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Abstract

Within a continuous-time framework, this paper proposes a stochastic hetero-
geneous agent model (HAM) of financial markets with time delays to unify various
moving average rules used in discrete-time HAMs. The time delay represents a
memory length of a moving average rule in discrete-time HAMs. Intuitive condi-
tions for the stability of the fundamental price of the deterministic model in terms
of agents’ behavior parameters and memory length are obtained. It is found that
an increase in memory length not only can destabilize the market price, result-
ing in oscillatory market price characterized by a Hopf bifurcation, but also can
stabilize an otherwise unstable market price, leading to stability switching as the
memory length increases. Numerical simulations show that the stochastic model is
able to characterize long deviations of the market price from its fundamental price
and excess volatility and generate most of the stylized facts observed in financial
markets.
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1 Introduction

Despite the efficient market hypothesis of financial markets in the academic finance

literature (see Fama, 1970), the use of technical trading rules, such as moving average

rules, still seems to be widespread amongst financial market practitioners (see Allen and

Taylor, 1990; Taylor and Allen, 1992). Technical analysts or “chartists”, who use various

technical trading rules, attempt to forecast future prices by the study of patterns of past

prices and other summary statistics about security trading. Basically, they believe that

shifts in supply and demand can be detected in charts of market movements.

Earlier empirical literature on stock returns finds evidences that daily, weekly and

monthly returns are predictable from past returns. Pesaran and Timmermann (1994,

1995) present evidence on the predictability of excess returns on common stocks for

the S&P 500 and Dow Jones Industrial portfolios, and examine the robustness of the

evidence on the predictability of U.S. stock returns. There have been various studies

of the profitability of technical analysis, see Frankel and Froot (1986, 1990), Brock,

Lakonishok and LeBaron (1992), Neely, Weller and Dittmar (1997), Gencay (1998) and

Fernandez-Rodriguez, Gonzalez-Martel and Sosvilla-Rivero (2000).

Most of the cited research has focused on empirical studies. Recent studies, such as

Lo, Mamaysky and Wang (2000), Boswijk, Griffioen and Hommes (2000) and Goldbaum

(2003), have also examined explicitly the profitability of technical trading rules and the

implications for market efficiency. Over the last two decades, various heterogeneous

agent models (HAMs) have been developed to explain a range of market behavior. By

incorporating bounded rationality and heterogeneity, HAMs have successfully explained

many types of features (such as market booms and crashes, long deviations of the market

price from the fundamental price), the stylized facts (such as skewness, kurtosis, volatility

clustering and fat tails of returns), and various power laws (such as the long memory in

return volatility) observed in financial markets. We refer the reader to Hommes (2006),

LeBaron (2006) and Chiarella, Dieci and He (2009) for surveys of the recent developments

in this literature.

To examine the role of moving average rules in market stability theoretically, Chiarella,

He and Hommes (2006) recently propose a discrete-time HAM in which demand for

traded assets has both a fundamentalist and a chartist components. The chartist de-

mand is governed by the difference between the current price and a moving average

(MA). They show analytically and numerically that the MA plays a complicated role

on the stability of financial markets. In particular, when the activities of the market

participants (such as the fundamentalists and the trend followers) are balanced in cer-

tain way, an increase in the memory length used in the MA can stabilize the market;

otherwise, it is a source of market instability, and the interaction of the MA and market

noise can lead to the tendency for the market price to take long excursions (associated

with long memory length) away from the fundamental price. We also refer to Levy, Levy

and Solomon (2000), Chiarella and He (2001), Zschischang and Lux (2001) and Anufriev
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and Dindo (2009) for the related discussion on the standard MA and to Chiarella, He,

Hung and Zhu (2006) for weighted MA in the discrete time HAMs.

Interestingly enough, most of the HAMs in the literature are in discrete-time rather

than continuous-time setup. The discrete-time setup facilities economic understanding

and mathematical analysis, but it also faces some limitations when expectations of agents

are formed in historical prices over different time periods. In particular, when dealing

with MA rules, different lag lengths used in the MA rules lead to different dimensions

of the system which need to be dealt differently, see Chiarella, He and Hommes (2006).

Very often, a theoretical analysis on the impact of the memory length used in MA is

difficult when the dimension of the system is higher, which is the case as the memory

length used in the MA becomes large. To overcome this difficulty, this paper proposes

a heterogeneous agent model of financial markets in a continuous-time framework with

time delay, which represents a memory length of a moving average rule in discrete-time

HAMs, to study the impact of the memory length. The financial market is consisting

of a group of fundamentalists and a group of trend followers using a weighted average

of historical prices as price trend. The trend followers are assumed to react to buy-sell

signals generated by the difference between the current price and the price trend, which

is formed as an integral with a distributed delay, representing a MA of the historical

prices with an exponential decaying weights over a memory length. By incorporating

random fundamental price and noisy demand from noise traders in the market, the model

is described mathematically by a system of stochastic differential equations with time

delay, which provides an uniform treatment on various MA rules used in the discrete-time

model.

Development of deterministic delay differential equation models to characterize fluc-

tuation of commodity prices and cyclic economic behavior has a long history, see, for

example, Haldane (1932), Kalecki (1935), Goodwin (1951), Larson (1964), Howroyd and

Russell (1984) and Mackey (1989). The development further leads to the studies on the

effect of policy lag on macroeconomic stability, see, for example, Phillips (1954, 1957),

Asada and Yoshida (2001) and Yoshida and Asada (2007). Recently, by introducing

noise processes into a simple price model with a delay depended growth rate, Küchler

and Platen (2007) extend the study to examine joint effect of time delay and random-

ness. Though there is a growing study on various market behavior and, in particular, the

stylized facts, volatility clustering and long memory observed for high frequency (such

as daily) returns in the discrete-time HAMs, see Lux (2004, 2009) for recent surveys,

in our knowledge, using stochastic delay differential equations to study these features

in financial markets is relatively new. This paper serves as the first step to extend the

current HAMs from discrete-time to continuous-time within time delay framework.

By developing a stochastic HAM in continuous time with delays, this paper focuses

on the impact of the behavior of heterogeneous agents and, in particular, the role of the

memory length in market stability. For the underlying deterministic delay differential

equation model, the stability of the fundamental price in terms of agents’ behavior
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parameters and time delay are analyzed. Consistent with the results obtained in the

discrete-time model in Chiarella, He and Hommes (2006), it is found that an increase in

the memory length has a double edged effect on the stability, meaning that time delay

can either destabilize or stabilize the market price. However, different from the discrete-

time model, it is also found that, depending on the behavior of the fundamentalists and

trend followers, an increase in the memory length can lead to stability switching of the

market price, which is new in the HAMs1. For the corresponding stochastic model, we

demonstrate that the model is able to generate many market phenomena, such as market

bubbles, crashes and long deviations of the market price from the fundamental price, and

most of the stylized facts, including non-normality, volatility clustering, and power-law

behavior of high-frequency returns, observed in financial markets.

