
Connecting the Dots for Real-Time LiDAR-based Object Detection
with YOLO

Benny Dai∗, Cedric Le Gentil∗ and Teresa Vidal-Calleja
Centre for Autonomous Systems at the Faculty of Engineering and IT, University of Technology Sydney

{benny.dai, cedric.legentil}@student.uts.edu.au, teresa.vidalcalleja@uts.edu.au

Abstract

In this paper we introduce a generic method
for people and vehicle detection using LiDAR
data only, leveraging a pre-trained Convolu-
tional Neural Network (CNN) from the RGB
domain. Typically with machine learning al-
gorithms, there is an inherent trade-off be-
tween the amount of training data available
and the need for engineered features. The cur-
rent state-of-the-art object detection and clas-
sification heavily rely on deep CNNs trained
on enormous RGB image datasets. To take
advantage of this inbuilt knowledge, we pro-
pose to fine-tune You only look once (YOLO)
network transferring its understanding about
object shapes to upsampled LiDAR images.
Our method creates a dense depth/intensity
map, which highlights object contours, from
the 3D-point cloud of a LiDAR scan. The
proposed method is hardware agnostic, hence
can be used with any LiDAR data, indepen-
dently on the number of channels or beams.
Overall, the proposed pipeline exploits the no-
table similarity between upsampled LiDAR im-
ages and RGB images preventing the need to
train a deep CNN from scratch. This transfer
learning makes our method data efficient while
avoiding the creation of heavily engineered fea-
tures. Evaluation results show that our pro-
posed LiDAR-only detection model has equiva-
lent performance to its RGB-only counterpart.

1 Introduction

One of the largest efforts in robotics is the race to solve
the perception challenges that are involved in the ap-
plication of autonomous driving. In order to develop a
robust object detection system for these autonomous sys-
tems, there is an emphasis to utilise multiple modalities

∗These authors contributed equally to this work

to overcome the challenges that are encountered with an
individual sensor. Currently, RGB image object detec-
tion systems are considered the most accurate, but it is
prone to suffer from the inability to detect objects in
low-light conditions - whereas LiDAR-based systems do
not [Vaquero et al., 2018].

In the past few years, there has been a significant
amount of development in object detection using RGB
images since [Krizhevsky et al., 2012] demonstrated the
efficacy of deep CNNs - whilst the adoption of deep learn-
ing methods has only been recently explored in the Li-
DAR domain. One of the main benefits of harnessing
deep learning is that the network is capable of learning
abstract and powerful feature representations - super-
seding and alleviating the resources that were typical in
feature engineering [Liu et al., 2018].

Some of the more recently proposed methods utilise
LiDAR information to detect objects in the environment
[Zhou and Tuzel, 2017] as a sole source of information,
while other methods either fuse both domains or exploit
depth information to reduce the search space [Berrio et
al., 2017; Qi et al., 2016; Ku et al., 2017]. In this paper,
we propose a method for object detection system using
only LiDAR scans.

The largest downside of incorporating deep CNNs is
that it requires a significant amount of data in order
to solve their ‘task’. Most of the LiDAR-based meth-
ods, including ours, have incorporated the use of the
KITTI Dataset [Geiger et al., 2012] as part of the train-
ing pipeline, which contains a relatively dense labelled
point cloud - through the use of a Velodyne HDL-64E
Sensor and image annotations in the form of bounding
boxes.

While the use of large labelled datasets can substan-
tially assist deep learning training tasks, it is insufficient
to train deep CNNs from scratch. It also lacks the capa-
bilities of being able to be repurposed easily to both in-
door and outdoor environments, which is a requirement
for any deployed robots that traverse in urban environ-
ments.



This work addresses these particular issues by utilising
transfer learning, which reduces the amount of data and
the time required to learn the model. To be specific,
we adopt the use of pre-trained convolutional weights
from ImageNet [Jia Deng et al., 2009] that have been
provided by [Redmon and Farhadi, 2016] in the RGB
domain, and train for people and vehicle detections in
the LiDAR domain. In essence, the convolutional neural
network’s capability to reason on shapes is transferred
from visual images into LiDAR ‘images’, providing a
generalised model that can perform in both indoor and
outdoor environments.

