoustic impedances. The finite element
model is further employed to validate the accuracy of the proposed method. Simulations show that
each shunted loudspeaker can work almost independently. An experiment was conducted in the
impedance duct with four different shunted loudspeakers to validate the feasibility of achieving
multi-tone sound absorption.

2. Theory

The schematic of the shunted loudspeaker array is presented in Figure 1a, where four shunted
loudspeakers with equal areas are installed at the left terminal z = 0 of a square impedance duct.
A plane wave is incident normally on the right terminal at z = L with a constant particle velocity v0(ω).
Each shunt loudspeaker (named as SL1 to SL4) consists of a closed-box loudspeaker and a shunt circuit
connected to the loudspeaker’s terminals. The length of the duct cross section is a, and the length
of the front face of each shunted loudspeaker unit is a/2 respectively. The shunt circuit is shown in
Figure 1b, where the negative resistance −Re and negative inductance −Le are used to counteract the
D.C. resistance RE and voice coil inductance LE of the loudspeaker respectively. The capacitance Cs

and inductance Ls can be switched according to the design targets.
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Figure 1. (a) A schematic of the shunted loudspeaker array set at the end of an impedance duct; (b) the 
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Figure 1. (a) A schematic of the shunted loudspeaker array set at the end of an impedance duct; (b) the
equivalent circuit of a shunt loudspeaker unit.

The specific acoustic impedance of the ith shunted loudspeaker (i = 1, 2, 3, 4) is [4,19]

Zi =
Rms

S0
+ jω

Mms

S0
+

1
jωCmsS0

+
S0

jωCab
+

B2l2

S0(RE + jωLE + Zs)
, (1)

where ω is the angular frequency, Rms is the mechanical resistance of the driver suspension losses
of the loudspeaker, S0 is the effective surface area of the driver cone of the loudspeaker, Mms is
the mechanical mass of the driver cone (including reactive air load) of the loudspeaker, Cms is the
mechanical compliance of the driver suspension of the loudspeaker, Cab = V/ρ0c0

2 is the equivalent
acoustic capacitance due to the back cavity of the loudspeaker, V is the volume of the back cavity,
ρ0 and c0 are the air density and sound velocity respectively, B is the magnetic flux density of the
loudspeaker driver, l is the voice coil length, and Zs is the electrical impedance of the shunt circuit.

Omitting the time harmonic factor ejωt, the acoustic field inside the impedance duct shown in
Figure 1a can be expanded using the modal solution as

p(x, y, z, ω) =
∞

∑
q=0

ψq(x, y, kq)

(
Aqej

√
k2

0−k2
qz
+ Bqe−j

√
k2

0−k2
qz
)

, (2)

where q is the mode index, k0 = ω/c0 and kq = qπ/a are the total wavenumber and the lateral
wavenumber of the qth mode respectively, ψq

(
x, y, kq

)
= cos(kqx) cos(kqy)/

√
S is the qth mode

function, S = a2 is the section area of the duct, Aq and Bq are the qth mode coefficients of the incident
wave and reflected wave respectively.

The boundary conditions at z = 0 and z = L are

vz(x, y, z, ω )|z=L =
1

−jωρ0

∂p(x, y, z, ω)

∂z

∣∣∣∣
z=L

= v0(ω), (3)

and
[

∂p(x, y, z, ω)

∂z
− jk0Z0(x, y, ω)p(x, y, z, ω)

]∣∣∣∣
z=0

= 0, (4)

where vz(x, y, z, ω) is the velocity in the z direction, and the specific acoustic impedance is

Z0(x, y, ω) =


Z1 x ∈ (0, a/2), y ∈ (a/2, a)

Z2 x ∈ (a/2, a), y ∈ (a/2, a)

Z3 x ∈ (0, a/2), y ∈ (0, a/2)

Z4 x ∈ (a/2, a), y ∈ (0, a/2)

. (5)
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Substituting p(x, y, z, ω) in Equation (2) into the boundary condition in Equations (3) and (4), the
following is obtained:

1
ωρ0

kq
z(−Aqejkq

z L + Bqe−jkq
z L) =

√
Sv0(ω)δ0q, (6)