The paper is organized as follows. We first introduce a stochastic HAM in continuous

time with time delay in Section 2. In Section 3, we conduct a stability and bifurcation

analysis for the underlying deterministic delay differential equation model. Section 4

provides some numerical simulation results of the stochastic model in exploring the

potential of the model to generate various market behavior and the stylized facts. Section

5 concludes the paper. Proofs of some technical results are given in Appendix B.

2 A Continuous-time HAM with Delay

The basic idea of the modeling in this section follows closely to the current HAM

framework (see, for example, Brock and Hommes, 1998; Chiarella and He, 2002, 2003;

Chiarella, He and Hommes, 2006). However, instead of using a discrete-time setup, we

consider a continuous-time setup. This section proposes an asset pricing model with two

different types of heterogeneous traders, fundamentalists and trend followers, who trade

according to fundamental analysis and technical analysis, respectively. The market price

is arrived at via a market maker scenario in line with Beja and Goldman (1980), Day

and Huang (1990) and Chiarella and He (2003) rather than the Walrasian scenario used

in Brock and Hommes (1998) and Chiarella and He (2002). Whilst the market maker is

a highly stylized account of how the market price is arrived at, it may be closer to what

is going on in real markets2.

Consider a market with a risky asset (such as stock market index) and let P (t) denote

the price (cum dividend) per share of the risky asset at time t. To focus on price dy-

namics, we motivate the demand functions of the two different types of traders by their

trading rules directly, rather than deriving the demand functions from utility maximiza-

1It should be stressed that the double edged role on the stability of time delay is not new in applied
mathematical literature, in particular in mathematical biology literature, see for example MacDonald
(1978) and Beretta, Bischi and Solimano (1988).

2In a recent paper by Zhu, Chiarella, He and Wang (2009), the roles of the market maker as both
liquidity provider and investor are examined and it is found that, in some market conditions, the market
maker has an incentive to destabilize the market.
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tion of their portfolio investments with both risky and risk-free assets (as for example

in Brock and Hommes, 1998). The market population fractions3 of fundamentalists and

chartists are respectively α and 1− α, where α ∈ [0, 1].

Fundamentalists—The fundamentalists trade based on their estimated fundamental price.

They believe that the market price P (t) is mean-reverting to the fundamental price F (t)

that they can estimate based on various types of fundamental information, such as div-

idends, earnings, exports, general economic forecasts and so forth. They buy the stock

when the current price P (t) is below the fundamental price F (t) and sell the stock when

P (t) is above F (t). For simplicity, we assume that the demand of the fundamental-

ists, Zf (t) at time t, is proportional to the price deviation from the fundamental price,

namely,

Zf (t) = βf [F (t)− P (t)], (2.1)

where βf > 0 is a constant parameter, measuring the mean-reverting speed of the market

price to the fundamental price, which may be weighted by the risk aversion coefficient

of the fundamentalists. To focus the analysis on the market price, we assume that the

fundamental price is given by an exogenous random process that will be specified in

Section 4.

Chartists—The chartists trade based on charting signals generated from historical prices.

Given the well documented momentum trading strategy in empirical literature, see for

example Hirshleifer (2001), we assume that the chartists are trend followers. They believe

that the future market price follows a price trend u(t). When the current price is above

the trend, the trend followers believe the price will rise and they like to hold a long

position of the risky asset; otherwise, the trend followers will take a short position. We

therefore assume that the demand of the chartists is given by

Zc(t) = g
(
P (t)− u(t)

)
, (2.2)

where the demand function g satisfies:

g′(x) > 0, g′(0) = βc > 0, xg′′(x) < 0 for x 6= 0. (2.3)

The S-shaped demand function g capturing the trend following behavior is well docu-

mented in the HAM literature (see, for example, Chiarella, Dieci and He, 2009), where

the parameter βc represents the extrapolation rate of the trend followers on the future

price trend when the price deviation from the trend is small. In the following discussion,

we let g(x) = tanh(βcx), which satisfies the conditions in (2.3).

Among various price trends used in practice, weighted MA rules with either finite or

infinite memory length are the most popular ones. In this paper, we assume that the

3To simplify the analysis, we assume that the market fractions are constant parameters as in the
market fraction model in He and Li (2008), rather than dependent variables based on some performance
measure, as in Brock and Hommes (1998), or in both, as in Dieci, Foroni, Gardini and He (2006).
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price trend u(t) of the trend followers at time t is measured by an exponentially decayed

weighted average of historical prices over a time interval [t− τ, t],

u(t) =
1

A

∫ t

t−τ

e−k(t−s)P (s)ds, A =
1− e−kτ

k
, (2.4)

where time delay τ ∈ (0,∞) represents memory length of the MA, k > 0 measures the

decaying rate of the weights on the historical prices and A is a normalization constant.

Equation (2.4) implies that, when forming the price trend, the trend followers believe

the more recent prices contain more information about the future price movement so

that the weights associated to the historical prices decay exponentially with a decay rate

k. In particular, when k → 0, the weights are equal and the price trend u(t) in equation

(2.4) is simply given by the standard MA with equal weights,

u(t) =
1

τ

∫ t

t−τ

P (s)ds. (2.5)

When k → ∞, all the weights go to the current price so that u(t) → P (t). In general,

for 0 < k < ∞, equation (2.4) can be expressed as a delay-differential equation with

time delay τ

du(t) =
k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
dt. (2.6)

Let P τ (t) = e−kτP (t− τ) + (1− e−kτ )u(t) be an average price trend of the time-delay τ

price and the current price trend weighted by the discount factor. From (2.6), we can see

that the trend followers adjust their price trend estimation based on the deviation of the

current price P (t) from the average price trend. When P (t) > P τ (t), the trend followers

increase their trend estimation of the risky asset. Otherwise, they decrease their trend

estimation. In particular, when τ → 0, P τ (t) → P (t) and u(t) → P (t), implying that

the trend followers regard the current price as their price trend. When τ → ∞, the

trend followers use all the historical prices (with infinite memory length) to form the

price trend

u(t) =
1

k

∫ t

−∞
e−k(t−s)P (s)ds. (2.7)

Consequently, equation (2.6) becomes an ordinary differential equation

du(t) =
1

k

[
P (t)− u(t)

]
dt. (2.8)

In summary, the price trend formed by the integral in (2.4) with distributed delay pro-

vides a general way to include moving average rules of either equal or decaying weights

to the historical prices with either finite or infinite memory length.

Market Price via a Market Maker—Assume a net zero supply4. Then the aggregate

market excess demand, weighted by the population weights of the fundamentalists and

4When the supply is positive but constant, the fundamental price needs to be adjusted to have the
same price dynamics, see for example, Zhu, Chiarella, He and Wang (2009).
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trend followers for the risky asset, is given by αZf (t) + (1 − α)Zc(t). Following Beja

and Goldman (1980) and Chiarella, He and Hommes (2006), we assume that the price

P (t) at time t is set via a market maker mechanism and is adjusted according to the

aggregate excess demand, that is

dP = µ
[
αZF + (1− α)Zc

]
dt + σMdWM(t), (2.9)

where µ > 0 represents the speed of the price adjustment by the market maker, WM(t)

is the standard Wiener process capturing a random excess demand process either driven

by unexpected market news or noise traders, and σM ≥ 0 is a constant.

