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Abstract

In this paper, we present a Very Low Complex-
ity Convolutional Neural Network (VLC-CNN)
for the purpose of generating quadtree data
structures for image segmentation. The use of
quadtrees to encode images has applications in-
cluding video encoding and robotic perception,
with examples including the Coding Tree Unit
in the High Efficiency Video Coding (HEVC)
standard and Occupancy Grid Maps (OGM)
as environment representations with variable
grid-size. While some methods for determin-
ing quadtree structures include brute-force al-
gorithms or heuristics, this paper describes the
use of a Convolutional Neural Network (CNN)
to predict the quadtree structure. CNNs tradi-
tionally require substantial computational and
memory resources to operate, however, VLC-
CNN exploits downsampling and integer-only
quantised arithmetic to achieve minimal com-
plexity. Therefore, VLC-CNN’s minimal design
makes it feasible for implementation in real-
time or memory-constrained processing appli-
cations.

1 Introduction

Quadtrees are an effective data structure for representing
images (and 2D occupancy and elevation maps, which
can be treated as images) due to their inherent nature to
efficiently store spatial information. They facilitate the
allocation of additional resources for representing edges
or high-contrast areas of an image and fewer resources for
spatially homogeneous information. Therefore, they are
used extensively in image representation applications, for
example in the Coding Tree Unit (CTU) in the High Ef-
ficiency Video Coding (HEVC) standard. HEVC imple-
ments the Rate Distortion Optimisation (RDO) process
for generation of each CTU - an exhaustive algorithm
whereby a cost (RD-Cost) is calculated for each of the

85 possible Coding Units (CU) to optimise image qual-
ity and encoded bit-cost. The CU with the minimum
RD-Cost is expressed as

~po = arg min
~p
{D(~p) + λ ·R(~p)} , (1)

where ~p represents the candidate CU, D(~p) and R(~p)
represent the distortion and rate-cost respectively, λ is
the Lagrangian multiplier, and ~po is the CU with the
minimum RD-cost. In order to obtain D(~p) and R(~p),
each candidate ~p must first be encoded to yield R(~p),
and then decoded and compared to the reference data
to yield D(~p) - and so this leads to substantial RDO
complexity.

Occupancy Grid Maps (OGM) are the most common
method for environment representation and mapping in
robotics [Thrun, 2003; Moravec and Elfes, 1985]. How-
ever, where a high degree of accuracy is required in en-
vironmental mapping, increased resolution results in a
large increase in memory consumption and computa-
tional complexity, and a variable-resolution map aptly
exploits the high-accuracy of modern sensor technology.
This is due to the fixed cell size in OGMs. This has
been addressed by using a variable cell size, where larger
cells are used to represent spatially homogenous parts of
the environment, thereby reducing memory and compu-
tational burden without compromising the maps resolu-
tion.

Quadtrees have been shown to be an effective data
structure for representing spatial information in OGMs
[Kraetzschmar et al., 2004; Einhorn et al., 2011; Wurm
et al., 2010; Li and Ruichek, 2013]. [Kraetzschmar et
al., 2004] introduces probabilistic quadtree for OGM
which is generated off-line. [Wurm et al., 2010] also
used an off-line, probabilistic approach to model 3D en-
vironments using octrees. [Einhorn et al., 2011] em-
ployed an Nd-tree (a d-dimensional generalisation of an
quadtree/octree) to create OGMs at variable resolutions.
[Li and Ruichek, 2013] extended the existing tree-based
grid mapping techniques from off-line range sensor based



to an online stereo-vision system based.
The objective for this paper is to predict if an image or

grid map should be split into quadrants or not by using
a CNN. This is achieved by training a CNN to predict
CU partitions of CTUs in HEVC, as representing images
using a quadtree structure is fundamentally an image
compression and segmentation task.