To recover LiDAR ‘images’, we develop a fast al-
gorithm that upsamples point cloud data to yield a
dense representation that resembles closely to a typical
RGB/visual image. Depth and LiDAR intensity are ex-
ploited to recover dense shapes. We focus - in particular
- on extremely sparse LiDAR data such as the VLP-16,
although the algorithm is general to be applied to Li-
DARs with denser information such as the 32 and 64
beams/channels.

In this paper, we address other related works, explain
our methodology/pipeline and discuss our results.

2 Related work

Deep learning models that have been proposed in recent
years, specifically LiDAR-based, can be categorised by
the different input strategies utilised, such as

• voxel encoding of 3D-point cloud,

• fusion of LiDAR and RGB data,

• search space reduction through LiDAR depth cues
to propose regions of interest,

• usage of raw LiDAR point clouds, and

• construction of dense maps from LiDAR data.

Note that a fixed-size input vector is generally required
for deep learning architectures but 3D data does not nec-
essarily contain a fixed number of 3D-points. Hence,
various methods to address this issue have been recently
proposed. The approach introduced in PointNet [Qi et
al., 2016] subsamples the input point cloud to fit a fixed-
size input. PointNet also addresses the problem of data
ordering by proposing an algorithm invariant regarding
3D-point permutations. Despite achieving highly accu-
rate results classifying and segmenting small objects, it is
limited when it comes to generalising to more complex
scenes. In [Qi et al., 2017a] and [Qi et al., 2017b] the
authors propose to enhance PointNet with respectively
a multimodal approach called Frustum-PointNet, and a
hierarchical network that recursively applies PointNet.

Another common approach to tackle the variable in-
put size of 3D point clouds is the use of voxels. Methods
like [Maturana and Scherer, 2015; Zhou and Tuzel, 2017;

Berrio et al., 2017] extend the convolutional neural net-
work principles, originally designed for 2D images, to 3D
data by discretising the space. These techniques possess
the substantial advantage of not requiring any engineer-
ing features.

On the other hand, the live data provided by spinning
lasers have a structure that can easily be exploited. Pro-
jecting LiDAR data into 2D-images is done in [Gonzalez
et al., 2015], where the authors propose a multi-view
classifier based on random forests to detect pedestrians
in urban scenarios. A similar goal is achieved in [Preme-
bida et al., 2014] using a support vector machine based
on the same multimodal input. While these methods
estimate a depth map from sparse LiDAR data, they
still leverage colour images and do not use CNNs. Our
method bears some similarities with [Li, 2017] through
the use of deep CNNs. Although the concepts presented
in [Li, 2017] are agnostic to any LiDAR sensor, using a
different numbered channel device would require retrain-
ing of the deep CNN model. In our proposed method
the type of upsampled LiDAR maps produced by the
proposed approach can be adopted for sparse or denser
LiDARs. Thus, a network trained with a given LiDAR,
e.g. HDL-64, by using our upsampled method can be
used to infer detections on other types of LiDAR data,
e.g. VLP-16.

The work presented in [Asvadi et al., 2018a] intro-
duces a detection technique for vehicles using only lidar
data after segmenting the incoming point cloud. This
pre-processing is built assuming the sensor is operated
in an autonomous driving context. Our framework does
not rely on a heavily engineered process to prune LiDAR
data but exploits the structure of the live 3D data in our
upsampling process. We leverage the similarity between
RGB images and LiDAR dense depth/intensity maps, to
address the object detection task. In other words, our
proposed pipeline aims at transferring the trained knowl-
edge from a pre-trained deep CNNs using RGB images
to another modality (laser range) in a data efficient man-
ner.

The upsampling problem has been addressed in the
literature under the name of depth completion. While
some techniques, [Schneider et al., 2016; Uhrig et al.,
2017], rely only on 3D data, other methods, [Ma et al.,
2018; Jaritz et al., 2018], exploit both RGB and depth in-
formation. Regardless of the cues used, many techniques
are built around deep CNNs. The authors in [Schneider
et al., 2016] leverage multi-cue information through an
optimisation-based prediction using semantic labels as
part of the input. While still relying on a deep neural
network for the semantic cues in the RGB modality, this
last method can reuse an already trained network.