∞

∑
q=0

ψq
(

x, y, kq
){

[−kq
z + k0Z0(x, y, ω)]Aq + [kq

z + k0Z0(x, y, ω)]Bq

}
= 0, (7)

where kq
z =

√
k2

0 − k2
q is the wavenumber of the qth mode along the z direction and δ0q is the Kronecker

delta function. Exploiting the orthogonality of the normal modes, Equation (7) can be simplified as

kµ
z (−Aµ + Bµ) + k0

∞

∑
q=0

Zqµ
0 (Aq + Bq) = 0, (8)

Zqµ
0 ≡

x

S

Z0(x, y, ω)ψq(x, y, kλ)ψ
∗
µ

(
x, y, kµ

)
dS, ∀µ ≥ 0, (9)

where µ and λ are the mode indexes, kµ = µπ/a and kλ = λπ/a are the lateral wavenumbers of the
µth and λth modes respectively, Aµ and Bµ are the µth mode coefficients of the incident wave and

reflected wave respectively, kµ = µπ/a is the lateral wavenumber of the µth mode, kµ
z =

√
k2

0 − k2
µ is

the wavenumber of the µth mode along z direction, ψµ

(
x, y, kµ

)
= cos

(
kµx
)

cos
(
kµy
)
/
√

S is the µth
mode function. The factor Z0

qµ mathematically measures the coupling of different modes caused by
the inhomogeneity of the acoustical impedance at z = 0. The mode coupling makes it hard to obtain an
analytical solution in a compact closed form. However, it is possible to approach the exact solution
through iterations.

Assume the inhomogeneity is quite weak such that all the high-order modes with q not being
zero can be neglected, the plane-wave mode ψ0(x,y,k0) is preserved and the coefficients A0 and B0 are
derived as

A0 ≈ ρ0c0
√

S
(

1 + Z00
0

)
v0(ω)/2/

(
−jsin(k0L)− Z00

0 cos(k0L)
)

, (10)

B0 ≈ A0

(
1− Z00

0

)
/
(

1 + Z00
0

)
, (11)

where the factor Z0
00 is calculated in Equation (9) when q and µ are taken as zero.

Assume that the inhomogeneity of the shunted loudspeaker array causes the plane-wave mode to
be coupled to high-order modes while the high-order modes themselves are not coupled with each
other, Equation (8) can be simplified as(

−kµ
z + k0Zµµ

0

)
Aµ +

(
kµ

z + k0Zµµ
0

)
Bµ = −k0Z0µ

0 (A0 + B0), ∀µ ≥ 0, (12)

where the factors Z0
µµ and Z0

0µ are calculated in Equation (9) when q is taken as µ and 0 respectively.
Substituting A0, B0 in Equations (10) and (11) into Equation (12), the coefficients of high-order

modes can be calculated as

Aµ ≈ Z0µ
0 A0e−jkµ

z L/(1 + Z00
0 )/[−j(kµ

z /k0) sin(kµ
z L)− Zµµ

0 cos(kµ
z L)], (13)

Bµ = Aµej2kµ
z L. (14)
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The normal incidence sound absorption coefficient α can be calculated by

α = 1− p2
r

p2
in

= 1−

(
∞
∑

q=0
ψq
(
x, y, kq

)
Aq

)2

(
∞
∑

q=0
ψq
(
x, y, kq

)
Bq

)2 , (15)

where pr and pin are reflected pressure and incident pressure at z = 0. It is clear that the more coupling
measures Z0

qµ that are adopted; the more precise can be the results obtained.

3. Simulations

In this section, the acoustic properties of four parallel arranged shunted loudspeakers are
investigated by both the proposed method and the finite element method. The same loudspeaker
is adopted in each shunted loudspeaker, and the measured Thiele–Small (TS) parameters of the
loudspeaker are listed in Table 1. The resonance frequencies of the shunted loudspeakers are chosen as
100 Hz, 200 Hz, 300 Hz, and 400 Hz, and the designed shunt circuit parameters are listed in Table 2.

Table 1. Measured Thiele–Small (TS) parameters and dimensions of a closed-box loudspeaker unit.