A Complete Model—Based on (2.9) and the above analysis, the market price of the risky

asset is determined according to the following stochastic delay differential system




dP (t) = µ

[
αβf (F (t)− P (t)) + (1− α) tanh

(
βc

(
P (t)− u(t)

))]
dt + σMdWM(t),

du(t) =
k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
dt,

(2.10)

where the fundamental price F (t) is a random process which will be specified in Section 4.

The stochastic model (2.10) will be analyzed in Section 4. To understand the interaction

of the deterministic dynamics and noise process, in Section 3, we study the dynamics of

the corresponding deterministic model.

3 Dynamics of the Deterministic Model

By assuming that the fundamental price is a constant F (t) ≡ F̄ and there is no market

noise σM = 0, the system (2.10) becomes a two-dimensional system of deterministic delay

differential equations




dP

dt
=µ

[
αβf (F̄ − P ) + (1− α) tanh

(
βc(P − u)

)]
,

du

dt
=

k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
.

(3.1)

It is easy to see that (P̄ , ū) = (F̄ , F̄ ) is an equilibrium point of (3.1) where the equilibrium

steady state price is given by the constant fundamental price. We therefore call (P̄ , ū) =

(F̄ , F̄ ) the fundamental steady state. In this section, we study the dynamics of the

deterministic model (3.1), including the stability and bifurcation of the fundamental

steady state. In general, the dynamics depend on the behavior of the fundamentalists,

the trend followers, the market maker, and the time delay. It is known (see, for example,

Hale and Kocak, 1991 and Gopalsamy, 1992) that the stability is characterized by the

eigenvalues of the characteristic equation of the system at the steady state. For delay

differential equations, the eigenvalue analysis can be complicated in general. To obtain

some economic intuitions in the stability, we first consider some special cases.
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3.1 A market of one type of agents: α = 0, 1

When α = 1 or 0, the market consists of either the fundamentalists or the trend

followers only. For α = 1, the system (3.1) is reduced to

dP

dt
= µαβf (F̄ − P (t)),

which represents a mean-reverting process of the market price to the fundamental price.

Hence the price converges to its fundamental value eventually and therefore the funda-

mental steady state is globally asymptotically stable. This exhibits the stabilizing role

of the fundamentalists.

For α = 0, the market consists of the trend followers only and the system (3.1)

reduces to 



dP

dt
=µ tanh

(
βc(P − u)

)
,

du

dt
=

k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
.

(3.2)

It is easy to see that any point (P, u) along the line P = u is an equilibrium of (3.2).

This means that the system has infinite many steady states. Near the line, the solution

of (3.2) with different initial values converge to different equilibria on the line P = u.

This property is illustrated in Fig. 1. Summarizing the above analysis, we have the

following result.

0 4 8 12 16 20 24
0

4

8

12

16

20

24

P

u

Figure 1: The local attractor line P = u when α = 0. Here µ = 1, βc = 1, k = 0.5 and

τ = 0.1.

Proposition 3.1. (i) When the market consists of the fundamentalists only, that is,

α = 1, the fundamental steady state is globally attractive; (ii) when the market consists

of the trend followers only, that is, α = 0, the line P = u is made up of locally stable5

steady states.

5As pointed out by one of anonymous referees, those points P = u are not attracting but only
neutrally stable with respect to displacements along the line of equilibria.
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In the following analysis, we always assume α ∈ (0, 1) unless specifically stated

otherwise. In order to examine the effect of the time delay, we first consider two special

cases when τ → 0 and τ → ∞ in the following subsection. We will see that the results

obtained for these two special cases play an important role in our understanding of the

general case 0 < τ < ∞.

3.2 Two special cases: τ → 0 and τ →∞
When τ → 0, the trend followers use the current price as their price trend u(t) →

P (t). Consequently, the system (3.1) is reduced to an one-dimensional system

dP

dt
= µαβf (F̄ − P ), (3.3)

which again is a mean-reverting process. Effectively, the trend followers play no role in

the market price and hence the fundamental price is globally attractive.

When τ →∞, the price trend of the trend followers is calculated by using all historical

prices. In this case, the system (3.1) becomes a two-dimensional ordinary differential

system 



dP

dt
=µ

[
αβf (F̄ − P ) + (1− α) tanh

(
βc(P − u)

)]
,

du

dt
=k

[
P (t)− u(t)

]
.

(3.4)

The dynamics of the system (3.4) can be described by the following proposition.

Proposition 3.2. Let γf = µαβf > 0 and γc = µ(1 − α)βc > 0. System (3.4) has a

unique steady state (P̄ , ū) = (F̄ , F̄ ) and

(i) (F̄ , F̄ ) is globally asymptotically stable when either

γc < k and
k

2
+

3

2
γc < γf , (3.5)

or

γc < γf and
1

2
γf +

3

2
γc < k. (3.6)

(ii) (F̄ , F̄ ) is locally asymptotically stable when k + γf > γc.

(iii) (F̄ , F̄ ) undergoes a supercritical Hopf bifurcation when k + γf = γc.

(iv) (F̄ , F̄ ) is unstable when k + γf < γc and the solutions of the system converge to a

stable limit cycle in the phase plane of (P, u).

Proof. See Appendix B.

The sufficient conditions on the global stability in Proposition 3.2 (i) are driven by

constructing suitable Lyapunov functions and, in general, they are more restrictive than

the local stability condition in Proposition 3.2 (ii). This is partially due to the difficulty
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in dealing with global stability and partially due to the constructed Lyapunov functions.

It is of interest to improve these conditions by constructing more suitable Lyapunov

functionals. The local stability and bifurcation results of Proposition 3.2 (ii)-(iv) are

illustrated in Fig. 2. In the parameter space of (γc, k + γf ), Fig. 2 (a) illustrates the

local stability region, the Hopf bifurcation line, and the the stable limit cycle resulting

from the instability and Hopf bifurcation. Figure 2 (b) plots the price bifurcation diagram

with respect to the parameter γc for given µ = 1, α = 0.5, γf = 0.5, k = 0.1, F̄ = 1. It

clearly indicates the bifurcation value at γc = γf + k = 0.6.

Locally Stable Region

Hopf B
oundary

Unstable Region

γ
c

k+γ
f

(F̄, F̄)

(F̄, F̄)

P

u

P

u

45o

(a) Parameters region of the stability (b) Price bifurcation plot

Figure 2: (a) The regions of the stability, bifurcation and stable limit cycles in the

parameter space of (γc, k + γf ); (b) the bifurcation diagram of the price with respect to

the parameter γc for µ = 1, α = 0.5, γf = 0.5, k = 0.1, F̄ = 1 and τ →∞.