A completely different approach is presented in [Ku
et al., 2018], where classical image processing is used to



LiDAR point cloud Upsampled LiDAR image Object bounding boxes

LiDAR
upsampling

Deep CNN

Figure 1: The pipeline of the proposed method. The input is a 360◦ laser scan (depth and intensity). The first
step upsamples the lidar data into a dense depth/intensity image. This image is fed into a deep CNN based on
YOLO9000. We transferred pre-trained weights from an RGB object detector by fine-tuning with LiDAR images.

predict dense depth maps from lidar data only. Simi-
larly, the upsampling methods presented in [Asvadi et
al., 2018a], [Premebida et al., 2014], and [Asvadi et al.,
2018b] do not rely on neural network architectures but
on more traditional image processing. Even though these
techniques provide dense depth maps, they suffer from
blurriness at the objects’ boundaries as the depth in-
formation is underexploited in the interpolation process.
For example, in [Asvadi et al., 2018a] the Delaunay tri-
angulation is performed over lidar points projected in
the camera coordinate system ignoring the difference
of depth between projected points. Our method tri-
angulates the 3D data directly in the 3D-space relying
on concepts similar to the one exposed in [Moosmann
et al., 2009]. Our method differs from the neighbour-
hood graph in [Moosmann et al., 2009] as we mesh the
3D-points with triangles after detecting potential object
boundaries: in [Moosmann et al., 2009] the links between
points belonging to two consecutive lidar channels are
almost ‘vertical’ whereas the triangles generated in our
method can follow oblique object boundaries.

3 Overview

The proposed overall framework aims to produce image-
like representations from LiDAR data as an input for a
deep CNN. Initially, the sparse LiDAR data is converted
into dense maps based on depth and laser intensity in-
formation. From there, the deep CNN takes the dense
map input and propose bounding boxes on persons and
vehicles if present in the scene. Fig. 1 illustrates the
pipeline of this framework.

The choice of RGB deep CNN detection model that we
considered is You only look once (YOLO) [Redmon and
Farhadi, 2016]. As a state-of-the-art one stage detection
model, it provides a mean of having fast and accurate de-
tections, with extensive documentation to apply trans-
fer learning easily. In addition, the DarkNet framework
[Redmon, 2013 2016] is also written in C and CUDA -
which can port directly as a real-time implementation
on embedded systems.

The process and model architecture used here is iden-
tical to [Redmon and Farhadi, 2016] implementation of
YOLO trained on the PASCAL dataset [Everingham et

al., 2015]. The only difference in architecture is we ad-
just the last convolutional layer’s filters to conform to
detecting persons and vehicles only. This is indicated in
Table 1 which outlines the configuration that we have
adopted [Redmon and Farhadi, 2016] to do fine-tuning
for a two class detection problem. We incorporate the
use of pre-trained weights from ImageNet [Jia Deng et
al., 2009] to classify RGB images, and train YOLO for
detecting objects on LiDAR images.

At runtime, YOLO is used to predict detections on a
13 x 13 feature map and proposes an output of the type
of class, confidence, and locations of bounding boxes.

4 Lidar upsampling

This section details the proposed upsampling procedure
that is summarised in Algorithm 1. This algorithm gen-
erates a dense depth/intensity image I from raw LiDAR
data. Unlike many other algorithms, our algorithm does
not aim at maximising the depth information coverage.
Instead, we aim to highlight relevant shapes. The gener-
ated upsampled LiDAR images are made of three chan-
nels to fit the input of the RGB deep CNN used later in
the proposed framework. Each of these channels can be
independently associated with depth, inverse depth, or
intensity information, not necessarily in that particular
order.

4.1 Pre-processing

Let us consider an N-channel spinning LiDAR and a vir-
tual camera. The camera is only used as a support to
project LiDAR 3D-points into the image I. Each 3D-
point collected by the LiDAR is associated with an in-
tensity value that represents the return strength of the
laser pulse that generated the point. The rotation ma-
trix in between the two sensors is Rc, and the camera
matrix is K. A 3D-point xl

i expressed in the LiDAR
frame is projected in the camera image with:

[
xc
i

yci

]
=

[
x′
i

z′
i

y′
i

z′
i

]
where

x′iy′i
z′i

 = KRcx
l
i. (1)

An unordered 3D-point cloud P collected by the Li-
DAR is first sorted according to the points’ azimuth and



Figure 2: Overall Scheme of the YOLO model in our proposed LiDAR only detection. The last box in bold indicates
a modified convolutional layer of 13 x 13 x 35 to solve for a two class problem. The DarkNet19 block represents all
the layers that have been pre-trained on ImageNet.