There have been many previous attempts to reduce
the complexity of the brute-force RDO algorithm by in-
stead predicting the quadtree structure of CTUs [Leng et
al., 2011; Lu et al., 2016; Xu et al., 2017; Yu et al., 2015].
[Leng et al., 2011] used neighbouring and co-located CU
information to reduce encode time by 55%, while [Lu et
al., 2016] employed a bi-threshold decision scheme with
[Leng et al., 2011] to reduce encoding time by 57%. [Zhu
et al., 2017] used a binary SVM based classifier to per-
form CU decision, achieving 66% to 68% reduction in en-
coding time, while [Xu et al., 2017] introduced an Early
Terminated Hierarchical Convolutional Neural Network
(ETH-CNN) with a bi-threshold decision scheme that
reduced complexity by 64% to 71%. [Yu et al., 2015]

introduced a VLSI friendly CNN, reducing implementa-
tion complexity by 61%1.

There is a benefit in significantly reducing the com-
plexity of a quadtree generation algorithm as to make
it feasible for real-time or memory-constrained process-
ing applications. Regarding low-complexity CNNs for
quadtree generation, the CNN presented in [Yu et al.,
2015] offers particularly low complexity due to using only
an 8× 8 input matrix (utilising downsampling for input
CUs greater than 8 × 8), and a subsampling operation
between the first and second convolutional layers as to
reduce the number of operations required for the remain-
der of the network. This results in the CNN using 3352
multiply, 3054 addition, and 298 tanh operations; and
1224 trainable parameters (4896 bytes).

The contributions of this paper are twofold: Firstly,
VLC-CNN builds on [Yu et al., 2015] by further reduc-
ing the CNN complexity by introducing quantised infer-
ence with 8-bit integer-only arithmetic, a QP-dependent
threshold decision scheme, by using a linear (versus
non-linear) function for the network activations, and
a myriad of subsampling techniques. Second, this pa-
per presents a novel approach to probabilistic quadtree-
generation for OGMs which is suitable for online system
implementation given its minimal complexity.

To our knowledge, this is the first published research
into the use of conventional image compression tech-
niques as a means for generating variable resolution
OGMs, and also the first published application of 8-
bit quantisation using integer-only arithmetic CNNs for

1Each cited performance result is in comparison to the
HEVC reference software HM[JCT-VC, 2014], with varying
loss in RDO-performance

image-based quadtree segmentation.

2 Very Low Complexity Convolutional
Neural Network (VLC-CNN)

Network Design

The overall network is shown in Figure 1. It contains
5 layers, taking an input of 8 × 8 pixels, and outputs
an activation representing the probabilistic likelihood of
splitting the image into quadrants. The network is sim-
ilar in design to [Yu et al., 2015], with key differences
being that VLC-CNN uses stridden convolutional layers
with a kernel size of 2 × 2 instead of unstridden 3 × 3
kernels, uses a single activation and is quantised to 8-bit
integer operations (in favour of the 32-bit floating point).

• AvgPool : The first layer, takes a square image of
N×N luminance pixel data (VLC-CNN requires the
use of a YUV colour space) and uses local average
subsampling with a receptive field of n × n pixels,
where {N,n} = {{8, 1}, {16, 2}, {32, 4}}, resulting
in an 8× 8 downsampled result.

• Conv2d 1 : The image is convolved by 8, 2×2 kernels
with a stride of 2, yielding an 8×(4×4) result, with
ReLU activation (where ReLU(x) = max(0, x)).

• MaxPool : The convolved result is downsampled us-
ing maximum pooling with a receptive field of 2×2,
yielding an 8× (2× 2) result.

• Conv2d 1 : The pooled result is convolved by 16,
2 × 2 kernels, yielding a 16 × (1 × 1) result, with
ReLU activation.

• Dense 0 : The convolved result progresses through
8 fully-connected activations, yielding an 8× (1) re-
sult, with ReLU activation.

• Logits 0 : Finally, the Dense result is connected to a
single activation representing the probabilistic likeli-
hood for splitting, expressed using the Sigmoid func-
tion as

Sigmoid(x) =
1

exp(−x) + 1
. (2)

Figure 1: VLC-CNN Architecture

The CNN uses downsampling, quantisation, and a sig-
moid activation function to minimise its burden on com-
putational and memory resources:



• Downsampling: Layers AvgPool and MaxPool, as
well as Conv2d 0 (with its stride size of 2), act
to downsample the data. This keeps the size of
Conv2d 0, Conv2d 1 and Dense 0 from getting ex-
ceedingly large.