The parameters γf and γc capture the activities of the fundamentalists and the trend

followers, βf and βc, weighted by the market fractions, α and 1−α respectively, and the

speed of the price adjustment of the market maker, µ. From Proposition 3.2 and Fig. 2,

we can see clearly the stabilizing role of the fundamentalists and the destabilizing role

of the trend followers, which is consistent with the results in the current HAM literature

within discrete-time framework. It is very interesting to see the stabilizing role of an

increase in the decay rate k. Intuitively, the larger the decay rate k is, the more weights

the recent prices are given. In the limiting case k →∞, the price trend is given by the

current market price and hence the role of the trend followers in the market disappears,

leading to a market with the fundamentalists only. On the other hand, the smaller the

decay rate k is, the smoother the price trend becomes, the more sensitive to the price

change the trend followers become, and the less stable the market becomes.

With the help of the discussion on the two special cases, we now examine the general

case.
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3.3 The general case: 0 < α < 1 and 0 < τ < ∞
For the general case when 0 < α < 1 and 0 < τ < ∞, in this section, we first

provide a result on the global stability of the fundamental steady state by constructing

suitable Lyapunov functionals. By analyzing the characteristic equation of the steady

state, we then examine the local stability and Hopf bifurcation of the fundamental steady

state, exploring the role of the memory length and the activities of the fundamentalists

and trend followers in the stability. Furthermore, we explore the possibility of regaining

stability after the steady state becomes unstable as the memory length increases, leading

to stability switching, a very interesting phenomenon in the continuous-time HAM but

difficult to see in discrete-time HAMs. We also discuss the number of the switching.

Finally, we examine the stability of two special cases, the first corresponds to the situation

where the price trend is defined by the standard MA (with equal weights) and the second

corresponds to the case when the activities of the fundamentalists and trend followers

are perfectly balanced. Along the mathematical analysis, we also provide some economic

intuitions on the complicated price dynamics of the continuous-time model.

Global Stability—Firstly, similarly to the limiting case of τ → ∞, we examine the

global stability of the fundamental steady state of the delay differential equations (3.1)

by Lyapunov functionals well developed in the literature, see for example, Gopalsamy

(1992) and He (1998).

Proposition 3.3. The fundamental steady state of the system (3.1) is globally asymp-

totically stable if either

γc < k
1− 3e−kτ

1− e−kτ
and

3

2
γc +

k

2

1 + e−kτ

1− e−kτ
< γf , (3.7)

or

γc +
2ke−kτ

1− e−kτ
< γf and

3

2
γc +

1

2
γf < k

1− 2e−kτ

1− e−kτ
. (3.8)

Proof. See Appendix B.

By comparison with Proposition 3.2, we can see that the condition (3.7) (or (3.8))

implies condition (3.5) (or (3.6)). That is to say, with the increase of the time delay τ to

infinity, the sufficient condition of the global stability in the delay case becomes weaker.

This implies that, when the memory length is finite, the stability of the fundamental

steady state becomes more involved and this becomes clear from the following analysis

of the local stability of (3.1).

Local Stability and Hopf Bifurcation—The local stability of the fundamental steady state

of the delay differential equation system (3.1) depends on the eigenvalues of the char-

acteristic equation of the system at the fundamental steady state. It is known (see, for
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example, Gopalsamy, 1992) that the fundamental steady state is locally asymptotically

stable if and only if all the eigenvalues λ satisfy Re(λ) < 0. Let

τ̃ =
1

k
ln

[
1 +

2kγc

(k + γf − γc)2 + 2|k + γf − γc|
√

kγf

]
. (3.9)

The following lemma on the upper bound of the time delay is helpful to the stability

analysis.

Lemma 3.4. The characteristic equation of the system (3.1) at the fundamental steady

state has purely imaginary roots only if τ ∈ (0, τ̃ ].

Proof. See Appendix B.

This means that when τ is beyond τ̃ , there is no bifurcation and no change in the

stability of the fundamental steady state. Therefore, the characteristics of (3.1) as τ > τ̃

depend on the stability of the fundamental steady state when τ → ∞ in Proposition

3.2. The stability changes of the fundamental price happen only as the characteristic

equation has a purely imaginary root λ = iω, which exists only if τ ∈ (0, τ̃ ]. Define

S±n (τ) = τ − θ±(τ) + 2nπ

ω±(τ)
, τ ∈ (0, τ̃ ], n = 0, 1, 2, . . . ,

where θ± ∈ [0, 2π) are the solutions of (B.9) and ω± are the roots of equation (B.7). By

the analysis in Appendix B, we know that the purely imaginary root λ = iω exists if

and only if there is a τ ∈ (0, τ̃ ] and a non-negative integer n such that S+
n (τ) = 0 or

S−n (τ) = 0. Denote

τ0 = inf{τ ∈ (0, τ̃ ] : ∃n ∈ {0, 1, 2, . . .}, S+
n (τ) = 0 or S−n (τ) = 0}. (3.10)

If the set of τ defined as above is empty, then define τ0 = τ̃ . Thus as τ ∈ (0, τ0), the

fundamental steady state will keep its stability as τ → 0, that is, stable. In summary,

we can obtain the following proposition.

Proposition 3.5. For (3.1), the fundamental steady state is

(i) stable for τ ∈ [0, τ0);

(ii) stable for τ > τ̃ when γf + k > γc;

(iii) unstable for τ > τ̃ when γf + k < γc.

Proposition 3.5 implies that the system can undergo a Hopf bifurcation and stability

change only when τ ∈ (0, τ̃ ] and the stability when τ > τ̃ is completely determined by

the balance between γf + k and γc. For given decaying rate k, the fundamental price is

locally stable when the fundamentalists are more active than the trend followers (in the

sense of γf + k > γc) and the memory length is large enough, implying the stabilizing
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Figure 3: The upper bound τ̃ as a function of k. Here γf = 0.4 and γc = 1.

role of the increase in memory length. On the other hand, when the trend followers

become more active comparing with the fundamentalists (in the sense of γc > γf +k), an

increase in the memory length is destabilizing the fundamental price. Meanwhile, when

the trend followers put more weights to the most recent historical prices (so that k is

large), the fundamental price is stabilized.

The upper bound τ̃ defined in (3.9) depends on the decay rate k and, most impor-

tantly, the balance between γf and γc. When the fundamentalists are more active (so

that γf > γc), the fundamental steady state is stable for τ > τ̃ and the upper bound

τ̃ is decreasing in k and satisfies that τ̃ → 0 as k → ∞. In this case, increase in the

memory length τ and the decay rate k play stabilizing roles. However, when the trend

followers are more active (so that γc > γf ), there exists a critical value k∗ = γc−γf such

that an increase in the memory length τ plays a different role for k < k∗ and k > k∗.
For γf = 0.4 and γc = 1, Fig. 3 plots the upper bound τ̃ as a function of k. It clearly

indicates that6 the function is convex for 0 < k < k∗ = 0.6 with a positive minimum

value. In this case, because of γf + k < γc, the fundamental steady state is unstable for

τ > τ̃ and hence an increase in τ destabilizes the fundamental steady state. However,

for k > k∗, the upper bound τ̃(k) is convex and decreasing, satisfying that τ̃ → 0 as

k →∞. In this case, because of γf + k > γc, the fundamental steady state is stable for

τ > τ̃ and hence an increase in τ stabilizes the fundamental steady state. In particular,

the upper bound τ̃ →∞ when k → k∗. This double edged role of the memory length in

stability when the trend followers are more active is very interesting and has not been

discussed in discrete-time HAMs. In summary, we can see that the dominance of the

activities between the fundamentalists and the trend followers plays a key role on the

stability of the fundamental price, while the memory length plays a secondary role.