Data: Lidar 3D-point cloud P.
Result: Lidar depth and intensity dense image I.
I← Initialise output image according to pruned
Voronoi partitioning;
S ← Sort P by increasing azimuth;
C ← Crop out points in S projected out of I ;
Lk ← Split C into “lines”;
T ← Initialise empty set of 3D-triangles;
foreach Lk do
Bk ←Extract border-point candidates in Lk

end
foreach {Lk,Lk+1} do
E ← Associate points from Bk and Bk+1 (knn);
E ← Remove border-edges crossing each other when
projected in I;
Ttemp ← Build triangles between two successive
border-edges in E ;
T ← T + Ttemp;

end
foreach triangle in T do

I← Project triangle in image;
I← Interpolate depth and intensity for pixels inside
triangle projection (barycentric coordinates
interpolation);

end Optional
Independent histogram equalisation of I’s channels;

Algorithm 1: LiDAR upsampling

stored in the set S. The set C refers to the set of 3D-
points from S that have their projection, as per (1), in
the camera image boundaries. Points of C are grouped
into ‘lines’ that correspond to the N LiDAR-channels.
These lines are denoted Lk with k = 1, · · · , N . The in-
dices k are given according to the increasing elevation of
the LiDAR-channels.

The output image I is initialised with constant patches
determined by a pruned Voronoi partitioning of the im-
age containing the projected 3D-points. The pruning of
the classic Voronoi cells is done by removing the patches
that span over azimuth and elevation thresholds.

Figure 3: Triangulation of the 3D data between object
borders between two consecutive LiDAR channels. The
mesh generated is shown in grey, the border-points in
green, the border-edges in blue and the LiDAR points
in red (the dashed red line represent the places swept by
the lasers).

4.2 Border detection

Potential object border-points are detected in each Lk

using distance and azimuth thresholds; i.e. if two con-
secutive 3D-points are spaced over a certain Euclidean
distance, or over a certain difference of azimuth, they are
considered as border-points candidates and appended to
a set Bk.

Border-point candidates from two consecutive LiDAR
lines, Bk and Bk+1, are associated into pairs based on
a nearest-neighbour search. We call these pairs border-
edges. Points in Bk and Bk+1 need to mutually be the
nearest neighbour of one another to be considered as
a potential edge. A threshold on the potential border-
edge length is applied. The border-edge candidates are
temporarily grouped in E . If two edges in E cross each
other when projected in I, the edge the furthest away
from the LiDAR is removed from E .

4.3 Triangulation

Once the edges are found, we perform a simple triangula-
tion over the point clouds constituted of the 3D-points,
from Lk and Lk+1, contained between successive pairs



Type Filters Size/Stride Output
0 Convolutional 32 3 x 3 416 x 416
1 Maxpool 2 x 2/2 208 x 208
2 Convolutional 64 3 x 3 208 x 208
3 MaxPool 2 x 2/2 104 x 104
4 Convolutional 128 3 x 3 104 x 104
5 Convolutional 64 1 x 1 104 x 104
6 Convolutional 128 3 x 3 104 x 104
7 MaxPool 2 x 2/2 52 x 52
8 Convolutional 256 3 x 3 52 x 52
9 Convolutional 128 1 x 1 52 x 52
10 Convolutional 256 3 x 3 52 x 52
11 MaxPool 2 x 2/2 26 x 26
12 Convolutional 512 3 x 3 26 x 26
13 Convolutional 256 1 x 1 26 x 26
14 Convolutional 512 3 x 3 26 x 26
15 Convolutional 256 1 x 1 26 x 26
16 Convolutional 512 3 x 3 26 x 26
17 MaxPool 2 x 2/2 13 x 13
18 Convolutional 1024 3 x 3 13 x 13
19 Convolutional 512 1 x 1 13 x 13
20 Convolutional 1024 3 x 3 13 x 13
21 Convolutional 512 1 x 1 13 x 13
22 Convolutional 1024 3 x 3 13 x 13
23 Convolutional 1024 3 x 3 13 x 13
24 Convolutional 1024 3 x 3 13 x 13
25 Route from