• Rectifier Activations: Layers Conv2d 0, Conv2d 1
and Dense 0 use Rectifier Linear Unit (ReLU) acti-
vations instead of more complex, non-linear logistic
activations to reduce computational burden.

• Quantisation: The network implements quantisa-
tion to operate with 8-bit integer arithmetic (as op-
posed to 32-bit floating-point) on the learned net-
work parameters. This results in 4× memory reduc-
tion while also facilitating the utilisation of simpler
fixed-point arithmetic operations, with almost no
impact on classification accuracy [Vanhoucke et al.,
2011; Jacob et al., 2017]. Additionally, the quanti-
sation enables the network to be implemented effi-
ciently in hardware that is optimised for fixed-point
arithmetic2.

• Sigmoid: The logistic activation function for infer-
ring the splitting probability at the output of the
network is implemented efficiently as a lookup ta-
ble. Its discrete, quantised nature and rotational
symmetry make this method of implementation pos-
sible.

Training Procedure

To train the classifier, examples were drawn at random
from the training dataset in batches of 1024. Over-
sampling and undersampling the minority and major-
ity classes respectively eliminated class-imbalance. Each
example included a random transformation3 to improve
training performance4. During training, the logistic loss
of the Logits 0 activation is the probability error, calcu-
lated as:

Loss = max(x, 0)− x · z + log(1 + exp(−|x|))

Where x is the Logits 0 activation, z is the class-label
for the training example, log is the natural logarithm
function, and exp is the exponential function with base
e [TFS, 2017]. The loss for a batch is the mean loss of
the examples in the batch. The optimiser used is ADAM
[Kingma and Ba, 2014]. Additionally, because the model
is intended to be quantised for inference (as explained in

2Modern examples include the Snapdragon 835 Hexagon
682 DSP [Qua, 2018], and the Xilinx DSP48E2 slice, which is
capable of performing 2 8-bit integer MACC operations per
cycle [Fu et al., 2017].

3A random transformation is defined as rotating the ex-
ample image by θ, where (θ = {0, 90, 180, 270}

o

).
4These transformations help reduce overfitting by increas-

ing the size of the dataset, and prevent the network from
inheriting any rotation-bias in the dataset.

Section 2), quantisation is simulated during the training
loop using [TFF, 2017].

Quantisation Model

VLC-CNN is quantised using the quantisation scheme
outlined in [Jacob et al., 2017]. The small size of the
network allows for the model to be trained offline without
quantisation.

From [Jacob et al., 2017], for each activation array and
each weight array in the network, their floating point
parameters (weights and biases) are quantised through
an affine transform of their real values to the nearest
8-bit integer in the range [0⇒ 255]. That is

r = S(q − Z) , (3)

where r and q represent the real and quantised values
respectively, and S and Z are constants representing the
quantisation scale and quantisation zero-point respec-
tively. An N×N square quantised matrix is represented
as

r(i,j)α = Sα(q(i,j)α − Zα) , (4)

where 1 6 i, j 6 N and q
(i,j)
α denote the quantised en-

tries. From Equation 4, the quantised result of the prod-
uct of r1 and r2 can be expressed as

q
(i,k)
3 = Z3 +M

NZ1Z2 − Z1a
(k)
2

−Z2ā
(i)
1 +

N∑
j=1

q
(i,j)
1 q

(j,k)
2

 ,

(5)

where

a
(k)
2 =

N∑
j=1

q
(j,k)
2 , ā

(i)
1 =

N∑
j=1

q
(i,j)
1 , M =

S1S2

S3
,

and q
(i,k)
3 represents the quantised result.

For the application of quantisation to VLC-CNN, the
input activations to the network are 8-bit luminance
data, and the activation function is ReLU. Thus, the
zero-point of the activations are always zero (ie: Z1 = 0),
and because the output of one layer is the input to the
next, the input scale is one (ie: S1 = 1), and so Equation
5 can be simplified to

q
(i,k)
3 =

S2

S3
(

N∑
j=1

q
(i,j)
1 q

(j,k)
2 − Z2

N∑
j=1

q
(i,j)
1 ). (6)

The quantisation process necessarily changes the data-
flow through the network due to how the quantisation
scheme augments the network parameters and opera-
tions. Because the convolution operates on uint8, the



Table 1: Computational complexity for each operation
for VLC-CNN

Layer Multiplys Adds ROM (Bytes)
Conv2d 0 512 432 67
Conv2d 1 513 544 579
Dense 0 129 135 163
Logits 0 9 15 15
Sigmoid 0 1 128

Total: 1179 1127 952

accumulator must necessarily contain greater precision
than 8-bits - thus an int32 accumulator is used. Finally,
because the result of the convolution operation must
yield an uint8, the int32 activation must be rescaled
back to 8-bit. The data-flow of a quantised convolution5

operation is outlined in Figure 2.