Parameter Notation Value Unit

DC resistance RE 32.00 Ω
Inductance of coil LE 7.24 mH

Moving mass Mms 15.25 g
Mechanical resistance Rms 1.57 kg/s

Mechanical compliance Cms 0.67 mm/N
Force factor Bl 17.12 T·m

Effective area S0 1.51 × 10-2 m2

Back cavity volume V 2.2 × 10-3 m3

Cavity depth D 7.5 cm

Table 2. Shunt circuit parameters used in the simulation of the shunted loudspeaker (SL) array.

SL1 SL2 SL3 SL4

R (Ω) −31.95 −31.95 −31.95 −31.95
L (mH) −7.23 −7.23 −7.23 −7.23
Ls (mH) - 37.19 7.69 3.62
Cs (µF) 87 - - -

The sound absorption coefficient of the array composed of SL1–SL4 can be calculated by the finite
element model built in the commercial software (Comsol Multiphysics v5.3) as shown in Figure 2.
The plane at z = 1.8 m is set as a plane wave incident surface and e incident sound pressure is 1 Pa.
The bottom surface at z = 0 m is uniformly divided into four parts, which are defined as impedance
boundaries. The size of each impedance boundary is the same as the effective area in Table 1. Set the
impedance at (0 < x < a/2, a/2 < y < a) of SL1 unit boundary as Z1, the impedance at (a/2 < x < a, a/2 <
y < a) of SL2 unit boundary as Z2, the impedance at (0 < x < a/2, 0 < y < a/2) of SL3 unit boundary as
Z3, and the impedance at (a/2 < x < a, 0 < y < a/2) of SL4 unit boundary as Z4. The element size is
selected as an extremely fine mesh size. The free tetrahedral mesh consists of 24,973 domain elements,
3344 boundary elements, and 315 edge elements, with the number of degrees of freedom as 36536. The
absorption coefficient is calculated by

α = 1− Er

Ein
, (16)

where Er is the reflected energy and Ein is the incident energy at the surface z = 0.
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Figure 2. The finite element model of four shunted loudspeakers in parallel.

The solid curve in Figure 3 shows the normal incidence absorption coefficient of the shunted
loudspeaker array by using the proposed method in Section 2. Four resonance frequencies occur at
100 Hz, 200 Hz, 300 Hz, 400 Hz, where the sound absorption coefficients are all 1.00. The dashed
curve in Figure 3 reveals the result by using the Finite Element Method (FEM), where the frequency
deviations at the resonance frequencies are 0 Hz, 5 Hz, 6 Hz, and 4 Hz, respective due to a simulation
error in Comsol.
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Figure 3. The normal incidence sound absorption coefficients by analytical solution and the finite
element model method: SL1 unit (magenta dotted line marked with plus sign), SL2 unit (green dotted
line marked with upward-pointing triangle), SL3 unit (red dotted line marked with solid circle), SL4

unit (cyanine dotted line marked with blank circle), shunted loudspeaker array by analytical solution
(black solid line), shunted loudspeaker array by FEM (blue dashed line).

The dotted curves reflect the sound absorption coefficients of SL1–SL4 units, where the resonance
frequencies are 100 Hz, 200 Hz, 300 Hz, 400 Hz of each unit respectively. Comparing with the resonance
frequencies of the array, it is revealed that each shunted loudspeaker almost works independently.
Therefore, a multi-tone noise absorber can be designed by using multiple shunted loudspeakers with
different resonance frequencies in the same plane, where each unit can be designed independently.
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The acoustic intensity of the shunted loudspeaker array at four resonance frequencies is shown in
Figure 4, where the volume density (directions) of the red arrows shows the magnitude (directions) of
the sound intensity. Most part of the acoustic energy is “attracted” toward SL1 at 100 Hz, which is at
the resonance frequency of SL1. Similarly, most of the acoustic energy is “attracted” toward SL2–SL4

at the resonance frequencies of SL2–SL4 respectively. It is observed that at the resonant frequency
of a particular shunted loudspeaker unit, the acoustic energy flows towards the unit at resonance.
However, the other shunted loudspeaker units are also working as absorbers although the sound
intensity near them is rather weak. This is intuitive evidence to demonstrate that all the shunted
loudspeaker units work cooperatively as an entire piece.
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From the analysis above, the normal incidence absorption coefficients of the shunted loudspeaker
array calculated with the analytical solution agree reasonably well with the results obtained with
the finite element method. The most part of the acoustic energy is “attracted” toward the shunted
loudspeaker unit at its resonance frequency. Therefore, a multi-tone noise absorber can be realized by
designing multiple shunted loudspeakers with different resonance frequencies.