Layer 16
26 Reorg / 2 13 x 13
27 Route from

Layer 24 and 26
28 Convolutional 1024 3 x 3 13 x 13
29 Convolutional 35 1 x 1 13 x 13

Table 1: Modified version of YOLO’s network architec-
ture, with the last convoluttional layer’s filters reduced
to fit to our two class problem.

of edges. Fig. 3 illustrates this meshing. Some basic
thresholds are applied to set a maximum triangle edge
length. This process of edge detection and triangulation
is repeated for each pair of consecutive LiDAR lines.

Once the 3D-data has been meshed, each of the trian-
gles is projected in I. The interpolated values for pixels
contained into a triangle consists into a weighted average
of the three vertices’ depth or intensity value. Barycen-
tric coordinates are used to define the weights. Each of
the three channels of the output image can be indepen-
dently set with depth, inverse depth or intensity infor-
mation. Our implementation also comprises an optional
histogram equalisation for each of the image channels.

Fig. 4 shows examples of upsampled images. On the
left of Fig. 4 d), we see that the top of the chair has not
meshed with the background, there is a blank space in
the mesh. This behaviour results from our strategy to
conserve sharp object edges. We believe that sharp edges
are more suitable for the rest of the detection pipeline
as per the small size of the CNN filters. The pruned
Voronoi partitioning present in the pre-processing step

a)

b)

c)

d)

e)

Figure 4: Upsampled LiDAR images based on real data
from Velodyne VLP-16. The row a) is an actual colour
snapshot of the scene (that is not used in the upsampling
process). The row b) represents the 3D-point clouds used
at the input of the upsampling process. The row c) dis-
plays in blue the border-points extracted from the input
point cloud. The row d) shows in grey the projection
of the mesh generated, in blue the border-edges and in
red the LiDAR points. Finally e) display the upsampled
LiDAR image. In this example, channel 0 is associated
with intensity, channel 1 with inverse depth, and channel
2 with depth (for visualisation: channel 0 = red, channel
1 = green, channel 2 = blue).

can provide data in this area depending on the thresholds
used. The Voronoi partitioning provides sharper edges
than simply interpolating between LiDAR lines. Note
that the rotation matrix Rc can be modified to produce
several images that will cover the full LiDAR field of
view.

5 Training details

As mentioned earlier, the proposed method leverages
similarities between upsampled LiDAR images and RGB
images. Based on the weights pre-trained on Imagenet
[Jia Deng et al., 2009] for image object classification
- provided by [Redmon and Farhadi, 2016]) - we fine-
tuned YOLO with two LiDAR datasets. The first one



is the KITTI 2D Object Training dataset [Geiger et al.,
2012]. The second one has been collected with our own
Velodyne VLP-16 in a combined indoors and outdoors
environment at UTS.

The proposed upsampling method allows for different
combinations of parameters. Among these parameters
is the choice of the information allocated to each chan-
nel of the upsampled LiDAR image. After a qualitative
analysis of several parameter sets, we opted for the fol-
lowing configuration that converts LiDAR information
into dense images without histogram equalisation:

• channel 0 (R): LiDAR intensity values

• channel 1 (G): inverse depth values

• channel 2 (B): depth values

The LiDAR images of the KITTI dataset have been
generated, as per the given calibration parameters, to
overlap the actual camera images that contain the ob-
ject labels. The Velodyne HDL-64 field of view being
oriented ‘toward the floor’, the top part of the upsample
LiDAR images does not contain any information. There-
fore these upper parts have been cropped out. To pre-
serve a similar resolution across all images whilst training
- without making alterations on the network - we verti-
cally split the cropped LiDAR images into three chunks.
By adopting this, we increase the KITTI dataset [Geiger
et al., 2012] by three-fold with true negatives in it.