6It can be verified that if we write τ̃ as a function of either γf or γc, the function is convex with a
positive minimum whenever γf +k < γc is satisfied and convex and decreasing to zero as either γf →∞
or γc → 0.
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Stability Switching—Proposition 3.5 indicates that the change of the stability of the

fundamental price can only happen for τ ∈ [τ0, τ̃ ]. However, it does not indicate how

the change occurs and the possibility of regaining the stability after the fundamental

price loses its stability when the memory length increases. The following lemma is very

helpful to understand this issue.

Lemma 3.6. For τ̃ defined by (3.9) and any n = 0, 1, 2, . . ., S+
n (τ̃) = S−n (τ̃), denoted by

Sn(τ̃), is a decreasing series of n. In addition, for n = 0, 1, 2, . . ., when k + γf − γc 6= 0,

(i) lim
τ→0

S+
n (τ) = 0 and lim

τ→0

dS+
n (τ)
dτ

= −∞;

(ii) lim
τ→0

S−n (τ) = cn and lim
τ→0

dS−n (τ)
dτ

= dn, where {cn}∞n=0 is a non-positive and decreasing

series and {dn}∞n=0 is a negative and increasing series of n;

(iii) when k + γf > γc, c0 = −2π/
√

kγf < 0;

(iv) when k + γf < γc, c0 = 0 and S0(τ̃) > 0.

Proof. See Appendix B.

The properties of S±n (τ) in Lemma 3.6, illustrated in Fig. 4(a) for γf + k > γc and

Fig. 4(c) for γf + k < γc, are very useful in helping us to understand the numbers and

locations of the Hopf bifurcations. Lemma 3.6 indicates that {Sn(τ̃)}∞n=0 is a decreasing

series of n and hence S0(τ̃) plays a dominating role in determining the bifurcation values.

The larger the value S0(τ̃) is, the more likely many functions S±n (τ) cross zero, and the

more often the stability changes.

Following Proposition 3.5, when k + γf > γc, the fundamental steady state is stable

for τ ∈ [0, τ0) ∪ (τ̃ ,∞). In this case, from Lemma 3.6 (i)-(iii), we have that S+
0 (0) = 0

and S−0 (0) < 0. Hence, as τ increases from 0 to τ̃ , the number of the Hopf bifurcations

that the system (3.1) can undergo is either 0 or even. This property is captured by the

bifurcation diagrams of the market price with respect to τ in Fig. 4(b), illustrating a

situation when there exist four Hopf bifurcation values for τ = τi (i = 1, 2, 3, 4) with

0 < τ1 < τ2 < τ3 < τ4 < τ̃ . The fundamental steady state is locally stable for τ ∈
[0, τ1) ∪ (τ2, τ3) ∪ (τ4,∞) and the Hopf bifurcations lead to stable limit cycles as τ near

τi(i = 1, 2, 3, 4).

When k + γf < γc, we know from Proposition 3.5 that the fundamental steady state

is unstable for τ > τ̃ but stable as τ → 0. In this case, from Lemma 3.6, we can see

that, S+
0 (0) = S−0 (0) = 0 and S0(τ̃) > 0. Hence, as τ increases from 0 to τ̃ , the system

(3.1) must undergo at least one Hopf bifurcation and, in general, the number of the Hopf

bifurcations that the system (3.1) can undergo must be odd. This property is captured

by the plot of the S±n as functions of τ in Fig. 4 (c) and the corresponding bifurcation

diagrams of the market price with respect to τ in Fig. 4 (d), where there exist three Hopf

bifurcation values for τ . Summarizing the above results, we have the following corollary.
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Figure 4: (a) and (c): the plots of S±n as functions of τ ; (b) and (d) the bifurcation

diagrams of the market price with respect to τ , for k + γf > γc in (a) and (b) and

k + γf < γc in (c) and (d). Here µ = 1, α = 0.5 and F̄ = 1.

Corollary 3.7. For τ̃ defined in (3.9), the number of the Hopf bifurcations that the

system (3.1) can undergo in the interval [τ0, τ̃ ] must be

• even (including 0) when k + γf > γc;

• odd when k + γf < γc.

The above analysis captures a very interesting phenomenon of the continuous-time

HAM that is not normally observed in the discrete-time HAMs, which is the stability

switching as the memory length increases. Based on the bifurcation plots in Figs 4

(b) and (d), an initial increase in τ leads to a Hopf bifurcation, which is commonly

observed in the discrete-time HAMs (see for example, Chiarella, He and Hommes, 2006).

However, as τ increases further, the fundamental steady state regains its stability through

a second Hopf bifurcation and this kind of stability switching pattern can repeat again

as τ increases further. The role of the memory length of the MA rule used by the

trend followers and the stability switching pattern are difficult to be analyzed in the

discrete-time HAMs due to the fact that an increase in the memory length increases the

dimension of the system and the difficulty in mathematical analysis.
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For more intuitions about the properties of our model, we consider two special cases

to show more about the roles of the behavior of the fundamentalists and the trend

followers.

Stability under the Standard MA—In the discrete-time HAMs and learning literature,

MAs with equal weights are very often used. Balasko and Royer (1996) consider local

stability under a homogeneous recursive learning process formed from the past L values

of the state variable and show that an increase in the memory length L can stabilize the

system. In a HAM, Chiarella and He (2003) show that an increase in the memory length

may not necessarily stabilize the system, rather generate more complicated dynamics in

general. When k → 0, the price trend u(t) of the trend followers becomes the standard

MA of the historical prices defined in (2.5). To examine the role of the memory length

in the stability, we note that S0(τ̃) plays a very important role in the stability, about

which we have the following properties.

Lemma 3.8. As k → 0,

τ̃ → 2γc

(γc − γf )2
and S0(τ̃) →

{
−∞, as γf > γc,

2γf

(γc−γf )2
, as γf < γc.

(3.11)

Proof. See Appendix B.
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Figure 5: Properties of functions S±n when k is near zero.

When γf > γc, that is, the activity of the fundamentalists dominates that of the trend

followers, we have from Lemma 3.8 that limk→0 S0(τ̃) = −∞. Note that Sn(τ̃) ≤ S0(τ̃)

and S±n (0) ≤ 0 for any n. Hence there is less chance for S±n (τ) to cross zero so that

the fundamental steady state of the system (3.1) is to be more likely stable for all delay

τ . This observation is consistent with the stabilizing role of the fundamentalists. In

comparison, when γc > γf , we have from Lemma 3.8 that limk→0 S0(τ̃) > 0 and, in

particular, limk→0 S0(τ̃) → +∞ as γc − γf → 0. In this case, the chance for S±n (τ) to
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cross zero increases, leading to more complicated dynamics. For k = 0.001 very small,

this is illustrated by Fig. 5. In Fig. 5 (a), the difference γc − γf is larger so that

the dynamics are dominated by the trend followers, leading to a lower upper bound

τ̃ for the Hopf bifurcation value and instability of the fundamental steady state for

large τ . In Fig. 5 (b), the difference is smaller so that neither the trend followers nor

the fundamentalists dominates the market. Consequently, the upper bound τ̃ of the

bifurcation value τ becomes significantly large, and the corresponding boundary value

of S0(τ̃), becomes very high, which increases the chance of stability switching. Also the

occurrence of the Hopf bifurcation for τ is more frequent in Fig. 5 (b) than that in Fig.