The optimal system can be achieved by designing each shunt loudspeaker unit first and then
combing all the units together. In the design of each shunt loudspeaker the peak frequency of its sound
absorption coefficient can be adjusted by choosing the proper value of Cs or Ls in Figure 1b, and the
peak value of its sound absorption coefficient can be adjusted by choosing the loudspeaker with the
proper mechanical resistance Rms.
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4. Experimental

The experimental setup in an acoustic impedance duct is shown in Figure 5, where the array of four
shunted loudspeakers is placed at the right end. The cross section of the duct is about 0.40 m × 0.40 m
and the cut-off frequency is 430 Hz. A source loudspeaker is located at the left end of the duct (It is
about 7 m away from the shouted loudspeaker array and is not seen in Figure 5) and driven through the
amplifier. The DC voltage source is used to supply the power for the negative impedance converters in
the shunt circuits. The sound absorption coefficient was measured using the two-microphone transfer
function method according to ISO 10534-2 with a B&K PULSE 3560B analyzer [20]. The parameters to
set up are as follows: the sampling rate is 25.6 kHz, and the frequency resolution is set as 1 Hz; the
microphone spacing is 0.35 m; the distance from the right microphone to the sample is 1.32 m; the
distance from the left microphone to the source is 3.64 m; a random signal is set as the input to the
source with the voltage level of 0.07 Vrms to ensure that the signal to noise ratio is above 10 dB.
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An optimal system was designed based on the analysis in Section 3. The Thiele–Small parameters
and dimensions of each loudspeaker are listed in Tables 3–6, where the cavity depth is optimized
at 7.5 cm. However, the mechanical resistance Rms is not equal to the optimal value ρ0c0S0

2/S for
the maximal sound absorption peak, because the number of the loudspeaker samples we have is
limited. The shunt circuit configuration for the four loudspeakers is listed in Table 7. Theoretically,
the resonance of each shunted loudspeaker unit could be adjusted to any frequency. However,
considering the nonlinearity of the loudspeaker [21], a more accurate formulation of the impedance Ze

is B2l2/S0/[RE + jωLE + 1/(1/R2 + 1/L2) + Zs], where R2 is the electrical resistance due to the eddy
current losses and L2 is the para-inductance of the voice coil. Therefore, the adjustment of the resonance
frequency of the shunted loudspeaker has constraints. In practical, the inductance element in the shunt
circuit generates parasitic resistance. By using the ohmmeter to measure the value, negative resistance
is employed to cancel the parasitic resistance.
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Table 3. Measured Thiele–Small (TS) parameters and dimensions of a closed-box loudspeaker
(SL1 unit).

Parameter Notation Value Unit

DC resistance RE 32.12 Ω
Inductance of coil LE 7.24 mH

Moving mass Mms 15.25 g
Mechanical resistance Rms 1.15 kg/s

Mechanical compliance Cms 0.67 mm/N
Electrical resistance due to eddy current losses R2 39.50 Ω

Para-inductance of voice coil L2 6.75 mH
Force factor Bl 17.12 T·m

Effective area S0 1.51 × 10-2 m2

Back cavity volume V 2.2 × 10-3 m3

Cavity depth D 7.5 cm

Table 4. Measured TS parameters and dimensions of a closed-box loudspeaker (SL2 unit).

Parameter Notation Value Unit

DC resistance RE 5.71 Ω
Inductance of coil LE 0.37 mH

Moving mass Mms 15.19 g
Mechanical resistance Rms 1.31 kg/s

Mechanical compliance Cms 0.83 mm/N
Electrical resistance due to eddy current losses R2 1.11 Ω

Para-inductance of voice coil L2 0.33 mH
Force factor Bl 5.05 T·m

Effective area S0 1.51 × 10-2 m2

Back cavity volume V 1.2 × 10-3 m3

Cavity depth D 7.5 cm

Table 5. Measured TS parameters and dimensions of a closed-box loudspeaker (SL3 unit).