The given object labels from the RGB domain have
been transferred to the corresponding upsampled LiDAR
images according to the different cropping/splitting op-
erations. This eventuated a customised KITTI dataset
[Geiger et al., 2012] that contains 22443 images contain-
ing 5211 persons and 23251 vehicles. We considered the
person class from the KITTI labels’ fields ‘Cyclist’, and
‘Pedestrian’; while vehicles class consists of fields ‘Car’,
‘Van’, and ‘Truck’. In the case of our VLP-16 dataset, we
manually annotated 3002 images counting 4550 persons
and 895 vehicles.

We incorporated multi-scale training like [Redmon
and Farhadi, 2016], to ensure robust detections of any
image/object size. From there, we combined both
datasets, shuffled it, and formed a 70/20/10 split which
corresponds to training, testing, and validation datasets
respectively. The model has been trained for detections
over 150 epochs with a batch size of 128. The starting
learning rate was 10−3. We adopted a strategy similar
to [Redmon and Farhadi, 2016] by using a weight decay
of 0.0005, a momentum of 0.9, and divide the learning
rate after the 1st and 100th epoch. We choose the best
model based on the cross-fold validation score.

Furthermore, we employ a subdivision size of 16 in
Darknet [Redmon, 2013 2016] during training, which
utilises between 4-6 GB of GPU at a given time depend-
ing on the scaling of the image. Since we have simi-

lar resolutions across our training set, the fluctuations
in GPU usage are much more predictable. We employ
the use of the UTS Cluster during training which has a
Quadro P4000 that holds 8GB VRAM.

6 Experimental Results

Our fine-tuned model has been evaluated based on the
Intersect over Union (IoU) and mean Average Precision
(mAP) metrics. IoU accounts for the correctness of the
predicted bounding boxes’ locations and mAP, reflects
the precision of the classification. To benchmark our
method, we also fine-tuned the same CNN architecture
for RGB images only. This last model has been trained
from the PASCAL dataset [Everingham et al., 2015] and
the KITTI 2D Object Training dataset [Geiger et al.,
2012]. Images from KITTI have been vertically split
similarly to the LiDAR images at the CNN input. Table
2 shows quantitative performances for both RGB-only
and LiDAR-only models. Fig. 5 presents the precision-
recall curves per class.

Metric RGB LiDAR
mAP 80.67 % 81.27 %

Average IoU 63.15 % 65.11 %
F1-Score 0.82 0.82

Table 2: Quantitative comparison between a RGB-only
object detector and the proposed LiDAR-only detector.
Numbers are similar for both models proving the ability
for pre-trained neural network architectures to adapt to
new modalities in a data efficient manner.

The numerical results of both models are quite sim-
ilar. It demonstrates the possibility to apply transfer
learning in a data efficient manner while conserving the
original network performances. While displaying solid
classification abilities with high mAP scores, one could
argue that the average IoU scores could be improved.
It is partly explained by our splitting technique that we
applied to conserve resolution and increase number of
training images in the KITTI dataset.

Fig. 6 demonstrates a wrongly fitted bounding box
after a vertical split. The truck label on the bottom
right image should be resized to provide more accurate
training data. This phenomenon impacts both the RGB
and LiDAR models.

Qualitative results are shown in Fig. 7 and the at-
tached video. As per the low vertical resolution of the
Velodyne VLP-16, people and vehicles far away from the
LiDAR cannot be detected as there is not enough infor-
mation present in the collected 3D-point clouds. It ex-
plains why the person across the street in the first row
of Fig. 7 is not labelled as human.



Figure 5: Precision-Recall curves per class computed
with our proposed LiDAR-only detection system on our
validation set. Area under the curve demonstrates the
classification performances of our model.

For the real-time implementation, we used a Jet-
son TX2 and encapsulated our working code into ROS
nodes. Employing this hardware, we achieve consistently
6 frames per second during runtime. To encapsulate
DarkNet [Redmon, 2013 2016], we used [Bjelonic, 2016
2018] repository which makes the CNN pipeline as a ROS
node.