5 (a).
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Figure 6: Properties of functions S±n when γf = γc.

Stability under the Balanced Activities of the Fundamentalists and Trend Followers—We

have analyzed the stability when the activities of the fundamentalists and trend followers

are not balanced each other (in the sense of γf 6= γc). It would be interesting to know

the changes in stability when their activities are balanced. In this case, the balanced

level of the activity can make a significant difference on the stability switchings. To see

this, we first have the following result.

Lemma 3.9. For γf = γc = γ, limγ→∞ S0(τ̃) = ∞.

Proof. See Appendix B.

When γf = γc = γ, the fundamental steady state is stable as τ → ∞ because of

k > 0. However, it follows from Lemma 3.9 that limγ→∞ S0(τ̃) = ∞, which implies

that surely the fundamental steady state becomes unstable for some finite time delay τ

before it regains its stability when τ is large. It turns out that the level of the activity,

measured by γ, plays an important role in how quickly the stability is regained. In

Fig. 6 (a), the activity level is low, that is γf = γc = 1, leading a low upper bound

τ̃ . This makes the fundamental steady state regain its stability quickly after the Hopf
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bifurcation. However, in Fig. 6 (b), the activity level increases, that is γf = γc = 5,

so that both the fundamentalists and the trend followers are very active. In this case,

the upper bound τ̃ increases so that the fundamental steady state can only regain its

stability after possible many stability switchings for possible large τ .

To conclude this section, we refer to He, Li, Wei and Zheng (2009) for some further

analytical results on the stability and global existence of periodic cycles resulting from

the Hopf bifurcations when the fundamental steady state becomes unstable.

4 Price Behavior of the Stochastic Model

In this section, we conduct some numerical simulations for the stochastic model

(2.10). The focus is on the interaction between the market dynamics of the deterministic

model and noise processes in order to explore the potential capability of the model to

generate various market behaviors, such as the long deviation of the market price from

the fundamental price, and the stylized facts, including the skewness, fat tails, volatility

clustering, and long memory of asset returns observed in financial markets.

To complete the stochastic model (2.10), we introduce the stochastic fundamental

price process

dF (t) =
1

2
σ2

F F (t)dt + σF F (t)dWF (t), F (0) = F̄ , (4.1)

where σF > 0 represents the volatility of the fundamental return and WF (t) is the

standard Wiener process, which is independent of the standard Wiener process for the

market noise WM(t) introduced in (2.10). The reasons for the selection of (4.1) as the

fundamental price process are two folds. The first is that the fundamental price follows

a non-growing random walk process, which is in line with the market price process

with no growth discussed in Section 3. The second is that the fundamental return

defined by d(ln(F (t))) is a pure white noise process following the normal distribution

with mean of 0 and standard deviation of σF . This ensures that any non-normality and

volatility clustering of market returns that the model could generate are not carried from

fundamental returns.

Firstly, we explore the joint impact of the time delay and the two noise processes on

the market price dynamics. For illustration, we choose k = 0.06, γf = 1, γc = 1, µ = 1,

α = 0.5 and F̄ = 1 so that k + γf > γc. For the corresponding deterministic model, we

plot the phase plots of the (u, P ) corresponding to the underlying deterministic system

(3.1) with the same initial value for three values of τ = 3, 12 and τ = 28 in Figs 7 (b)-(d)

corresponding to the bifurcation diagram in Fig. 7 (a). We see that the fundamental

steady state is stable for both τ = 3 and τ = 28 and unstable for τ = 12. This implies

that when the behavior of the fundamentalists dominates the market so that γf +k > γc,

the price converges to the fundamental price for τ < τ1, as illustrated in Fig. 7 (b) for

τ = 3. As τ increases to τ1, the steady state is destabilized, leading to a stable limit cycle
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(a) Price bifurcation for k = 0.06, γf = 1, γc = 1
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Figure 7: (a) The bifurcation diagrams of the market price with respect to τ when

k + γf > γc; phase plots for (b) τ = 3; (c) τ = 12; and (d) τ = 28. Here k = 0.06,

γf = 1, γc = 1, µ = 1, α = 0.5 and F̄ = 1.

resulting from the Hopf bifurcation, as illustrated in Fig. 7 (c) for τ = 12. However,

the fundamental steady state is stabilized as the trend followers increase their memory

length (so that as τ > τ2), as illustrated in Fig. 7 (d) for τ = 28. We also observe that,

though the fundamental steady state is attractive for both τ = 3 and 28, the convergence

speed for τ = 3 is faster than that for τ = 28. In addition, the range of the price change

for τ = 28 is larger than that for τ = 3.

For the stochastic model, we choose σF = 0.12 and σM = 0.05 in all the simulations in

this section. With the same random draws of the fundamental price and the market noise

processes, we plot the market price (the red solid line) and the fundamental price (the

blue dot line) in Fig. 8 for three different values of τ . For τ = 3, Fig. 7 (b) shows that

the fundamental price of the deterministic model is stable while Fig. 8 (a) demonstrates

that the market price follows the fundamental price closely for the stochastic model.

For τ = 12, Fig. 7 (c) shows that the market price oscillates periodically around the

fundamental steady state for the deterministic model while Fig. 8 (b) indicates that the

market price fluctuates around the fundamental price in cyclic way for the stochastic

model. For τ = 28, Fig. 7 (d) shows that the market price converges to the fundamental

price for the deterministic model while Fig. 8 (c) illustrates the long deviation of the
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market price from the fundamental price for the stochastic model, which is underlined

by the slow convergence in the deterministic model over long spans. These numerical

simulations show that, together with the noises, a large delay has profound impact

on the market price, though it can stabilize the fundamental steady state price in the

deterministic model.
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Figure 8: Time series of the fundamental price (the blue dot line) and the market price

(the red solid line) for three values of (a) τ = 3; (b) τ = 12; (c) τ = 28. Here k = 0.06,

γf = 1, γc = 1, σF = 0.12 and σM = 0.05.

Secondly, we explore the potential of the stochastic model in generating the stylized

facts for daily data observed in financial markets. In the following numerical simulations,

we select k = 0.05, γf = 1 and γc = 1.1 so that the fundamental steady state is stable for

small delay but becomes unstable when the delay is large enough (because of γf +k < γc).

The functions S±n (τ) are plotted in Fig. 9 (a). We choose the time delay τ = 1.5 so that

the fundamental steady state is locally asymptotically stable, as illustrated by the phase

plot of the price trend u(t) and the price P (t) in Fig. 9 (b).
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Figure 9: (a) The functions S±n (τ) and (b) the phase plot of the price trend u(t) and

price P (t) for τ = 1.5, here k = 0.05, γf = 1, γc = 1.1 and F̄ = 1.