Parameter Notation Value Unit

DC resistance RE 6.98 Ω
Inductance of coil LE 0.24 mH

Moving mass Mms 7.72 g
Mechanical resistance Rms 0.94 kg/s

Mechanical compliance Cms 0.27 mm/N
Electrical resistance due to eddy current losses R2 1.57 Ω

Para-inductance of voice coil L2 0.31 mH
Force factor Bl 5.21 T·m

Effective area S0 1.51 × 10-2 m2

Back cavity volume V 1.4 × 10-3 m3

Cavity depth D 7.5 cm
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Table 6. Measured TS parameters and dimensions of a closed-box loudspeaker (SL4 unit).

Parameter Notation Value Unit

DC resistance RE 7.31 Ω
Inductance of coil LE 0.33 mH

Moving mass Mms 10.38 g
Mechanical resistance Rms 1.02 kg/s

Mechanical compliance Cms 0.29 mm/N
Electrical resistance due to eddy current losses R2 1.41 Ω

Para-inductance of voice coil L2 0.25 mH
Force factor Bl 5.60 T·m

Effective area S0 1.51 × 10-2 m2

Back cavity volume V 1.4 × 10-3 m3

Cavity depth D 7.5 cm

Table 7. Shunt circuit parameters used in the experiment of the shunted loudspeaker (SL) array.

SL1 SL2 SL3 SL4

R (Ω) −32.00 - - −7.00
L (mH) −7.00 - - -
Ls (mH) 5 - - 0.2
Cs (µF) 47 - - -

Take the shunt circuit parameters in Table 7 and the TS parameters and dimensions in Tables 3–6
into Equation (1), the specific acoustic impedances of each shunted loudspeaker are then calculated.
It should be noted that the measured sound absorption is contributed to by both the loudspeaker
diaphragm and the front surface of the closed-box, because the diaphragm area is smaller than the
cross section of the duct. Therefore, the impedance Zi is corrected by the area ratio factor a2/4S0.
Substituting the corrected impedance Zi(a2/4S0) into Equation (5), the sound absorption coefficient
can be calculated according to Equation (15) and shown as the dashed line in Figure 6. The resonance
frequencies are at 110 Hz, 222 Hz, 313 Hz, 402 Hz, where the sound absorption coefficients are 1.00,
0.78, 0.91, and 0.90 respectively. Meanwhile, the results by using the FEM method are shown in the
dotted curve, where the resonance frequencies are at 109 Hz, 219 Hz, 308 Hz, 399 Hz and the sound
absorption coefficients are 1.00, 0.77, 0.86, and 0.93 respectively.
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The measured sound absorption coefficient of the shunted loudspeaker array is shown in Figure 6
(the solid curve), where the sound absorption coefficients at 100 Hz, 200 Hz, and 300 Hz are 0.42, 0.58,
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0.80, and 0.84 respectively, with the resonance peaks being at 107 Hz, 208 Hz, 302 Hz, and 395 Hz
respectively. The frequency shift of the absorption peaks between the simulation and the experiment
results is not more than 11 Hz, which may be caused by the measurement precision of the loudspeaker
TS parameters and the electronic components in the shunt circuit in the experiments. The differences
of the peak values of the sound absorption coefficient between experimental and simulation results
may be due to extra parasitic resistances of the electronic components.

5. Conclusions

This paper investigates the feasibility of designing thin multi-tone sound absorbers based on an
analog circuit shunted loudspeaker array. A model for the parallel shunted loudspeaker array for
multi-tone sound absorption is proposed based on a modal solution, and then the acoustic properties
of a shunted loudspeaker array under normal incidence are investigated using both the modal
solution and the finite element method. The physical mechanism in a finite standing wave duct
was investigated, and it was found that the acoustic energy of a different frequency is “attracted”
toward the corresponding shunted loudspeaker at that specific frequency and converted into electrical
energy. The measured sound absorption coefficient of the designed prototype has four peaks with
values of 0.42, 0.58, 0.80, and 0.84 around 100 Hz, 200 Hz, 300 Hz, and 400 Hz. Further work includes
investigation of the sound absorption of the proposed multi-tone absorber array under oblique
incidence and in a reverberation room.
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