7 Conclusion

This paper presents a pipeline for real-time people and
vehicle detection from LiDAR data only. This method
relies on a LiDAR upsampling technique that generates
dense depth/intensity images out of raw and sparse laser
data independently of any training dataset. We lever-
aged the similarity between these upsampled LiDAR im-
ages and RGB images by performing transfer learning
from a state-of-the-art deep CNN trained in the RGB

Figure 6: Example of image splitting in the KITTI
dataset. Top row shows the original image with its cor-
responding labels. Bottom row displays two images and
their new labels after splitting the original image. We
can see that the bounding box at the back of the truck
in the right image is located with poor precision.

domain [Redmon and Farhadi, 2016]. Consequently, we
demonstrated the possibility to fine-tune a pre-trained
network to another modality in a data-efficient manner.
Intuitively, it shows the understanding of shapes that is
learnt in deep CNNs.

Our upsampling method has been built upon purely
geometric and traditional image processing principles ex-
ploiting the data pattern of spinning lasers. Therefore,
this method can be used with LiDARs that possess a
different number of channels without the need for any
re-training step. The current implementation runs on a
single CPU and processes VLP-16 scans real-time. The
code can easily be parallelised: the border-edge detec-
tion can be run into N − 1 independent threads and the
interpolation in each of the triangles can be spread across
thousands of GPU cores. Combined with the real-time
performances of [Redmon and Farhadi, 2016], the pro-
posed pipeline could be simultaneously run with differ-
ent virtual camera orientations to cover the full LiDAR
field-of-view.

In our experiments, the proposed upsampling method
used an arbitrarily chosen set of parameters. We are
interested in conducting a deeper analysis of these pa-
rameters. Maximising some similarity metrics between
upsampled LiDAR images and the corresponding RGB
snapshots could lead to properly justified parameter
choices. Such work would make the transfer learning
from RGB-trained networks even more efficient.

References

[Asvadi et al., 2018a] Alireza Asvadi, Luis Garrote,
Cristiano Premebida, Paulo Peixoto, and Urbano J.
Nunes. DepthCN: Vehicle detection using 3D-LIDAR



a) b)

Figure 7: Examples of detection with Velodyne VLP-16. The column a) is a colour snapshot of the scene. These
images are not used in the proposed method. The column b) shows the prediction of our framework. The bounding
boxes are inferred over upsampled LiDAR images.

and ConvNet. IEEE Conference on Intelligent Trans-
portation Systems, Proceedings, ITSC, 2018-March:1–
6, 2018.

[Asvadi et al., 2018b] Alireza Asvadi, Luis Garrote,
Cristiano Premebida, Paulo Peixoto, and Urbano
Nunes J. Real-Time Deep ConvNet-Based Vehicle De-
tection Using 3D-LIDAR Reflection Intensity Data.
In ROBOT 2017: Third Iberian Robotics Conference,
pages 475—-486. Springer International Publishing,
2018.

[Berrio et al., 2017] Julie Stephany Berrio, James Ward,
Stewart Worrall, Wei Zhou, and Eduardo Nebot. Fus-
ing Lidar and Semantic Image Information in Octree
Maps. In Australasian Conference on Robotics and
Automation 2017, 2017.

[Bjelonic, 2016 2018] Marko Bjelonic. YOLO ROS:
Real-time object detection for ROS. https://

github.com/leggedrobotics/darknet_ros, 2016–
2018.

[Everingham et al., 2015] Mark Everingham, S M Ali
Eslami, Luc Van Gool, Christopher K I Williams,
John Winn, Andrew Zisserman, M Everingham, S M

A Eslami, J Winn, L KU Van Gool Leuven, Belgium L
Van Gool ETH, Switzerland C K I Williams, and
A Zisserman. The PASCAL Visual Object Classes
Challenge: A Retrospective. Int J Comput Vis,
111:98–136, 2015.

[Geiger et al., 2012] Andreas Geiger, Philip Lenz, and
Raquel Urtasun. Are we ready for autonomous driv-
ing? the KITTI vision benchmark suite. In Pro-
ceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages
3354–3361, 2012.

[Gonzalez et al., 2015] Alejandro Gonzalez, Antonio M
López, and Alejandro Gonz. Multiview random for-
est of local experts combining RGB and LIDAR data
for pedestrian detection Multiview Random Forest of
Local Experts Combining RGB and LIDAR data for
Pedestrian Detection. (October 2016), 2015.

[Jaritz et al., 2018] Maximilian Jaritz, Raoul
de Charette, Emilie Wirbel, Xavier Perrotton,
and Fawzi Nashashibi. Sparse and Dense Data
with CNNs: Depth Completion and Semantic
Segmentation. 2018.