For the stochastic model with both noise processes, Fig. 10 represents the results

of a typical simulation where the time step is one day. Figure 10 (a) shows that the
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(e) The ACs of the absolute return
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Figure 10: The time series of (a) the market price (red solid line) and the fundamental

price (blue dash-dot line) and (b) the market return; (c) the density distribution of the

market returns; the ACs of (d) the market returns, (e) the absolute returns, and (f) the

squared returns. Here σF = 0.12 and σM = 0.05.
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market price (the red solid line) follows the fundamental price (the blue dash-dot line)

in general, but companied with large deviations from time to time. The returns of

the market prices in Fig. 10 (b) show significant volatility clustering. Comparing to

the corresponding normal distribution, the return density distribution in Fig. 10 (c)

displays high kurtosis. The returns show almost insignificant autocorrelations (ACs) in

Fig. 10 (d), but the ACs for the absolute returns and the squared returns in Figs 10

(e)-(f) are significantly with strong decaying patterns as time lag increases. The result

demonstrates that the stochastic model has a great potential to generate most of the

stylized facts observed in financial markets.

We may argue that the above features of the stochastic model is a joint outcome of the

interaction of the nonlinear HAM and the two stochastic processes. In Appendix A, with

the same random seeds, we report the simulation results when there is only one stochastic

process involved. In Fig. 11, there is no market noise process and the fundamental price

is the only stochastic process. The time series, return density distribution, and the ACs

of the return, the absolute return and the squared return do not replicate these stylized

facts demonstrated in Fig. 10. Alternatively, in Fig. 12, the market noise process is

the only stochastic process. It shows that the return is basically described by a white

noise process. Both Figs 11 and 12 indicate that the potential of the model in generating

the stylized facts is not due to either one of the two stochastic processes, rather than

to both processes. The findings of the continuous-time HAM model on the potential of

generating the stylized facts in this paper are very similar to that of the discrete-time

HAM model discussed in He and Li (2007).

5 Conclusion and Discussion

The continuous-time HAM with time delay proposed in this paper provides a unified

treatment to the discrete-time HAMs involved expectations that are formed by using

historical information, such as weighted MA rules. However, the correspondence be-

tween the behavior of high dimensional discrete-time models and infinite dimensional

continuous-time models with delays such as (3.1) may be severely limited. In particular,

the stability switching as the memory length increases is apparently little known for the

current discrete-time HAM literature. It is clear from the present work and the HAM

literature (see, for example, Chiarella, He and Hommes, 2006) that, when agents use

lagged information such as price to form the expectation, an increase in the memory

length can either stabilize or destabilize the system in general. The analysis presented

in this paper shows that, under certain circumstance, such stabilizing and destabilizing

effect can switch (possibly many times) as the memory length increases. Numerical sim-

ulations of the stochastic model show that the stability switching as the memory length

increases in the deterministic model can generate long deviation of the market price

from the fundamental price. It also demonstrates the potential of the stochastic model
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in generating most of the stylized facts observed in financial markets.

In order to make the model parsimonious and focus on the memory length effect,

we consider a very simple financial market with heterogeneous agents. It is of interest

to extend the model in a number of directions. First, the demand functions of the

heterogeneous agents in the paper are assumed based on agents’ behavior rather than on

utility maximization in the standard finance theory. Justification and variation of the

behavior demand functions using utility maximization are of interest. Second, the market

clearing mechanism used in this paper is via a market maker who provides liquidity to the

market. It is well known that (see, for example, Bradfield, 1979) the market maker acts

not only as a liquidity provider but also as an active investor by managing the market

maker inventory in order to maximize the profit (see, for example, Zhu, Chiarella, He and

Wang, 2009). To incorporate the market maker inventory into the present framework and

to examine the market impact of the time delay are of interest. In addition, the analysis

of the stochastic model in the paper is based on some numerical simulations. Also,

we only consider both the market and fundamental price processes without growth. A

systematic study on the interaction of the nonlinearity of the model and different forms of

the stochastic processes is desirable in order to understand the mechanism of generating

the stylized facts. In future research it will be useful to understand those issues.
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Appendix A. Results of stochastic simulations with

one noise process
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Figure 11: The time series of (a) the market price (red solid line) and the fundamental

price (blue dash-dot line) and (b) the market return; (c) the density distribution of the

market returns; the ACs of (d) the market returns, (e) the absolute returns, and (f) the

squared returns. Here σF = 0.12 and σM = 0.
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Figure 12: The time series of (a) the market price (red solid line) and the fundamental

price (blue dash-dot line) and (b) the market return; (c) the density distribution of the

market returns; the ACs of (d) the market returns, (e) the absolute returns, and (f) the

squared returns. Here σF = 0 and σM = 0.05.
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Appendix B. Proofs of the main results

Proof of Proposition 3.2: We first prove the global stability results. Let x(t) = P (t)− F̄

and y(t) = u(t)− F̄ . Then the system (3.4) becomes

dx(t)
dt

= −γfx(t) + µ(1− α) tanh(βc(x(t)− y(t))),

dy(t)
dt

= k[x(t)− y(t)].

Define a Lyapunov function V1(x(t), y(t)) = 1
2 [x2(t) + y2(t)]. Then one can verify that, under

condition (3.5),

dV1

dt
≤

(
− γf +

3
2
γc +

k

2

)
x2(t) +

1
2
[γc − k]γcy

2(t) < 0.

Applying the Lyapunov Theorem, this leads to the global stability of the fundamental steady
state.

To show the global stability under the condition (3.6), we change the variables from
(x(t), y(t)) to (x(t), z(t)) where z(t) = y(t) − x(t) and define the Lyapunov function by
V2(x(t), z(t)) = 1

2 [x2(t) + z2(t)]. Then the result follows from

dV2

dt
≤

(
γc

2
− γf

2

)
x2 +

(
3γc

2
+

γf

2
− k

)
z2 < 0.

On the local stability, the characteristic equation of the system (3.4) at the fundamental
steady state (F̄ , F̄ ) is

λ2 + (k + γf − γc)λ + kγf = 0. (B.1)

Note that k > 0 and γf > 0. To ensure that all the solutions of (B.1) have negative real parts,
the necessary and sufficient condition is

k + γf − γc > 0. (B.2)

When k+γf −γc = 0, (B.1) has a pair of conjugate complex roots. By the normal form theory,
at γc = k + γf , we can get the first Lyapunov coefficient of (3.4)

`1 = −(k + γf )3
√

kγf

2µ2k2(1− α)2
< 0

corresponding to (F̄ , F̄ ). Thus, (F̄ , F̄ ) undergoes a supercritical Hopf bifurcation (see Kuznetsov,
2004) at γc = k + γf . ¤

Proof of Proposition 3.3: Let x(t) = P (t)− F̄ and y(t) = u(t)− F̄ . Then the system (3.1)
becomes

dx(t)
dt

= −γfx(t) + µ(1− α) tanh(βc(x(t)− y(t))),

dy(t)
dt

=
k

1− e−kτ

[
x(t)− e−kτx(t− τ)− (1− e−kτ )y(t)

]
.
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Define a Lyapunov functional

V1(x(t), y(t), x(t− τ)) =
1
2
[x2(t) + y2(t)] +

1
2

ke−kτ

1− e−kτ

∫ t

t−τ
x2(s)ds.