Figure 2: Data-flow and data-types of a quantised con-
volution operation.

Computational Complexity

Table 1 shows the computational complexity of VLC-
CNN and each of its layers. VLC-CNN requires signif-
icantly fewer multiply/add operations and memory re-
quirement than other models [Xu et al., 2017; Katayama
et al., 2018; Yu et al., 2015] - VLC-CNN’s complexity is
closest in comparison to [Yu et al., 2015], requiring 36%
as many operations and 19% as much memory. However,
this does not take into account the increased efficiency of
8-bit fixed-point arithmetic compared to the other mod-
els floating-point arithmetic. Additionally, both [Yu et
al., 2015] and VLC-CNN utilise the same CNN architec-
ture for different size CUs (as to reuse hardware logic in
an FPGA implementation), however, instead of having
different CNN parameters for CUs of different size, VLC-
CNN uses the same learned parameters for each CU size
to minimise the ROM size, which is compensated for
using the QP-dependent threshold scheme outlined in
Section 2.

Quadtree Generation

VLC-CNN generates quadtrees with a top-down ap-
proach. The quadtree for a given CTU is generated as
follows:

5The convolution can be implemented as a dot-product,
the same data-flow is used for fully-connected layers.

Algorithm 1 Decides whether to split a CU into its
children CUs

split⇐ False
if (top prob ≥ top thresh) or (max(child probs) ≥
child thresh) then
split⇐ True

else
split⇐ False

end if

return split

1. For each depth, a splitting threshold is defined. As
VLC-CNN returns an 8-bit quantised splitting prob-
ability (whereby probabilities in the range {0⇒ 1}
are linearly mapped to integers in the range {0 ⇒
255}) the threshold is in the range {0⇒ 255}).

2. Perform an inference for the top-level (2N × 2N)
CU and for each of its four quadrants (N ×N). For
CU sizes greater than 8 × 8, downsample to 8 × 8
using AvgPool layer before inference.

3. Apply Algorithm 1 to the results from step 2 (where
top prob and top thresh are the splitting probabil-
ity and the splitting threshold respectively of the
2N × 2N CU, and child prob and child thresh are
the splitting probabilities and the splitting thresh-
old respectively of the N × N CUs). If Algorithm
1 returns True, perform steps 2 to 3 for each of
the four quadrants, repeating recursively until either
depth = max depth or Algorithm 1 returns False.

This algorithm includes early termination (similar to [Xu
et al., 2017]), which reduces processing time in cases
where the quadtree has a depth of 0.

Dataset Generation

Learning the parameters of VLC-CNN requires the gen-
eration of a dataset representing the desired target func-
tion. The dataset is used to train, validate and eval-
uate the network. The dataset examples were sourced
from the images from the RAISE Raw Image Dataset
[Pasquini et al., 2015] and classified using the HEVC
HM Reference Software [JCT-VC, 2014]. The images
were encoded with Quantisation Parameter QP = 32,
MaxCUWidth = 32, MaxPartitionDepth = 2. This
yielded training examples for CUs of depth = {0, 1}, and
each example has label = {0, 1}, where 0 indicates that
the CU was not split, and 1 indicates that the CU was
split. Figure 3 depicts some examples of encoded frames
which comprise the dataset.



(a) (b) (c)

Figure 3: Examples of encoded frames used for the dataset. The training examples are 32 × 32 and 16 × 16 8-bit
Luma CUs from the raw data, with labels drawn from the HM splitting decision.

(a) Kimono Test Sequence, Frame 0, Luma (b) Nubuta Test Sequence, Frame 0, Luma

Figure 4: Visualisation of the quadtrees generated by VLC-CNN for encoding the frames at QP = 12.