[Jia Deng et al., 2009] Jia Deng, Wei Dong, R. Socher,
Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya
Sutskever, and Hinton Geoffrey E. ImageNet
Classification with Deep Convolutional Neural Net-
works. Advances in Neural Information Processing
Systems 25 (NIPS2012), pages 1–9, 2012.

[Ku et al., 2017] Jason Ku, Melissa Mozifian, Jungwook
Lee, Ali Harakeh, and Steven Waslander. Joint 3D
Proposal Generation and Object Detection from View
Aggregation. dec 2017.

[Ku et al., 2018] Jason Ku, Ali Harakeh, and Steven L.
Waslander. In Defense of Classical Image Processing:
Fast Depth Completion on the CPU. 2018.

[Li, 2017] Bo Li. 3D fully convolutional network for ve-
hicle detection in point cloud. In IROS, pages 1513–
1518, 2017.

[Liu et al., 2018] Li Liu, Wanli Ouyang, Xiaogang
Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and
Matti Pietikäinen. Deep Learning for Generic Object
Detection: A Survey. 2018.

[Ma et al., 2018] Fangchang Ma, Guilherme Venturelli
Cavalheiro, and Sertac Karaman. Self-supervised
Sparse-to-Dense: Self-supervised Depth Completion
from LiDAR and Monocular Camera. 2018.

[Maturana and Scherer, 2015] Daniel Maturana and Se-
bastian Scherer. VoxNet: A 3D Convolutional Neu-
ral Network for real-time object recognition. In 2015
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, sep
2015.

[Moosmann et al., 2009] Frank Moosmann, Oliver Pink,
and Christoph Stiller. Segmentation of 3D lidar data
in non-flat urban environments using a local convex-
ity criterion. IEEE Intelligent Vehicles Symposium,
Proceedings, pages 215–220, 2009.

[Premebida et al., 2014] Cristiano Premebida, João
Carreira, Jorge Batista, and Urbano Nunes. Pedes-
trian detection combining RGB and dense LIDAR
data. In IEEE International Conference on Intelligent
Robots and Systems, 2014.

[Qi et al., 2016] Charles R. Qi, Hao Su, Kaichun Mo,
and Leonidas J. Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation.
2016 Fourth International Conference on 3D Vision
(3DV), pages 601–610, dec 2016.

[Qi et al., 2017a] Charles R. Qi, Wei Liu, Chenxia Wu,
Hao Su, and Leonidas J. Guibas. Frustum PointNets
for 3D Object Detection from RGB-D Data. 2017.

[Qi et al., 2017b] Charles R. Qi, Li Yi, Hao Su, and
Leonidas J. Guibas. PointNet++: Deep Hierarchi-
cal Feature Learning on Point Sets in a Metric Space.
2017.

[Redmon and Farhadi, 2016] Joseph Redmon and Ali
Farhadi. YOLO9000: Better, Faster, Stronger. 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6517–6525, dec 2016.

[Redmon, 2013 2016] Joseph Redmon. Darknet: Open
source neural networks in c. http://pjreddie.com/

darknet/, 2013–2016.

[Schneider et al., 2016] Nick Schneider, Lukas Schnei-
der, Peter Pinggera, Uwe Franke, Marc Pollefeys, and
Christoph Stiller. Semantically guided depth upsam-
pling. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 9796 LNCS:37–48,
2016.

[Uhrig et al., 2017] Jonas Uhrig, Nick Schneider, Lukas
Schneider, Uwe Franke, Thomas Brox, and Andreas
Geiger. Sparsity Invariant CNNs. Proceedings - 2017
International Conference on 3D Vision, 3DV 2017,
pages 11–20, 2017.

[Vaquero et al., 2018] Victor Vaquero, Alberto Sanfeliu,
and Francesc Moreno-Noguer. Deep Lidar CNN to
Understand the Dynamics of Moving Vehicles. ICRA,
2018.

[Zhou and Tuzel, 2017] Yin Zhou and Oncel Tuzel. Vox-
elNet: End-to-End Learning for Point Cloud Based 3D
Object Detection. arXiv:1711.06396 [cs.CV], 2017.