Then one can verify that

dV1

dt
≤

[
− γf +

3
2
γc +

1
2

k(1 + e−kτ )
1− e−kτ

]
x2(t)

+
[
1
2
γc +

k

1− e−kτ

(
1
2
(1 + e−kτ )− (1− e−kτ )

)]
y2(t),

Applying the Lyapunov Theorem (see Gopalsamy, 1992), we can show the global stability of
the fundamental steady state under the condition (3.7).

To show the global stability under the condition (3.8), we change the variables from
(x(t), y(t)) to (x(t), z(t)) where z(t) = y(t)− x(t) and define the Lyapunov function by

V2(x(t), z(t), x(t− τ)) =
1
2
[x2(t) + z2(t)] +

1
2

ke−kτ

1− e−kτ

∫ t

t−τ
x2(s)ds.

Then the result follows from

dV2

dt
≤

[
γc

2
− γf

2
+

ke−kτ

1− e−kτ

]
x2 +

[
3γc

2
+

γf

2
+

k

1− e−kτ

(
e−kτ − (1− e−kτ )

)]
z2 < 0. ¤

Proof of Lemma 3.4: The local stability of the fundamental steady state of the delay differ-
ential equation system (3.1) depends on the eigenvalue λ of the characteristic equation of the
system at the fundamental steady state

p(λ, τ) + q(τ)e−λτ = 0, (B.3)

which is a transcendental equation, where

p(λ, τ) = λ2 + (k + γf − γc)λ + kγf − kγc +
kγc

1− e−kτ
, q(τ) = − kγce

−kτ

1− e−kτ
. (B.4)

The fundamental steady state is locally asymptotically stable if and only if all the eigenvalues
λ of (B.3) satisfy Re(λ) < 0. As kγf > 0, it is easy to see that λ = 0 is not a root of equation
(B.3). Thus the steady state becomes unstable when the characteristic equation (B.3) has
purely imaginary roots. The bifurcation theory implies that, in this case, complex phenomena
result from a Hopf bifurcation7.

Let λ = iω(ω > 0) be a root of (B.3). Substituting it into (B.3), then the real and imaginary
parts satisfy

ω2 − kγf −
kγce

−kτ
(
1− cos(ωτ)

)

1− e−kτ
= 0, ω(k + γf − γc) +

kγce
−kτ sin(ωτ)

1− e−kτ
= 0, (B.5)

7We refer the reader to Beretta and Kuang (2002) for a bifurcation analysis of delay differential equa-
tions by establishing a geometrical criterion on the existence of purely imaginary roots of a characteristic
equation with delay-dependant coefficients.
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from which, we obtain the trigonometric function values

sin(ωτ) =
−ω(1− e−kτ )(k + γf − γc)

kγce−kτ
, cos(ωτ) = 1− (1− e−kτ )(ω2 − kγf )

kγce−kτ
. (B.6)

It then follows from sin2(ωτ) + cos2(ωτ) = 1 that ω must satisfy

ω4 + a1ω
2 + a2 = 0, (B.7)

where

a1 = k2 + γ2
f + γ2

c − 2γfγc − 2kγc

1− e−kτ
, a2 = k2γ2

f +
2k2γcγfe−kτ

1− e−kτ
.

Equation (B.7) has positive roots only if τ is defined in (0, τ̃ ]. ¤

Proof of Lemma 3.6: Equation (B.3) has the purely imaginary root λ = iω (ω > 0) only if
τ ≤ τ̃ and

τ =
θ + 2nπ

ω
, n = 0, 1, 2, . . . , (B.8)

where ω is the root of equation (B.7) and θ ∈ [0, 2π) satisfies

sin(θ) =
−ω(1− e−kτ )(k + γf − γc)

kγce−kτ
, cos(θ) = 1− (1− e−kτ )(ω2 − kγf )

kγce−kτ
. (B.9)

Note that for fixed τ ∈ (0, τ̃ ], (B.7) has two positive roots ω+(τ) and ω−(τ) with ω+(τ) ≥ ω−(τ).
We denote

S+
n (τ) = τ − θ+(τ) + 2nπ

ω+(τ)
, S−n (τ) = τ − θ−(τ) + 2nπ

ω−(τ)
, n = 0, 1, 2, . . . ,

where θ± are the solutions of equations (B.9) corresponding to ω±. Hence, the imaginary root
λ = iω of equation (B.3) exists if and only if there is a τ ∈ (0, τ̃ ] and a non-negative integer n

such that S+
n (τ) = 0 or S−n (τ) = 0.

For the properties of S±n (τ), we only provide the proof of the case k + γf − γc > 0 here and
the proof of the case k + γf − γc < 0 is similar. Note that, for k + γf − γc > 0,

θ± = 2π − arccos

(
1− (1− e−kτ )(ω2± − kγf )

kγce−kτ

)
∈ (0, 2π) and ω2

± = −1
2
a1 ± a2

1 − 4a2

2
.

When τ → 0, ω+ → +∞ and ω− → kγf , leading to θ− → 2π. Furthermore, limτ→0 S+
0 = 0

and limτ→0 S+
0 = −2π/

√
kγf . Let x = 1− exp(−kτ), then

dS±n
dx

=
1

k(1− x)
− ω2± − kγf

x2ω2±
√

a2
1 − 4a2

[
± 2kγc

k + γf − γc

− x
√

a2
1 − 4a2

(x− 1)(k + γf − γc)
± kγc(θ± + 2nπ)

ω±

]
.

Note that when τ → 0, x → 0, ω+ → +∞, ω− → kγf , and furthermore, x
√

a2
1 − 4a2 → 2kγc,

xa1 → 2kγc, xω+ → 0 and θ− → 2π. Thus, limτ→0 dS+
n (τ)/dτ = +∞ and

lim
τ→0

dS−n (τ)
dτ

= 1 + e−kτ (k + γf − γc)2

2γc

(
(n + 1)π√

kγf

+
2

k + γf − γc

)
. ¤
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Proof of Lemmas 3.8 and 3.9: Note that S0(τ̃) = τ̃ − eθ
eω , where ω̃2 = ω2(τ̃) = kγf + |k +

γf − γc|
√

kγf and

θ̃ = θ(τ̃) =





2π − arccos
(

k+γf−γc

k+γf−γc+2
√

kγf

)
, k + γf − γc > 0,

arccos
(

k+γf−γc

k+γf−γc−2
√

kγf

)
, k + γf − γc < 0.

(B.10)

This implies that S0(τ̃) is determined by k, γf and γc. Especially, when k + γf − γc → 0,
S0(τ̃) →∞. The results follow by considering either k → 0 or γf = γc. ¤
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