Table 2: BD-PSNR (BP) and BD-Rate (BR) results
from various encoded sequences using VLC-CNN for
CTU quadtree prediction compared to HM.

Clip BP (dB) BR (%)
NebutaFestival -0.69 8.61
Trafficandbuilding -0.45 9.64
SteamLocomotiveTrain -0.61 9.14
Kimono -0.34 8.47
ParkScene -0.59 10.86
Average -0.54 9.34

3 Evaluation

VLC-CNN for Video Encoding

For evaluation using video encoding, VLC-CNN pre-
dicted CTUs for encoding using the HEVC reference
software [JCT-VC, 2014], and the results were com-

pared against the reference software itself as a con-
trol. The frames were encoded at multiple QPs (QP =
{12, 17, 22, 27, 32, 37}), with peak signal-to-noise ratio
(PSNR) and bit-rate recorded for each separate en-
code. Finally, the Bjøntegaard-delta (BD) metric [Bjon-
tegaard, 2001] was used to calculate the BD-PSNR (BP)
and BD-Rate (BR) differences between the two imple-
mentations. Figure 4 depicts CTU splits for the Nubuta
and Kimono sequences at QP = 12. Additionally, Ta-
ble 2 shows BD results for the first frame of a variety
of test sequences. These results were generated with the
splitting thresholds (as described in Section 2) given by

td0 = round(3.5×QP + 84) , (7)

td1 = td0 + 51 , (8)

td2 = td1 + 51 , (9)

where tdx represents the threshold for a particular



(a) Zoom: 1× (b) Zoom: 2× (c) Zoom: 4×

Figure 5: VLC-CNN applied to the Intel Dataset generated by [Jadidi et al., 2016] at three diferent magnifications.

(a) Zoom: 1× (b) Zoom: 2× (c) Zoom: 4×

Figure 6: VLC-CNN applied to the an OGM (generated at UTS, Building 11, Level 9) at three diferent magnifications

depth, QP is the quantisation parameter, and round
rounds the result to the nearest integer value. These
equations are also depicted in Figure 7.

Figure 7: Splitting threshold verses Quantisation Param-
eter (QP) for depths d = {0, 1, 2}.

The results show that while VLC-CNN performs com-

petitively with other implementations of low-complexity
[Yu et al., 2015], with BP and BR performance slightly
compromised at the expense of substantial complexity
reduction.

VLC-CNN for Occupancy Grid Maps

Evaluating VLC-CNN for generating quadtrees to rep-
resent OGMs was done by applying the quadtree gen-
eration algorithm (Section 2) to the OGMs. Figures 5
and 6 show an Intel Dataset [Andrew and Nicholas, 2003]

OGM and an OGM generated at UTS, Building 11, Level
9 respectively. These OGM-based quadtrees were gen-
erated with splitting thresholds outlined in Equations 7,
8 and 9 with QP = 12, which yields more splitting for
high-contrast images (which is the case for OGMs).

The use of quadtrees in the Intel and UTS OGMs -
which contain 2.26 × 106 and 7.07 × 106 cells (pixels)
respectively - require only 5.10 × 105 and 4.69 × 105

quadtree child nodes (where each child node has a res-
olution of 4 × 4 as to maintain the maximum accuracy
for cells of depth d = 3) respectively. This substantially
reduces the number of cells required to represent the im-



age by using fewer cells to represent parts of the image
which are of minimal contrast.

4 Conclusion

In this paper, we have presented a Very Low Complexity
Convolutional Neural Network, that is capable of gen-
erating quadtree structures of images for the purpose
of image segmentation and compression. This method
takes a probabilistic approach to quadtree generation us-
ing a QP-based splitting-threshold scheme. VLC-CNN’s
design makes it suitable for applications where gener-
ating quadtree structures of images needs to be done
with minimal burden on computational and memory re-
sources, as its minimal complexity and potential for ef-
ficient implementation make this possible.

VLC-CNN was shown to be an effective method for
determining quadtrees for use as CTUs in HEVC, while
also substantially reducing the number of cells required
to represent OGMs when compared to fixed grid-size
OGMs.
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